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A detailed discussion of Nekrasov's approach to the steady water-wave

problems leads to a new integral equation formulation of the periodic problem.

This development allows the adaptation of the methods of [1)] to show the global

3 convergence of periodic waves to solitary waves in the long-wave limit.

In addition, it is shown how the classical integral equation formulation
due to Nekrasov leads, via the Maximum Principle, to new results about qualita-
tive features of periodic waves for which there has long been a global existence

theory ([9]1, [12]).
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SIGNIFICANCE AND EXPLANATION

Previous work [l] showed the existence of large~amplitude solitary waves
by invoking the modern theory of global bifurcation to a sequence of approximate
problems (none of which had any physical significance in their own right), and

then passing to the limit.

The results in [14], [26], [27] proved the existence of small-amplitude
solitary waves by showing the convergence of small-amplitude periodic waves to

solitary waves as their wavelength increases indefinitely. 1In this paper, we
show that large-amplitude solitary waves, up to and including a wave of

'greatest height', arise in the long wave limit of periodic waves.

The responsibility for the wording and views expressed in this descriptive summary
lies with MRC, and not with the authors of this report.

N B PRI A 47 TN

<Py

PR

T A TN Iz s,




PP

ON PERIODIC WATER-WAVES AND THEIR CONVERGENCE
TO SOLITARY WAVES IN THE LONG-WAVE LIMIT

c. J. Amick+ and J. F. Tolandﬁ

1. INTRODUCTION

1.1. Introductorxy remarks.

Under consideration are the steady two-dimensional waves which can arise
as the free surface of a heavy, ideal liquid acted on by gravity, and con-
tained in a channel of infinite extent with a horizontal bottom, in the
absence of surface tension effects. It is well-known that both periodic
waves [9], [12] and solitary waves [l1] of large amplitude may occur in these
circumstances. A precise account of the free boundary-value problem presented
by this situation is given in the next section, and various physical para-
meters describing the flow are introduced. After some basic results about
conformal mappings and Jacobi elliptic functions have been recorded in
section 1.3, the method of Nekrasov [21] is used to reduce the existence
question for these free boundary-value problems to a similar question for
nonlinear integral equations. Throughout this section, we emphasise the role
which various physical parameters play in these integral equation formula-
tions. For example, in the periodic case, the wavelength and the mean depth

are specified a priori and appear as constants in the egquations, whereas the
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mean velocity, the flux and the flow velocity at the crest depend on the solu-

tion of the equation being considered. An account of this is given in
Theorems 1.5 and 1.6.
Of the two integral equation formulations (1.31) and (1.32) of the .
periodic problems given in section 1.3, equation (1.32) is perhaps the more
familiar. It was used in [9] to prove a global existence theorem for periodic
water-waves (though the physical interpretation of its solutions there is dif-
ferent from ours). Equation (1.31), which is equivalent to the usual integral
equations for periodic waves ([9], [12], [20], [28)), is introduced because it
has distinct advantages for our purposes in section 3. The most important of
these is its striking resemblance to the approximation used in [l; section 3.2}

to prove the existence of large-amplitude solitary waves.

After a few remarks in section 2.1 about recent developments in the
theory of large-amplitude periodic water-waves, section 2.2 is devoted to a
summary and sketch of the proofs of a global bifurcation theorem for periodic
waves of wavelength A on a flow of mean depth h, where A and h are
any given positive real numbers. Amocng these results is the existence of a
connected set of such waves containing waves of all amplitudes up to that of
a 'wave of greatest height'. This connected set contains a wave whose
maximum angle of inclination to the horizontal is B8, for any B ¢ [0, % + €]
where ¢ > 0 1is sufficiently small, and the mean velocity of all such waves

is bounded away from zero and infinity. Some of these results are already

known in a different context, while for others the proof given here is new.
For *he sake of clarity, we have collected them here and expressed them in
terms of equation (1.31), which is the form in which we shall need them again

in section 3.
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In section 2.3 we show that solutinns of eguation (1.32) lie in a cone

which is smaller than the cone of non-negative functions in CO[o, A/21,

namely the cone E of non-negative functions u which are decreasing on [A/4,
A/2] and such that u(x) > u(i/2 - x}, x ¢ [0, »/4). This leads to a con-
siderable improvement in the global bifurcation theory for (1.32). We show
that the maximal connected subset of non-trivial seolutions which bifurcates
from the curve of trivial solutions {(u, 0) : L ¢ R} at the first charac-
teristic value, 6?Ak—l coth(2mh/A}, of the linearised problem is unbounded,
and lies in (6-;\-1 coth(2mh/x), =) x k. Then using the strong maximum
principle, we argue that if (u, €) 1lies in it, then &°(x) < 0 on [}/4,

x/2] The significance of this observation, which lies in the fact that ©
represents the angle of inclination of the free surface (suitably parameterized)
with the horizontal, is discussed, and the possibility of extending the method
to get information about the shape of the highest wave is mentioned, but no
firm conclusion is reached. Using an idea of Benjamin, we show that the maximum
angle of inclination of any periodic or solitary water-wave under consideration
{those in the sets CA or (' in Theorems 2.2 and 3.5, respectively) is less
than 7/3.

Finally, the main result of this paper is proved in section 3, and is
summarised as follows: if h 1is fixed, then as A > ® the connected sets of
periodic waves of wavelength ) on a flow of mean depth h converge, in a
certain sense, to a connected set of solitary waves whose asymptotic height is
h. This connected set enjoys all the properties of the connected set ( men-
tioned in [1; Theorem 3.9], and the behaviour of the corresponding waves is
described in [l; section 4]. The global existence of solitary waves is already
known {1]; what is new here is that periodic waves converge to solitary waves in
the long-wave limit. An easy cnrollary of our general result in this direction

is the fcllowing:
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(a) A symmetric, periodic flow of wavelength A whose mean depth is h.

If such a flow exists and if the free surface has a unique maximum per wave-
length, then a cross—-section of the flow perpendicular to the wave crests may
be identified with a region in the complex z-plane between the line y =0

and a curve {x+il-&(x) : X e R}. Here H)\ : R+ (0, ») is a function of

period A which is even and is decreasing on the interval (0, A1/2) (see
Figure 1). One wavelength of this flow then occupies the region SA bounded

by the lines x =+ 1/2, y = 0 and the free surface I'A = {x + iI»IA (x) :

x ¢ (-A/2, A/2)}. Since the fluid is supposed to be incompressible and the
flow irrotational, there exists an analytic function, the complex potential,
w=¢ + iP, which is related to the velocity (u(z), v(z)) of the flow at a

point 2z € S, by the expression

A

u{z) - iv(z) = - g—: -¢x + i¢y = -wy - iwx . (1.1)

Since the flow is symmetric about x = 0, w must satisfy the relationship

dw -
& B =g 2, (1.2}
whence
v (2) = -wx(-i) (1.2)
and
v(z) = ¥(-z) . (1.4)

In particular, v, is zero on the imaginary axis and, by periodicity,

wx(z) = "@y(z) =0 if Real z =+1/2 . (1.5)

et C= {z(t) : te [0, 11} be any simple curve in S, directed from

-A/2 + iy to A/2 + iy. Then
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[ {u(®) - iv(z)}dz = w (-}/2 + iy) - w(M/2 + iy)
Cc

= ¢(=2/2 + iy) - ¢(N2 + iy) ,
by (1.4),
= —(9(A/2) - ¢(=0/2))

by (1.5). In particular, if C is chosen to be a horizontal line (for

example, the hottom of the domain SA)' we find that

f u({z)az =§— f {ulz) +iv(z)}dz = -{($ (A/2) - ¢(=2/2))}/A ., (1L.6)
C C

| s

which is called the mean velocity and is denoted by -c. (If the flow is

considered in a frame of reference relative to which the mean velocity is
zero, then ¢ is the phase speed of the wave.) Since the bottam (y = 0)
’ and the free surface I‘A
! constant on both, and without loss of generality, we may suppose that

are streamlines, the stream-function y must be

vi(z) =0 if =z« I‘l . 1.7)

Since h is the mean depth of the flow,

v(z) = -Q if Imagz =0 , (1.8)
where

Q=ch . (1.9)

(Note that for a given flow the mean depth is not to be confused with an
integral average of the height of the free surface. It is defined by (1.9)
once the flux Q of the flow is known. By definition, Q is the valuve of

¢ on the bottom when ¢ has been normalized so that § = 0 on the free

surface.) Finally, since PA is a free streamline, the pressure is a constant ;

there, and Bernoulli's theorem then implies that




% |v¢(z)|2 + g Imag z = constant (1.10)

for all z e I where g is the acceleration due to gravity.

A'
The existence question for this “voe of periodic flow is first one of

finding the region S, occupied by one wavelength of the flow, and then one

A

of finding ¢ and § such that a periodic flow of wavelength A and mean

depth h occupies S It must be shown that ¢ and ¢ satisfies all the

A"

conditions (1.1) - (1.5), (1.7), (1.8) and (1.10) in S, where Q 1is given

A
by (1.9) and ¢ is given by (1.6).

(b) Solitary waves on a flow of asymptotic depth h. By a steady soli-

tary wave is meant a symmetric two-dimensional flow whose free surface is in
the form of a single symmetric wave of elevation, whose extent is infinite,
and which is asymptotic to a finite height at += (see Figure 2). The flow
at += is supposed to be approximately uniform horizontal flow from right to
left in the channel. The boundary-value problem posed by this situation is
first to find the flow domain S bounded by the line y = 0 and a curve

I = {x + iH({x) : x ¢ R}, where the even function H is decreasing cn

(0, ») and

ll:i.lll H(x) =h , (L.11)
x|

and then to find a complex potential u satisfying all the boundary condi-

tions, which, in this case, take the following form. The relationship between
the complex potential and the velocity field is given by (1.1), and since the
flow is symmetrical (1.2) must also be satisfied. Since the flow is supposed

approximately uniform and horizontal at points of S far from the crest,

there results that




—v—>

lim u(z) - ivi{z) = 1lim -5;- (2) = -¢ , (1.12)
|2 |+ |2 [+
z2eS zes

where - is the asymptotic velocity of the steady flow. (In a frame of
reference relative to which the asymptotic speed is zero, c is the phase

speed of the wave.) Since I and the bottom are both streamlines, we may

suppose that
=0 on T (1.13)
and
Yy ==ch if Imagz =0 . (1.14)
A
@
%
¥=0 3
— «—
&= s —
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Figure 2. The region occupied by a steady solitary wave of asymptotic
velocity ¢ (from right to left) and asymptotic height h.

The boundary condition (1.13) is a normalization, as before, and (1.14)

follows from (1.11) because the stream function is a constant on the bottom,
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1 -1 -1
k=" a-x) 2a-x% Zax (1.15)
G
and X N B
k' = 1-x) 20-a-xx) Zax . (1.16)

!
C

Cleasly X and X' are monoctone functions cf k < (0, 1), with X « 3

and KXK' 4 = as k v O, while X 4 « and K' ~ %- as k + 1.

For any *» > 0, let k) be the modulus of the unique function sn(-, k})

such that

R K}
/
where K} and K; are defined in terms of k> by (1.15) and (1.16). Since
n 1is fixed, k}, K) and K; are monotone functions of -+ and
2K, -
"~ (1.18)

acs » - =, For convenience with notation, we shall use s} to denote the
elliptic function sn(-, k)) for all 2 > 0, and s_ to denote the analytic
function tanh which is the pointwise limit of s, as » - = [6; page 414,
ex. 1].

It is well known [€; page 414, ex. 4] that the mapping 5) from the

complex /-plane into the complex f-plane defined by

~ 2 ... )
. (r)y = -k sT(z¥ (7 + ih)/7)
4 s 7 ‘
iz a conformal mapping of the region vo= ir=y +in . =2/2 < x < /2,
. . is R
-n - - J- onto the region D' = {f = re : 0-r -1, =m - g < v, The

furnstion p is analytic on F  and maps the boundary portion
’ ’

5 o= s Fooron= 4 i9, 4 < 1=:+/2, +/2); onto the set

-11-




g = e : =% < s < v;, and maps BR)‘A} onto the non-positive real axis
in the unit disc. Let gp. : [-./2, 7»/2) = (~-, -] be defined as follows:
/
p)(x) =s for , « [=2/2, »/2) ,

if and only if s ¢ (-7, =] and

is

]
[

EJ} (/_ + i0)

Another, more convenient wa; of saying this is that for , ¢« [-//2, ~/2),

p)(x) = s if and only if s ¢« (-=, -] and

1/2

cos 2 + i sin = -ik> s;(ZK}(x + ih)/»)

g

2 2

r s . v s s :
P+ k2)5>(2K}K/A) + 1CZ(ZK)L/A)dZ(2KZx/A) i :

3 ) e (1.19) ‘
1 + ks (2K, x/M) l by
s’ 2 / ! !

3

i
~

where c; and d; denote the even Jacobi elliptic functions c¢nf-, k;)
and dn(-, k}), respectively. (Algebraic identities and rules for differen-
tiating the functions <. d> and s, and given in {[6; page 384]. The

expression (1.19) fcllows from the relation (1.17) and [6; page 39€, eg. 3].)

Let é) : D - R> denote the inverse of 5}, and let g. : (--, =] -

[-»/2, */2) denote the inverse of P, - From eguation (1.19) it fcllcows that

(1 + kk)sx(Zqu)(S)/l)

sin

N0

1 + k_s?(ZKﬂq (s) /%)
P PAR N

3 which, upon differentiating with respect to s and using (1.19) along with

| the identities in [5; page 384], vields




)
(2K, q, (5)/3)

2K (1 + k) l -k s
A A } cos qu; (1.2¢C)

2

A A

A 2
1l + k,sk

2.

(2KAq)(s)/k)

But, by the algebraic identities relating s c) and 4, there results that
\ 4

)\l

2 2

2
(1 -k S).) 3 ’

2.2 2
A = c_)_d)\ + (1 k).) s

and so (1.19) and (1.20) together yield the following expression for ¢~

2
1-k
ey = - 2s Y . 2 s5,-1/2
a(s) = -{A/(4K, (1 + k ) }[eos” T+ | T sin® 3] . (1.21)
7.

For convenience with notation, we define the following expressions:

2
1-%
_1 2s A . 2 5,-1/2
f)\(s) =3 [cos > + T+ % k}\) sin 2] R ]{
} (1.22)
f(s) = 1 sec s
2 2 ! J
for all s ¢ (-q, %), and
A= A/(ZK)‘(I + k)‘)) . (1.23)
Recall from (1.18) that
A-+2h/m as A > (1.24)
Since the only zeros of dﬁk/dg occur at ¢ = -ih and at

¢ =+ 2/2 - ih, the real and imaginary parts of qx satisfy the Cauchy-

Riemann conditions on the boundary portion {e1t : =5 <t < a7} of ap'.
Hence
2 (Imag §.) = - 2 (Real q.) = ~q7(s)
or A is 9s A is A
= AfA(s) (1.25)

for all s « (-m, 7).

=13~




Before finishing this discussion of conformal mappings., we note that in
the limiting case when X + » a mapping which takes the region

R = {x +in : x ¢ (==, =), -h < n < 0} conformally ontc P' and the

boundary portion A ={x +1i0 : x ¢ (-, =)} onto {e1s ; =m < s < 7w}, is

given by

- tanh?(7(g + ih)/4h)

ke ]
L)
ol
S’
]

-si(n(g + ih)/4h) .

[l

If the inverse of p is denoted by q, then it follows just as before that

3 -~
5 (Imag Q)| ;= - 3= (Real q)
e e
=D cec S =gy . (1.26)
2 bl

1f v : [-7, 7] »R 1is a continuous, odd function with wv(w) = 0,
then there exists a unigue harmonic function u on the unit disc
D=1{¢ : |z <1} which satisfies the Neumann boundary condition

su/sr! . = v(s), s « (-7, 7], and the normalization condition f u = 0.
e D

It is easy to see that for all s <« (-w, 7],

uEe’® = [ Gls,tyv(trae
-
where
Gls,t) = l 5 sin js sin 4t
o 2
/=1
_ 1, | sin(s + t)/2)
20 "] Sin((s - £)/2) .27
for all (s, t) «+ (-7, =] » (-~, =1, s #t, and u is zero on the real axis

in D. (The identity (1.27) and further properties of G are from [l1, Theorem

2.5].) ©MNote that (1.27) ensures that G(s,t) > 0 for all (s,t) < [O,n] x [O,mn],

s # t.

Py
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The next theorem concerns the change of variables which enables the con-
vergence result of section 3 to be deduced from the work of [1].

THEOREM 1.1. Let Vv : [-A/2, A/2) > R be a continuous, odd function

which is positive on (0, A/2) with V(-A/2) = 0. Then putting v(s) =

-V(qx(s)). for all s ¢ (-, m], defines a continuous, odd function which is

positive on (0, 7), and v(w) = 0.

Moreover, if A is given by (1.23), then

bl
u(s) = A | G(s,t)v(t) £, (t)at (1.28)
-

for all s ¢ (-m, )], if and only if

u(s) = —U(qk (s)) ’

where

2o 5, (2K, (x + €)/))

> £n SA(ZKA(X —s oy Vie)de . (1.29)

l

u(x)
-\/2

Furthermore, there exists a harmonic function U on RA such that

Ux + i0) = U(x) , for X - [-A/2, A/2) ,
%P_ =v{x) , foxr x ¢ (=rA/2, A/2) ,
n X+1i0

-~

and U=0 on aRA\AX.

—

pProof. It follows from (1.19) and from the formula for the elliptic

function of a sum that, under the change of variables
X = qx(s) and f = qx(t), s, t € (-m, W] |,

the kernel

-15-




et . edo

1 s)(ZKA(X + e)/X)
2n " 5, (2K, (X = €)/7)
becomes
1 , | sin((s + t)/2)
27 7| Sin((s - £)/2) :

Since q;(s) = —Af)(s) on (-m, m], the result for the first part of tic
theorem is immediate.
Because VvV 1is continuocus and odd on (-7, 7] and v(n) = 0, it fellows

that there exists a unique function u, harmonic on 0 and contiruouz on D,

such that

i eit = Afk(t)v(t)

and

u(eit) = u(t)

for all t ¢ (-m, n]. Since v is odd, u is zero on the real axis in D.

Therefore U defined by

u(z) = ~G(§X(C))

is harmonic on RA and continuous on Rx. Since p, maps 3R, A, <onto

the non-positive real axis in D, where U vanishes, it follows that U

vanishes on 3R, \A

X The results for U on A. follow by (1.25).

A\

LEMMA 1.2. PFor all X, ¢ « [=A/2, 2/2) x [=3/2, 3/21, \ # ¢ ,

-1 27neh 27NN, 2::1)

| s, (2K, (x + #)/N) ®
= z < tanh ( 5 ) sin(=g)sin(

—1— Qn =
27 | s, (2K, (x = €)/}) 7

-16-
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Proof. This follows by a simple calculation from the expansion for

snu, k) [8; page 912(20)]:

2K .Tu -
Jn sn(u, k) = 2n <+ ’n sin 2K 4 )

- L}
where q = e K /K. qg.e.d.

THEOREM 1.3. The solutions of the linear characteristic value problem

u(s) = %f G(s,t) £, (t)ult)dt

. . L, LTl Tth
consist precisely of the set of characteristic values {% T co th(———-ﬁ}
) =1

; 2';7,«2q}\(5)“\"°
with corresponding eigenfunctions { sin = ) . In particular, the
- /=1
67 27h 6

by TS coth (55=) ¥ = as ) o>

smallest characteristic value,

Proof. From lLemma 1.2 it follows that the set of characteristic values

of the operator defined by the right-hand side of (1.29) comprise the set

{éﬁi- co th(2n2h;} , and the corresponding eigenvectors are {}in(Z:QX/A;B .
=1 - %=1

The result is then an immediate consequence of Theorem 1.1 and the fact that
A > 2h/n as A > o by (1.24). Since fkl(x) j.sz(x) if ), < },, it follows
that uAI :_uA2 by [1; Theorems A.l and A.2]. (See also Lemma 3.3.)

q.e.d.

1.4. On integral equations for water-waves.

The purpose of this section is to show the equivalence of two non-
lincar integral equations, each of which is a formulation of the periodic
water-wave problem when the mean depth and the wavelength are given. Theorem
1.4 is a statement of this equivalence, while in Theorem 1.5 a precise descrip-

tion of the wave which corresponds to a solution of equation (1.31) is given.




Theorem 1.6, which is taken without proof from [l1], is a statement of the
corresponding result for solitary waves.

let h be fixed, as in the previous section, and let A be any positive
real number.

THEOREM 1.4. (i) If 3 : [-A/Z, A/2] » R is continuous, odd, and

0 <6(x) <mn/2 on (0. X/2), and if for all s ¢ (-w, 7],

g(s) = -G(q)‘(s)) . (1.30)

then ¢ : (-m, 1) *R is continuous, odd, and 0 < 6(s} < 7/2 on (0, m.

Moreover, for some p > 0, 6 satisfies the equation

b . £, (t)sin G(t)
=1 1 . | sin((s + t)/2) A
8(s) = 2 f." - S - w72 | [ dt  (1.31)
=+ [ £ (w)sin 8(w)aw
K A
0
for all s ¢ [-7, 71}, if and only if @ satisfies the equation
A/2 s, (2K (x + €)/1) .
_1 1 A A sin O(c)
o) = g f. = in ENERTERYY de (1.32)

€
12 AMu + [ sin o(w)aw

0

for all x ¢ [-A/2, A/2)}. Here AN is given by (1.23) and fk by (1.22).

(ii) If 0O is as in (i) and satisfies (1.32), then there exists a

harmonic function on Ry which coincides with 9 on the boundary portiaon

AA, and which is zero on BR)‘\A}\. If © is used to denote this harmonic

function on R then

A'

sin O(x)

> (1.33)
X+10 34. [ sin o(w)aw
0

for all « + i0 - A}‘.
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Proof. This result is immediate from Theorem 1.1 and equation (1.25).
q.e.d.

In order to use the methods of [1] to prove that connected sets of
periodic waves converge to solitary waves in the long-wave limit, it is
necessary to be explicit about the waves to which solutions of (1.31)
correspond.

THEOREM 1.5. Suppose that ¢ is an odd, continuous functiom on [-3, ¥]

with 0 < 8(s) <v on (0, 7) d () = ¢, which satisfies the mtegral

equation (1.31) on f{-7, -] for some . > T. Then < jis real-amalytic on

-, *] and satisfies 0 < 2(s) < -/2 on (C, ). Zoreover, there exists a

solution of the periodic water-wave rroblen of reriod - om a flow of mean

depth h. The mean velocity of the flow is given by

/
= :ﬁ . (1.34)

]
AR
\\

N

- £ (t)cos 3(t) /2
Ii 2 at

LN £ (wisin £ (widw>
L o N

173

from which the flux Q and the speed at the crest q. may be calculated

as follows:

0 =ch (1.35)

/3

g

C

1
- (-3%5) ) (1.36)

The free surface T) is then given by {(x, H} (x)) : x- (-x/2, x/2)},

where for x < [0, A/2},

;"2f2 173 4 £, (t)sin G(t)
B -8 (@= ! 5| f - a . 1.37)

3g -1 t
4 (x) (l+f f’_ (w)sin 4 (v)'lw)l/3
Y on

and for s < f[-w, O],
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e

!2,2 173 £, (t)cos 8(t)
ats) = {52 f < a . (1.38)
A s .1 . 1/3
\ <+ [ £ (w)sin 6(w)aw)
] 0 A

Remark. In this expression for the free surface profile, the value of
1]

H,(0) is given by [_h exp(T(0 + in))dn, where T is the function in (1.39)
below. Since T is umiquely determined in R, by 6 and (1.39), one may
determine Bl (0) explicitly in terms of u, €, h, and A. Unfortunately, it
does not appear possible to put this result in as neat a form as (1.34), (1.37),
or (1.38).

In Theorem 2.4, we show that the upper bound of 1/2 for € may be
replaced by =/3.

Proof. The method of proof of Theorem 2.2 (ii), (iii) applies to any
solution of (1.31), and not just to those in Cl. Hence, the real-analyticity
of 6 and the a priori bound of »/2 for € follow immediately.

let 6 be the function which is harmonic on R, mentioned in Theorem
1.4(ii), and let T dencte the unique functiom which is harmonic on R, and

ouungatetoé (that is, ‘I‘—ié is anmalytic in 1?1) such that
1 A/2 -
T’ exp(T(x - ih))axy =1 . (1.39)
-A/2

If @ denotes the harmonic function on D with boundary values g,
then the real-amalyticity of 6 ensures that @ is real-analytic on 7.
Since 0(z) = -8(p,(g)), ¢ = R, the amalyticity of p_ om R ensures that
@ is real-amalytic on R, and hence that T is real-amalytic by the
Cauchy-Riemann equatioms. Because 'f' - ié is amalytic on iX' we can use it
to define an analytic function m on K

\ by putting

[ - -
Bz) = [  exp{T(d) - io(E)}aE . (1.40)
-ih




The function & is injective on R ; for othervise there exists
‘1"2‘% with

%, ) X

[ exp(TiE))cos 6(8)aE =0 ,

O
and this contradicts the fact that |6] < 3/2 o R, Dby the maxisum
principle. Since ®°() # 0 in R, it follows that R, is mapped con-
formally anto a region S, by m, and that m is invertible there.

Because © is 0dd on A,, and 3erc on the rest of 3R, it follows

that 6() = -6(-D and T(X) = T(=T). T ¢ R,. From this chservation and
(1.40) there results that :i_((_)t;(-i).;eir Combining this with (1.39)
and the fact that =0 on 3R,\A, yields that S, is bounded by the
lines y =0, x = + A/2 and the curve rlaiml). If ¢ lies on the line
A, then

% Real ;(() = w&(())m 5(() >0 ,

adso.fotsm\ennfmcticn "1' we have

R=ix+inL @ : xe -2, MV} .

A farther calculation hased on (1.40) yields that

B (x) = ~tan 608 (x *+ iR (x))) .
Since & is imvertible, & | is amalytic on 5,. We shall now show that
if a complex potential w is defined on §l by putting

wlz) = olx) + iplz) = ca Lez) 0.a)

with ¢ givea by (1.34), them all of the comditioms (1.1) - (1.10) are
satisfied, and the proof of the theorem will be camplets.




- — e~ gy - ==t <

™he velocity field (u, v) gederated in §x by & is given by

ulz) - iviz) = - -:—:-

= ~c exp(~T(a 1(z))){cos 6ta 1(2)) + i sin 6a L(2))} 0.42)

whence -6(m 1(z)) is the angle which the negative velocity vector makes
with the x-axis, and c exp(-Tta 1(2))) is the speed of the flow at

2e §,. since T =&, ¢ R, it follows that equatians (1.2) -
(1.4) are satisfied. Since 3 =0 on JR\A,, it is immediate from (1.40)

that (1.5) holds. To show that (1.6) is satisfied we note that, by (1.39),

1 A A ~=1 2 ==1 A
TP -sPl=Tma G P -2 @)

>0

-3-H-- . Q.43)

>0

Wext, it z ¢ T,, then 2l e A,, vhence ¥lz) = 0. If 2 ¢ §x and
Imag 2z = O, then Imag ;.1(:) = -h, and so P{z) = -ch. It follows that.
(1.7) - (1.9) hald.

et T : [-A/2, /2] + R dencte the restriction of T to A,. Then, ’
since §=0 on 3R\A, it follows, by Cauchy's Theorem and (2.39), that 4
|
A2 A2 . ;
J eptodlcos etax = [ explfix - iddax =2 . (.44)
-A/2 -)/2

Bowever, from (1.33) and the Cauchy-Riemabn equations,

X
T = T10) = 3 @ + (WA [ sin stwiaw Q.4s)
0

for all X « [=A/2, A/2]. Substituting this epression for T iato (1.44) L
glves




IA/? cos 8(x) a

- X
M2 1+ un) [ sin otman/
0

exp(-T(0)) = %

) AfA (t)cos 6(t)

2
| Y de

@ su[ £ ein smam!/?
0]

by (1.34), whence

q =c exp (-3T(0)) m »

and so (1.36) is satisfied.

In order to prove (1.10), we must show that %(nz(s) + vz(:)) + g Imag z

is congtant on I‘A, or, equivalently, that %cz exp(-2T(X)) + g Dmag ;(x + i0)

is constant for Xx ¢ [-A/2, A/2].

A calculation now gives

A ¢ ep(=2T(0) + g Deag Elx + 10))

= < exp(=2THXIT*(X) - g exp(TX))sin B
= exp(T{x)) {~c? exp(-3T(X)T*(x) - g sin 6(x)}
=0
by (1.45) and (1.46).

Finally, to calculate the wave profile we proceed as follows. At a point
x + iy « ra, the free surface is given by

= RA = .,

where n{(:) = -tan eci“c: + inl(x))). Hence



X
Ho(x) - B (0) = [ H (ndw
2 ’ 7’
8]
T (%)
= - f tan ~ (s)cos L (¥)exp (C (#)) 4,
0]
( 2\ TTh o
= - [ EE_ [ sin " () N
3qg.. ’ / .~ - B
\ E (1 + (./") [ zin ﬂ(w)éW)‘/J
o,
where = : [-//2, »/2] -k 1is given by
2 (x) = Real I;I(‘/, + 1i0)
1/3
- L‘Cz\e [/‘ cos (1" gy
- 39’ i ',_' 1 '
/ O 1+ iy [ sin ceman
0
Hence if x ¢ [0, 2/2],
/,2 2\*3 £ (t)sin 5 (t)
H. (x) - H (0) = L 1 . it
; > \ 39 J . 1 t 13
' o T(x) (=4 [ £ (w)sin £(w)dw)
B O ‘
where
-1 ~-
w TH{x) = (2 o g,) (x)=p}(u (x)) <o ,
and so, for s - [-7, 0],
v1/3
- /ycz 0 cos (") N
1 {(s) = © » q/ (s) = -———39"_‘ I o . G
HBE e & [ osin man
. O
,2 2. 1/3 o) f. (t)cos - (1)
= _._C__.. f Zit
39 1 1,3
S o=+ £ (wysin o (w)aw)
[ O ’

This completes the proof of the theorem.
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THEOREY 1.6.

Jé

Suppose that %

is an odd, continuouc functicn crn

(1.47)

[-r, m] with 0 < g(s) <= on (0, 7} and <£(-) = 0, wh.ch satisfies ¢
integral equaticn

™ B

.1 1, !sin((s + t)/2) | £(t)sin £(t) .
5(s) =g j_v = N Sin((s - 0)/2) | K at
' =+ f f({w)sin % (w)éw
%
Y
1 t

for all s ¢ [-r, 7], where L > 0 and f£f(t) = 5-sec 5 for t ¢ (-, 7).
Then 6f - Ll(-v, m), & 1is real-analytic on (-=, v), and ©C < =(g) < ~/2
on (0, m). Moreover, if h and c¢ are any positive real numbers which

satisfy

then there exists a steady solitary wave flow whose mean velocity and

6gh
2

1 T
(=+ [ f(ws
ufe s 0

in 6(w)dw) =1 ,

asymptotic height (see section 1.2) are -c and h respectively. The
speed 9. of the flow at the wave crest may be calculated from tre
expression
o 3
e 1
6ghc TR
Moreover, the solitary wave profile T is given by 1{(x, H(x)) x - E-
where for x > 0,
h 36c2 3 0 f{t)sin 7 (t)
H{x) - H(0) = S| ~<— - dt  (1.48)
3\ +%gn -1 1t 1/3
g 2l (24 [ f(wsin 2 (w)aw)
M
and for s < (-7, 0),




(S) = %‘ Bgc ':" tf(t)cos :(t) dt - (1.49)
\ - kel .
L8 S AL 7 fsin wan
- o)
FETGrn. I =hie case, wWe Can a&ssert tnat tne value of H(C) is
~
; 1.3

', Dbecause the asymptotic height is known (see

Proof. Wwhile tris *tneorer s fcrmally the limiting case of Theorem 1.5

as - », it needs a serarate £roof. This may be done by modifying the

e

method of proof cf Thecrem 1.3, using the mapring g from R onto D!
introduced in section 1.3. The function = 1is then required to be in

Ll(-w, =), <dd, rcositive on (D, =), and to satisfy

,
N

tanh {(=(x + €)/4h) { sin 9(¢g)

. " tann(-(x - £)/4h) | 2h

T

() =

de , (1.50)

€
+ { sin g(w)dw
(0]

ar ecuaticn which ma, be obtained from eguation (1.47) by putting ;
Yy, and -~ =i%p ~n(sec %-*tan %), s, t ¢« (=, 7). An ;
rative rroof ic tc be found in [l; Theorems 1.1, 4.1, 4.2 and 4.6]. !
*e function © in [1; Trneorem 1.1] differs from that which arises in the i

metheod suggested by the proof of Theorem 1.5 by a change of sign.) g.e.d.

, we include in the Appendix the eguation for periodic waves on a

[,

Tleow whizr iz infinitely deep . The derivation there is slightly different
fror throze already in the literature, and emphasizes the dependence of the

o paraneters onoa given sclution of the equation. It is shown how this

eguation can he written in an alternative form which involves the conjugate




[

operator from the Lz-theory of Fourier series. While a similar formulation
might be adopted in the case of finite depth (see [12}), we avoid this approach
because the normalization requirement ([12; p. 1002, (1.19)] and (1.39)

above) means that when the depth is finite the conjugate operator is nonlinear.

In any case, (1.31) and (1.32) are preferred, since the dependence of the

integrand on € and © is given explicitly.




-y

2. THE GLOBAL THEORY
2.1. Background.
The first proof of the existence of large amplitude, periodic water-
waves is due to Krasovskii [12), and is based on an adaptation of the monotone .
minorant theorem [11] to a particular version of Nekrasov's integral equation.
Among his results on the existence of periodic water-waves in a channel with a
wave-like bottom is included the special case when the bottom is flat. 1In

this case, the conclusion is that for each positive h and 1A, and for each 1

B ¢ (0, n/6), there exists a wave of wavelength A, on a flow whose mean

depth is h, which is such that the maximum angle of inclination of the free

surface to the horizontal is 8 and the mean velocity of all such waves is

bounded away from zero and infinity. Though this result is highly suggestive,

it does not amount to a global bifurcation theorem since neither the question

of bifurcation, nor the question of the existence of a connected set of solu-~

tions is considered. The first result of this kind is due to Keady and .
Norbury [9], who regard@ Nekrasov's integral equation as an example in the

general theory of global bifurcation [7], [23], [30]. Their result is the

following: if L and Q are fixed, positive real numbers, then there

exists a connected set of periodic water-waves which bifurcates from the set

of horizontal, uniform flows, each of which is of flux @, and each of

which has wavelength 2L with respect to the velocity potential. This set ]

contains a wave whose speed at the crest is 9. for any value of q. in

1/3
the interval (O, (9"£ tanh(lg)) ).

Since the mathematical theory of steady water-waves still lacks any

global uniqueness result, it is not possible to assert that the solutions
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obtained by Krasovskii are included in the connected set which
Keady and Norbury obtain. (In principle, Krasovskii's method may yield solu-
tions lying off the bifurcating set, if such exist.) Nevertheless, it can be
shown [29] (independently of the work of Krasovskii) that this bifurcating
set contains waves with maximum angle of inclination to the horizontal 3,
for all values of B in the interval (0, 7/6). 1Indeed, it has been shown by
McLeod [19] that this connected set of water waves contains a wave whose
maximum angle of inclination to the horizontal is B, for all B ¢ (0, /6 + €}
for some € > 0,

In the next section, we shall summarize the global bifurcation theory for

periodic water-waves of spatial wavelength A on a flow of mean depth h.

Because of our declared intention to deduce from these results the correspond-
ing theorems for solitary waves on a flow of mean depth h, we state theorems
about the periodic problem in terms of the integral equation (1.31) rather than
the equivalent equation (1.32). In section 2.3, we shall see how the use of

(1.32) leads to new results about the bifurcation of periodic waves, which are

obscured by the formulation of the problem as (1.31).

2.2. The bifurcation of periodic waves of wavelength XA on a flow of mean

depth h.

Throughout this section,we consider waves of wavelength A on a flow of

fixed mean depth h. Accordingly, we are interested in solutions (u, 0) of

(1.31) with u >0 and 0 < 0(s) < n/2 on (0, 7). Since all solutions of

(1.31) are odd, it suffices instead to consider the eigenvalue problem




n £, (t)sin 6(t)
[ G(s,t) 3 at (2.1)

+ fo f)\(w)sin 8 (w)dw

6(s) =

win
= |+

where the kernel G is defined in (1.27). Let Co[a, b] denote the

Banach space of continuous functions on [a, b] which vanish at a and b,
and let Ko[a, b] denote the closed, reproducing cone of non-negative
functions in CO[a, b). For any [a, b] < [0, 7], Cla, b] denotes the usual
Banach space of continuous functions on [a, b] with the supremum norm.

For convenience with notation, we will abbreviate Kolo, 7] as KO. Since

G is non-negative almost everywhere on [0, 7] x [0, 7] and is the kernel

of a compact, linear Hammerstein operator on Co[o, n] [1; Theorem 2.5(a),

(b)), it follows that this linear operator leaves K_ invariant. The linear-

0
ization of (2.1) about 8 = 0 is given by
2 o
ets) =+ [ Gs,)f ()0(tIAE (2.2)

0

and from Theorem 1.3 it follows that the characteristic value with smallest
absolute value is 6Aﬁ}_lcoth(2‘h/}) -> g as A + o, and the corresponding
eigenvector is sin(2wq}(s)/}). Before the global bifurcation result may be

stated, one further observation is necessary.

LEMMA 2.1. Let | - 0, and let ¢ - KO be such that, for all

S ¢ [0' TY]I
, 7 £ (t)sin(Jo(t))
o(s) = EI G(s,t) ; at |, (2.3)
9] 1 + f f (w)sin(Je(w))dw
¥ a
where

Jx = (sgn x)min{ix , 1}, for all x R .
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Then (i) 0 < 6(s) <m on (0, m), and

(44) wo>u, = 6AmA " Lcoth (2Th/)) .

Proof. The proof of this result is an easy consequence of the maximum
principle, and is proved by the method used to establish [1; Theorem 3.3(a),
(c)]. No modifications are required. q.e.d.

The next result is a summary of the global existence theory for solu-
tions of equation (1.31). Throughout the discussion, the mean depth is
fixed. Let SA = {(u, 6) € (0, @) x Ko : (u, 8) satisfies (2.1) and
6 ¥ 0 . {(Lk' 0)} where My = 6Aﬂk-1coth(2wh/k). Section 2.3 gives more
sophisticated properties of CA’ in particular, the upper bound of #/2 in

{(ii) and (vi) may be replaced by m/3.

THEOREM 2.2. (([9], (12], (151, (191, [29]) Let CA denote the maximal

connected subset of SA in R x COIO, 7} which contains (uA, 0). Then

(i) CA is closed and unbounded;

(ii) Lf_ {u, 8) € CX\{(HX’ 0)}, themn u > IJA En_g 0 < 8(s) < n/2 on

w) .

(0, n), whence {u : (u, 6) € CA} = [UA'

(iii) o is a real-analytic function on [0, 7).

(iv) For each ), § > 0, there exists a constant BA s > 0 such that
’

8(s) > BA,G sin s (2.4)

if u > Hy + & and (p, 09) ¢ CA'

(v) If (u, 8) ¢ Cl' then the mean velocity of the wave, c(u, 9),

is given by the formula (1.34). For each A > 0, there exists a closed

interval [ax, bA] c (0, ») such that

1 .

{clu, 8) + (u, 9) ¢ CA} c [aAr b

A




v fa,, bl = (¢, M]
A>0 A A

for some M > O.

Let the speed of the corresponding flow at the wave crest, calculated

from (1.36), be denoted by qc(u, 6).

(vi) If {(u, 8)}<cC and u ~+= as n->«, then q (u, 5) -0,

and there :xists a subsequence {en(k)} of {Gn} such that en(k) > 8

uniformly on [§, 7] for each &§ > 0, where 9 1is a non~trivial solution of

the eggation

fx(t)sin 9(t)
t dt for se (0,7} . (2.5)
f f. (w)sin 6(w)dw
o A

8(s) =

wln

m™
[ Gts,v)
0

The function 6 is real-analytic on (0, w] and 0 < 8(s) < 7/2 on (0, 7).

Furthermore, 1lim inf6(s) = a > 0 and the following dichotomy holds: either
s>0+

lim 8(s) = /6, or
s~>0+

lim inf 68(s) < 7/6 < lim sup 6(s) .
s>0+ s>0+

The periodic wave corresponding to a solution of (2.5) has a stagnation point

at its crest (i.e. q. = 0).

(vii) Let {(un. On)} c CA denote the subsequence in (vi). Since

*
(pn, Bn) satisfies equation (2.1), it follows that the functicn :n Jefined

on [0, u 7] by

*
en(x) = en(x/un)

safisfies the equation




BT . ®
o o, B £, (y/v )sin Gn (y)
a,x) =3[ Gl , y/u) dy
0 x .
1+ fo £, (w/k )sin 8_(w)aw

for all x ¢ [O, l-ln""].

&
Moreover, as n - <, {Bn} converges uniformly on compact subsets of

*
(0, ) to a function 6 which satisfies the boundary~layer equation

1 2

2n

x+y
x=-Y

* 2 ¢ > sin 8 (y)
0 (x) =;Io lnl ‘ =3 - ay .
1+ 5'!0 sin 6 (w)dw

*
and sup 8 (x) > n/6, It follows that there exists an € > 0 such that,
xe (0,%)

for all n sufficiently large,

Ienlco[o,w] > m/6 + €. Bence, for each

B e [0, n/6 + €], there exists a periodic water wave of any specified mean

depth and wavelength, the free surface of which subtends a maximum angle to

the horizontal of 8.

(viii) For each N > 0, the set {(u, 8) € CA : B <N} is relatively

compact in the topology of nxc" for each integer & > 0, where ct

is the Banach space of 2&-th order continuously differentiable functions on

fo, =»}.

Proof. (i) The proof of this is a simple application of [7; Theorem 2]
to equation (2.3), once the a priori bound of Lemma 2.1 has been noted (see
[9; Lemma 4.1) for a similar treatment of equation (1.32)).

(ii) That u > My follows after multiplying equation (2.1) by
£ and by the eigenfunction of the linear equation (2.2), which corresponds

A
to the characteristic value By and integrating over (0, 7).
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A slight modification of [1; Theorem 3.3(d)]) yields that 6(s) < »/2 omn
(0, 7). In this case the crucial observation is that the function P defined
on D' by putting

P(Z) = - %exp(-zé(cn - Y(D)

is a super-harmonic function on D' which attains its minimum at every point
of the boundary portion {e'l : t ¢ (-7, 7]}. (The use of the super-harmonic
pressure function P to show that the free surface of periodic water-waves
have no vertical tangents was introduced by Spielvogel ([25], and used again
in [9].) Here ¢ and Y are defined as follows. If (u, ) € C,, then

suppose that

(-
8(s) = ] a, sints ,
2=1

and put
1, .21
p(t) = -~ = an(=+ [ £ (w)sin 6(w)aw)
3 n o ) §
1 w
for t < [-w, w). If ao =2 g(t)dt, then it follows that
-

Flrelt) = a + Y ar
=]

£ it
e

for r e [0, 1), t € (-7, v] defines an analytic function on 0. Then put

o(Z) = Real F(Z) ,

and

; -~ - -~ -
Y(0) = mag o | exp(F(E)a (DAL
L 2

for ¢ - D' where Ei) is the inverse of the conformal mapping 1;A

Mhditid,




N S e b A e Yl e ¢ < e e . -

introdaced in sectiom 1.2 (and prime dervotes differemtiatiom). with this
definition of P, the proof that 6 < w/2 follows exactly as in [1; Theozem
3.342)).

(iii) Iewy's theorem [15) ensures that 6 is real-amalytic om ([0, 7ul.
(iv) If this result is false, then for some & > 0 and for each 1,
there exists ("n' en) € Cl n {[ux+ §, @) x Ko} and s, € {0, ) such that
en(sn) < n ! sin s, Now for each closed interval [a, b] c (0, ¥), there
exists E > 0 (deperding on [a, b]) such that if t ¢ [a, b], them

G(s,t) >E sin s
for all s ¢ [0, 7] (see [1; Theorem 2.5(c))). Hence
- £_(t)sin on(t)

A _2 A
R sins >0 (s) =3 fo Gls_.t) T ac

1
;;+ [o flh)sin 6 (w)aw

£f_(t)sin 8§ (v)
23 A .
-3—]a N + a at} sins .
E+{) fl(v)sm an(\v)dn

Since [a, b] is chosen arbitrarily in (0, %), there results that

fl(t)sin Gn(t) a0

1 .
o=+ jo £, (W)sin o (v)aw

almost everywhere in [0, n]l. From the a priori bound established in (ii),
it follows that en + 0 in 1.1(0. n). However, an integration of (2.1) over

(0, ®) after multiplication by sin s yields that
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L fl(t,‘h O‘R)lin t

‘ [ o ts)sinsas=d] ac
o " 3 o t
+ [ £, sin o tnaw
°

T
Io o, (t)ain t at

> L
. - 3% 1
; ;;s\ Io £, tw)sin 6 (w)aw

* wvhence {nn} is bourded, since fl sin 6+ O in Lx“" x). Because G is

the kernel of a compact linear operstor on coto. ], and because {un} is
bounded, it follows that On converges to 0 in CO[O. #]l. But CA is
closed, from which there follows the contradiction that the sequence
{n,} © ly, + 8, =) comerges to u,.

(v} If (u, 8) € Cl. A >0, then by (1.23) and (1.34) there results
that

-3/2

r . £, (thcos 8(t)
[ at

172
clp, 8) < const. A
- g /3

o A
©+ [ £ (w)sin otw)aw)
'] () A

mence, for any N > 0, the set {clu, 8) = (u, o)ecl. A e (0, N1} is

bounded above, or else there exists a sequence ("n' en) eCA. A€ (o, Nl,
n

such that

' fl (t)cos °n (t)

] T B at + 0
© L+ £ tsine man'?
n 1] n




Ia the latter case it follews, ky the bounds in (ii) above, that
anova in 1.1(0. 1), and sin on-»x in :.l(o. 7). Witheut loes of

genexality, suppose that unn-une[o. 2/8) anrd An-»xe[o.m as

n - w, Nenow, for any interval ({a, b} < (0, ®), it follows by [1; Theozrem

a.5(c)) that
b £, (t)sin eu(t)

ote) >< [ G(s,t) —2 at
n - a 1 t

=+ [ £ sin e,
" o M
£, (t)sin o (t)

> const., {f . < dt} sin s > comst. sins ,
lillan

a 1l
L £
!

o *a

where the constants are independent of sufficiently large n.

the Dominated Convergence Theorem

Rence, by

t t
m /Y, + Io fxnsin 6,) = tnla + Io £)

in 1.2(0. %), as n +>e«, and so forany ¢ >1,

. sin 2t fx (t)sin On(t)

®
L at

)
[ sin 23 6 (s) a8 = —
0 n 3).{)

T
£ sin
Un, + Io xn' %

L ] L
-3 cosst w1/ + Io :lnun 8,)at

3%

1 L L3
+-3-[ cos tt tn(a + £,)at
] o




Therefore, for each integer

1, equation (2.0) gives

~

bt - t
é f sin ‘s ds = - % f cos t ‘n(x + f fx)dt .
4 0 a 0
It is immediate by Fulini's theorem that
u £, (t)
7 A
= %j G(s,t) ———/——dt . (2.7)
0
o+ f fA
0

But this is a contradiction since, if a is non-zero, the right-hand side is
1 in CO[O, m] whereas the left-hand side is not; whereas when o = 0, the
] right-hand side is continuous on (0, n] and vanishes at 1 (by [1; Theorem
2.5(f))) whereas the left-hand side does not.

Hence the set {c(u, 6) : (u, 8) € CA’ A e (0, N]} is bounded above.
In order to show that an upper bound may be found which is independent of N,
we proceed as before by seeking a contradiction. If the result is false, then

c(un, en) + = for some sequence {(un, Gn) , where (un, en) € C}‘n and

An + », However, a slight modification of the proof of Theorem 3.1 (iv)

yields that there must therefore exist a subsequence {(un } such

(x)' en(k))

that (l/un(k ) » (a, 8) ¢ [0, «) X L2(O, m), and

)’ en(k)

S L

o
(~ + [ f(t)sin 8(t)dt) 1Y/2 . (/gh, 2/gh]. This is a
0

R

contradiction.
Finally, to show that, for fixed ), the set «cfy, 8) : (u, 8) ¢ CA}

is bounded helow by a positive constant, it suffices to observe that

m t _ -3/2
const. 1] X+ [ £ (wsin 3w et
o ¥ o *

clu, 9)

Iv

| v

const. (by (iv))




where both constants are independent of (., &) . CA' To complete the proof,

2y 172 g as 2 - 0.

we observe that c(u), 0) = {%% tann O—;—)

(vi) Since c(;n, Gn) <M, it follows from (1.36) that qc(un, Gn) + 0

as n — =, The asymptotic behaviour of {en} as n » » is established by a

slight modification of the arguments in [l; section 5], using (iv) to obtain

the appropriate estimates. The behaviour of the limiting function 6 may be
analyzed by precisely the method used to establish [1l; Theorem 5.2(d4) - (g)].

(vii) This is the main result of [19] reformulated in terms of the equa-
tion (2.1). The proof for equation (2.1) is identical (with certain obvious
modifications), and there is no need to repeat it here. Since CA is a

connected set in R x CO[O, 7] which contains (UA’ 0) and a point (u, 6)

with sup 8(s) Z.% + £, it is immediate that for each 8 ¢ [O, g—+ e] there
s [0, 7]

exists an element (u, 8) ¢ CA with sup 6(s) = B.
se [0, 7]

(viii) We sketch the proof for ¢ = 1; for general § the result follows
by induction. Let (u, &) <« CA with 4 < N. Then the odd extension of 8 to
[~7, m] is the conjugate of the even function p defined in the proof of
(ii) (for the Lz-definition of the conjugate operator, which is sufficient

for our purposes here, see Appendix). Standard theory [31; p. 121] then

gives that

where C* denotes the Banach space of Holder continuous functions on [-7, =]

with exponent =« - (0, 1), and the constant depends only on a. For




- =1 0
Io(sl) plsy) ] = 3 n 5
_ 1+ ¢ f f) sin §
o
< const. '11 lS - 5 I < const. E iS - g
- 3 171 2 - 3 1 =2

< const. and hence ]8! x < const., where the constant depends
c o

only on N, a2 and 2.

f}(s) sin = (s)

However, the function gg is the conjugate of

A
n
i
wir

s

1/v +f f. sin =
0

|22

de .
and so ——[ o < const., whence Iagl a < const., and once again the constant
C

ds
depends only upon N, a and X*. The result for : = 1 then follows by the
Ascoli-Arzela theorem. The proof in the general case follows once one has

taken into account that the conjugate of the #-th derivative of . is the

J-th derivative of 3.
g.e.d.
Remark. The proof of (ii) - (viii) in Theorem 2.2 did not use the
connectedness of CA’ and so all of these results hold with CA replaced by

S, -

2.3. Properties of periodic waves.

In section 2.2 the global nature of the solution set of the periodic water-
wave problem was studied through its formulation as the integral equation (1.31).
This equation bears a striking resemblance to the approximation used in [1;

section 3.2] to prove the existence of large-amplitude solitary waves. In

section 3 we shall adapt the proofs in [1] to prove that as * - « the unbounded
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closed connected sets Cx converge, in a certain sense, to a global ‘'branch’

of solutions of the solitary wave problem.

In this section, we exploit the integral equation (1.32) to gain further
insight into the nature of periodic waves which lie on the bifurcating set
CA' These results are not accessible directly from (1.31), and are new.

In this section, our interest is restricted to solutions (u, ©) of

equation (1.32). Since ©0 1is an odd function on (-A/2, A/2], it suffices

to consider the equation

Lj>\/2 . SA(ZKA(X+E)/)‘) sin O(€)
o

3 sx(zxk(x-e)/k)

O{x) =a(u,0) (x) = de , (2.8)

E
Mu+ [ sin B(w)dw
0

x ¢ [0, A/2). Here A, sy and K. are defined in section 1.3; the positive

A
parameters h and A upon which they depend are chosen arbitrarily but are
then fixed,

Since the domain R, = {tx, M : xe (=2/2, 3/2), n e (-h, 0)} |is
t

mapped conformally onto the cut unit disc D' = {re1

by 5)' the results of Theorem 2.2 have implications for the solution set of

(2.8), some of which are set out below. Let TA = {(y, ©) € (0, =) x KOIO, A/2]:

0#0 and (u, 0) satisfies (2.8)} v {(HX' 0)}, where Wy =
6AﬂA-1 eoth (27h/)) is given in Theorem 1.3. Where necessary, we shall

identify 0 ¢ KOIO, 3/2] with its odd extension to [~A/2, A/2].

THEOREM 2.3. let EA denote the maximal connected subset of Tk 12

(0, ©) x COIO, 2/2] which contains (ux, 0). Then

(i) E,

-4]=~

= {(u, ) : o(x) = -e(px(x)), x € [0, A/2], where (u, 8) « C

te (=1, W, re (0, 1)}

}.

e AN dea A o e e et




(ii) EA is closed and unboundeA.

(iii) If 0 denotes the harmonic function on RA with O(x + i0) = 0(X),

X € [-A/2, 32}, and © = 0 elsewhere on 3R,, then
30 1 in 0
R BUPRE S ' (2.9)
M0 i+ [ sin owaw
)

X € [=)/2, A/2}. Furthermore, é is real-analytic on ik; in particular,

© is_real-analytic on [0, A/2]. If © is non-trivial, then

(iv) éx(o, n >0, & (2, n) <0, forall ne (-h, O).
(v) én(x, n) >0 for all (x, n) ¢ (0, A/2) x [~h, O].
(vi) enx(o, n) > 0, @nx(k/Z, n) <0 for all n ¢ (-h, 0).

Proof. Theorem 1.4(i) and the maximality of CA and EA in SA and
Tk' respectively, together prove (i). Parts (ii) and (iii) follow imﬁediately
from Theorem 2.2. By Theorem 2.2(iii), 8 is real-analytic on 5, ana hence
® is real-analytic on ﬁx since ﬁx is analytic there and 0(g) = -é(ﬁx(c)).
BEquation (2.9) is a restatement of (1.33).
To prove (iv) - (vi), we use the maximum principle. By the maximum

principle for a harmonic function u on a rectangle R we mean the fact that

min u < u(z) < max u, for all ¢ ¢ R; while the strong maximum principle
3R aR

refers to the fact that at every point of 3R, other than corners, where the
maximum (minimum) of u is attained, the outward normal derivative is positive
(negative). Let R = (0, A/2) x (~h, 0). Since G(x, 0) = 0(x) > 0 on

(0, 2/2) and vanishes elsewhere on 3R, the strong maximum principle gives

(iv) and the result 5n(x, -h) >0, 7 ¢ (0, A\/2). Since (2.9) ensures that




T T LT

T

én(x, 0) >0 for all X € (0, A/2), and since én vanishes on the lines
{(X, ) : x=0, /2, n € [-h, 0]}, part (v) follows from the maximum
principle. The strong maximum principle for én then gives (vi). q.e.d.

Theorem 2.3(i) ensures that any properties proved for elements of EA may
be translated into corresponding results for CA' The next three theorems concern
solutions of (2.8) with 0 < O(x) <17 on (0, A/2), and note that the results
hold for all elements of EA \ {(“A' 0)}, since such elements satisfy
0 <B(x) <7v/2 on (0, A/2) by Theorem 2.2(ii)

The following theorem ensures that non-trivial elements of EA satisfy
x07(x) < O(x) on (0, 2/2], and, equivalently, that x-IO(x) is monotone
decreasing on (0, A/2). This property implies that O(x) < /3, x € [0, A/2],
for all elements of EA' and, equivalently, that 8(s) < n/3, s € [0, 7], for
all elements of CA'

THEOREM 2.4.*

Assume that (u, @) satisfies (2.8) and 0 < ©O(x) <™ on
(0, A/2). Then

(1) x07(x) < 0(x) on (0, A/2]

(i) 0 < 0(x) <7/3 on (0, A/2).

Proof. (i) Assume that (i) is false, and let © be as in Theorem 2.3(iii).

“ince O(x, -h) = 0, there follows Ox(x. -h) =0, xe¢ (0, A/2], and the use of

+'I‘hat this result might hold for periodic waves was suggested to us by
J. B. McLeod, who attributed it to Prof. T. B. Benjamin in the case of solitary
waves. Note that, in the periodic case, an even finer estimate may be established
by the same method, namely:

sin(L;-)O‘(x) < }eos(“—})o(x) , X ¢ (0, A/2)

As ) » =, this reduces to Benjamin's result for solitary waves,
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this with Theorem 2.3(vi) ensures that

éx(o. 0) =0°(0) > ¢ and éx(x/z, 0) =6°(1/2) < 0O . (2.10)

Hence, there exists x € (0, A/2) such that xéx(x, 0) > 5(x, 0). The use of

this with (2.10) ensures that for some constant d > 1

(2.11a)

’

X, (X, 0) < a8(X, 0) for all X ¢ [0, */2]
and

XGX(x. 0) = dé(x. 0) for some x ¢ (0, A/2) . (2.11b)

Define a function W on R = (0, A/2) x (-h, 0) by

Wix, n) = xéx(x. n - do(x, n)

It follows that W vanishes on the lines {(0, n} : n e (-h, 0)} and
{(x, =h) : x e (0, A/2)}; that W is negative on the line {(X/2, n)

ne (-h, 0)} by Theorem 2.3(iv); and that W is non-positive on the line
{(x, 0) : X € (0, A/2)} by (2.11a). Hence, W < 0 on 3R. A calculation
yields

Aw-gw-—z—(d-l)w=2—d(d-1)®>0 in R . (2.12)
X X X2 x2 -

Standard theory (22; p. 64, 67] applied to (2.12) ensures that W < 0 in R
and that the normal derivative of W is positive at any point on 3R (other
than the line x = 0 since (2.12) is singular there) where W equals zero. By

(2.11b), W(i, 0) = 0 for some x ¢ (0, A/2), and so wn(x, 0) must be positive.

A calculatirn yields

0 <W (x, 0) = x0 (%, 0) - d0 (v, 0
n(x ) xxn(x ) n(x )
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v

k
4
y
|

T e s g i .._1,......’ = . . -
. ity

=;i[£ sin 0 (X) \| _d sin 0(X) _ \
ax y 3 X _J [x=x 3 % L
k AMi + [ sin© Ay + [ sin s
0 0
< %_ 0 (X)cos @(X).' sin @(X)\\ (2.13)
X
Auw + [ sino ,j

0

where we have used the relation i@’(ﬁ) = d®(§) from (2.11b). Since ¢ < 7,
it follows that the right-hand side of (2.13) is negative, and this is the
desired contradiction.

(ii) The arguments for Theorem 2.2(ii)} show that O < 7/2, and the use of
this with (i) ensures that X_lsin 0 (X) is monotone decreasing on (G, */2;.

Hence,

sin 0 (eg) < sin O(c) - sin 0 (g)

€ € £,
AMu+ [ sino [ sine sin Otw) gy

0 0 0 v

< sin O(¢) _

sin O(g) fe v dw
€ 0

for all € < (0, A/2)

™ )

The use of this estimate in (2.8) yields

/2 s)‘(ZKA(X + €)/})) g

A
2 i - )
0(X) < 3"'2 n SR a7 e for all X < (0, */2) ,

and making the transformation ¢ = qA(t) and X = q\(s), s,t ¢ (-7, 0), aives

in the notation of Theorem 1.1,

q.(t)
qx(t)

0
o(X) = -8(s) < - % [ G(s,t) at ., s - (=7, 0)

it

Since 6 1is an odd function, there results that




4 7 q;(t)
e(s) < 3[ G(s,t) = at , se (0, T . (2.14)
0 qk(t)
Since q;(t) = -Af\(t), we have
2 -
g £
q, (t)  t
A
fo £, (w)dw

It is noted in the proof of Lemma 3.2 that fx(t)/f(t) is monotone decreasing

on (0, m), where f(t) = % sec %. It follows that
4 gs(t) £.(t) £, (t)
2\ - - A < A _ f(t) ,
qx( ) t e (w) £ () t t
[ 27 cmaw 2] faan | fooaw
0 f(w) f(t) 0 0
and s»n
. Leect
8(s) < 5/ Gls,t) 2 2 at , se (0, ™ .
t t
0 .n(sec 5 + tan 3)

A simple calculation gives

L sec
2 2

t t
_+ —
in (sec 5 tan 2)

and so

s
f4(s) < % f G(s,t) (tan s cot %)dt = I

2 t+§=“§‘
0

The evaluation of the integral in the expression above is given by [1l; Thecrem

2.5(4), (e)]. q.e.d,

Pemark. A more precise estimate using the right-hand side of (2.14) is not

possible since one can show that this quantity approaches n/3 as s - 0.
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Obviously, part (ii) of Theorem 2.3 follows from the abstract global

bifurcation theory for positive operators (7] using the reproducing cone
KOIO, %/2] (see [9]). The next results of this section (Theorems 2.5 and
2.6) are a consequence of the observation that a smaller cone k is more
appropriate in the study of equation (2.8). Here & = {u e KOIO, A/2): for
all X e [1/4, A/2] and for all x"e [A/2 = X, X}, uX) < u(x)}. Note that
if u -« k. then u is non-increasing on [1/4, A/2]1., and hence k is not

reproducing in CO[O, x/21. Our ultimate aim is to show that Ek c (0, =) x k,

and hence that 9°(x) < 0 on [x/4, x/2] for all non-trivial (u, 0) € EA'

THEOREM 2.5. If (u, 9) is as in Theorem 2.4, then 0 e K.

Proof. Let é be as in Theorem 2.3(iii). Let i e (A\/4, 2»/2] and
~ a -~ *
X" e {,/2 - ¥, X), and define a € (A/4, A/2) by a = (X + X )/2. To prove the

theorem, we claim that it suffices to show that for all a ¢ (A/4, A/2)
8(X, 0) > 0(20 - x, 0) for all X € [2a - A/2, a] ; (2.15)

* *
indeed, since X ¢ [2a - A/2, a], it follows from (2.15) that O(X ) =
- - * -~ A -
B(X , 0) > 9(2a = X , 0) =6(x, 0) =0(X).
Assume that {(2.15) is false for some a ¢ (A/4, A/2). For each number

4 > 1, define the continunus function g by

g(d) = min {d6(X, 0) -~ 8(2a - X, O)} .
(20=2/2,7]

The functinrn G(7, 0) is strictly pnsitive on [2u - A/2, a] since this closed
interval is cnntained in (0, »/2). Hence, g(d) is positive for all suf-
ficiently large d, and since ¢g(l1) < G, there exists D > 1 such that

g(D) = N, 1t fnllows that

DO(X, D) > 9(2a - %, 0) for all / < [24 - 2/2, a) , (2.16a)




- o~

De(x, 0) = é(2a - X, 0) for some X € (2a - A /2, a) . (2.16b)

Let RP denote the region (2a ~ A/2, a) x (-h, 0), and define a

. . a a
harmonic function V on R by

v*(X, n) = DX, n) - 6(2a - X, n)

2

for (X, n) € R®. It follows with the use of (2.16a) that Vv* >0 on 3R,
and the maximum principle then ensures that v® > 0 in 8. Since Va(i. 0) =0

by (2.16b), the strong maximum principle gives

0>v*(X, 0) =D (x, 0) -0 (2a - X, O)
n n n

- D sin O(i) _ sin ©(2a - ;)
i 2a-i
30w + [ sin @) 30+ [ sin 0)
0 0
, D sin O(x) - s1? 0(2a - X) (2.17)
2a-X
3w+ f sin 0)
0

Equation (2.16b) yields
D sin 0(x) = D sin(8(2a - X)/D) > sin 8(2a - X)

since D >1 and O <7 (indeed, O < 7/3 by Theorem 2.4(i)). The use of
this inequality in (2.17) yields a contradiction, and so we conclude that
(2.15) holds. g.e.d.

The following theorem gives various properties of © implied by member-
ship in é.

THEOREM 2.6. Let (u, ©) be as in Theorem 2.4, and let € Dbe as in

-~ * -~ ~
Theorem 2.3(iii). TIf, in addition, X ¢ (A/4, A/2) and X « [\/2 = X, V), then

e
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(1) 6(X, n) <B(X'. n) forall ne (-h, 0] ,

and, in particular, 6(X) < o(x).

~ - ~ *
(ii) en(x, n) < en(x . n), for all ne [~h, 0] .
Moreover,

(i1i) 8. (x, m) <0 and & (, n) <O forall (x, m e [\/4, V2] x (-h, OI;

in particular, 6°(x) < 0 for Xx e [M4, A/2]1 .

{iv) ex(o, n) + ex (\/2, n) > 0, and exn(o, n) + exn(A/Z, n) >0 for

laiid

all n e (~h, 0); and, in particular, 6°(0) + 8°(}/2) >0 .

Proof. (i) Since O # 0, we know from Theorem 2.4(i) that 0 < O(X) < 7/3
on (0, A/2). Combining this with the fact that 0 ¢ f(, yields that for

X, € (A/4, A/2] and X, € [A/2 - le xl)'

1 2
sin e(xl) sin 0(x.)
2
X X . (2.18)
A/p+flsine A/u+fzsin6
0 0

a * a ~ * -~
Now suppose x € (A\/4, M/2) and X ¢ [M/2-X, X), andput a= (x +x)/2.

Define a harmonic function W* on R® by putting
W', m = 8k, n) - B2a - x, n)

for all &, n) € R® = (2a - A/2, a) x (-h, 0). Then

w“(Za - M2,n) >0 , ne (-h, 0] ;

w:(x, 0) >0 , x € (2a = M2, o) ,

by (2.9) and (2.18); and W” = 0 elsewhere on 3R®. By the maximum principle
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w o> 0 on Rq. and by the strong maximum principle wq(x, 0) >0 for all
L
X e (2a - A/2, a). In particular, for x = X € (2a - A/2, a), there results

that
o™, m - Bk, ™ >0
for all n ¢ (-h, 0}, and (i) has been established.

(ii) We first prove (ii) for n=-h and n = 0. Since w >0 on R
and is zero on the line {(X, =-h) : X € [2a - A/2, a]l}, the strong maximum
principle for W® gives w:(x. -h) >0, X € (2a = A/2, a). If we set
X = X. € (20 - A/2, a), then the case n = -h is proved. It was shown in the
proof of (i) that w:(x, 0) >0, X € (2a - 3/2, a), and so the result for
n =0 follows upon setting X = x*.

We now show that w:(x, n) >0 on Ru. so that the result for n ¢ (-h, 0)
in (ii) will follow upon setting X = x.. Because of the maximum principle
for w:, it suffices to show that w: >0 on 2R%; note that this has
already been done for the horizontal portions of the boundary. For n ¢ (-h, 0),
we have

Wila, M) =8 (a6, m -8 e m=0 ,
and

W::(za - M2, n) = én(za - A2, n) - énwz. n) = én(Zu - M2, n) >0
by Theorem 2.3(v).

(iii) If a € (A/4, A/2), and W® is the harmonic function defined on

the region R as above, then it follows by the strong maximum principle that

w;(q, n) <0 (2.19)
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for all n ¢ (-h, 0), whence, putting a = X,
é}\ Go M+ 8 06, mM <0 , O, e M4, M2) x (<h, 0) . (2.20) 1

(Although (2.19) only proves (2.20) for X < A/2, the result for X = )\/2 is
due to Theorem 2.3(iv).) Differentiating (2.9) with respect to X vyields

that
0. cos © 2
- — - sin 0 . (2.21)
Mu+ [ sin® (Mu+ f sin 0)2
0 0

éx
"1 x,0

which, combined with (i) above, yields 1

9 ‘ <0 , X € [AM4, M2) . (2.22)
xn (x.0)

-~

Hence, 0O does not attain its maximum on the line segment
X

h

{{, 0) + x € (M4, A/2)}, by the strong maximum principle. Combining
(2.20), (2.22) and Theorem 2.3(vi) yields that § (A/4, 0), éx(x/z, 0) <o,
and the first part of (iii) has been established.

We now prove the second part of (iii). Since éx(x/z, 0) < 0, equation
(2.21) ensures that éxn(A/2, 0) < 0, and the use of this with (2.22) proves
the case n = 0. It was shown in the proof of (ii} that wz >0 on R
and that wz(a, n) = 0, ne (-h, 0), for all a ¢ [A/4, A/2). By the strong

maximum principle,

a = -
0> wnl(a, n) = 'nx(“' n) + Onx(a' n .,

whence f—).},n(x, n) <0 forall (,, n) - (A4, XM/2) x (=h, 0). This, along with

Theorem 2.3(vi) establishes (iii).

/4 A/4

. ) . . . .
(iv) The function W is a mositive, harmonic function on R , and

is zeroc on the line {(0, n) : n - (-h, N0)}. Hence, by the strong maximum
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principle,

WX(OI n >0 , n< (<h, O) .
Therefore

O/ (O, n) + 0)(()\/2' n) > C ' n < (‘h: ) ’

whence, by (iii),

5,00, 0) > =% /2, 0) >0 . (2.2 )
However, by (2.21),
i N A (0, 0) 0, (2/2, 0)
9, (0, 0) + O (X2, 0) =
- )+ 9,,0/2, O Y 72
My + f sin -
0

>0, by (2.23) , PSS

and the first part of (iv) has been established.

It was shown in the proof of (ii) that wg >0 on R’ for all

a < [A4, X2). For the case o = A/4, we have w2/4 = 0 on the lines

{(x, n} + ¥=20, 4, ne (-h, 0)}. By the strong maximum principle,

A4

0 < WX

(O, n) = Oyn(oy Y’]) + Oxn(x/z, T'\) 2 i€ (-hr 0) ’

e U S ———

which, together with (2.24), yields

Tu

6j(n(0' n} + é)\n()‘/zr n >0 ’ n e (=h, 0] . g.c.

Our aim at the outset was to design a cone which was invariant under ti.o

operator in equation (2.8), and which was sufficiently sophisticated in its

at least

structure to give information about the shape of solutions .,




large yp. The ultimate goal is to reach a firm conclusion ars:c %ne veracity
of Stokes' conjecture (that ©(0+) = m/6 when 1/u. =0 ir “Zz.%,, <=hrough
this limiting process.

Our motivation comes from various numerical results "2z%; -.. 144-1471,
[5; p. 215], [24; p. 572] which make it seem plausible trz= ~° =z7ould have
a unique zero in (0, A/2), if (u, ©) is in EA' rysizzllr, all this says
is that the wave has only one inflection point between crest zn< “rough;
Theorem 2.6 says that there are none between 1/4 and /2, &zut this does not
appear to help. The Serrin-Lavrentiev comparison theorems have bheen sug-
gested as 2 possible way to tackle the problem ([10; pp. 356-357), but there are
difficulties in applying them in this case [29; p. 484]. (However, there are

other indications [19; p. 19] which suggest that the number of zeros of €~

approaches infinity as u - «.)

From the point of view of this section, a natural approach is to let N
be the set of all solutions in EA which have the property that 2- vanishes
only once in (0, A/2). One can use the local bifurcation theory to show that
N 1is not empty and non-trivial, and it is clearly closed. We have been
unable to show it to be open, but remark that if suffices to show that ©&°
and ©°° cannot vanish simultaneously on ([0, A/2]. For the analogous problem
in the theory of non-linear Sturm-Liouville problems [23; pp. 500-503] this
method works, because there 0° and 0°” cannot vanish simultaneously
(because of the uniqueness theorem for differential equations).

Finally, we remark that numerical evidence suggests that the zeros of
9" approach 0 as u approaches infinity; 0° being negative on (0, 1/2)
in the limiting case of 1/u = 0, which means that the limiting wave is con-

vex [28; p. 1471, [24; p. 576].




3. ON THE CONVERGENCE OF PERIONDIC WAVES
TO SOLITARY WAVES IN THE LONG-WAVE LIMIT

Throughout this section the mean depth h is fixed. The purpose here is

to show the sense in which the sets (, of periodic water-waves converge to a

\

set (' of solitary waves as the wavelength increases indefinitely. Recall
from section 1.2, that each set C\ contains exactly one point corresponding
to a uniform horizontal flow of depth h, and that this point (UA' 0) 1is the
point at which periodic waves of wavelength ) and mean depth h bifurcate.
In other words, on a flow of depth h, periodic waves of wavelength A bifur-
cate from the horizontal flow when the mean velocity of the flow is

{(gA/27) tanh (2nh/k)}l/2. Moreover, the value of u, converges to 6/m as

A + o (Theorem 1.3).

Let U be any bounded, open set in R x CO[O, 1} such that (6/7, 0) ¢ U.
Then, for all X sufficiently large, CA n oU # P. The next theorem is the
main result of this paper. (Further properties of the function 6 constructed
below are given in the remarks following Theorem 3.5; in particular, part (i)

may be improved to 0 < “(s) < 7/3 on (0, m).)

14

THEOREM 3.l1. Suppose {An}c IR, and An 4 © as n -+ «», and suppose

that CA noU # @ for each n. If {(un, en)} c (0, =) x Ko is a sequence
n

such that (un, 9n) “ CX n U for each n, then the seguence {(un' en)} is
n

relatively compact in [6/m, =) x KO. If {(un(k)' en(k))} is a subsequence

of f{(u, 8)} such that
<2 2 ’n sucn that

Moyt Fagg) 7 (e 8 = 18/m =) Ky (3.1)

then (1) uw > 6/7, 0 < 8(s) <n/2 on (0, m) and (u, 8) « 3U ;

’

(ii) (u, 9) 1is a solution of the equation for solitary waves (1.47).

(iii) The sequence {f 6 } converges in L,(0, %) to f8, as

—_— X n{k) 1 e —_
n{k)

k - o.
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(iv) If c(u

n(k)’ en(k)) is calculated using kn(k) instead of X in

expression (1.34), then

T
y » &2 A4 [ £(eysin 8 (tyar) )/

c(un(k)' 6n(k) T M

(v) For each Xk, the free surface may be denoted by {(x, Hk(x)) :

x € (=) /2, X

n (k) n(k)/z)} where H_ depends on Mk’ Mh (k) and en(k)

according to the formulae (1.37) and (1.38). As k » o,

Hk(x) - Hk(O) » H(x) - H(0) ,

uniformly on compact intervals, where {(x, H(x)) : x ¢ R} is the profile of

the solitary wave corresponding to the solution (u, 8) of (1.47). The

function H may be calculated from (u, 8) by the formulae (1.48), (1.49).

A proof of this theorem may be obtained by modifying the arguments of

{1; Theorem 3.8]. The following lemmas facilitate this procedure.

LEMMA 3.2. For any non-negative, bounded function u on [0,7], whose

support has full measure, and for any o > O,

fk(t)U(t) £f (t)ult)
N Vv
t -— t
o+ [ £ (Wulwdw o+ [ £ (wu(w)dw
0 A 0 v

if X2 >v >0, and fx, fv are defined by the expression (1.22).

Proof. Since fA(t) > fv(t) for all t ¢ [0, 7] when X > v, it will

suffice to show that

t t
£,(t) jo £ (Wulwdw > £ (t) jo £, (W)u(w)aw
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for all t € [0, 7). 1In other words, it will suffice to show that

t
0 < fo (£, (£)E (W) = £ (£)E, (W))u(w)dw
t £.(t) £, (w)
= [ £ (£)f (W) A - 22 u(w)dw
o VY v fv(t) fv(w) .

.

However, a simple calculation yields that fA/fv is increasing on (0, 7),

and the proof is complete.

gqg.e.d.

LEMMA 3.3. For each X >1/m, let 9, denote the function defined on

[0, 7] by putting

fA(s), s e [0, m~-1/7A] .,
gl(s) = (3.2)
0, s € {m -1/, 7]

Then there exists a unigue solution (YA' wk) of

m
ve) =2 [ Gs,o g, (vt
0
with (v, ¥) € [0, =) x KO and ]wlco[o,“] = 1. Moreover y, ¥ 6/7 as

A > =,

Proof. The proof is similar to that of [1l; Theorem 3.2]. Existence and
uniqueness follow immediately from the general theory of uo-positive linear
operators, and that Yy ¥ 6/m follows by exactly the same argument as was

used to show that Yn + 6/1 in [1; Theorem 3.2].
q.e.d.

~ Proof of Theorem 3.1. Because of the obvious similarity between the

problem here and that of proving [1; Theorem 3.9], we shall limit ourselves to




giving an outline of the proof. The letters (A'), (B'), (C'), etc., when
used below, refer to those points of the proof of [1l; Theorem 3.9] so labelled.

Since {(nn, Bn)} c W R x Co[o, ] is a bounded sequence, there exists

a subsequence {(“n(k)' en(k))} and a corresponding sequence {An(k)} <R ,
such that
un(k) >y in R , (3.3a)
en(k) -~ § weakly in L2(O, o, (3.3b)
sin en(k) -~ 0 weakly in LZ(O' ) ‘o (3.3c)
and
)‘n(k) 4 o in R

as k > ». We shall show that the conclusions (i) - (v) of the theorem hold
for this subsequence. For the sake of having a convenient notation, we shall
henceforth use {un}, {en}, {An} to denote the subsequence for which (3.3)
holds.

(i), (ii), (iii) An obvious adaptation of (A') - (D') vyields that
en -+ 06 and sin en + sin 8 in LZ(O, m) as n - o; that en -~ 8 in
C[0, 8] for each 6§ ¢ (0, m); and that (u, 8) ¢ [6/7, =) x KO is a solu-
tion of (1.47). The next step is to prove that 0 is non-trivial. To do this

we first show that if 6 = 0, then u = 6/7.

Now for each n,
f. (t)sin en(t)

2 (" *n
o (s) =3[ Gis,t) .t ar
T f f. (w)sin 8 (w)dw
u A n
n 0 n
, 3 flg(t)sin en(t)
> -3-[ G(s,t) r
0 1, [ £, wsin 8 (w)dw
Yn 0 2
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for all n > 1%, by Lemma 3.2 and the fact that An + o,

, 7 gkg(t)51n en(t)
>3/ e - at
0 1, f f)‘ (w)sin en(w)
un 0 L

where 9, is defined by (3.2). Therefore

2
f it
[ ets.trg, (B)e (t)dt)
2 - _0 g " .
0,08 25 A - f , (3.4)
Lt fo fAQ(W)sin 8, (W) aw

for all s ¢ [0, ®w], where

sin en (s)

8_(s)
n

An ¢ = inf
’ se[O,wr-l/)\zl
Now multiplying this inequality by 9, wk , Wwhose existence is guaranteed by
I

Lemma 3.3, and integrating gives

m .
'n . f fo gxz(t)w)\g(t)en(t)dt
YAR IO en(s)wxg(S)g)\l(s)ds > An,l 3 - .
l =+ [ £, (wsin 6_(w)aw
\un 0 l n .

Thus

n, %

w
L4 £, (sin o maw > A /v,
nn 0 M n 2

for all n > 2. If en->o in L2(o, 7) as n > », then Sn->0 in

and so An -1 as n > o for each fixed

c{o, 81 for each 4§ ¢ (0,m), g
9

.. There results that
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Vu = lim 1/u_ > y.!
n— 'Xi
- 2

for each 1. Since Y ¥ 6/m, as &t o, it follows that u < 6/m. But

)‘Q
(u, 8) is a solution of (1.47) and so, by [1l; Theorem 3.7], u > 6/T. We
have shown that if (un, en) + (g, 0) in IR x L2(0, my, then u = €/m.

From this observation, the method of (F') yields that fk en converges
n

to f£f6 in Ll(o, m), and then the method of (G') may be used to prove that
en + 8 in CO[O, 7]. The function 6 must therefore be non-zero, for
otherwise, as we have seen, (un, en) + (6/m, 0) in IR x CO[O, m]. This
contradicts the fact that U is an open set which contains (6/m, 0) in its
interior. That O < 8(s) < 7/2 on (0, w), and yu > 6/7 1is proved in

{1; Theorem 3.7). This completes the proof of (i), (ii), (iii).

(iv) By (1.23) and (l.34)

2/3g K, (1+k, ) £ (t)cos 8 (t) =3/2
: An An 5 T An n
R C(Un, en) = X '): fo 1 T s dt .
n (= + [ £, (w)sin 6_(w)aw)
H u A n
f n 0 n
i From (1.24) it follows that
2v3g ¥, (1 + k, )

} /g

n n_ Y29 nm (3.5)

An 2h

as n -, Now for any o < (0, m,

f. (t)cos 8 (t)

2 n n

+/ at
(w)sin G“(W)dw)l/3




o f)‘ (t)cos en(t)

=if L at +
AnO

t
L+ [ £, (osin o_waw /3
u : n
n 0 n

. fA (t)cos en (t)

%—] — at . (3.e)
no L g (wsin o wanl/3

H A n
n 0 n

Por any ¢ > 0, choose afe) ¢ (0, m) such that for all n sufficiently
large [cos N (t) = 1| <e for all t e [a(e), 7]. This can be done since
en > 6 € Ko uniformly on [0, w]. Moreover, by (3.3a) and (iii), a(e) can
be chosen so that

t kg

|2+ [ £, (nsin 8 man /> - @+ [ fosin o(waw
n. 0 “n n Yoo o

)1/3

[ <

for all t ¢ [a(eg), =} and for all n sufficiently large. From {3.6) it

follows that

f)\ {t)cos en (t)

lim 32-' / — at
A% 'm0 1 [ £ (w)sin 6 (waw />
u A n
n 0 n
f)\ (t)cos O (t)
n
= lim — f ~ at
n->* n a(e) (_1_+ f f)\ (w)sin Gndw)l/3
n 0 n
£f, (£)(1 - ¢)
e 5 " Xn
> 1lim — f at
T hee M ae) 1 " 1/3
(—+ [ £, (w)sin 8_(w)aw)
| u A n
j n 0 n
; , £, (t)
< lim = L at . (3.7)
e M) 1 " 1/3
- n (; + f f(w)sin 6(w)dw) - €

o




However, by (1.24) and (1.25),

2 " 2 "
lim <= | £, (B)at = lim = [ £, (t)at (3.8)

n» ‘n ale) n n+ n 0 n

- M -2 » - -1 = L
= lim > [ qxn(t)dt = lim A= o= .

n nn 0 N
Also, from (iii),
1 " 1/3
lim (= + | £, (w)sin 6 (w)dw) 1
nse *n 0 n n
k1
= (l+f fwsin awan /3 . (3.9
u 0 J
Collecting (3.5) - (3.9), we find that
/2 ™ 3/2
w—;,%_g- (2—:-) [(-‘11-1» [ f£lw)sin S(W)dw)l/3 - €]
0
: :.li: c(un’ Gn)
3/2 _ 1r
< “—;?15 & a- a0V, | f@)sin swam’?
= T Wt

and since € is arbitrary, it follows that

™
Limcu, 6 = /2B &y [ fsin sman??

n-ree 0

That this last quantity lies in an interval (\/Eﬁ. Z/gT) has been established

in [1; Theorems 3.9, 4.12, and the footnote to Theorem 3.7(c)].

{v) An analogous calculation to that just given yields (v).
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COROLLARY 3.4. The statement of this corollary is given in section 1l.1.

Proof. By Theorem 2.2, there exists (un, Gn) € CA such that
n

|6|c o,m = B, for any B ¢ [0, 7/6). The result will follow by the method
0 ’
used in the proof of Theorem 3.1, once it is established that the sequence

{un] is bounded. However

. fx (t)sin en (t)

8.5 =2 [ G(s,0) = at

0 1
=+ [ £ (w)sin 8 (w)aw
u A n
n 0 n

, flm(t)sin 8_(t)
23] st S a ,

° L4 £ (wsin o waw

un 0 m n

if n>m, by Lemma 3.2. Without loss of generality suppose that B, > o,
Then, as in the proof of Theorem 2.2(iv), it can be shown that there exists
B > 0 such that en(s) >Bsins, for all s ¢ [0, 7]. But this estimate
is enough to guarantee (by a routine adaptation of the methods of [l; section
5]) that a subsequence {enm} of {Bn} converges in C[§, 7}, for each

§ € (0, 7), to a non-trivial solution 6 of the equation

w e
] Gis.t) t:f(t:)s:n.n o(t) at .

° f £oa)sin 8tw)aw
0

8(s) =

Wi

However, we know from [1; Theorem 5.2] that for such a function 6,

lim 6(s) > n/6. This contradicts the fact that le l =R < 1r-.
z n'C_[0,n] 6
s-+0+ 0
q.e.d.
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Finally, we have the following result. ILet S = {(u, 8) ¢« (0, =) x Ko :
(u, 8) solves (1.47) and 6 ¥ 0}. For all (u, 8) ¢ S, the product
£6 ¢ L (0, ™ ([1; Theorem 4.1]). Let S = {(y, eSS : (u, 8) is the
limit, as A »®, in IR x cO[o, m] of a sequence (u)‘, e)‘), where
(ux, SX) € CA}'

THEOREM 3.5. If C* 4is the maximal connected subset of S' which

contains (6/®, 0), then (' is closed, unbounded, and has all the properties

attributed to C in [1; Theorem 3.9]. Clearly (' c C.

Proof. This is immediate, since it has been shown that the boundary 23U
of every bounded, open set U cIR x Co[o, r] which contains (6/w, 0},
contains a point of (*'. Since the set S' is obviously a closed subset of
S, and it has the property that bounded subsets of it are relatively compact,

{1; Theorem 3.8), the result is immediate from {1; Theorem A6].
q.e.d.

Remarks., (a) Section 4 of [1] gives further properties of the elements
of C. 1In particular, the function © is real-analytic on [0, ), and so
the wave profile is an analytic curve in JR2, and the rate at which the free-
surface approaches its asymptotic level is estimated. In section 5 of [1l], it
is shown that if {(un, en)} c C' and B *® as n->o, then a subsequence
converges to a non-trivial 'solitary wave of greatest height' which satisfies
(1.47) with u = =, The behaviour of this wave at its crest is similar to
that given in Theorem 2.2(vi).

Clearly the results of [19], quoted in Theorem 2.2(vii) for periodic
waves, hold also for solitary waves corresponding to (' or (. This agrees

with numerical results [18; p. 738].
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(b) since periodic waves converge to solitary waves on compact sets as

the wavelength goes to infinity, it is reasonable to hope that the limiting
gsolitary wave will inherit some of the properties of periodic waves given in
section 2.3. Unfortunately, this has not been proved for the conclusions of
Theorem 2.6; only some parts of Theorem 2.3 hold in the solitary wave case.

The difficulty lies in the fact that RA + R, while the uniform convergence
of periodic waves to solitary waves is only on compact intervals. If, however,
the plan outlined in the remark following Theorem 2.6 could be implemented, then
conclusions would follow which would be compatible with the numerical results
on solitary waves [4; p. 185]; on the convergence of periodic waves to soli-

tary waves ([5), and on the solitary wave of greatest height [16 p. 10].

The results of Theorem 2.4 do go over in the limit as A + «, and one can

show that elements of C” satisfy X0°(Xx) < ©(x) and 0O(x) < /3 on (0, =).
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APPENDIX

Periodic flows of infinite depth

THEOREM. Suppose that 6 is an odd, continuous function on [-m, ]

with 0 < 6(s) <7 on (0, M, which satisfies the integral equation

™
=1 1 sin((s + t)/2) sin 6(t)
8ls) =% J 7 M Sin((s - ©)/2) t dt (Al)
=+ f sin 06(w)dw
¥

for some u > 0. Then 6 is real-analyticon [-m, 7] and 0 < 6(s) < 7/3

on (O, 7). Moreover, u >3, and if X and c are positive real numbers

such that
{3 \M3 _ 1 f" cos_6(t) at (82)
\2'rrc2 2m -r L1 t 1/3 ’
' <+ [ sin 8(w)aw)

0

then there exists a periodic wave of wavelength A on a flow of infinite

depth. The velocity of the flow at infinite depth is then ¢, and its speed

at the crest is given by

1/3
= (3gXc
qc ( 21y )

The free surface may be parametrized by (x, H)‘(x)), where x ¢ (-)\/2, 2/2)

and for x ¢ [0, A/2]

2.2 31/3 fo %sin 8 (t)
at , (a3)

HA(X) - HX(O) = ( ra

a (x) (51:+j0 /3

2
3gm sin 6 (w)dw) 1

YT

where for s« [=uw, O]
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. m-«-;_»r*-admr‘ﬂ.
]

22
als) = A"e

)
3g1r2 /

0 % cos 8(t)
) + at . (a4)
s (1 1. 1/3
(214 +f 3 8in 6(w))
(o)
Proof. The proof that 6 is real-analytic and bounded by

/3 follows
as in Theorems 2.2 and 2.4.

To show that u > 3, multiply (Al) by sin s and

integrate over (-m, 7)), wusing (1.27).

As before, there exists a harmonic function ® on the unit disc such

that B(eis) = f(s) for all s € (-7, w], and

20 -1 sin 6(s) . (a5)
| 44 33 08
e = + f sin o(w)dw
¥ %

Using the expansion of G given in (1.27), it follows from (Al) that for
all s ¢ (=m, =],

1 o .
6(s) = %f {; z sin zszsin zt} :m 8(t) at .
- f=1

+ f sin 96(w)dw
0

)

T |+

From this and Fubini's theorem there results that the Fourier series for §
is

) a, sin 1s (26)
=1

where

t

Ul
1 1 .
= - —— cos &t An(— + sin 8(w)dw)dt . A7
2 3w f_“ (u fo ) (A7)

a

It follows that putting

O +ibE) = ] aEt (a8)
2=l

;
i
|
!
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defines an analytic function on the unit disc, and

. . s
Ty + ib(e’® =a - 3 R,n(% +{ sin ewaw). + 16(s) (A9)
0
™
for all s ¢ [-m, 7], where a_ =

1 ¢
0 2n

%2n(%+ [ sin snawat .
-7

o]
et ¢ and )\ be positive real numbers chosen so that (A2) holds.

Then
an analytic function T - i6 can be defined on R, = {x +in: =M2 < X < M2,
n < 0} by putting

Hence

T(z) - 16(z) = Tlexp(~2mir/A)) + 16(exp(-2miz/A))
O(xX + 10) = =8(=2mY/})

and so
38 L 2n -5in@ (~27X/)
an 3 1 =2TX/A
X+1i0 -+ sin 8(w)dw
¥ %
-1 sin 06(x)
3,
— 3 fa)
3T +f sin A(w)dw

(al0)
0

|8] < w/3 in R

where O(x) = o(x + i0). Since |9| <>-n/3 on [-m, w], it follows by the
maximum principle that X
Now define an analytic function m on

RA by putting
- C - -~
m(z) = [ exp(T(z') - ie(g"))de’

0

Since é(i' 22+ in) = 0 for all n < 0, and since ﬁ(;) - i..é(t;)l > 0 as

lg] > = ¢ R,, it follows that m is a conformal mapping from R, onto
an infinite region in the =z-plane of the form s)‘ = {x + iy

-M/2 < x < M2,
y <H(x)), and 2 u,(x) = -tan 0( '(x + iH,(x))). Since @ is invertille,
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we can define a complex potential w = ¢ + iy on S, by putting

1(2) ’

w(z) =cm

where ¢ was chosen when )\ was chosen so that (A2) holds. Then for
Z € SA'

&

u(z) - iv(z) = - az

= =c exp(-T(ﬁ—l(z)))(cos é(ﬁ-l(z)) + i sin é(ﬁ-l(z)))

and it follows that c¢ exp(-T(ﬁ-l(z))) is the speed of the flow and
-e(ﬁ-l(z)) is the angle which the negative velocity vector makes with the

x-axis at a point 2z ¢ S Moreover u(z) - i v(z) » -c as |z| +> o,

A
zZ € S,. From the definition of w, it follows that § + -» as [z| » o,
z €S, and ¥ = 0 on the free surface r, = {(x, Hx(x)) : x € (=A/2, M2)}. i

Finally to show that the free surface condition is satisfied,we proceed

as follows. By (A8), (A9) and Cauchy's formula there results that

Ul ~ it - it . it
- _ 1 exp(t(e ) + ib(e ))ie
1=exp(0) =35 f 3 at
v e
exp(a, )
- 0 f cos O(t) at
27 _ 1 t 1/3 4
T =+ [ sin e(w)aw)
L
and so, by our choice of ) and ¢, E
prc? \1/3 ‘
nC
exp (ao) = l ?g-l_) . (All)
\

Hence

2
~ is 1l 2rc 1l
e ) = a5 - 3

1 S
en(= + [ sin o(w)aw) ,
L
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and so

X
1l 21rc 1 27 .
T(x + i0) = 3w -3 wE T fo sin O(w)dw) . (a12)

Therefore

B e e, A8

2 -
d—c:(- {(E.;- exp (-2T(X + i0)) + g Imag m(X + i0)}

P Y

2 ~ .
- %% c” exp( 2T(XX+ i0))sin O(x) _ g exp(P(x + 0))sin B(X + i0)
1l 2n .
; + T!o sin O(w)dw

= exp(T(x + 10)){2“ 29X sin 0(x) - g sin 0(x))
27nc

= 0 .

To complete the proof of the theorem we must verify that (A3), (A4) give the
wave profile. This is a routine calculation based on the method used in the

proof of Theorem 1l.3. g.e.d.

Results similar to those in Theorems 2.4 - 2.6 hold if one replaces ©

by 6 and A/2 by .

Though the proof of this last theorem is in many respects similar to
that of Theorem 1.5, we have included it in order to obtain the following
corollary. We need the notion of a conjugate function which is defined as

follows. If u is an L2-function whose Fourier series is

a, + z (az cos is + bﬂ, sin £s), then the function conjugate to u is

denoted by Cu and is the L,-function whose Fourier series is
[

Z (al sin s - b!, cos £s) [2].
=1
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COROLLARY. If 6 satisfies (Al) for some u > 0, then 6 satisfies

the equation
L ( ]
=) 1 sin((s + t)/2) . ]
8e) =2/ T hnies )72y | ©¥P(-3C8 (t)sin 8 (t)at

-

where v = 39% . ;
2nc

Proof. By (A6) - (A9)

- co(t) = 1%

1, 1
a, ~=&n(=+ f sin 6(w)dw) ,
o 3 U 0

whence by (all)

2nc2 { 1

exp (-3¢0 (£)) = T

t b

1 :
=+ f sin O(w)aw |
u 0 ;

Substituting this last expression into (Al) gives the required result.
g.e.d.

Remark. In the previous sections, the mean depth was held fixed as
A+» If wenowifix A, and let h » », then one can prove a result
analogous to Theorem 3.1, but the proof is essentially simpler, because the
limiting equation is non-singular. A word of caution is necessary however;
if {(un, en)} is a sequence of solutions of (1.31) corresponding to waves
of the same fixed wavelength 1A, but of different mean depths hn > o, and

if {(un, en)} c 3U, where U 1is an open set in IR x CO[O, A/2] containing ]

(6, 0), then a subsequence converges to (u, 9), where (u/2, 8) is a

solution of (Al). This may be seen from (1.31), since (1.17) and (1.22)

together give fA(x) + 1/2 uniformly for t ¢ [-m, 7], as h » =,
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