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The applicatibﬁuof Richardson iteration to a symmetric, but indefinite

linear system requires certain parameters which can be determined from the
zeros in the error of a certain best polynomial approximant on some gset S
known to contain the spectrum of the coefficient matrix. It is pointed out

, that this error can also be obtained as a multiple of the extremal polynomial
for the linear functional p h4vp(0), and this leads to an efficient Remes
type algorit%m for its determ;;;tion. A program incorporating this algorithm

;, . for the case that S consists of two intervals bracketing zero is also given.
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SIGNFICANCE AND EXPLANATION

Sparse symmetric (positive) definite linear systems occur in various
problems, chiefly in the construction of least~squares approximations and in
the solution of elliptic partial differential equations. They are most
advantageously solved by the conjugate gradient method. But this method may
break down if the system fails to be definite, as it might be if constraints
are added to the least-squares problem or standard conditions on the lower
order terms in the elliptic PDE are relaxed. In such a case, Richardson
iteration offers a possibly attractive alternative. This iteration method
requires knowledge of some set S certain to contain the spectrum of the
coefficient matrix of the linear system and this can often be supplied. 1In
addition, it requires knowledge of the polynomial of smallest size on §
which has a given degree and takes the value 1 at 0 . If S 1lies to one
side of 0 , then this polynomial is just the Chebyshev polynomial for S
(normalized to have value 1 at 0) . But, in the indefinite case, the
Chebyshev polynomial will not do.

The present report presents a novel characterization of the needed

polynomial, an efficient algorithm for its construction and, for the case
that S consists of two intervals, a Fortran program based on it for the

determination of the iteration parameters for Richardson iteration.

The responsibility for the wording and views expressed in this descriptive / i

summary lies with MRC, and not with the authors of this report.

D S




. ‘é‘n_v'ﬂm@?’m"la\?ﬁ‘;‘-nh 2

,gggsﬁpﬁwwywymwwqrww

EXTREMAL POLYNOMIALS WITH APPLICATION TO RICHARDSON ITERATION

FOR INDEFINITE LINEAR SYSTEMS
Carl de Boor and John R. Rice

1. The iteration problem Consider the linear system of equations Ax = b and the

iteration

+ 1
= =x" - an(Ax" - b)

n n
With e := x - x the error in the n-th iterate, we have

-1 n Q
e = (1-a A)en = .eo = I {1-a, A e = Q0 (A)e
n-1 - n

where Q. 1is the polynomial of degree n which vanishes at 1/a0, aee, 1/an_1 and is

1 at 0 . This is Richardson's (first order) iteration, with iteration parameters a.

. If

the spectrum of A is known to lie in some compact set S , then a standard analysis

suggests that one should choose the parameters aj so as to minimize

Q := max |Q (s)}
n s ses n
The resulting polynomial P, 1is then the error in the best Chebyshev approximation on S

to 1 from {Ej218jtj} . If S is an interval not containing the origin (hence A is
known to be definite), then it is well known that a renormalization of P, to make the
coefficient of t" equal to 1 gives T, . the Chebyshev polynomial for the interval s .
For this case, the three-term recurrence relation for the Chebyshev polynomials may be
employed to build up =x" without the use of the zeros of P, . This has the advantage

that the iterates xi so generated along the way are themselves using Pi « This method 1s

known as the Chebyshev semi-iterative method . This variation requires some more memory (3

vectors rather than 2 are used) and more computation per step (since more vectors are

combined per step). The conjugate gradient method is a further variation which, with some

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041.

The second author was also partially supported by National Science Foundation
Grant MCS 77-01408.
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more work per iteration, removes the dependence on the interval S ; the mere knowledge
that such an interval exists suffices to show that the error produced at the n-th step is
of the form Pneo with P, the error in a best approximation to 1 on the spectrum of
A itself.

The conjugate gradient method may run into difficulties when A , though symmetric and
invertible, is not definite. See Paige and Saunders [1975) for a detailed discussion and
some remedies. For this reason, Richardson iteration becomes an attractive alternative in
this case. We now have the snectrum of A contained in two intervals, with the origin
between them, Akhiezer [1928] determined the Chebyshev polynomials for two such intervals
of ecqual length and Lebedev [1969] extended this technique to a set S consisting of an
arbitrary number of intervals of equal length and applied his result to iteration. See
Anderssen and Golub [1972]) for a translation of Lebedev's paper and further discussions,
particularly on the important subject of the order in which best to use the ai's .

Specifically, let S = [a,b] [c¢,d] . For certain values of a, b, ¢ and 4, Atlestam
[1977] has obtained a representation of the Chebyshev polynomials for § , of the

following form: Let

Q(t) = cos(m(W+I(t)))

with

t o4 c

1(t) = [ (u-r)p(wldu , r := [ up(uidu / [ plu)du
a b b
and
‘Jé
plu) := ((u—a)(u-b)(u-c)(d-u)J

If there are integers m and k so that 1I(b) = kn/m , then Q 1is a polynomial of
degree m propartional to the Chebyshev polynomial for S . Atlestam further shows that,
fnr any interval pair S, the Chebyshev polynomial is of this form but for a slightly
Aifferent pair of intervals, and this difference goes to zero as the degree goes to
infinity. Her arguments can be used to show that in the same way, for any interval pair

T b.ackering the origin, the best polynomial P, is of the above form, but for a slightly

different interval pair. These results can be used to obtain sharp asymptotic results on




the degree of convergence of the iteration method, but it is not clear how useful the
representation is for obtaining the necessary iteration parameters.

In the present paper, we give what we feel is a more useful formulation of the
mathematical problem underlying the determination of the parameters; well known results
then establish existence and uniqueness of the solution of this problem and characterize
it. In particular, we are led to a Remes type algorithm for the determination of P, .
whose zeros can then be determined efficiently by the Modified Regula Falsi. For the
particular case that S is an interval pair, we present some numerical results to
illustrate the nature of the parameters and the convergence rate of the corresponding
iteration. In an appendix, we list a Fortran program (written by Frederick Sauer) which
produces the iteration parameters when supplied with the two intervals and the desired

polynomial degree.

2. The extremal polynomial The papers mentioned above all use Chebyshev polynomials
in some essential way, so we first note that, in general, the required polynomial P, is
unrelated to the Chebyshev polynomial T, for S . This is seen in the analysis of
Atlegstam [1977] or, more directly, from the fact shown below that P, alternates one less

time on S than does T, »

To recall, the Chebyshev polynomial T, for the compact set S 1is the polynomial of

zn-1

3=0 B.tj which is as small as possible on S . In other words, T, is the

n
the form t +
error in the best approximation on S to ¢t" from {Zg—lsjtj} . By contrast, we are

interested in the polynomial P, which is the error in the best approximation on S to

n
1

We now reformulate this problem as follows. Let A be the linear functional on nn

1 from (I BjtJ} .
(:= the polynomials of degree n or less) whose value at p is p(0) . In symbols,
A TnT—*R:p = p(0)
An extremal for 13 is any polynomial of norm 1 at which A takes on its norm, j.e.,
any peT with Ilpilg =1 and Aip = IAl . Here

Ipt = Iplg  := max Ipts)|

5.9
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and

- LS S : -
1A} := max b 1/ min{ Iptg : pET . p(o0) = 1}

R L L e T,

This shows that the polynomial P, which is of minimum norm on S and satisfies P,(0) =

1 is a multiple of an extremal p' for X, i.e., P, = p'/p'(O) .

The standard approach to the construction of extremals is via norm preserving

extensions, i.e., via a socalled canonical representation for A (see, e.g., Rivlin [1974;
; Pp.82££f) ). Such a canonical representation for )\ consists of n+! points ty <ty < vun

< tpyy in S and corresponding coefficients Ay Oy ees, @ L, SO that

t n+1
i Ap = T aj p(tj) , all pe L
| 3=1
b
and
n+1
I = I Iaj|
3=1
In other words, writing [t] for the linear functional of evaluation at t , such a i
canonical representation provides us with an extension ?
n+1 .
I alt,)
jur 43

of A from ﬂn to all of C(S) := Banach space of continuous functions on S , and this
extension has the same norm (on C(S) ) as does X (on L e
We will give a constructive proof later on of the existence of such a canonical

representation for our particular ) . Taking this for granted (or referring for it to

Rivlin (1974]), we note that, for the Lagrange polynomials 2j given by

ntt t - ti
L (t) := n -—_— s 3=1, 000,041
3 = 5 Y
i#3 ;
we must then have
n+1 5
L.(0) = AL, = I a L£(t,)) = a,
3 b] = 434 J
This implies that
n+1 t
a, = I , all j
3 i=1 547%

i*3

hence all coefficients are nonzero if, as we assume, 0 does not lie in S . Further,

-4-




i <0<
quj+1 0 iff tj tj+1
If now p* is an extremal for A , then we have
* n+1 . n+1 " n+1 .
I = Ap = ZIoap(t) € Zlallp (el < (I Ja,ljlpt = #xi
3=1 hj ] =1 ] J =1 3

SO equality must hold throughout this relationship. In particular,

* *
sign(aj)p (tj) = Ipl = 1, allj.
; § ' This pins down p' uniquely once we know all the tj's . Explicitly,
&
B
ﬁ « n+1 ‘
: p = L sign(%,(0)) &,
3=1 ’ J
Q Thus, for n > 1 , p* is not just a constant, therefore Theorem 2.15 of Rivlin [1974}
: shows that the points t4, ..., t,,, are uniquely determined.
b If now 0 1lies to one side of [t1,tn+1] , then it follows that p* alternates on
P
tyr eees thyq o hence p* is necessarily a multiple of the Chebyshev polynomial for
. : *
é f s ﬁ[t1,tn+1] . Further, |p ()| > 1 for t not in [t1,tn+1] . We conclude that in tne
i ¢ case of particular interest to us, namely when 0 is in the convex hull of S , there must
be some k for which
| tk < 0 < tk+1
) &
' o This shows our assertion at the beginning of this section that, in general, P, need only

if

. n+1
p(t) = ¢ (sign(lj(o)))lj(t)

=1

n > 1 . Consequently, then

t, = b := max S N(-=,0]

We gather these various facts in the

alternate on n points in S . Further, for B <t < by

T (st ‘ 2,
(elgn(lj(t))) 50

e ()l > T L (t) | = 1
3 J

, and tk+1 = ¢ := min & [0,®)

following theorem, for the record.

Theorem 1 Assume that S is compact and does not contain 0 , and n > 1. Then

(a) A has a unique canonical representation, and aj = Ji#j‘tx/(tﬁ_tx)' R

3=1,...,n+1.




!
,i

(b) Correspondingly, A has a unique extremal, and this is given by

- n+1 t - ti

p = I sign(£,(0)) &, with 2. (t) = T ——= , all j.
i J J e 3 {#4 t.-t. —_—
= i#3y 3 i

=1

If, in addition, 0 is in the convex hull of S , then

{c) tg <0 < ty,, for some k . Further

k=3
(-7, =,k

-
P (cj) = ek

( 3=k+1, ... ,n0+1

* .
and p (t) > 1 for t, €t < typ,q . hence t, = max SN{-=,0] and ty,.y = min SN[0,®) .

We pointed out earlier that P, = p‘/p*(o) could also be obtained as the error in the
Chebyshev apprdximation to 1 from the subspace {Z? Bjtj} . This subspace forms a Haar
set on S as long as § does not contain 0 . We could therefore have obtained the above
characterization from general criteria such as Kolmogorov's criterion, but the derivation

would not have been any simpler. We note that, while P is in general not (a multiple of)

n

the Chebyshev polynomial for § , it is always a multiple of a Zolotarev polynomial since

- its alternations over n points characterize it as the error in a best approximation to

g+ g ™' from = .
n n=1 n=2

3. Remes algorithm for the extremal polymomial We begin with a statement of the

algorithm. In it, we use the abbreviations

. b := max 5N {=»,0] , c := min S7VY[0,®)

introduced earlier.

e g T

Remes algorithm for the extremal polynomial

n+1
tl 1. Chnogse ¢t = {tj}j=1 in S , strictly increasing, and with tg = b, tksq = C for some
- ‘.

q IO L 2 P 3 . - - - .
2, Set p : Zj:151an2j(0)) Zj , with ij(t) 1= Hx*j(t ti)/(tj ty) . all j . 1

3. Set t, := min S, thep 1= Mmax § and construct 8 by




1
t

4

|

R

tj for j=k,k+1

the first of the possibly two maxima of p(tj)p in [tj PL R B

=17 7941
for 3=1,¢v¢,k=1,k+2, ... ,n+1

4. Choose t from s as follows:

(a) if p(ty)p(ty) < -1, then t = (tg, S9s se<e, Sy}, and increase k by 1.

(b) if p(tn+2)p(tn+1) < -1, then £ i= (890 oees Spiqe tn+2), and decrease k by 1.
(c) otherwise, t := 8 .
5. Set t := ¢t .

6. Iterate steps 2 through 5 .

Theorem 2 The sequence of polynomials produced by the above Remes algorithm

*
converges to p .

Proof We first note that the algorithm is well defined at step 4 in that only one of
the alternatives (a) and (b) is possible. Indeed, if both (a) and (b) were to occur, then
p would alternate on Egr eeer Ty Eyin seees thao o and this is not possible for a
polynomial of degree n or less .

As to the convergence, denote by 5 the polynomial obtained from p after one
iteration, i.e., the polynomial constructed from the sequence T obtained at step 4 . We
claim that 1 < E(t) < p(t) for any t in (b,c) and that strict inequality holds here
unless t = t . The first inequality we already observed earlier (for Pn). As to the

second, we have

'_kwfu '_.k ~ .

(-’ P(E) = 1 < (-’ p(E,) for §=1,2, 4.4,k
k=1 ~ ~ k-1~

-)° B(E) = 1 < =)’ P(E,)  for je=krl,...,ntl

by construction. This implies that, for b < £t < c ,

n+1
p(t) = plt) = I [plt.) - plt ))e () = = Zlplt )-ple )18 ()1 < o
j=1 i 33 i j 3
and equality occurs only if p = ; on the n+1 points €1, veey €n+1 , i.e., only if
P=p .
P

. !




We conclude that the segquence generated by the Remes algorithm decreases monotonely nn
(b,c), yet is bounded below there. Hence it converges, uniformly on any finite interval, to
some polynomial p‘ . This polynomial is then a fixed point of the map T (in L defined
by

T: p—p,
it being is straightforward to show that T is continuous. But this says that p' is the

desired extremal.

4. EBfficient computation of the parameters We were led to study this problem by the
work of Roloff [1979] where estimates of the parameters are provided. A result of Roloff's
states that the zeros of P, are approximately distributed in S in a proportion which is
independent of n . One might hope that this proportion is determined by measure, i.e., a
subinterval of § containing 1/10 the length of S contains about 1/10 of the zeros of

P, . We use this to obtain the initial guess (in step 1) for the Remes algorithm but we

n
also note that this approximate distribution of zeros of Pn is not especially good.
Rather, there is also a tendency for the zeros to be distributed equally among the
intervals which make up $ and the actual distribution resulting from these conflicting
tendencies is not easily predicted.

The Lagrange basis for nn is especially suited for the efficient and stable
implementation of the Remes algorithm because one can obtain the polynomial p associated
with the current point sequence ¢t without any computation, because the basis is well
conditioned near the optimal ¢ , and because, in the end, the zeros of P, = p*/p'(O)

are particularly easily obtained from this form.

For efficiency in evaluating p away from t one should express p as

n+1 n+1
p(t) = T(e=t) I a,/(t-t)
3=1 j=1 3
where
a, = plt,) /N (e, -t )
3 ieg 304
-8-




woull be calculated once and for all. Also, the derivative of n ar - 16 st o

-

computed by

am +u
- 9
p'(tm) = mi(t =+ ) C —}f—j-:*
I*m j*Tmoom )
The interior local extrema of p are estimated by paraholic interprlati-:. 72 5 -~
. w
step, the unique extremum x , say, of the parabola matchina p at ty, tg 3T o= e
found, with x = tyo1 oF ty.y depending on the sian of p'(ry) . The noigne exeres o of

the parabola matching p at tj, tye and % is then taken as the suitable arjronirzeior
to the desired local extremum of p . This is a version of the standar: nechniaue o1
locating local extrema for use in the Remes algorithm; it is sufficientlv ac.uarat- for
quadratic convergence of the algorithm. Note that in our particular situatic: th-re s
need to make a global search for extrema as we know exactly where all the extrera must lo .
Once the extremal polynomial p' is found sufficiently accurately, thern ==
fcund by the Modified Regula Falsi. The zeros are already bracketed by the t. e .
one which is outside the interval [t1'tn+1] « This one may be to the left or riu:

[t1,tn+1] and may actually bhe at infinity. We make the transiormaticn x = 17 #oi o e

apply the same method to [x1,xn+1] .

Maehly's second method (see Maehly [196371) is an alternative methel fry ~omooce.

P, » Its attraction is that it operates directly on the representaticn nf -

n
Hg::(l - z.t) and thus does not need the second phrase, the computations ~¢ 7. - . 'I»
judge this approach to be less efficient overall because of the alied work cr & lvr..
9
the parameters 24 of the new polynomial esach time t is vrerlace? ™ t T -
involves the solution of n+1 simultaneous equations with a full cref€i1cient rat:oe.
have not tried this approach; see Durham [1366] for some remarks concer-ing irrroes

convergence of this method.

5. Properties of the parameters and convergence rate of the iteration /n «:on-

nf particular examples of the extremal polvnomials shows that they Iy not, 1n aene s

belona to orthogonal polynomial families and that thoo are not goperite D oot B :
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recurrence relation. It follows from a classical result of Fekete (see Widom [19691) that

1/n

upnﬂ converges as n tends to infinity . Consequently, convergence of Richardson's
first order method with these parameters is geometric. Of course, in practice, one is not
likely to use the parameters from Por Preqr Ppyos ooe in sequence, but is likely toc use
the parameters for a fixed n cyclically. One still obtains geometric convergence, but
examples (such as seen below) show that n should be rather large in order to exploit the
method's potential fully.

In order to judge the convergence rates one could expect, we present in Figure 1 the
graphs of p* on the interval .{b,c] for the case § = [-1,-.8] [.2,1] and for various
values of n . Recall that P = p*/p'(O) , hence HPnH = 1/p.(0) . Further, it is
worthwhile at this point to realize that a linear change in the independent variable
leaves Pn essentially unchanged. In other words, if this particular S is obtained from
¢ a*

some interval pair S“ = [a#,b#] {c by the linear change t = f(t“), so that -1 =

f(a#), -.8 = f(b*), etc., then the polynomial P: for s* is simply Pn-f . In
particular, then HP:H = 1/p.(f(0)) , thus 1/p*(t) runs through the possible values of
such HP:H as t runs between -.8 and .2 . Thus as one moves from b = -.8 to

c = .2 , along one of the curves for fixed n , one sees the effect on the achievable error
reduction of the location of the origin between the two intervals comprising an interval
pair. Note that the rate of convergence becomes 1 and the linear system becomes
(possibly) singular as £(0) approaches b or c .

Figure 2 shows the dependence of the rate of convergence on the relative sizes of the
two intervals which make up S . A contour plot is given of the maximum possible rate of
convergence as b and ¢ vary while a = -1 and d = 1 remain fixed. This maximum rate
occurs at the point where p* is at a maximum (between b and <c) which depends on b

and ¢ . This rate approaches 1 as c¢-b approaches 0 and bhecomes auite fast as b

and ¢ approach -1 and =1, respectively.

-11-




NBRM OF QPTIMAL POLYNOGMIAL. N=10

. H/// . '/ //’ ///i// / .
/’// : // /K’ //}/(-.z-us
/ " // A
////, /’//, ‘///’ /( ﬂ?.z.os
ﬁ:?:ﬂ?
- fi RS

/ /
A
W/ ) /

W

$+04
-

—-— N N D
- e e e
o 5 oono X )
- o e orreld

g+
[ors
[ALa!
(A Rg4

|
ottt b A
-.5 .0 .5 1.0

Pigure 2

-12-




SLOPE OF OPTIMAL PALYNBMIRL RT B.

Figure 3

-]13-

N=10

SS—




Figure 3 indicates the effect of near singularity of the linear system on the rate of
convergence. Again for S an interval pair and for 10 parameters, we plot contours of the
logarithm of the slope of p' at t = c . The larger this slope, the less the rate of
convergence is degraded by the origin being close to c

Both Figures 2 and 3 exhibit a somewhat erratic behavior due to the fact that the
number of tj's in each interval is a discrete function of h and ¢ . This suggests that

it would be quite difficult to obtain accurate and simple approximation formulae for the

parameter distribution.
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APPENDIX

We list here a Fortran program, written by Frederick Sauer, which realizes the
Remes algorithm, given in Section 3, for the extremal polynomial, for the special
case that S consists of two (nontrivial) intervals. A more general version which
allows for § to consist of finitely many intervals, some or all of which may even
be trivial, has also been written by Frederick Sauer who will submit it for
publication separately.
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[ 242 2]

PARAMETER DEGREE=2S5,DEGP 1=DEGREE+1, DEGP3=DEGREE+3
REAL X(DEGP3),XTILDE{DEGP3),ALPHA(DEGP1),PROD(DEGPT)
INTEGER N,R, IPRINT,MAXIT
DATA IPRINT,MAXIT, N ,EPS2 ,EPS3 ,EPS4
/2 , 20 , 10,1.B-2 ,1.E-3 ,1.E~4/
CALL SETUP(N,~-1.,-.8,.2,1.,X,R)
CALL EXTREM(X,N,R,IPRINT,MAXIT, EPS2,EPS3,EPS4,XTILDE, ALPHA,
PROD, PZERO)
STOP
END

SUBROUTINE EXTREM (X,N,R,IPRINT,MAXIT,EPS2,EPS3,EPS4,XTILDE,
ALPHA,PROD, PZERO)

THIS SUBROUTINE FINDS A POLYNOMIAL WHICH IS AN EXTREMAL OF THE LINEAR
FUNCTIONAL WHICH IS THE POINT EVALUATION AT THE POINT ZERO. THE
POLYNOMIAL IS CHOSEN FROM THE SPACE OF POLYNOMIALS OF DEGREE LESS
THAN OR EQUAL TO N, WHERE N IS A PARAMETER SET BY THE USER. THE NORM
ON THIS SPACE 1S DEFINED TO BE:

NORM(P) = MAX(P(T) : (X(1) .LE. T .LE. X{(R+1)) OR
(X(R+2) .LE. T .LE. X(N+3)}})

INPUT (12 2]

X - AN ARRAY OF DIMENSION N+3 WHICH CONTAINS THE STARTING VALUES
OF THE ABSCISSAE IN X(2), X(3), ... , X{N+2). IN X(1) AND
X(N+3) SHOULD BE THE ENDPOINTS (I1.E. A AND D RESPECTIVELY)

N ~ THE DEGREE OF THE POLYNOMIAL.

R - SUCH THAT X(R+1)=B AND X(R+2)=C IN THE PROVIDED ARRAY X.
X{(1),X(R+1),X(R+2),X(N+3) DEFINE THE INTERVALS FOR WHICH THE
NORM OF THE POLYNOMIAL IS CALCULATED. SEE DEF. OF NORM ABOVE.

IPRINT =~ =-1 SUPPRESS ALL PRINTING. PZERO WILL NOT BE CALCULATED

=0 PZERO = P(0)} WILL BE CALCULATED AND PRINTED.
=1 ALSO, THE ROOTS OF THE POLYNOMIAL WILL BE CALCULATED
AND PRINTED
=2 ALSO, FOR EACH ITERATION A MESSAGE WILL BE PRINTED
MAXIT ~ THE MAXIMUM NUMBER OF ITERATIONS ALLOWED.
EPS2 = A TOLERANCE USED TO CONTROL THE MAJOR ITERATION. THE

ROUTINE WILL STOP WHEN THE MAXIMUM CHANGE OF ANY
PARTICULAR ELEMENT OF X CHANGES BY LESS THAN EPS2.
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EPS3,EPS4 - TOLERANCE PARAMETERS USED BY SUBROUTINE REGULA.
THE CALCULATED VALUE OF THE ROOT, XRT, WILL BE
SUCH THAT XRT WILL BE WITHIN EPS3 OF AN ACTUAL
ROOT OR ABS(P(XRT)) WILL BE LESS THAN EPS4.

tede® UORKSPACE ®twee
XTILDE - AN ARRAY OF DIMENSION AT LEAST N+3.
ALPHA = AN ARRAY OF DIMENSION AT LEAST N+1.
PROD = AN ARRAY OF DIMENSION AT LEAST N+1,

wRNEE OUTPYT wesae
X = THE FINAL VALUES OF THE ABSCISSAE OF THE EXTREME POINTS
CALCULATED BY THIS ROUTINE.
R = THE FINAL VALUE OF R AS DESCRIBED ABQVE.
ALPHA, PROD ~ THE FINAL VALUES OF ALPHA AND PROD AS CALCULATED
BY SUBROUTINE ALCALC ARE RETURNED IN THESE ARRAYS IF
IPRINT IS NOT EQUAL TO -1.
PZERO - VALUE OF EXTREMAL POLYNOMIAL AT O.
XTILDE - CONTAINS THE RECIPROCALS OF THE ROOTS OF THE POLYNOMIAL IF
IPRINT=1 OR 2. XTILDE(1) CORRESPONDS TO THE ROOT LYING OUT-
SIDE THE INTERVAL. IT WILL BE SET TO ZERO IF THE ADDITIONAL
ROOT DOES NOT EXIST.

#44ss NOTE: THIS SUBROUTINE EXPECTS A STARTING GUESS FOR THE VALUES
OF X, AND A VALUE FOR R. THIS CAN BE ACCOMPLISHED BY A CALL TO
SUBROUTINE SETUP.

INTEGER R,N,NP1,ITER,IPRINT,MAXIT,ISET,NP3,NP2,RP1,RP2
REAL X{1),XTILDE(1),ALPHA(1),PROD(1)
INTEGER I,J
REAL EPS2,SIGN,SGSL,ERR,EPS3,PZERO
NP1 = N + 1
NP2 = N + 2
NP3=N+3
ITER = 0
IF (N .LE. 1) RETURN
40 IF (IPRINT .EQ. 2) WRITE (6,640) ITER,(X(I),I=2,NP2)
640 FORMAT('OAFTER ',I3,' ITERATIONS THE POINTS X ARE',/(1X,10E13.5))
RP1=R+1
RP2=R+2
C GET THE INTERPOLATING POLYNOMIAL
CALL ALCALC{X,NP1,R,ALPHA,PROD,XTILDE)
XTILDE(1)=X(1)
SIGN=1,
IF (MOD(R,2) .EQ. 1) SIGN=-1,
XTILDE (NP3 )=X (NP3)
ISE? = 0
C IF ISET IS CHANGED THE RESULTING X'S MUST BE SHIFTED.
IF (X(1) .BQ. X(2)) GO TO 45
CALL EVAL (X(1),X,ALPHA,NP1,VAL)
IF (VAL*SIGN .GT. 1.) ISET==1
45 DO 80 I=2,NP2
IF ((I .EQ. RP1) .OR. (I.EQ.RP2)) GO TO 70
JeI~1
CALL DERIV(X,J,PROD,ALPHA,NP1,SLOPE)
SGSL=1,
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IF (SLOPE*SIGN .GT. 0.) SGsL==1,
IF (SGSL .EQ. 1) J=I+1
IF (SLOPE .NE, 0,) GO TN 60
XTILDE(I)=X(T)
GO TO 80
60 SLOPE=~ABS (SLOPE)
CALL INTERP(I,J,SIGN,X,ALPHA,MP1,SLOPE,SG L, XTILDF(]):
SIGN==SIGN
GO TO 80
70 XTILDE(I)=X(I)
SIGN=1,
80 CONTINUE
IF (X(NP2) .EQ. X(NP3)) GO TO 85
CALL EVAL(X(N+3),X,ALPHA,NP1,VAL)
IF (VAL*SIGN .LT. -1.) ISFT=1
SET UP X FOR NEXT ITERATION
85 R = R ~ ISET
ERR=0,
DO 90 T = 2,NP2
J = ISET + I
DIFF = ABS( X(I) - XTILDE(J) )
IF (DIFF .GT. ERR) ERR = DIFF
90 X{I) = XTILDE(J)
IF ( ERR .LT. EPS2) GO TC 100
ITER = ITER + 1
IF (ITER .LT. MAXIT) GO TO 40
WRITE (6,650) MAXIT
650 FORMAT ( 'OMAXIMUM NUMBER OF ITERATIONS EXCEFPED, MAXIT:=', "4
100 IF (IPRINT ,EQ. 2) WRITE (6,660) (X(I),I=2,NP2"

\

660 FORMAT('OAFTER FINAL ITERATION THE POINTS X ARE',/(1X,1 %75,

IF (IPRINT .EQ. =1} RETURN

EVALUATE EXTREMAL POLYNOMIAI, AT 0 .
CALL ALCALC(X,NP1,R,ALPHA,PROD,XTILDE)
CALL EVAL{O0,,X,ALPHA,NP1,PZERO)
WRITE(6,670) PZERO

670 FORMAT('OP(0) =',E20.8)
IF (IPRINT .EQ. 0) RETURN

FIND THE RECIPROCALS OF THE ZEROS OF THE EXTREMAL FPOLY ™I L
CALL FINDZR(X,ALPHA,NP1,R,EPS3,EPS4,XTILDE)
RETURN
END

SUBROUTINE ALCALC(X,M,R,ALPHA,PROD,WORK)
THIS SUBROUTINE CALCULATES THE COEFFICIENTS ALLPHA AN FReD
USED TO EVALUATE THE LAGRANGE INTERPOLATING POLYNOMIAT asmy I
DERIVATIVES

A dd INDUT wtheN

X = THE ABSCISSAE OF THE POINTS TO WHICH THE P oLys sl . s

FIT ARE STORED IN X{2), X(3}, X(4), ..., X(M+1),
M - THE ORDER (DEGREF + 1) OF THE INTERPOLATING POLys oz
R = IS SUCH THAT X(P41) = R, X(R+2) = 1

TERER OUTDUT *waes
ALPHA - AN ARRAY OF DIMENSTION M WHICH TS rreps v mmoere




c M
[ ALPHA(L) = P(X(I+1))/ PRODUCT (X(I+1)=X(J+1))

c J=1

c JeNE.1

¢ WHERE P(X) 1S THE VALUE OF THE POLYNOMIAL AT X. IN PARTICULAR,

c {~1)**(1-R) IF 1 .LE. R

c PIX(I+1))= .
c (~1)*#(1+1~R) IF [ .GT. R

c PROD ~ AN ARRAY OF DIMENSION M WHICH IS USED TO STORE THE VALUES
c
c
c
c
c
c
c

™~
PROD(T) = PRODUCT (X(TI+1) ~ X(J+1})
J=1
J.NE.1

22X 2] thquA(‘F Thadw
WORK = AN ARRAY OF DIMENSION M.
INTEGER R,M,1,J,MM1
REAL X(1),ALPHA(M),PROD(M),WORK(M),XI,P,SIGN
MM1 = M=-1
SIGN = 1, 4
‘ IF{MOD(R,2) .EQ. N) SIGN = =1, 3
! DO 10 I=1,MM1
10 WORK(T) = X(I+2)
DO 30 J=1,M
P =1
XI = X(J+1)
f Do 20 1=1,MM1
20 P = P*(XI-WORK(I))
PROD(J) = P
WORK(J) = XI
IF (J .FQ. R+1) SIGN = - SIGN
ALPHA(J) = SIGN/P
30 SIGN = - STAN
RETURN
END

SUBRROUTINE EVAL(T,Y,ALPHA,M,P)

¢ THIS SUBROUTINE EVALUATES THE VALUE OF THE LAGRANGE INTERPOLATING
C POLYNOMIAL AT THE POINT T,
c
C wesse INPIIT ®*ewer
, Cc T = POINT AT WHITH POLYNOMIAL IS TO BE EVALUATED.
- X = ARRAY CONTATNINC POINTS AT WHICH THFE POLYNOMIAL IS KNOWN.
s ALPHA - ARRAY OF DIMENRINN M WHICH HAS THE COEFFICIENTS CALCULATED
c RY SURFOUTINE ALCALC.
Z ¥ - ONE PIU6& THF DEGREE F THE POLYNOMIAJL,.
~ o tadEe ANITPI'T etdsee
o P - THE VALUE - F 'THE POLYNOMIAL AV T,
c
ot

TNTFAFE M, T
RPEAL (1), ALPHAIM),T P ~ DIFF, a5V

COFVALUATY THE POLYNOMT AL




c=1.
P = 0,
DO 10 I = 1,M
DIFF = (T=X(I+1))
IF (DIFF .EQ. 0.) GO TO 20
C = C*DIFF
10 P = P + ALPHA(I)/DIFF
P = P*C
RETURN
20 SGN = 1,
IF (MOD(M-I,2) ,EQ. 1) SGN = =1,
P = SIGN (1., ALPHA(I)*SGN)
RETURN
END

¥
I’
I3
&
¥

SUBROUTINE DERIV(X,I,PROD,ALPHA,M,D)
THIS SUBROUTINE EVALUATES THE DERIVATIVE OF THE LAGRANGE INTER-
POLATING POLYNOMIAL AT THE ITH POINT OF X.

wawht TNPUT *h*w*

X - ARRAY CONTAINING POINTS AT WHICH THE POLYNOMIAL IS KNOWN.

I - THE DERIVATIVE IS TO BE EVALUATED AT X(I+1)

PROD ~ AN ARRAY OF DIMENSION M WHICH CONTAINS COEFFICIENTS CALCU-
LATED BY SUBROUTINE ALCALC. %

ALPHA - AN ARRAY OF DIMENSION M WHICH CONTAINS COEFFICIENTS
CALCULATED BY SUBROUTINE ALCALC.

M - ONE PLUS THE DEGREE OF THE POLYNOMIAL.

whENE GUTPUT *r*rs E
D - THE VALUE OF THE DERIVATIVE AT X(I+1). 5

oo a00000000

: v INTEGER I M,J
] : REAL X(1),PROD(M),D,XS,ALPHA(M),AS
XS = X(I+1)
i AS = ALPHA{I)
W B D= 0.
v Do 10 J=1,M
2 IF (J .EQ. I) GO TO 10
N D =D + (AS + ALPHA(J))/(XS=X(J+1))
10 CONTINUE
D = D*PROD(I)
RETURN
END

' SUBROUTINE INTERP (I,J,SIGN,X,ALPHA,M,SLOPE,SGSL,XMIN)
THIS SUBROUTINE FINDS AN APPROXIMATION TO XMIN WHERE XMIN IS SUCH
THAT:

SIGN*P(XMIN)=MIN(SIGN*P(T):MIN(X(I),X(J)).LE.T.LE. MAX(X(I),X(J)))

WHERE P(T)} IS THE INTERPOLATING POLYNOMIAL AT THE POINT T.

[>Ne e Ne N Ie Ny}
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C *waww TNPUT Wwaeww
c I,J ~ INTEGERS SO THAT X(I) AND X(J) DEFINE THE ENDPOINTS OF THE
c INTERVAL TO BE SEARCHED FOR XMIN.
[ SIGN ~ REAL VALUE, EITHER +1. OR -1. SO THAT SIGN*P(X(I)) = -1,
c X = ARRAY OF DIMENSION M+2 WHICH CONTAINS THE ABSCISSAE OF THE
[ POINTS USED FOR LAGRANGE INTERPOLATION.
c ALPHA - COEFFICIENTS FOR LAGRANGE POLYNOMIAL.
[of M - ORDER (DEGREE PLUS ONE) OF INTERPOLATING POLYNOMIAL.
[of SLOPE - -(ABS(P'(X(I))))

o] SGSL =~ HAS THE FOLLOWING VALUE

o +1. IF X(I) .LT. X(J)

o] -1. IF X(I) .GT. X(J)

(o]

C whas® QUTPUT whwwx

c XMIN - THE APPROXIMATION OF XMIN CALCULATED BY THE ROUTINE
[of

c

(o]

C

C

Cc

C

[of

L2222 METHOD (1232
LET P(T) BE THE LAGRANGE INTERPOLATING POLYNOMIAL AT THE POINT T.
S, THE FIRST APPROXIMATION OF XMIN, IS THE MINIMUM OF THE PARABOLA
DETERMINED BY P(X(I)), P(X(J)), AND P'(X(I)). XMIN IS THEN THE
THE POINT AT WHICH THE PARABOLA INTERPOLATING P(X(I)), P'(X(I)),
AND P(S) TAKES ON ITS MINIMUM.

INTEGER I,J,M
REAL SIGN,X(1),ALPHA(M),SLOPE,SGSL,XMIN
REAL S,XMAX,F,XI,XT,DIFF2
XI = X(I)
IFIRST=1
S= ABS(XI - X(J))
XMAX = S
F= 1,
C CHECK IF END POINT
i IF ((J .NE. 1) AND. (J .NE. M+2)) GO TO 10
IF (X(J) .NE. XI) GO TO 5
’! XMIN=XT
RETURN
CALCULATE INTERPOLATING POLYNOMIAL AT X(J)
5 XT=X (J)
CALL EVAL(XT,X,ALPHA,M,F)
. F=F*SIGN
C USE FOR FIRST STEP THE SLOPE AT X(I) AND THE POINT S.
10 DIFF2= ((F+1.)/S - SLOPE)/S
IF (DIFF2 .LE. 0) GO TO 999
S= =-SLOPE/DIFF2/2.
IF (S .LE. XMAX) GO TO 30
XMIN = SGSL*XMAX + XI
RETURN
30 XT= SGSL*S + XI
CALL EVAL(XT,X,ALPHA,M,F)
F= SIGN*F
IF (IFIRST .NE. 1) GO TO 999
IFIRST=2
XMAX = S
GO TO 10
999 XMIN= XI + SGSL*S
RETURN
END

(2]
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SUBROUTINE FINDZR(X,ALPHA,M,R,EPS3,EPS4,WOPRK)
THIS SUBROUTINE FINDS THE ZERGS OF THE LAGRANGE INTERPOLATING Prrv-
NOMIAL USING THE MODIFIED REGULA FALSI METHOD. THE RESULTS &Pn
PRI TED OUT. 1
* A Ww R INPUT (22223
X = ARRAY CONTAINING THE ABSCISSAE OF THE DATA POINTS.
ALPHA - ARRAY CONTAINING COEFFICIENTS CALCULATED BY SUPROTITINE
ALCALC.
M - ORDER OF LAGRANGE POLYNCMIAL.
R - INTEGER SUCH THAT ZERO LIES IN THE TINTERVAL Y(P+1) TC X(®+2
EPS3,EPS4 - TOLERANCE PAREMETERS USED BY SUBROUTINE REGULA. ™HE
CALCULATED VALUE OF THE POOT, XRT, WILL EE SUCH THAT
XRT WILIL BE WITHIN E¥<3 OF AN ACTUAL EROOT OF
ABS(P(XRT)) WILL BE LESS THAN EPS4.

*ekk* WORKSPACE #*%%#*
WORK -~ AN ARRAY OF DIMENSION AT LEAST M.

nnoooONaOnNnoON o000

INTEGER M,R,J,I,MM1
REAL X{1),WORK(M),ALPHA(M),SIGN,EPS3,EPS4
REAL A,B,FA,FB,SIGN1,SUM,XRT
EXTERNAL EVAL,EVALI
MM1=M-1
SIGN = 1.
IF (MOD(R,2) .EQ. 1) SIGN=-1.
SIGNT = SIGN
PO 20 J=2,M
IF (J .EQ. R+1) GO TO 20
A = X(J)
B = X(J+1)
FA = =SIGN
) FB = SIGN
CALL REGULA(EVAL,A,B,FA,FB,X,ALPHA,M,EPS3,EPS4,XRT)
: . SIGN=-SIGN
. 1=J
} IF {(J «GT. R+1) I=J-1
WORK(I) = XRT
20 CONTINUE
WRITE (6,620) (WORK(TI),I=2,MM1)
620 FORMAT('OTHE ROOTS LYING IN THE INTERVAL (X(2),X(M+1)) ARZ',
1 /(1X,5E20.7))
DO 21 J=2,M
21 WORK(J) = 1./WORK(J)
c FIND ROOT OUTSIDE OF INTERVAL I[F IT EXISTS
\ SUM = 0.
ALMAX = 0,
no 30 I=1,M
ARSAL = ABRS{ALPHA(I))
IF (ABSAL .GT. ALMAX) ALMAX = ARSAL
30 SUM = SUM + ALPHA(I)
IF {ABS(SUM) .GT. ALMAX * 1.E-4) GO TO 40
35 WRITE(H,635)
R3S FORMAT('ATHE ADNTTIONAL ROOT CANNOT RE ACCURATELY oAl rrareos:
1 ' OR IS INFINITE')

.
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Wil {(1)=G.

RETURN

IF (SIM*SIGN LT, 3.) 560 TO 70

HE ADDITIONAL ROOT 1S T9 THE LEFT OF X(2)
A= 1,/%X(2)

R = -1.F-4

FA = -SICN1

CALL EVALI (B,X,ALPHA,M,VFB)

IF (FA*FB .GE. “.,) GO TO 3%

GO TG 90

THE ADDITYONAL FrLI 15 TO TUE RIGHT OF X(M:1)

70

an

89¢

TH

B 1, /X (M)

A = 1,E-4

Te=~-SION

CALL BEVALY (A, e, witin M, i"4)

IF {FA*FB .GE. & ) Gi+ T 45

CARLL ROGULMEVALI, A, i, A, FB, X, ALPHA, M, EPS3, LS4, X1T)
WRITFR (€,1%7) xXrr

WORK{1)=XRT

FORMAT('0THF RECIPTRGCAL OF THE ADDITINNAL ROCT T8 A0 4=t 800, 7)
RETURN

END

SUBRSUTINE LECULA {TCT,A,B,FA,FB,X,ALPHA,M,FP33,FPS4, XRT)
I8 SURRCUTING FINDS THE 21RO OF THE LAGRANGE POLYNOMLIAL WHICH 17

IN THE INTERVAI. (A,R}. THE MODIFIED RECULA FALSI METHOD IS USED.

thw

L2 2]

10

12

*® INPUT *#wwe

A - LEFT FEND POINT CF INTERVAIL TN WHICH A RONT LIES.

B - RIGHT END PULNT CP INTERVAL IN WHICH A ROOT LIEC.

FA = THE VALUE OF THE POLYNOMIAL AT THE POINT A.

FR — THE VALLL GF o0 oOULYNOMIAL AT THE PCINT B,

X = ARRAY CONTATNYNC mUE ARKCTISSAE N THF DATA POINTS,

ALPHA - ARRAY CONTAINING COEFFICIENTS CALCULATED RY SURROUTINE

AT.Tn”

M o~ CDER O LACTONNG

EPS3,EPS4 ~ TOLERANCYE PARAMITERS. THE CALCULATED VALDE OF XRT
WILL 2k SUCH THAT XRT WILL BE WITHIN LP53 OF AN
ACTUAT, FOOT OR ABS(P(XRT): WIW. RE LET5 THAN FFS4.

CTTTMONY AL,

LA 4 O{}TPUT L2 R 4
XPT - TWE CALCUI NTER VALUF OF THE RQQT,

INTEARR ™
REAL X(1),ALPHA(M) A,%,%A,FB,EPS3,EPS4, "W XRT, FXRT
EXTERNAL FCT

FW = FA

XRT : (FR*A ~ FR¥R)/{FR ~ FA)

FALL FCT(XRT,X,ALDHA, M, FXRT)

IF (ABS(FXPT) ,LF. FPe4) RETURN

TF ( STON(1.,FXRT)*FA LAT. 0, ) GO TO 12

R = XRT

FR = FXFT

IR (STGNLY, , FXPT) * P WGP, 0.) FASEA/D,

G T 15

A = XNT

—-p -




FA = FXRT

IF (SIGN(1.,FXRT)*FW ,GT
15 FW = FXRT

IF (B-A .GT. EPS3) GO TO

XRT= (A + B) / 2.

RETURN

END

SUBROUTINE EVALI(T,X,ALPHA
THIS SUBROUTINE EVALUATES

ik INPUT *wkkk

*Ekk XN SUTPUT L2 2 X 24

ocNeNesNoNoNesNoNeNeNeNo e o XS]

INTEGER M, I

(9]

EVALUATE THE POLYNOMIAL

[#]

c=1.
iR P = 0.
4 DO 10 I = 1,M
DIFF = (1.=T*X(I+1))

« 0.) FB=FB/2.

10

'M,P)
(T**(M=1))*P(1/T) WHERE P(1/T) IS THE

LAGRANGE INTERPOLATING POLYNOMIAL EVALUATED AT 1/T

T = POINT AT WHICH POLYNOMIAL IS TO BE EVALUATED.

X - ARRAY CONTAINING POINTS AT WHICH THE POLYNOMIAL IS KNOWN,

ALPHA - ARRAY OF DIMENSION M WHICH HAS THE COEFFICIENTS CALCULATED
BY SUBROUTINE ALCALC.

M « ONE PLUS THE DEGREE OF THE POLYNOMIAL.

P - THE VALUE OF THE POLYNOMIAL AT T.

] REAL X(1), ALPHA(M),T,P,C,DIFF,SGN

IF {(DIFF .EQ. 0.} GO TO 20

C = C*DIFF
10 P = P + ALPHA(I)/DIFF
P = P*C
RETURN
20 SGN = 1.

IF (MOD(M-I,2) .EQ. 1) SGN = -1,
P = SIGN (1., ALPHA(I)*SGN)*T**(M-1)

RETURN
b END

SUBROUTINE SFTUP (N, A,

SUBROUTINE EXTREM,

OO0

* ok kk INPUT ok kk

OO0

A, B, C, D - INTERVAL END

Aekkk UTPYT *hkd*
X ~ AN APRAY OF DIMENSINN

0N

BN bt e 0 AU VOIEY W67 i 13 MY A 200 i 4 ROl > ST TR w7 M aa e 2 -

B, C, D, X, R)

THIS SUBROUTINE SETS UP THE ARRAY X IN PREPARATION FOR A CALL TO

N ~ THE DEGREF OF THFE POLYNOMIAL TH BE USED.
POINTS. THE INTERVAL PAIR 1S (A,B), (C,D)

N+3 CONTAINING THE CALCULATED VALVES.




c R ~ INTEGER SUCH THAT X(R+1) = B AND X(R+2) = C.

INTEGER N,R,RM1,NMR
REAL X(1), A,B,C,D,DEL1?,DEL2
IF (N .LE. 1) RETURN
DEL1 = B - A
DEL2 =D - C
R = INT( FLOAT(N-1) * (DEL1/(DEL1 + DEL2))) + 1
IF (R .LE. 1) GO TO 20
RM1 = R = 1
DELtY = DEL1 / FLOAT(RM1)
Do 10 I=2,R
10 X(I) = A 4+ FLOAT(I=2)*DEL1
20 NMR = N-R
IF (NMR .LT. 1) GO TO 40
DEL2 = DEL2 / FLOAT (NMR)
DO 30 I=1,NMR
30 X(R+I+1) = C + FLOAT(I-1)*DEL2
40 X(1) = A
X(R+1) = B
X(N+2) = D
X(N+3) = D
RETURN
END

=24-
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