HELICOPTER NOISE CONTOUR DEVELOPMENT TECHNIQUES AND DIRECTIVITY--ETC(U)

SEP 80 J S NEWMAN

FAA/EE-80-41

UNCLASSIFIED
Helicopter Noise Contour Development Techniques and Directivity Analysis.

A Preliminary Report.

Office of Environment and Energy
Washington, D.C. 20591

By J. Steven Newman

September 1980

Document is available to the U.S. public through the National Technical Information Service
Springfield, Virginia 22161

81 1 02 019
ACKNOWLEDGMENT

The author would like to acknowledge FAA summer intern Tyrone Bland for his assistance in preparing the helicopter directivity plots.
This paper briefly summarizes techniques which have been developed for use in predicting the sound emitted by helicopters at various range and energy relations. A discussion is provided concerning efforts to establish an accurate and practical prediction technique (sound intensity vs. range) for modeling the noise impact associated with helicopter operations. A plot of normalized sound intensity provides for quantifying the noise of various helicopter models.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>2.0</td>
<td>REVIEW OF METHODOLOGIES FOR DEVELOPING HELICOPTER AIR-TO-GROUND, NOISE/DISTANCE CURVES FOR USE IN GENERATING NOISE CONTOURS</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>2.1 Method 1 - U.S. Air Force</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>2.2 Method 2 - U.S. Army</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>2.3 Method 3 - FAA, Level Flyovers</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>300 Feet to 2,500 Feet</td>
<td></td>
</tr>
<tr>
<td>3.0</td>
<td>A DISCUSSION OF TECHNIQUES UNDER DEVELOPMENT BY THE FAA</td>
<td>3</td>
</tr>
<tr>
<td>4.0</td>
<td>PRELIMINARY HELICOPTER NOISE DIRECTIVITY ANALYSES</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>4.1 Bell 212</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>4.2 SA-330J Puma</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>4.3 S-61</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>4.4 BO-105</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>4.5 CH-53</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>4.6 SA-341G</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>4.7 Bell 206L</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>4.8 Hughes 500C</td>
<td>13</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

4.1.1	Bell 212 - Takeoff	14
4.1.2	Bell 212 - Approach	15
4.1.3	Bell 212 - Level Flyover	16
4.2.1	SA-330J (Puma) - Takeoff	17
4.2.2	SA-330J (Puma) - Approach	18
4.2.3	SA-330J (Puma) - Level Flyover	19
4.3.1	S-61 - Takeoff	20
4.3.2	S-61 - Approach	21
4.3.3	S-61 - Level Flyover	22
4.4.1	BO-105 - Takeoff	23
4.4.2	BO-105 - Approach	24
4.4.3	BO-105 - Level Flyover	25
4.5.1	CH-53 - Takeoff	26
4.5.2	CH-53 - Approach	27
4.5.3	CH-53 - Level Flyover	28
4.6.1	SA-341G - Takeoff	29
4.6.2	SA-341G - Approach	30
4.6.3	SA-341G - Level Flyover	31
4.7.1	Bell 206L - Takeoff	32
4.7.2	Bell 206L - Approach	33
4.7.3	Bell 206L - Level Flyover	34
4.8.1	Hughes 500C - Takeoff	35
4.8.2	Hughes 500C - Approach	36
4.8.3	Hughes 500C - Level Flyover	37
1.0 INTRODUCTION

This paper briefly summarizes techniques which have been developed for use in creating helicopter air-to-ground, noise-distance relationships. Discussion is provided concerning FAA efforts to establish an accurate and practical method (which considers source directivity) for modeling the noise impact associated with helicopter operations. Plots of normalized directivity vectors are provided for eight helicopters in various modes of flight.

2.0 REVIEW OF METHODOLOGIES FOR DEVELOPING HELICOPTER AIR-TO-GROUND, NOISE/DISTANCE CURVES FOR USE IN GENERATING NOISE CONTOURS

The following paragraphs describe methodologies for developing air-to-ground noise/distance curves for use in generating helicopter noise contours using measured data along with SAE-ARP-866A atmospheric absorption attenuation coefficients, the spherical spreading law, and various assumptions concerning the effect of distance on the flyover 10-dB down time history.

2.1 Method 1 - U.S. Air Force

Jerry Speakman of the U.S. Air Force Wright Patterson Aero-Medical Center has developed a set of air-to-ground noise exposure versus distance curves based on FAA noise data reported in 1977 by True and Rickley and adjusted to agree with FAA data reported in 1979 by Newman and Rickley. The USAF methodology begins with the acoustical spectra
from the time at which the maximum perceived noise level (PNLM) occurred. This spectrum is extrapolated to distances using the spherical spreading law and atmospheric absorption corrections provided in SAE-ARP-866A. This spectrum is used along with a 6 dB per decade factor (to account for the change in event duration) to arrive at a value of Noise Exposure Level (NEL), or Effective Perceived Noise Level (EPNL).

2.2 Method 2 - U.S. Army

Paul Schomer of the U.S. Army Construction Engineering Research Laboratory (CERL) has developed a procedure using data measured by CERL at Ft. Rucker during 1974. The CERL method starts with the spectra for each one-half second sample of the entire flyover time history (noise floor limited). Each spectrum is extrapolated to distances using the spherical spreading law, along with ARP-866A. The decayed time history is then used to compute EPNL (or NEL) at distance. Use of this methodology is appropriate out to slant distances of approximately 3,000 feet. The recorded time history is not long enough to project beyond 3,000 feet. CERL data (unpublished) have shown a net 7 dB/decade attenuation between 0 and 1,000' slant ranges, and 10 dB/decade attenuation between 1,000' and 5,000' slant ranges.

2.3 Method 3 - FAA, Level Flyovers 300 Feet to 2,500 Feet

In the June 1980 FAA noise measurement program, level flyovers were conducted at constant speeds for the following altitudes: 300', 500', 700', 1,000', 1,500', 2,000', and 2,500'. Data were recorded for nine
microphone locations and also measured using a precision integrating sound level meter (PILSM) at a single location. The PILSM data have been plotted versus test target altitude and provided in a preliminary report,\(^3\) FAA-AEE-80-34. These data (not corrected to standard T, R.H.), can be used to develop helicopter noise contours for slant distances between 300' and 2,500'. Extrapolation of these data can also be accomplished for longer slant distances.

3.0 DISCUSSION OF TECHNIQUES UNDER DEVELOPMENT BY THE FAA

The June 1978 FAA helicopter noise measurement program provided data reported in FAA-AEE-79-3,\(^4\) prepared by E. J. Rickley of the DOT, Transportation Systems Center (TSC) Noise Measurement and Assessment Laboratory in concert with this author. While FAA-AEE-79-3 was principally concerned with noise certification aspects of the measured data, a follow-on or Phase II report (also an FAA-TSC collaboration) is in preparation which will specifically address helicopter noise contours, source directivity, sound level time histories, and frequency spectra.

The processing of data included considerations for developing Noise Exposure Level (NEF) and Day-Night Sound Level (Ldn) noise contours as well as Time Above (TA) contours. The TA requirements mandated that sound level data versus distance and directivity angle be generated. These level/distance/directivity data have been developed for two directivity angles: (1) the elevation angle formed between the slant range ray (SR) and the ground surface, and (2) the angle between the SR and the helicopter flight path. Data have been generated for takeoffs, approaches, and level flyovers for centerline as well as sideline sites.
The "as measured" spectrum for the helicopter position for each 10 degree increment in elevation angle (from the centerline center microphone location) was adjusted to standard day temperature and relative humidity (70°F, 70 percent) absorption conditions. The spectrum was indexed by the two angles identified above and the slant distance (spherical coordinates). The sound pressure level (SPL) values were then adjusted to distances between 200 feet and 20,000 feet (holding the angles constant) in accordance with the spherical spreading law and consideration of absorption along the extended path. No adjustment was made for excess ground attenuation.

The generated data files provide the means to create a three-dimensional directivity/distance/level model for use in TA and noise contour development. The development of NEL values for (each) location on the ground will require construction of a dB(A) time history using the multi-angle/distance indexed dB(A) values associated with increments along the helicopter flight path. This procedure would also require development of an interpolation routine to assign values to angle-pairs not stored in the data file.

In retrospect, this methodology (clearly more comprehensive than others) has immense computational requirements which restrict its usefulness. While unrealistic as an operational component of a noise contour generating computer model such as the FAA Integrated Noise Model (INM), it may be feasible to construct a separate model for use in computing noise exposure for a limited number of grid locations. This
model can be used to compute NEL for various angle-pairs. In turn, a curve or algorithm could be fit to these data providing NEL as a function of CPA distance and CPA elevation angle (for sideline locations).

A plan under consideration might use the complex data files described above to develop NEL versus distance information for the centerline-center microphone location as the fundamental contour generating data base. Using dB(A) sideline directivity information similar to that presented in the next section it may be possible to generate a CPA-elevation angle correction (for sideline locations) to the centerline-center NEL-distance data.

4.0 HELICOPTER NOISE DIRECTIVITY ANALYSES

The plots shown in this section are samples of helicopter directivity characteristics generated as part of the Phase II reduction of data acquired in the 1978 FAA Helicopter Noise Measurement Program. The diagrams provide the two-dimensional directivity within the vertical plane coincident with the helicopter ground track. A sound level reference semi-circle corresponding to the lowest dB(A) directivity value is provided on each plot. The vector lengths outside the semi-circle correspond linearly to change in level, where 1 cm = 1 dB. A scale is provided to assure proper interpretation in the event length distortion occurs in reproducing the plots.

The angles in each plot increase clockwise from the helicopter flight path extension ahead of the helicopter. The first vector angle is identified in each case and subsequent vectors represent approximately
10 degree incremental increases in angle. The vector lengths represent the sound level normalized to a distance of 500 feet. This is hereafter referred to as the normalized directivity (ND). For an observer on the ground, the "lower angle" vectors (near 30° or near 150°) will effectively shrink due to increased path length. Assuming only spherical spreading (additional absorption being small), the 30° and 150° vectors would diminish by 6 dB or 6 cm. Other vector length adjustments for a ground observer during level flyover include:

<table>
<thead>
<tr>
<th>Angle</th>
<th>Level Adjustment for Ground Observer</th>
</tr>
</thead>
<tbody>
<tr>
<td>30 or 150</td>
<td>6 dB</td>
</tr>
<tr>
<td>40 or 140</td>
<td>3.8 dB</td>
</tr>
<tr>
<td>50 or 130</td>
<td>2.3 dB</td>
</tr>
<tr>
<td>60 or 120</td>
<td>1.2 dB</td>
</tr>
<tr>
<td>70 or 110</td>
<td>0.5 dB</td>
</tr>
<tr>
<td>80 or 100</td>
<td>0.1 dB</td>
</tr>
<tr>
<td>90</td>
<td>0 dB</td>
</tr>
</tbody>
</table>

The vector length adjustments for takeoff and approach would be very close to those shown above.

The directivity envelope seen by a ground observer (GO) is shown on each plot. These diagrams dramatically show the dominance of different helicopter noise sources at different angles as well as their relative intensity levels. For example, the pronounced frontal lobe exhibited by the SH-333J (Fuma) possibly suggests that the strong forward radiated compressor whine dominates the resulting NEL value. On the other hand, the SA-341G (Gazelle) exhibits a comparatively weak forward radiation component but a dominate tail rotor influence. The Sikorsky S-61 is seen to be nearly an omnidirectional source dominated by main
rotor influences. The following sections give a very brief qualitative assessment of observed directivity characteristics. At this point, no attempt will be made to mathematically model the directivity patterns as monopoles or dipoles or combinations of these or other functions. The matter of identifying the noise generating mechanism associated with various directivity lobes also remains to be addressed. The abbreviations used below include:

NU: Normalized Directivity (to a distance of 500 feet)
GO: Ground Observer Directivity
CPA: Closest Point of Approach

4.1 Bell 212

The directivity characteristics exhibited by the Bell 212 are discussed below:

Takeoff (Figure 4.1.1)

- ND Pattern: Leading, moderate width
- ND MAX: Near 60 degrees
- GO Pattern: Leading, moderate width
- GO MAX: Near 70 degrees

- 7 -
Approach (Figure 4.1.2)
- ND Pattern: Moderate-narrow width leading
 - ND MAX: Near 30 degrees
- GO Pattern: Very narrow width, highly directive, leading
 - GO MAX: Near 60 degrees

Level Flyover (Figure 4.1.3)
- ND Pattern: Moderate width, leading
 - ND MAX: Near 30 degrees
- GO Pattern: Moderate-narrow lobe, leading
 - GO MAX: Near 60 degrees

SA-330J (Puma)

Takeoff (Figure 4.2.1)
- ND Pattern: Approximately omnidirectional
 - ND MAX: Near 50 degrees
- GO Pattern: Wide lobe
 - GO MAX: Near CPA (90 degrees)

Approach (Figure 4.2.2)
- ND Pattern: Highly directive, ahead of SA-330J
 - ND MAX: Near 30 degrees
- GO Pattern: Wide, leading, rapidly diminishing after CPA
 - GO MAX: Near 30 degrees
 - 8 -
Level Flyover (Figure 4.2.3)

- ND Pattern: Ahead of helicopter, moderate width
- ND MAX: Near 40 degrees
- GO Pattern: Also leading
- GO MAX: 50 degrees

4.3 S-61

Takeoff (Figure 4.3.1)

- ND Pattern: Approximately omnidirectional
- ND MAX: Approximately 70 degrees
- GO Pattern: Very wide
- GO MAX: Close to CPA

Approach (Figure 4.3.2)

- ND Pattern: Wide leading
- ND MAX: Approximately 80 degrees
- GO Pattern: Narrow
- GO MAX: Near CPA

Takeoff (Figure 4.3.3)

- ND Pattern: Very wide teardrop
- ND MAX: Near 70 degrees
- GO Pattern: Wide teardrop
- GO MAX: Near CPA

- 9 -
4.4 BO-105

Takeoff (Figure 4.4.1)
- **NO Pattern:** Sharp forward lobe
- **NO MAX:** Near 40 degrees
- **GO Pattern:** Narrow leading lobe
- **GO MAX:** Near 50 degrees

Approach (Figure 4.4.2)
- **NO Pattern:** Broad irregular leading
- **NO MAX:** Near 30 degrees
- **GO Pattern:** Broad irregular leading
- **GO MAX:** Near 50 degrees

Level Flyover (Figure 4.4.3)
- **NO Pattern:** Moderate leading
- **NO MAX:** Near 50 degrees
- **GO Pattern:** Narrow-moderate leading lobe
- **GO MAX:** Near 60 degrees

4.5 CH-53

Takeoff (Figure 4.5.1)
- **NO Pattern:** Very irregular broad leading
- **NO MAX:** Near CPA
- **GO Pattern:** Irregular broad leading
- **GO MAX:** Near CPA
Approach (Figure 4.5.2)

- ND Pattern: Sharp leading lobe at 30 degrees
 medium width lobe at CPA
generally irregular
- ND MAX: Near 30 degrees
- GO Pattern: Narrow lobe centered on CPA
- GO MAX: Near CPA

Level Flyover (Figure 4.5.3)

- ND Pattern: Strong broad forward lobe
- ND MAX: Near 40 degrees
- GO Pattern: Broad irregular lobe leading
- GO MAX: Near 70 degrees

4.6 SA-341G

Takeoff (Figure 4.6.1)

- ND Pattern: Very irregular, strong rear lobe
- ND MAX: Near 140 degrees
- GO Pattern: Very irregular, strong rear lobe
- GO MAX: Near 120 degrees
Approach (Figure 4.6.2)

- ND Pattern: Generally omnidirectional with rear quadrant emphasis
- ND MAX: Near 110 degrees
- GO Pattern: Sharp rear lobe
- GO MAX: Near 110 degrees

Level Flyover (Figure 4.6.3)

- ND Pattern: Strong rear lobe
- ND MAX: Near 140 degrees
- GO Pattern: Broad lobe near CPA
- GO MAX: Near CPA

Bell 206L

Leadoff (Figure 4.7.1)

- ND Pattern: Strong (narrow) trailing lobe, moderate to leading lobe
- ND MAX: Near 150 degrees
- GO Pattern: Narrow lobe near CPA
- GO MAX: Near CPA

Approach (Figure 4.7.2)

- ND Pattern: Broad leading lobe, narrow pronounced trailing lobe
- ND MAX: Near 70 degrees
- GO Pattern: Sharply pointed, moderate lobe
- GO MAX: Near 70 degrees
Level Flyover (Figure 4.7.3)

- ND Pattern: Strong leading
- ND MAX: Near 30 degrees
- GO Pattern: Broad, slightly leading
- GO MAX: Near 80 degrees

Hugnes 500C

Lexusif (Figure 4.8.1)

- ND Pattern: Very strong, broad lobe, slightly trailing
- ND MAX: Near 110 degrees
- GO Pattern: Broad lobe centered near CPA
- GO MAX: Near 100 degrees

Approach (Figure 4.8.2)

- ND Pattern: Strong, wide trailing
- ND MAX: Near 140 degrees
- GO Pattern: Medium "teardrop" lobe centered near CPA
- GO MAX: Near 100 degrees

Level Flyover (Figure 4.8.3)

- ND Pattern: Pronounced leading and trailing lobes
- ND MAX: Near 120 degrees
- GO Pattern: Narrow lobe near 110 degrees
- GO MAX: Near 110 degrees
HELICOPTER DIRECTIVITY ANALYSIS

OPERATION: Takeoff
SITE: 150 m. East
REFERENCE SLANT RANGE: 500 Feet

SCALE: 1 cm = 10° outside reference semicircle

NOTES: VECTORS ARE SHOWN IN APPROXIMATELY 10 DEGREE INCREMENTS
ANGLES INCREASE CLOCKWISE.

FIGURE 4.1.1
HELCOPTER DIRECTIVITY ANALYSIS

HELCOPTER Bell 212
DATE 6/15/78
NUMBER OF EVENTS AVERAGED 4
METRIC db(A)
VECTOR LENGTH REPRESENTS THE SOUND LEVEL RELATIVE TO A REFERENCE UNIT VECTOR (R) LEVEL 78.8

SCALE: 1 cm = 1 dB outside reference semicircle

NOTES: VECTORS ARE SHOWN IN APPROXIMATELY 10 DEGREE INCREMENTS.
-ANGLES INCREASE CLOCKWISE.

FIGURE 4.1.2
Heliocopter Directivity Analysis

Operation: Level Flyover
Site: Site E. East
Reference Slant Range: 500 feet

Helicopter

Test Date: [Blank]

Number of Events Averaged: [Blank]

Metric: [Blank]

Vector Length Represents the Sound Level Relative to a Reference Unit Vector (R) Level = 0.0

Scale: 1 cm = 1 dB outside reference semicircle

NOTES: Vectors are shown in approximately 10 degree increments. Angles increase clockwise.

Flight Path

Ground Level

Figure 4.13
HELECOPTER DIRECTIVITY ANALYSIS

HELICOPTER: Puma SH-3H
TEST DATE: 6/12/78
NUMBER OF EVENTS AVERAGED: 4
METRIC: dB(A)
VECTOR LENGTH REPRESENTS THE SOUND LEVEL RELATIVE TO A REFERENCE UNIT VECTOR (R) LEVEL = 77.1

SCALE: 1 cm = 1 dB outside reference semicircle

NOTES: - VECTORS ARE SHOWN IN APPROXIMATELY 10 DEGREE INCREMENTS.
- ANGLES INCREASE CLOCKWISE.

FIGURE 4.2.1

GROUND LEVEL
HELI OPTER DIRECTIVITY ANALYSIS

OPERATION APPROACH
SITE 150 m East
REFERENCE SLANT RANGE 500 Feet

SCALE: 1 cm = 1 dB outside reference semicircle

NOTES: VECTORS ARE SHOWN IN APPROXIMATELY 10 DEGREE INCREMENTS.
ANGLES INCREASE CLOCKWISE.

FIGURE 4.2.2
HELIICOPTER DIRECTIVITY ANALYSIS

HELICOPTER

TEST DATE

NUMBER OF EVENTS AVERAGED

METRIC dB(μ)

VECTOR LENGTH REPRESENTS THE SOUND LEVEL RELATIVE TO A REFERENCE UNIT VECTOR (R) LEVEL = 77.8

SCALE: 1 cm = 1 dB outside reference semicircle

0 . 1 . 2 . 3 . 4

cm.

FLIGHT PATH

NOTES: VECTORS ARE SHOWN IN APPROXIMATELY 10 DEGREE INCREMENTS.
ANGLES INCREASE CLOCKWISE.

FIGURE 4.2.3
HELIICOPTER DIRECTIVITY ANALYSIS

OPERATION Takeoff
SITE 150 m East
REFERENCE SLANT RANGE 500 feet

SCALE: 1 cm = 1 dB outside reference semicircle

NOTES: VECTORS ARE SHOWN IN APPROXIMATELY 10 DEGREE INCREMENTS.
- ANGLES INCREASE CLOCKWISE.

FIGURE 4.3.1

GROUND LEVEL
HEICOPTER DIRECTIVITY ANALYSIS

OPERATION APPROACH
SITE 150 m last
REFERENCE SLANT RANGE 500 Feet

NOTES:
- VECTORS ARE SHOWN IN APPROXIMATELY 10 DEGREE INCREMENTS.
- ANGLES INCREASE CLOCKWISE.

FIGURE 4.3.2
SCALE: 1 cm = 10 dB outside reference semicircle

NOTES: VECTORS ARE SHOWN IN APPROXIMATELY 10 DEGREE INCREMENTS.
ANGLING INCREASES CLOCKWISE.

FIGURE 4.3.3
HELIQUOTER DIRECTIVITY ANALYSIS

OPERATION
Takeoff

SITE
150 m East

REFERENCE SLANT RANGE
500 Feet

VECTORS LENGTH REPRESENTS THE SOUND LEVEL RELATIVE TO A REFERENCE UNIT VECotor (R) LEVEL = 77.2

SCALE: 1 cm = 1 dB outside reference semicircle

NOTES: -VECTORS ARE SHOWN IN APPROXIMATELY 10 DEGREE INCREMENTS.
-ANGLES INCREASE CLOCKWISE.

FIGURE 4.4.1

FLIGHT PATH

GROUND LEVEL
HELICOPTER DIRECTIVITY ANALYSIS

OPERATION
APPROACH

SITE
150 m East

REFERENCE SLANT RANGE
500 feet

VECTOR REPRESENTS SOUND LEVEL RELATIVE TO A REFERENCE UNIT VECTOR (R) LEVEL = 100.

SCALE: 1 cm = 1 dB outside reference semicircle

NOTES: VECTORS ARE SHOWN IN APPROXIMATELY 10 DEGREE INCREMENTS.
ANGLES INCREASE CLOCKWISE.

FIGURE 4.4.2

GROUND LEVEL
HELIICOPTER DIRECTIVITY ANALYSIS

HELIICOPTER: Sikorsky HH-3

TEST DATE: June 11, 1978

NUMBER OF EVENTS AVERAGED:

METRIC: dB(A)

VECTOR LENGTH REPRESENTS THE SOUND LEVEL RELATIVE TO A REFERENCE UNIT VECTOR (R) LEVEL = 75.3

SCALE: 1 cm = 1 dB outside reference semicircle

NOTES: - VECTORS ARE SHOWN IN APPROXIMATELY 10 DEGREE INCREMENTS.
- ANGLES INCREASE CLOCKWISE

FIGURE 4.4.3

GROUND LEVEL
HELIQUPTER DIRECTIVITY ANALYSIS

OPERATION Takeoff
SITE 150 m East
REFERENCE SLANT RANGE 500 Feet

SCALE: 1 cm = 1 dB outside reference semicircle

NOTES: VECTORS ARE SHOWN IN APPROXIMATELY 10 DEGREE INCREMENTS.
ANGLES INCREASE CLOCKWISE.

FIGURE 4.5.1
HELIICOPTER DIRECTIVITY ANALYSIS

HELIICOPTER: Sikorsky UH-36
ST DATE: June 15, 1978
NUMBER OF EVENTS AVERAGED:
METRIC: dB(
VECTOR LENGTH REPRESENTS THE SOUND LEVEL RELATIVE TO A REFERENCE UNIT VECTOR (R) LEVEL = 81.4

SCALE: 1 cm = 1 dB outside reference semicircle

NOTES: VECTORS ARE SHOWN IN APPROXIMATELY 10 DEGREE INCREMENTS.
ANGLES INCREASE CLOCKWISE.

FIGURE 4.5.2

GROUND LEVEL

OPERATION: APPROACH
SITE: 150 m East
REFERENCE SLANT RANGE: 5000 Feet
HELICOPTER

Sikorsky H-33

TEST DATE

June 13

NUMBER OF EVENTS AVERAGED

METRIC

DB(A)

VECTOR LENGTH REPRESENTS THE SOUND LEVEL RELATIVE TO A REFERENCE UNIT VECTOR (R) LEVEL. 85.9

SCALE: 1cm = 1dB outside reference semicircle

NOTES: VECTORS ARE SHOWN IN APPROXIMATELY 10 DEGREE INCREMENTS

ANGLES INCREASE CLOCKWISE.

GROUND LEVEL

FIGURE 4.5.3
HEICOPTER DIRECTIVITY ANALYSIS

HEICOPTER Gazelle XH-54
TEST DATE June 15, 1975
NUMBER OF EVENTS AVERAGED 5
METRIC J.P.A
VECTOR LENGTH REPRESENTS THE SOUND LEVEL RELATIVE TO A REFERENCE UNIT VECTOR (R) LEVEL = 67.4

SCALE : 1cm = 1dB outside reference semicircle

NOTES: - VECTORS ARE SHOWN IN APPROXIMATELY 10 DEGREE INCREMENTS.
- ANGLES INCREASE CLOCKWISE.

FIGURE 4.6.1

GROUND LEVEL
HELICOPTER DIRECTIVITY ANALYSIS

HELIPOTER: Carlisle S-55K

DATE: June 15, 1978

NUMBER OF EVENTS AVERAGED:

ERGIC (cm)

VECTOR LENGTH REPRESENTS THE SOUND LEVEL RELATIVE TO A REFERENCE UNIT VECTOR (R) LEVEL.

SCALE: 1 cm = 1 dB outside reference semicircle

NOTES: VECTORS ARE SHOWN IN APPROXIMATELY 10 DEGREE INCREMENTS.
- ANGLES INCREASE CLOCKWISE.

REFERENCE SLANT RANGE:

OPERATION APPROACH

SITE 150 m East

FIGURE 4.6.2

HELIPOPTER DIRECTIVITY ANALYSIS

HELIPOPTER CF-400

TEST DATE Jun 13, 1978

NUMBER OF EVENTS AVERAGED

METRIC

VECTOR LENGTH REPRESENTS THE SOUND LEVEL RELATIVE TO A REFERENCE UNIT VECTOR (R) LEVEL = 75.8

SCALE: 1 cm = 1 dB outside reference semicircle

NOTES: - VECTORS ARE SHOWN IN APPROXIMATELY 10 DEGREE INCREMENTS.
- ANGLES INCREASE CLOCKWISE.

FIGURE 4.6.3
HELICOPTER DIRECTIVITY ANALYSIS

HELICOPTER: Bell 206L
TEST DATE: June 16, 1978
NUMBER OF EVENTS AVERAGED: 6
METRIC: 486A
VECTOR LENGTH REPRESENTS THE SOUND LEVEL RELATIVE TO A REFERENCE UNIT VECTOR (R) LEVEL = 72.3

SCALE: 1 cm = 1 dB outside reference semicircle

NOTES: VECTORS ARE SHOWN IN APPROXIMATELY 10 DEGREE INCREMENTS.
ANGLES INCREASE CLOCKWISE.

FIGURE 4.7.1
HELICOPTER DIRECTIVITY ANALYSIS

HEICOPTER Bell 206L
TEST DATE June 16, 1978
NUMBER OF EVENTS AVERAGED 4
METRIC A
VECTOR LENGTH REPRESENTS THE SOUND LEVEL RELATIVE TO A REFERENCE UNIT VECTOR (R) LEVEL = 72.2

SCALE: 1 cm = 1 dB outside reference semicircle

NOTES: VECTORS ARE SHOWN IN APPROXIMATELY 10 DEGREE INCREMENTS.
ANGLES INCREASE CLOCKWISE.

FIGURE 4.7.2
HELICOPTER DATA ANALYSIS

HELI.CO.PTER Bell 206
TEST DATE June 19, 1973
NUMBER OF EVENTS AVERAGED
METRIC dB(A)
VECTOR LENGTH REPRESENTS THE SOUND LEVEL RELATIVE TO A REFERENCE UNIT VECTOR (R) LEVEL = 71.2

SCALE: 1cm = 1dB outside reference semicircle

0 1 2 3 4 cm

FLIGHT PATH

NOTES: - VECTORS ARE SHOWN IN APPROXIMATELY 10 DEGREE INCREMENT
- ANGLES INCREASE CLOCKWISE.

FIGURE 4.7.3
HELI OPTER DIRECTIVITY ANALYSIS

HELI OPTER Hughes 500 E

TEST DATE June 16, 1975

NUMBER OF EVENTS AVERAGED 10

METRIC 36(ML)

VECTOR LENGTH REPRESENTS THE SOUND LEVEL RELATIVE TO A REFERENCE UNIT VECTOR (R) LEVEL = 67.8 dB

SCALE: 1 cm = 1 dB outside reference semicircle

NOTES: VECTORS ARE SHOWN IN APPROXIMATELY 10 DEGREE INCREMENTS. ANGLES INCREASE CLOCKWISE.

FLIGHT PATH

GROUND LEVEL

OPERATION Takeoff

SITE 150 ft. East

REFERENCE SLANT RANGE 500 feet

FIGURE 4.8.1
HELIICOPTER: Aircraft 1

TEST DATE: ____________

NUMBER OF EVENTS AVERAGED: ____________

GRAPHIC:

VECTOR LENGTH REPRESENTS THE SOUND LEVEL RELATIVE TO A REFERENCE UNIT VECTOR (R) LEVEL = ____________

SCALE: 1cm = 1dB outside reference semicircle

NOTES: VECTORS ARE SHOWN IN APPROXIMATELY 10 DEGREE INCREMENTS. ANGLES INCREASE CLOCKWISE.

FLIGHT PATH

FIGURE 4.8.2
HELICOPTER DIRECTIVITY ANALYSIS

HELICOPTER: Hughes 500C
TEST DATE: June 16, 1978
NUMBER OF EVENTS AVERAGED: 6
METRIC: dB

VECTOR LENGTH REPRESENTS THE SOUND LEVEL RELATIVE TO A REFERENCE UNIT VECTOR (R) LEVEL = 73.4

SCALE: 1 cm = 1 dB outside reference semicircle

NOTES: - VECTORS ARE SHOWN IN APPROXIMATELY 10 DEGREE INCREMENTS.
- ANGLES INCREASE CLOCKWISE.

FIGURE 4.8.3
REFERENCES

