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The best of the known algorithms for testing isomorphism of general

undirected graphs have running times exponential in n. the number of

vertices. To increase the efficiency of testing isomorphism. heuristics

are often used. Typically, these heuristics partition the vertices into

classes with given properties and thereby reduce the number of

bijections that must be checked as possible isomorphisms [3. 11]. Even

successful classification of the vertices into disjoint sets of size S3

leaves an exponential number of maps to check.

L. Babai [3] explored algorithms for testing isomorphism of graphs

whose vertices have been partitioned into classes of size k or less, for

some fixed k. He was able to exhibit a polynomial-time Las Vegas

algorithms i.e. an algorithm in R n colt to solve this problem. He also

observed that no subexponential deterministic algorithm was known. Our

first result provides a polynomial-time algorithm for this problem.

Specifically. we exhibit an algorithm to test color preserving

isomorphism of two vertex-colored graphs in which each color class is of

size k or less. In addition, we obtain generators for the automorphism

group of such a graph in polynomial time.

A group G acting on (l.....n} is said to be a A in

T(n) if the question "is x in G?" is decidable in T(u) time. A tower of ',lo

groups G = - C1 ... G z I is called palynamiALIX k aihba if 4,

and generators are known for C.o

(ii) each Ci is recognizable in polynomial time,

and (iii) IC p(n). for some polynomial pe

... . . Y Ire
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Our second result is that the size of. and generators fors any

group which is polynomially accessible via such a tower can be

determined in polynomial time. This gives a polynomial-time algorithm

for computing the automorphism group of a vertex-colored, graph with

bounded color multiplicity. It also solves, in polynomial time, the

isomorphism testing problem for such graphs [3].

C. Hoffmann [9) exhibited a Las Vegas algorithm for determining the

automorphism group of a trivalent cone graph in time O(nclogn) using a

recursive application of Babaits algorithm. We improve this result and

give a deterministic 0(nclogn) algorithm for computing the automorphism

group of a slightly more general structure.

Finally. we address the problem of testing isomorphism of trivalent

graphs. The best previously known algorithm, attributed to G. Miller.

runs in time O(cn ) for some constant c. Testing trivalent graph

isomorphism can be polynomial-time reduced to computing the automorphism

group of a trivalent graph in which one edge is fixed. It is a well

known, and easy to prove, theorem of Tutte's that such an automorphism

group has order 2k for some integer k. Exploiting the unique properties

of groups with order a power of a prime, and using the improvements to

Babaits and Hoffmann's algorithms, we derive a subexponential

(o(nClogn)) algorithm for trivalent graph isomorphism.
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2. PalynnialU Accosibig Tgwa 21 Grops

A rAX ion &X= on (1,...,n) is a collection of 1-1 maps from

Us,...,n) onto itself that forms a group. Let G be a group. IGI stands

for the order of G.

Let H be a subgroup of G. The symbol G/H stands for the collection

of cosets of H in Go i.e.. the collection of equivalence classes in

which x = y if and only if x'ly is in H. From Lagrange's theorem we

know that every coset of G/H has the same size and that

IGI aIG/Hl X HI.

If glOO..O k are permutations then <g19OOO#gk
> stands for 'the group

of all permutations formed by products of the gi"

2.1 Towers of Groups

L. Babai [33 seems to have been the first researcher to suggest

that computing the size of an unknown group might be facilitated by

first trapping that group in a tower. He used this technique on the

automorphism groups of vertex-colored graphs of bounded color

multiplicity and the automorphism groups of graphs with bounded

.eigenvalue multipicity. By trapping such groups in polynomially

accessible towers he was able to calculate their size in polynomial

time using coin tossing algorithms. Our first result is a polynomial

time deterministic algorithm for this problem.

Theorem 1.1: Let G z G *.. Gr G I be a polynomially accessible

tower of groups. Coset representatives for Gi/Gi# 1 9 i=O,...,r-1, can be
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determined in polynomial time.

Proof : Let max IGi/G I = k. We will construct a table with r rows.i

numbered 0 to r-1, and k columns whose ith row is a set of right coset

representatives for Gi/Gi 1 . The group G can be expressed as

SG C0 = (G0/GI)G 1.

or* C = (Go/Gi)(GI/G2).. .(Gr-1/Gr) .

Therefore, any element g in G can be written in the form

g = eOal**ear.l. where ai is an element of Gi/Gi+1 o

The table should have the following property: g is in G if and only

if g can be expressed as aoal-.ar 1 where ai is a member of the ith

row. A permutation g is in cAnonicAl frm when it is written this way.

We start with a table whose rows contain only the identity element.

The procedure sift(x), defined below modifies the table so that the

element x from G can be written in canonical form.

sift(x):
wh (i x r-I And there is a y in row i such that y x is in G. 1)

i4-i 1-~il

x x y1x

UL x is not the identity then insert x in row i

As an example of how sift works, suppose the table for the tower

Go G1 z G2 z G3 = I at some point looks like Figure 2.1.



(Go,) L! ... G2  + L. l G2  + ......... G2

(G 2- ! I G3  + _. G3  + .___ G3.

Figure 2.1 State of table after sift(a).

Consider sift(b) for some b in G0 but not in G1,  If -I b is in G10

and anlb is not in G2. then after the call sift(b) the table would look

like Figure 2.2. at which point b a(a 1b) is expressible in canonical

* for.

Figure 2.2 State of table after sift(b).

If we had time to sift every element of G. then we would be sure

that every element of G could be expressed in canonical form.

At this point we make a key observation: all of the coset

representatives have been found if and only if

(1) Each generator can be written in canonical for.,

and (2) Each product of a pair of representatives in the table can

be written in canonical form.

Since the only elements ever sifted into the table are from G we

need only verify that when (1) and (2) are satisfied any g in G can be

written in the canonical form. Let g be an element of G. Write g as a



product of generators and write each generator in canonical form. If

this product is not in canonical form, we use (2) to rewrite it.

By using (2) we can take an adjacent pair of representatives x.y in

the string representing g and, if x comes from a higher numbered row

than ye rewrite xy in canonical form. This has the effect of moving an

element from a lower numbered row past an element of a higher numbered

row to the left in the string. Moving all the row 0 representatives to

the left, then all the row 1 representatives, and so one we can put the

string in canonical form. It is important to note here that writing xy

in canonical form does not require the introduction of any elements from

rows numbered less than the one y comes from.

The whole algorithm can be described as

Step 1. Sift all the generators.

Step 2. Sift the product xy for every pair x.y in the table.

The timing analysis is straightforward. The number of coset

representatives in the table is at most m. some polynomial in n. The

number of calls to sift is at most m2 and each call to sift takes

roughly k(r-l)p(n) time, where p(n) is a polynomial that bounds the

amount of time to test membership in any Gi. Therefore, the running

time is polynomial in n.

0

An immediate corollary is an algorithm much like the one proposed

by C. Sims [123.
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£allary 1.2: Let G be a group of permutations generated by glo.e.gk

Let Gi be the subgroup of G that fixes l...,i. Then coset

representatives for Gi/Oi+I can be determined in polynomial time.

Furthermore, this gives a polynomial-time decision procedure for testing

membership in G and for determining the order of G.

P : Use the algorithm described in the previous theorem to compute

the coset representatives. The only modification is that to test

whether x and y are inequivalent members of Gi/Gi+l just check that they

map i+l to different places.

Once the coset representatives have all been found* testing

membership is not hard. To determine if x is an element of C. run the

procedure sift with argument x. If x can be written in canonical form.

then x has been written as a product of generators. If x cannot be

written in cannonical forms then x is not in G.

The order of G is the product of the sizes of Gi/Gi+1 6

0

*3. CD3iptn D hA ntiorsoct~i~a gL hA2 rop

Consider the problem of computing the automorphism group of a graph

G. Suppose it were possible to partition the edges of G into two

classes. A and B. in such a way that every automorphism of G fixed.

setwise, these classes. Let XA and XB be the automorphism groups that

preserve the A edges and the B edges of G respectively. The

permutations in the intersection of XA and XB are exactly the



-8-

automorphisms of G.

If we had a fast algorithm for computing the intersection of two

groups, then we could compute the automorphism group of G inductively.

At present we do not know how to take the intersection of an arbitrary

pair of groups in polynomial time. Using the following theorem.

however, we can get the intersection of two groups under special

circumstances.

Therem 3.1: Let G and H be any two polynomial-time recognizable groups.

Let S be a group for which generators are known. If S contains both G

and Ht and there are two polynomially accessible towers, one from S

through G to I. and the other from S through H to I. then generators for

GnH can be found in polynomial time.

Proof :Let S H0  ... H : RH H I.and
0r r+l s-1I. n

S = Go - Gp G ... G q-1  I be the two towers.

Construct an s x q table whose i.jth entry is the group GinH . Each

entry is a recognizable group since it is the intersection of

recognizable groups.

Both IHj/Hj 1 I and [II/GI are bounded by some polynomial p(n).

Consider the two groups GinHj and GinHj+1 . Let a and b be distinct

coset representatives of X = (CGnu.)/(G nil ). The elements a and b
. 3 i j+l

are both from the group H. Furthermore, if a'b were an element of

H 1. it would also be an element of GinHj 1 . Since a and b are from

j+11
different cosets of X it follows that a'b is not in Hj+ I . Therefore, a

and b are distinct coset representatives of Hj/Hj+ 1. Hence
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](GinH MGinHl)I is less than or equal to IHi/Hi+ 1 : p(n).

Similarly, (GinH )/(Gi+ nH S p(n).

Let P be any path in the table beginning at S. moving only one row

down or one column across at a time, passing through GnH, and ending at

1. This path P describes a polynomially accessible tower of groups from

S through GnH to 1.

For example, the tower

S R 1 2 H 2  H ... : GGnH . nH z GnH 2 G p+nH -.. I can

be used to get generators for GnH in polynomial time.

0

The automorphism group of a trivalent graph with one edge fixed is

a 2-gzaua, i.e. it has order 2k for some k. Groups of order p k where p

is a prime, have special structure which we will exploit later. In this

section we state some of the standard theorems. For more detail we

refer the reader to [8].

Theorem (Sylow): If G is a group and 2k is the largest power of two

dividing IGI then G contains a subgroup of order 2 . Such a subgroup is

called a 2 Sylow subgroup (2SSG).

Zhegxzm (Sylow): All 2SSG's of a group G are isomorphic.
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Theorem (Sylow): Let S be a subgroup of G. If S is a 2-group then S is

contained in a 2SSG of G.

The 2SSG s of Sn have the following characterization in terms of

the automorphism group of binary trees.

Iheorpm 4.1: Let S be any 2 Sylow subgroup of Sna where n is a power of

2. The group S can be viewed as the action, on the leaves, of the

automorphism group of a complete binary tree whose leaves are the

vertices 1,...,n in some order.

Proof : Draw the graph of a complete binary tree whose leaves are the

vertices 1....n in some order. Label the internal nodes of the tree by

the permutation of the leaves obtained when the node's children are

interchanged. Let the group of the tree be the group generated by these

permutations. Since all 2SSG's of Sn are isomorphic, and the group of

the tree is a subgroup of Sn , all we need show is that the order of this

group is the largest power of two dividing (nl).

The group of the tree has order 2 to the power of the number of

internal nodes, i.e. 2 The factors of n! divisible by 2 are

I x 2, 2 x 2,...,(n/2) x 2. Thus the highest power of two dividing n1

is (n/2) + r where r is the largest power of two dividing (n/2)!. By

induction, k = (n-l) is the largest number such that 2k divides (n!) for

n a power of 2. From this we conclude that every 2SSG of Sn can be

viewed as the automorphism group of a binary tree whose leaves are

(l.....n} in some order.



If n is not a power of two, a 2SSG of Sn can be shown to be the

group induced by automorphisms of a forest of full binary trees.

Ex-RI: Any 2SSG of S6 is isomorphic to the group induced by the

automorphisms of the trees in Figure 4.1.

1 2 3 4 5 62 v
Figure 4.1 A 2SSG of S6 .

4.1 Imprimitive Groups

Let G be a permutation group on {l..oo.n)o Suppose {l*.°°.n) can

be partitioned into disjoint sets SIOoOGoSm such that every permutation

in G either maps all the elements of Si onto Si or onto the elements of

another Sj. If SlS0oosS m can be chosen in a non-trivial way. i.eo not

just one universal set or n singleton sets, then G is called

iuximitiv. and the sets Si are called dominc or zseU 2L

Every 2SSG of Sn has n/2 sets of imprimitivity of size 2, n/4 of

size 4. etc. These correspond to leaves of subtrees of height 1,2.....

respectively. Since every 2-group of permutations is contained in a

2SSG of Sn, each is imprimitive.



-12-

4.2 Computing with 2-groups

Let G be some 2-group. In this section we show bow to find

Syl(G), a 2SSG of Sn containing G. in polynomial time. We then show how

to determine a polynomially accessible tower from Syl(G) through G to I.

Using this result and the intersection theorem, it will be possible to

calculate the intersection of any two 2-groups that are subgroups of a

single 2SSG.

Theorem 4.2: Let G = <gl,..09k > be a 2-group acting on (1,...,n}.

Syl(G), a 2 Sylow subgroup of S containing G. can be found in
n

polynomial time.

Proof : Since G is a 2-group and is therefore contained in some 2SSG of

Sn G must be imprimitive and have domains of imprimitivity contained in

those of the 2SSG. In particular. G must have n/2 domains of

imprimitivity of size 2. corresponding to the leaves of subtrees of

height 1 in the tree representation of the 2SSG.

Such a collection of sets can be located quickly. First find a

pair (i0,j0 ) whose orbit under G contains only disjoint pairs. To find

the orbit of a pair, use a transitive closure algorithm on the action of

the generators. The collection of pairs in the orbit of (i0 ,J0 ) form

domains of imprxmitivity of size 2 for G. Since the group G acts as a

2-group on the vertices not in this orbit, this algorithm can be applied

repeatedly until all the vertices are paired up into domains of

imprimitivity of size 2.
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Since G is a 2-group. the action of G on this collection of pairs

must also be a 2 group, say G1. A cycle x of non-power-of-two length in

G would imply the existence of a non-power-of-two length cycle in G.

By determining a collection of sets of imprimitivity of size two in

G, we also determine domains of imprimitivity of size 4 in G.

Continuing recursively, we can obtain partitions of (l.....n) into sets

of imprimitivity of sizes 2.489s....2 n 'l with respect to G. In turn.

these domains of imprimitivity specify a unique 2SSG with the same

domains. This 2SSG. call it Syl(G). contains all permutations on

(l.....n) that respect its domains of imprimitivity. Since every

permutation of G respects its domains of imprimitivity. G is contained

in Syl(G).

0

Having obtained Syl(G). a 2SSG of Sn containing Go we now want to

determine a polynomially accessible tower from Syl(G) through G to I.

The top portion of the tower, Syl(G) = Hr Hr.l 2 .. H I zG. will be

defined by letting Hi = <G'al. .ai> , where the ai are elements of

Syl(G). These ai must be chosen with some care so that tHi+l/Hil is

bounded by a polynomial. and Hr = Syl(G).

Let S be any 2-group. It can be shown [83 that there is a tower of

groups S = Sr 2 St r . So = I in which ISi/Si~lj a 2. For the

special case in which S Syl(G) is a 2SSG of Sn . it is possible to find

a sequence al...ar such that Si can be taken to be <al.*...ai>'
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Ldmma 4.3: Let S be a 2 Sylow subgroup of Sn. n 2 in polynomial

time it is possible to determine a sequence of elements also.,.ar of S

such that

2
() (a.) - I.

(II) ai commutes with every element of S/<slo...pai

and (III) S = <as . . ..ar>.

Proof : The proof is by induction on the height of the binary tree

representing S. When n is 2. the height of S is 1 and S is the tree in

Figure 4.2. where a is the permutation (1 2). For this tree the

sequence would be ai a.

V
Figure 4.2 The 2SSG of S2 0

Suppose S is of height k and it is known how to determine such a

sequence for any tree of height k-i. The tree representing S can be

viewed as having a root with two subtrees of height k-i attached. Figure

4.3.
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\ L /R / ' k-I

Fiur 4. T( SGS

By~~~~~~ tI inuto hyohss/efn eqec loos o h

lef sbtreL.Theriht ubre, R i iomophc t Lusng hema

m:L-0 R n hic my) xx. heefoewe antak te squnc

BThe induio thyothess wfna sequence al bo i a2b * 2*0 ar or ther9

satisfies (1), (11), and (III) for So

Since a.i and b.i operate on disjoint sets of vertices. a ib.i bja..

for any i and j. It follows that each member of this sequence satisfies

condition (1). We must demonstrate two things to prove that condition

(11) is satisfied.

(1) The element aibi commutes with each of the generators

6i'i~lbi~poeoxof S/'alb1 9*64 .a.i) :

Since ai and bi commute* and &1  &2  si- z*~ 1 b,~ *ebi~ = :1

in S/,alb 1 ... '* 5 i_1> it follows that aibi commutes with each generator.

except perhaps x. By algebra.
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xaib " xai(xaix)

* (xaix)aix

Sbiaix

* eibix.

Therefore. aib i commutes vith every element of S/<albl.....ai.l
>.

(2) The element a. commutes vith each of the generators

a'i bi ! i oessarbrox of S/,albl.• ..aibi)

It is certainly the case that ai commutes vith all the generators

vith the possible exception of x. Thus all we need to show is that

six 2 ae. By algebra.

a x r a.(aib.)x, since ab. _ 1

• bix

* xai.

This shov that ai commutes vith every element of

S/,calble •...o a ibi).

Clearly condition (III) is satisfied. Therefore, the sequence

alb 1. a,...,arbrs x satisfies (1),M(I), and (III).

$ 0

In the event that n is not a power of two, Syl(G) is represented by

a forest of full binary trees. The direct product of the automorphisu

groups of these trees is Syl(G). Therefore, a sequence for Syl(G) is
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the concatenation of sequences, one for each of the trees.

Thanrm 4.4: Let G a 'Sl....,gk> be a subgroup of a 2SSG S of Sn . Let

a 1e2,...Par be a sequence satisfying conditions (I). (II), and (III) of

Lama 4.3. The groups G c H1  ... C Hr r So where

Ri Z <G. a1, a2,..., ai>o form a recognizable tower. Furthermore, the

index of Hi in Hi 1 is no larger than 2.

Proof : Each of the groups is recognizable since generators for it are

available. If ye show that a. normalizes Hi we will be done since

this would imply that Ri ! equals either Hi. or (Hi + ai1 H).

Consider the homomorphism fi from S into S r S/(al....eai 3. Let Hi

be the image of Hi in S under fie The element ai 1 commutes with every

element of S so ai+i normalizes H i in S. Since Hi contains the kernel.

<41,...,ei > . of fie the normalizer of Ri in S contains the preimage,

under fit of the normalizer of Hi in S. Therefore. ai is in the

normalizer of Hi.

0

Since G is a group of permutations, there is a tower of

recognizable groups G z G1 * ... 2 I where Gi is the subgroup of G that

fixes vertices 1....pi. From this we Set the following important

corollary.

CarauLlarx 4.5: If G is a 2-group with generators 91....Sk, a

polynomially accessible tower from Syl(G) through G to I can be located

in polynomial time.
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The major theorem of this section says that given two 2-groups

which are subgroups of a coumon 2SSG, generators for their intersection

can be found in polynomial time,

hparam 4.6: Let G = <gl*oe*gk , H c <hl, ... br- be two 2 groups, and

let So a 2SSG containing them. be given. Generators for GnR can be

determined in polynomial time.

Proaf : Use Corollary 4.5 to construct two polynomially accessible

7 towers, one from S through G to I. the other from S through H to I. Use

Theorem 3.1 to calculate the generators for GnH.

0

5. Qa fix&Wa wU XaLf='L 4Jgnuu'm

Definition: A go= &Lh on the vertices lo....n is the graph of a

complete binary tree with leaves l,..,,n, together with a hypergraph on

l...n. If G and R are cone graphs of the same size, their union G + H

is called a Am a o a= n Agh. The vertices of cone graphs and double

cone graphs can be partitioned into classes called .Jais corresponding

to distance from the leaves. The leaves are at level 0 and the roots

are at level logn. Figure 5.1 is an example of a cone graph.
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Figure 5.1 A cone graph vith 4 hyperedges

We prove the folloving lemma in a fashion similar to the one used

by C. Ioffmann in [9]. Using this lemma ve rill be able to compute the

automorphism group of a cone graph in deterministic time o(nClogn). an

improvement over Hoffmnn's probabilistic result.

Lina 5.1: Let G + R be a double cone graph vhose hyperedges are no more

than k-ary for some fixed constant k. The sutoaorphism group of G + H

mapping roots onto roots can be determined in time O(nClogn).

Proof : Let a be any 1-1 map from the vertices of G to the vertices of R

that preserves tree edges. For each i. define the group Ui(G) (Ui(H))

to be the automorphim group of the cone graph G (H) that preserves tree

edges and fixes vertices at levels i and above. Let Ui(G.H.a) be the

group Ui(G) x Ui(R) x <z,. An element (g.h.s) in Ui(G.Ras) is the

permutation ghs on G + R. We define Ai(G.,.z) to be the subgroup of

Ui(G.io) that preserves the hyperedges of G 1.

The automorphism group of C + I is thus Alogn(G.Hos). In order to

get generator# for this group ve obtain generators for the groups

A (G9Ns)/A lo(GRMz). Since Ai(G.H.z) A il(Go.1.) the union of the

generators for the quotient groups generate A1ogn(G.H&Z)*
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By a classical isomorphism theorem (6].

Ai(G.Hz)/Ai. (GHz) L9 Ai(G.Hoz)U.i (G.Hz)/U i.(G.Hz). Each of these

groups describes the action of Ai on the level i-i vertices. It is the

latter group that we trap in the tower

Ui/'Ui. 1  V1 W ... n Wt z Ai(GH~z)Ui.I/Ui. 1  V1  .. Vr = I. where

Ui stands for Ui(GoH.z). The groups Vj are just subgroups of Wt fixing

successively more vertices. The W. are a little harder to describe. To

define then we have to construct a sequence of graphs.

Let X0 be the binary trees of G + R without any of the hyperedges.

The first group in the tower, Ui(G.B.z)/Ui. (GEz), describes the

action of the automorphism group of on level i-i vertices. Each

element of this group can be represented by a 0-1 assignment to level i

vertices together with a 0 or a 1 indicating whether the trees G and H

should be interchanged according to z. A I assigned to a level i vertex

means interchange his sons, a 0 means leave them alone.

Pick a vertex v from among the level i vertices in G. Let X be X0

plus all of the unary hyperedges on leaves of the subtrees rooted at v

in G and z(v) in N. Let X2 be X, plus the unary edges from the subtrees

rooted at v and z(v) for some other level i vertex w in G. Continue in

this fashion until the graphs 0 C ... C Xm where m i is the number of

level i vertices in G, have been defined.

After processing the unary hyperedges. process the binary edges.

then the ternary edges, etc. until all of the hyperedges of G + H have

been incorporated into a graph. Xt o This yields a sequence of graphs

X0  c X, c ... c Xt a G + H. Each X is the union of two cone graphs we

JL
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can call Gj and H. The groups W1  W s.. Wt can now be described as

w. - Ai(Gj.H 6z)U (G.H.z)/U (G.H. z).

We do not know whether the tower

Ui+I/Ui I W, Wt-1 Ai~l'i/Ui I V1  --. Vr I is polynomially

accessible. We can show that the index of each group in the next is

bounded by a polynomial in n. but we don't know whether the Wj are

recognizable in polynomial time.

Hoffmann used Babaits coin tossing algorithm to recognize W. in

time o(nci). Using our improvement to Babai's algorithm we can recognize

elements of W. in deterministic time O(nci). It is because of this step

that the algorithm computing Alogn runs in time o(nClogn)o

The graph Xj+ 1 is X. together with d-ary hyperedges between the

leaves of subtrees rooted at some vertices al..o..ad and z(al).e**oz(ad)

on level i. Adding these constraints to the automorphism group of Xj

can at most restrict the allowable 0-1 assignments to 2d level i+1

vertices. Therefore, the size of W./Wj+ 1 is at most 2 x22d a which is

less than the constant 2 2k+1.

Now we turn to the problem of determining whether two elements x

and y of Wj.-1 are in the same coset of Wj.1 /W . This is the case if and

only if f = x 1y is in Ai(Gj.Hj.z)U .i(G*H~z). The permutation f is in

the prodoict of these groups if and only if there is a u in U i.(G.H.z)

such that uf is an automorphism in Ai(Gj..j.z).

The graph f(Gj + H) consists of two cones. f(Gj) and f(H.). For u

in U ..l (G.H.z). uf is in Ai(Gj..H.z) if and only if the graph

L I'33
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uf(G.) + uf(H.) is isomorphic to G. + H. There are only two ways this

isomorphism can work and they correspond to the following two cases.

Case 1: uf(G.) is isomorphic to G. and uf(Hj) is isomorphic to Hj.

Such a u exists if and only if there is a uG in Ai_ (Gj.f(G.).f)

that maps Gj onto f(Gj) and a u in A£. (Hjff(H )of) that maps H

onto f(H.).

Case 2: uf(G.) is isomorphic to H. and uf(Hj) is isomorphic to Gj.

Such a u exists if and only if there is a uG in Ai l(G .f(H ).fz)

that maps G. onto f(Ej) and a u. in A ..(Hj.f(G.).fz) that maps H.

onto f(G.).

In either cases testing for the existence of a u in U i.l (G.H.z)

requires the construction of two A. I t To construct A.. order nd9 for
some constant d. tests of memebership in Wj must be carried out. Thus.

if T(i) is the time to construct Ai. T(i) : 4ndT(i-l) S O(ne2).

Therefore. constructing A logn(G.E.z) by this method takes time

O(nCl°gn)o for some constant c.

To compute generators for the automorphism group of a single cone

graph G whose hyperdeges are at most k-ary, for some constant k, we use

the following theorem.

Thaonr 5.2: Let G be a cone graph whose hyperedges are at most k-ary.

The automorphism group AG of G mapping the root onto itself can be

determined in time o(nclogn)
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Proof : Find A, the automorphism group of G + Go in time O(nclogn).

Construct the polynomially accessible tower A - AG  A, D n An = I,

in which the A i fix successively more vertices. Using this tower obtain

generators for AGo

0

6. Am Q(uclogn) ivant G Is.ism Algrithm.

Having established all the group theoretic tools and algorithms of

the previous sections we can at last describe how to determine

generators for the automorphism group of a trivalent graph G with one

edge, e = (ab), fixed. The next theorem tells us that this suffices to

solve the isomorphism problem.

Theorem 6.1: Trivalent graph isomorphism testing is polynomial-time

reducible to computing the automorphism group of a trivalent graph with

one edge fixed.

!o : Let G and R be two connected trivalent graphs. Pick any edge e

in G and add a new vertex v to G on this edge. Pick any edge el in H

and add a new vertex vt to H on this edge. Call these two graphs GO and

HI respectively. Construct a new graph X that is G' + H' together with

a new edge between v and v'. Compute the automorphism group of X that

fixes (vov*). If there is a generator that interchanges GO and HI then

G and H are isomorphic. By trying this for every possible choice of

edge @I in H we can determine if C and H are isomorphic.

0



-24-

6.1 The Algorithm

Take the vertices of G and label them according to their distance

from the edge e. Let the group Ai be the automorphisms of Gi the

subgraph consisting of vertices and edges out to distance i from e. The

graph G0 is just the single edge (a.b). and A0 is the group of order two

consisting of the identity and the permutation that interchanges a and

b.

It is our intention to compute Ai+I from Ai

A. is a 2 group. Let A. be its action on the level i vertices,

also a 2 group. Construct Syl(A i). a 2SSG, of the symmetric group on

level i vertices that contains Ai.

Form a cone graph from the tree representation of Syl(A i) by

taking each vertex of level i+l and creating a hyperedge out of the set

of level i vertices it is adjacent to. Using the modified version of

Hoffmann's algorithm, calculate Hi. the automorphism group of this cone

graph. Let Hi be Hi restricted to the level i vertices.

The group HinA i consists of just those permutations of level i

vertices that can be extended to automorphisms of G i+4 Generators for

HinAi can be determined in polynomial time since both groups lie under

Syl(i). The automorphism group Ai+ will be constructed by extending

X = HinAi to act on Gi I

To get at A i we first construct Bi. the subgroup of Ai whose

restriction to level i vertices is in X. To test whether an element y

is in Big we can restrict y to operate on the level i vertices and test
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if the restriction is in X. Therefore, Bi is polynomial-time

recognizable.

When X was constructed, a polynomially accessible tower from Ai

through X to I could have been found. Let

i = *D * Dt = X n .. I be this tower. Define R. to be the

subgroup of Ai which, when restricted to level i vertices, is in D .

The group B. can be trapped in the polynomially accessible tower1

Ai  R see D Rt = Bi  C1  " I. in which the Cj are just groups

fixing successively more vertices. From this tower, generators

bi..seebr for Bi can be found in polynomial time. Having these

generators, Bi can be extended to Ai+I .

Let Fi I be the subgroup of Ai+I in which level i vertices and

below are fixed. Find generators for Fi+i by direct examinatiov of the

graph Gi+1. For each bi, consider its action on level i vertices and

Oick any extension b. that includes level i+l vertices and is an

automorphism of Gi+*. Generators for Ai+1 are the b. together with

generators for F i 1

6.2 Timing Analysis

The only step that takes more than a polynomial amount of time is

determining the automorphism group of a cone graph. The number of times

this step is performed corresponds to the number of levels in the graph.

which is at most n. Therefore, the whole algorithm runs in time

o(nclogn),



References

[1) A. Aho. J. Hopcroft. J. Ullman. The Design And Ana fsis 2f

Co e Alg.ithms, Addison Wesley (1974).

C23 L. Babai. "Isomorphism Testing and Symmetry of Graphs."

unpublished manuscript.

[3) L. Babai. "Monte-Carlo Algorithms in Graph Isomorphism Testing,"

submitted to 2IM . on ung (1979).

[4) K. Booth, C. Colbourn. "Problems Polynomially Equivalent to

Graph Isomorphism," Tech. Report CS-77-04. Computer Science,

Univ. Waterloo (1977).

[5) C. Colbourn, "A Bibliography of the Graph Isomorphism Problem."

Tech. Report 123/78, Computer Sciences Univ. Toronto (1978).

[6) R. Dean. Elements 2f Ahr AiEg.abr John Wiley and

Sons (1966), p. 243.

[7) M. Furst. J. Hopcroft, E. Luks, "A subexponential Algorithm for

Trivalent Graph Isomorphism." kgo=. Eleventh S .uL Corn f.

nn GraRh Iheory aad Com~ting (1980). to appear.

[8) M. Hall, h= Iheoy 2L og, Macmillan (1959).

[9) C. Hoffmann. "Testing Isomorphisms of Cone Graphs." Er .

Twelfth AnnmAal AMi S=2oim 2AnL heor 2knxL Com~utin&

(1980). to appear.

[10) R. Mathon, "A Note on the Graph Isomorphism Counting Problem."

n P 8. pp. 131-132.

[11) R. Read. D. Corneil. "The Graph Isomorphism Disease."

J. Gra~h ThporX 1 (1977), pp. 339-363.

[12) C. Sims. C-, utLt~ignl Prghlows in Astract &1a.JXa.

John Leech, ed., Pergamon Press (1970). pp. 176-177.



UNCLASSIFIED

Department of Computer Science .GRU

A SUBEXPONENTIAL ALGORITHM FOR TRIVALENT GRAPH ISOMORPHISM

4. DESCRIPTIVE NOTES (7-ype of report said inclusive date*)

Technical Report #TR 80-426
S. AUTHOR(S) (First niame, middle ital. 1089 nlame)

Merrick Furst
John Hopcroft
Eugene Luks

6-S REPORtT DATE 78. TOTAL NO. OF PAGES '1b. NO. OF REFS

June 1980 26 12

CONTRACT OR GRANT NO. a.ORtINA TOR'S REPORT NUMDER(S)

ONR N00014-76-C-0018
6. PROJECT NO.

C. 9b. OTHqER REPORT NO(S) (Any othe, numbers that may be assigned
this report)

d.

10. DISTRl SUTION STATEMENT

Distribution of manuscript is unlimited.

It. SUPPLEMENTARY NOTES 12. SPONSORING MILITARY ACTIVITY

Office of Naval Research

* IS..A USVCT

This report contains two results. First a polynomial-time algorithm to test
color preserving isomorphism of two vertex-colored graphs in which each color
class is of size k or less.

Second we improve Hoffman's algorithm for deteripining. the automorphism group
of a trivalent cone graph to deterministic time 0 (n410gt and extend it to arbitrary
trivalent graphs,

DD Z,,473 (AEI
50% O10I.607.GS0t security CtessIticalln



UNCLASSIFIED
Securily CI.%.sifigallon

14. LINK A LINK 8 C 't c
4.KEY WORDS-

OROLE WT ROLE WT ROLE E

i graph-isomorph'ism ""

computationial complexity "

automorphism

...

II

FORM JBACK)DD INOV..1473
(PAGE' 2) Secriy Classiition


