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1. Intxoduction

j‘ The best of the known algorithms for testing isomorphism of general
undirected graphs have running times exponential in n, the number of
vertices. To increase the efficiency of testing isomorphism, heuristics
are often used. Typically, these heuristics partition the vertices into
classes with given properties and thereby reduce the number of

bijections that must be checked as possible isomorphisms (3, 11]. Even

o : successful classification of the vertices into disjoint sets of size £3

leaves an exponential number of maps to check.

L. Babai [3] explored algorithms for testing isomorphism of graphs

wvhose vertices have been partitioned into classes of size k or less, for

some fixed k, He was able to exhibit a polynomial-time Las Vegas
algorithm, i.e, an algorithm in R n coR, to solve this problem. He also

observed that no subexponential deterministic algorithm was known, Our

first result provides a polynomial-time algorithm for this problem.
Specifically, we exhibit an algorithm to test color preserving
isomorphism of two vertex-colored graphs in which each color class is of
size k or less. In addition, we obtain generators for the automorphism

| group of such a graph in polynomial time.

g . A group G acting on {ls.eeon} is said to be recognizable in time

I(n) if the question "is x in G?" is decidable in T(n) time. A tower of

3 groups G = Gy 3 G <o+ > G =1 is called polynomially accessible if

(i) generators are known for G,

(ii) each Gi is recognizable in polynomial time,

and (iii) '°1’°101' € p(n), for some polynomial p.
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Our second result is that the size of, and generators for, any
group which is polynomially accessible via such a tower can be

determined in polynomial time. This gives a polynomial-time algorithm

for computing the automorphism group of a vertex-colored graph with
bounded color multiplicity. It also solves, in polynomial time, the

isomorphism testing problem for such graphs [3].

C. Hoffmann [ 9] exhibited a Las Vegas algorithm for determining the
automorphism group of a trivalent cone graph in time O(n°1°8n) using a
recursive application of Babai's algorithm. We improve this result and

clogn

give a deterministic O(n 1 ) algorithm for computing the automorphism

group of a slightly more general structure.

Finally, we address the problem of testing isomorphism of trivalent
graphs. The best previously known algorithm, attributed to G. Miller,
runs in time 0(c"™) for some conmstant c. Testing trivalent graph
isomorphism can be polynomial~time reduced to computing the automorphism
group of a trivalent graph in which one edge is fixed. It is a well
known, and easy to prove, theorem of Tutte's that such an automorphism
group has order 2k for some integer k. Exploiting the unique properties
of groups with order a power of a prime, and using the improvements to
Babai's and Hoffmann's algorithms, we derive a subexponential

(0(n108™)) algorithm for trivalent graph isomorphism.
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2. Polynomially Accessible Towers of Groups

A permutation group on {ls.essn} is a collection of 1-1 maps from
{lseecon} onto itself that forms a group. Let G be a group, |G| stands

for the order of G,

Let H be a subgroup of G. The symbol G/H stands for the collection
of cosets of H in G, i.e., the collection of equivalence classes in
which x = y if and only if x-ly is in H. From Lagrange's theorem we

know that every coset of G/H has the same size and that

I6l = l6/n] x |Hl.

If Bys o8y, are permutations then <gpoecergy> stands for the group

of all permutations formed by products of the g;°

2.1 Towers of Groups

L. Babai [3) seems to have been the first researcher to suggest
that computing the size of an unknown group might be facilitated by
first trapping that group in a tower. He used this technique on the
automorphism groups of vertex-colored graphs of bounded color
multiplicity and the automorphism groups of graphs with bounded
eigenvalue multipicity. By trapping such groups in polynomially
accessible towers he was able to calculate their size in polynomial
time using coin tossing algorithms. Our first result is a polynomial

time deterministic algorithm for this problem,

Iheorem 1.1: Let G = Go D see D cr £ I be a polynomially accessible

tover of groups. Coset representatives for Gi/ci+l' i=0seeser=1, can be
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determined in polynomial time.

Proof : Let max 'Gi/Gi+1| = ko We will construct a table with r rows,
i
numbered 0 to r-1, and k columns whose ith row is a set of right coset
representatives for Gi/ci+1° The group G can be expressed as
G = Go = (GOIGI)GI‘
ors G = (65/6,)(6;/6y)eee(G,_,/6) .
Therefore, any element g in G can be written in the form

;;. 8 = aja;*eea _;, vhere a; is an element of G;/G,,.

The table should have the following property: g is in G if and only

if g can be expressed as aga)ccca vhere a; is a member of the ith

row. A permutation g is in ganonical form when it is written this way.

We start with a table whose rows contain only the identity element.
The procedure sift(x), defined below modifies the table so that the

element x from G can be written in canonical form,

‘:i sift(x):
! i«0 -1
. while (i # r-1 and there is a y in row i such that y "x is in Gi+1)
do
ieie+]
i-% x * y-lx

od

if x is not the identity then insert x in row i

As an example of how sift works, suppose the table for the tower

Go > G1 > Gz > G3 = 1 at some point looks like Figure 2.1,
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(cos) I | G || G + | | 6
(G=) L 16, + | 6, + | | 6,
(G,=) ! G, + | 16y + | | G4.

Figure 2.1 State of table after sift(a).

Consider sift(b) for some b in Go but not in Gl’ 1f n-lb is in Gl'

snd a-l

b is not in Gz. then after the call sift(b) the table would look
like Figure 2.2, at which point b = c(n-lb) is expressible in canonical

form.

Figure 2.2 State of table after sift(d).

1f ve had time to sift every element of G, then we would be sure

that every element of C could be expressed in canonical form.

At this point ve make a key observation: sll of the coset
representatives have been found if end only if
(1) Each generator can be written in canonical form,
and (2) Each product of a pair of representatives in the table can

be written in canonical form.

Since the only elements ever sifted into the table are from G we
need only verify that when (1) and (2) are satisfied any g in G can de

written in the canonical form. Let g be an element of G, Write g as a

B e L
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product of generators and write each generator in canonical form. If

this product is not in canonical form, we use (2) to rewrite it.

By using (2) we can take an adjacent pair of representatives x,y in
the string representing g and, if x comes from a higher numbered row

4 than y, rewrite xy in canonical form. This has the effect of moving an
E

element from & lower numbered row past an element of a higher numbered 1
’! row to the left in the string. Moving all the row 0 representatives to

the left, then all the row 1 representatives, anﬁ 80 on, we can put the 1
string in canonical form. It is important to note here that writing xy
in canonical form does not require the introduction of any elements from

rowvs numbered less than the one y comes from.

The wvhole algorithm can be described as
Step 1. Sift all the gemerators.

Step 2. Sift the product xy for every pair x,y in the table. £

The timing analysis is straightforward. The number of coset
representatives in the table is at most m, some polynomial in n. The

number of calls to sift is at most nz and each call to sift takes

roughly k(r-1)p(n) time, where p(n) is a polynomial that bounds the
amount of time to test membership in any Gi' Therefore, the running

time is polynomial in n.

0

An immediate corollary is an algorithm much like the ome proposed

by C. Sims [12].
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Corollary 1.2: Let G be a group of permutations generated by BysesesBye

Let G, be the subgroup of G that fixes l,+.4,is Then coset
representatives for Gi/Gi+1 can be determined in polynamial time,
Furthermore, this gives a polynomial~time decision procedure for testing

membership in G and for determining the order of G.

Proof : Use the algorithm described in the previous theorem to compute
the coset representatives. The only modification is that to test

vhether x and y are inequivalent members of Gi/Gi+1 just check that they

map i+l to different places.

Once the coset representatives have all been found, testing
membership is not hard. To determine if x is an element of G, run the
procedure sift with argument x., If X can be written in canomnical form,
then x has been written as a product of generators. If x cannot be

written in cannonical form, thenm x is not im G.
The order of G is the product of the sizes of Gi/Gi+1'

0

3. Computing the Intexrsection of Iwo Groups

Consider the problem of computing the automorphism group of a graph
G. Suppose it were possible to partition the edges of G into two
classes, A and B, in such a way that every automorphism of G fixed,
setwise, these classes, Let xA and XB be the automorphism groups that

preserve the A edges and the B edges of G respectively. The

permutations in the intersection of XA and XB are exactly the




automorphisms of G.

If we had a fast algorithm for computing the intersection of two
groups, then we could compute the automorphism group of G inductively.
At present we do not know how to take the intersection of an arbitrary
pair of groups in polynomial time. Using the following theorem, .3
however, we can get the intersection of two groups under special

circumstances.

Iheorem 3.1: Let G and H be any two polynomial-time recognizable groups. ]
Let S be a group for which generators are known. If S contains both G !
and H, and there are two polynomially accessible towers, one from §

through G to I, and the other from § through H to I, then generators for

GnH can be found in polynomial time.

m_ai:Lets=Ho:---:BI=H=H"1=~--=HB_1=I. and

S = Go D eee D Gp =G> Gp+1 D eee > Gq_l = I be the two towers.
Construct an s x q table whose i,jth entry is the group GinHj. Each
entry is a recognizable group since it is the intersection of

recognizable groups,

Both IHj/Hj+1l and Ici/Gi+1| are bounded by some polynomial p(mn).

Consider the two groups Ginu. and G.nH Let a and b be distinct

3 i i+’
coset representatives of X = (Gi"“j)/(ci"“j+1)' The elements a and b
are both from the group Hj. Furthermore, if a-lb were an element of
Bj+l’ it would also be an element of Ginﬂj+1' Since a and b are from
different cosets of X it follows that a-lb is not in Hj+1' Therefore, a

and b are distinct coset representatives of Hj/Hj+1' Hence
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I(Ginﬂj)/(GinHj+1)| is less than or equal to 'Hj/uj+ll < p(n).

Similarly, I(Ginuj)/<ci+1nﬂj)l £ p(n).

Let P be any path in the table beginning at S, moving only one row
down or one column across at a time, passing through GnH, and ending at
I. This path P describes a polynomially accessible tower of groups from

S through GnH to I.

For example, the tower
SQHIDHZQ -c.DHbGlnHD |003Gan: GnH:GwlnHD eee D I can

be used to get generators for GnH in polynomial time.

0

4. The Sylow Iheorems, 2-Groups, and Imprimitivity

The automorphism group of a trivalent graph with one edge fixed is
a 2~group, i.e. it has order Zk for some k. Groups of order pk. wvhere p
is a prime, have special structure which we will exploit later. Im this
section we state some of the standard theorems. For more detail we

refer the reader to [8].

Theoxem (Sylow): If G is a group and ok is the largest power of two
dividing [G| then G contains a subgroup of order Zk. Such a subgroup is

called a 2 Sylow subgroup (255G).

Theorem (Sylow): All 255G's of a group G are isomorphic.

N
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Theorem (Sylow): Let S be a subgroup of Go If S is a 2-group then § is

contained in a 2SSG of G.

The 2SSG's of Sn have the following characterization in terms of

the automorphism group of binary trees.

Theorem 4.1: Let S be any 2 Sylow subgroup of Sn. where n is a power of
2. The group S can be viewed as the action, on the leaves, of the
automorphism group of a complete binary tree whose leaves are the

vertices l,+..sn in some order.

Proof : Draw the graph of a complete binary tree whose leaves sare the
vertices ls..e.sn in some order. Label the internal nodes of the tree by
the permutation of the leaves obtained when the node's children are
interchanged. Let the group of the tree be the group generated by these
permutations. Since all 255G's of S, are isomorphic, and the group of
the tree is a subgroup of Sn’ all we need show is that the order of this

group is the largest power of two dividing (al).

The group of the tree has order 2 to the power of the number of
internal nodes, i.e. Zn-l. The factors of n! divisible by 2 are
1 X2, 2% 2,40ee({n/2) x 2. Thus the highest power of two dividing n!
is (n/2) + r where r is the largest power of two dividing (n/2)!. By
induction, k = (n-1) is the largest number such that 2% divides (n!) for
n a pover of 2. From this we conclude that every 255G of Sn can be

viewed as the automorphism group of a binary tree whose leaves are

{lseeeon} in some order.
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If n is not a power of two, & 28SG of Sn can be shown to be the

group induced by automorphisms of a forest of full binary trees.

Example : Any 255G of S, is isomorphic to the group induced by the

automorphisms of the trees in Figure 4.1.

\«/\/ Y

Figure 4.1 A 2SSG of S6.

4.1 Imprimitive Groups

Let G be a permutation group on {lse..on}. Suppose {le.ec.on} can
be partitioned into disjoint sets Sl.....Sm such that every permutation
in G either maps all the elements of Si onto Si or onto the elements of
another Sj. 1f sl""'sm can be chosen in a non-trivial way, i.e. not
just one universal set or n singleton sets, then G is called
imprimitive, and the sets S; are called domains or sets of

. riviry.

Every 285G of S has n/2 sets of imprimitivity of size 2, n/4 of
size 4, etc. These correspond to leaves of subtrees of height 1,2,.44s

respectively, Since every 2-group of permutations is contained in a

285G of Sn. each is imprimitive,
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4.2 Computing with 2-groups

Let G be some 2-group. In this section we show how to find
Syl1(G), a 2SSG of Sn containing G, in polynomial time. We then show how
to determine a polynomially accessible tower from Syl(G) through G to I.
Using this result and the intersection theorem, it will be possible to
calculate the intersection of any two 2-groups that are subgroups of a

single 2SSG.

Theoxem 4.2: Let G = <gyoeacsgy> be a 2-group acting on {leees.en}.
Sy1(G), a 2 Sylow subgroup of S, containing G, can be found in

polynomial time.

Proof : Since G is a 2-group and is therefore contained in some 2SSG of
S, G must be imprimitive and have domains of imprimitivity containmed in
those of the 255G. Im particular, G must have n/2 domains of

imprimitivity of size 2, corresponding to the leaves of subtrees of

height 1 in the tree representation of the 2SSG.

Such a collection of sets can be located quickly. First find a
pair (io.jo) vhose orbit under G contains only disjoint pairs. To find
the orbit of a pair, use a trangitive closure algorithm on the action of
the generators. The collection of pairs in the orbit of (io.jo) form
domains of imprimitivity of size 2 for G. Since the group G acts as a
2-group on the vertices not in this orbit, this algorithm can be applied

repeatedly until all the vertices are paired up into domains of

imprimitivity of size 2,




Since G is a 2-group, the action of G on this collection of pairs
must also be a 2 group, say Gl. A cycle x of non-power-of-two length in

G1 would imply the existence of a non-power-of-two lenmgth cycle in G.

By determining a collection of sets of imprimitivity of size two in
G, we also determine domains of imprimitivity of size 4 in G.
Continuing recursively, we can obtain partitions of {l,...,n} into sets
of imprimitivity of sizes 2.4.8.....2n-1 with respect to G. In turnm,
these domains of imprimitivity specify a unique 255G with the same
domains. This 25SG, call it Syl(G), contains all permutations on
{15050} that respect its domains of imprimitivity. Since every
permutation of G respects its domains of imp;imitivity. G is contained

in Syl(G) .

Having obtained Syl(G), a 255G of §_ containing Ge we now want to
determine a polynomially accessible tower from Syl(G) through G to I.
The top portion of the tower, Syl(G) = H > H._, 2 e+ 2 H 3G will be
defined by letting Hi = <G.al.....ai>. where the a, are elements of

Syl1(G). These a; must be chosen with some care so that lﬂi+1/Hil is

bounded by a polynomial, and H, = Syl(G).

Let S be any 2-group. It can be shown [8] that there is a tower of
groups S = S > S ) > +es 3 S5 = I in which |5;/8;_,| = 2. For the
special case in which § = Syl(G) is a 2856 of S , it is possible to find

4 sequence ajsecerd, such that si can be taken to be <B1eeacced >
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Lemma 4.3: Let S be a 2 Sylow subgroup of S0 0 = Zk. In polynomial
time it is possible to determine a sequence of elements 81500008 of §

4
such that

2 _
(1) (‘i) =1,
(11) a; commutes with every element of S/<‘1"""i-1>'

and (II1) S = <8jseeara >

Broof : The proof is by induction on the height of the binary tree
representing S. When n is 2, the height of S is 1 and S is the tree in

Figure 4.2, where a is the permutation (1 2). For this tree the

N

Figure 4.2 The 28SG of sz.

sequence would be a = a.

Suppose S is of height k and it is known how to determine such a
sequence for any tree of height k-1. The tree representing S can be

viewed as having a root with two subtrees of height k-1 attached, Figure

4.3,




Figure 4.3 The 2SSG S.

By the induction hypothesis, we find a sequence 81occccd, for the
left subtree, L. The right subtree, R, is isomorphic to L using the map
m:L + R in which m(y) = xyx. Therefore, we can take the sequence

bl""'br' with bi = xa;x, to be a sequence for R,

The claim is that the sequence ‘lbl' 8, ‘252' ‘2""":br' a., x

satisfies (I), (I1), and (III) for S.

Since . and bi operate on disjoint sets of vertices, ‘ibj = bjli-
for any i and j. It follows that each member of this sequence satisfies
condition (I). We must demonstrate two things to prove that condition
(I1) is satisfied.

(1) The element a;b; commutes with each of the generators

‘i..i"lbi+l'.'..x Of sl<.1b1.....‘i'1> H

Since a; and b; commute, and 8) = 8y = e = g, = bl & eee = bi-l =1

in S/<alb1.....a-_1>. it follows that'aibi commutes with each generator,

except perhaps x. By algebra,




uibi L] x‘i(x.ix)

= (xaix)uix
2 bi‘i‘

= libix-

Therefore, a.b. commutes vith every elememt of s/<¢1b1.....ai_1>.

(2) The element s, commutes with each of the generators

b 1....-lrbr.x of s,“lbIQOOQQIibi> H

Bie1°ie

It is certainly the case that a; commutes with all the generators

vith the possible exception of x, Thus all we need to shov is that

&;x = xa., By algebrs,

a.x = a.(s.d. )x, since a.b. =1
i iii ii
s bix
= :.i.
This shows that a; commutes wvith every element of

s,<.1bl...‘..ibi>.

Clesrly condition (I1I) is satisfied. Therefore, the sequence

DUT 8)seccsa b o x satisfies (1),(11), and (I11),
a

In the event that n is not a power of two, Syl(G) is represented by
s forest of full binary trees., The direct product of the automorphism

groups of these trees is Syl(G). Therefore, a sequence for 8yl(G) is
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the concatenation of sequences, one for each of the trees.

Iheorem 4.4: Let G = €g)seees8,> be & subgroup of & 255G S of Spe  Let

808 000000, be a sequence satisfying conditions (I), (II), and (III) of

b o ol e -

Lema 4.3. The groups G B € eoec B = §, vhere
ni =z <G, 310 8200000 8,2 form a recognizable tower. Furthermore, the

index of Hi in H . is no larger than 2,

Rraof : Each of the groups is recogmizable since generators for it are
L § available. If we show that 341 normalizes ui ve will be done since

this would imply that B, ®quals either H., or (l!i + 'i*lni)°

% Consider the homomorphism fi from 8 into ; = s/<:1.....ai>. Let i;

be the image of H, in 8 under f;+ The element 8,4] commutes with every

¢ element of S so 841 normalizes Hi in 8, Since ni contains the kernel,

A USLETRYY FE of fi' the normalizer of Ri in S contains the preimage,

Sttt A i

under fi' of the normalizer of E; in E. Therefore, 841 is in the

normalizer of Hi.

Lo e 7

D

Since G is a group of permutations, there is a tower of
recognizable groups G > G) 3 +¢ 3 I vhere G is the subgroup of G that
fixes vertices l,..ssis. From this we get the following important

corollary.

Lorollaxy 4.5: 1f G is a 2-group with generators ByrecesBys 8
polynomially accessible tower from Syl(G) through G to I can be located

in polynomisl time,

« Mo,
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The major theorem of this section says that given two 2-groups
vhich are subgroups of & common 25SG, gemerators for their intersection

can be found in polynomial time,

Iheorem 4.6: Let G = <gpececsgy>s H = <hysecash > be two 2 groups, and
let S, a 255G containing them, be given. Generators for GCnH can be

determined in polynomial time.

Rroof : Use Corollary 4.5 to comstruct two polynomially accessible

tovers, one from S through ¢ to I, the other from S through H to 1. Use

Theorem 3.1 to calculate the generators for GnH,

0

5. Cone Graphs and Hoffmann's Algorithm

Defipition: A cone graph on the vertices l,...on is the graph of a
complete binary tree vith leaves l,...,n, together with a hypergraph on
lseeens If G and H are cone graphs of the same size, their union G + H
is called a double cope graph. The vertices of come graphs and double
cone graphs can be partitioned into classes called levels corresponding
to distance from the leaves. The leaves are at level 0 and the roots

are at level logn. Figure 5.1 is sn example of a cone graph.
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Figure 5.1 A cone graph with 4 hyperedges

We prove the following lemma in a fashion similar to the one used
by C. Hoffmann in [9). Using this lemma we will be able to compute the
automorphism group of a cone graph in deterministic time 0(n°1°gn). an

improvement over Hoffmann's probabilistic result,

Lemma 5.1: Let G + H be a double cone graph whose hyperedges are no more
than k-ary for some fixed constant k. The sutomorphism group of G + K

mapping roots onto roots can be determined in time o(n°1°‘“).

2rogf : Let z be any 1-1 map from the vertices of G to the vertices of H
that preserves tree edges. For each i, define the group Ui(G) (Ui(ﬂ))
to be the automorphism group of the cone graph G (H) that preserves tree
edges and fixes vertices at levels i and above. Let Ui(G.H.z) be the
group Ui(G) x ui(n) % <g>, An element (g,h,s) in ui(c.n.s) is the
permutation ghs on G + H, We definme Ai(c.u.:) to be the subgroup of

uitc.n.:) that preserves the hyperedges of G + M.

The sutomorphism group of G + E is thus (GsH,2). In order to

Alo;n

get generators for this group ve obtain generators for the groups

A(GoBos)/A,_, (Golloz). Since A (G,Hiz) > A, ) (GsHs2) the union of the

generators for the quotient groups generate Alo‘n(c.u.;).




By a classical isomorphism theorem [6],

Ai(G.H.z)/Ai-l(G.H.z) = Ai(G.H.z)Ui_l(G.H.z)/Ui_l(G.H.z). Each of these
groups describes the action of Ai on the level i-l vertices. It is the
latter group that we trap in the tower

Ui/U > Wl D eee D “t = Ai(G.B.Z)Ui_I/Ui-l b= vl D eee D Vr = I, where

i-1

U; stands for Ui(c.ﬂ.z). The groups Vj are just subgroups of W, fixing
successively more vertices. The Wj are a little harder to describe. To

define them we have to construct a sequence of graphs.

Let xo be the binary trees of G + H without any of the hyperedges.
The first group in the tower, Ui(G.n.z)/Ui_l(G.H.z). describes the
action of the sutomorphism group of xo on level i-1 vertices. Each
element of this group cen be represented by a 0-1 assigoment to level i
vertices together with a 0 or a 1 indicating whether the trees G and H
should be interchanged according to z. A ]l assigned to a level i vertex

means interchange his sons, a 0 means leave them alone.

Pick a vertex v from among the level i vertices in G. Let x1 be Xy
plus all of the unary hyperedges on leaves of the subtrees rooted at v
in G and z(v) in H., Let X, be X plus the unary edges from the subtrees
rooted at v and z(w) for some other level i vertex w in G. Continue in

this fashion uatil the graphs X, © ccc € X 4 vhere m; is the number of
i

level i vertices in G, have been defined.

After processing the unary hyperedges, process the binary edges,
then the ternary edges, etc. until all of the hyperedges of G + H have

been incorporated into a graph, X This yields a sequence of graphs

t.

Xy € X &€ ¢ee € X, = G+ H, Each xj is the union of two cone graphs ve
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can call Gj and Bj. The groups Wl S eee > W, can now be described as

wj = Ai(cj.uj.z)Ui_l(G.H.z)/ui_l(c.u.z)0

We do not know whether the tower
Ujpg/U; @ Wy 2 cee 2 W,y 94,10 /U, 2 V) 2 ¢ee 2V, =1 is polynomially
accessible., We can show that the index of each group in the next is
bounded by a polynomial in n, but we don't know whether the wj are

recognizable in polynomial time.

Hof fmann used Babai's coin tossing algorithm to recognize wj in
time 0(n€'). Using our improvement to Babai's algorithm we can recognize

elements of Wj in deterministic time 0(n®). It is because of this step

that the algorithm computing Alogn runs in time 0(n°1°g°).

j together with d-ary hyperedges between the

leaves of subtrees rooted at some vertices 81secesty and z(al).....z(ad)

The graph xj+1 is X

on level i, Adding these constraints to the automorphism group of xj

can at most restrict the allowable 0-1 assigmments to 2d level i+l

2d

vertices. Therefore, the size of wj/wj+1 is at most 2x2°", which is

less than the constant 22k*1.

Now we turn to the problem of determining whether two elements x
snd y of “j-l are in the same coset of wj-lle' This is the case if and
only if f = x-ly is in Ai(Gj.nj.z)Ui_l(G.H.z). The permutation f is in
the prodict of these groups if and only if there is a u in Ui_l(G.H.z)

such that uf is an automorphism in Ai(cj'nj")‘

The graph f(Gj + ﬂj) consists of two cones, f(Gj) and f(uj). For u

in ui_l(c.n.:). uf is in Ai(cj.ﬂj.l) if and only if the graph

. 4
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J J
isomorphism can work and they correspond to the following two cases.

uf(Gj) + nf(ﬂj) is isomorphic to G. + H.. There are only two ways this

Case 1: uf(Gj) is isomorphic to Gj and uf(Hj) is isomorphic to Hj.
Such a u exists if and only if there is a uj in Ai_l(Gj.f(Gj).f)
that maps Gj onto f(Gj) and a uy in Ai_l(ﬂj.f(ﬂj).f) that maps Hj
onto f(uj)o

Case 2: uf(Gj) is isomorphic to H; and uf(Hj) is isomorphic to G..

J J
Such a u exists if and only if there is a ug in Ai_l(Gj.f(Hj).fz)

.

that maps G. onto f(Hj) and a uy in Ai_l(ﬂj.f(cj).fz) that maps Hj .;

J

dalitini

onto f(Gj).

In either case, testing for the existence of a u in Ui_l(G.H.z)

requires the construction of two Ai_l's. To comstruct Ai’ order nd. for

J

some constant d, tests of memebership in W. must be carried out. Thus, ;
if T(i) is the time to construct A T(i) < AndT(i-l) < 0(n

ci) ;
*

Therefore, constructing Alogn(c.n.z) by this method takes time

0(n°1°gn). for some constant c. ..

To compute generators for the automorphism group of a single comne
graph G whose hyperdeges are at most k-ary, for some constant k, we use

the following theorem.

Iheorem 5.2: Let G be a cone graph whose hyperedges are at most k-ary.

The automorphism group AG of G mapping the root onto itself can be

clogn)'

determined in time O(n




clogn)

Proof : Find A, the automorphism group of G + G, in time O(m
Construct the polynomially accessible tower A > AG DA D e An = I,
in which the Ay fix successively more vertices., Using this tower obtain

generators for AG‘

6. An O(n®'°%®) Trivalent Graph Isomorphism Algorithm.

Having established all the group theoretic tools and algorithms of
the previous sections we can at last describe how to determine
generators for the automorphism group of a trivalent graph G with one
edge, e = (a,b), fixeds The next theorem tells us that this suffices to

solve the isomorphism problem,

Iheorem 6.1: Trivalent graph isomorphism testing is polynomial-time
reducible to computing the automorphism group of a trivalent graph with

one edge fixed.

Proof : Let G and H be two connected trivalent graphs. Pick any edge e
in G and add a new vertex v to G on this edge. Pick any edge e' in H
and add a new vertex v' to H on this edge. Call these two graphs G' and
H' respectively. Construct a new graph X that is G' + H' together with
a new edge between v and v', Compute the auﬁoworphism group of X that
fixes (vov'). If there is a generator that interchanges G' and H' then
G and B are isomorphic., By trying this for every possible choice of

edge e' in H we can determine if G and H are isomorphic.

o

i s L
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6.1 The Algorithm

Take the vertices of G and label them according to their distance
from the edge e. Let the group A; be the automorphisms of Gi’ the
subgraph consisting of vertices and edges out to distance i from e. The
graph Go is just the single edge (a,b), and Ay is the group of order two
consisting of the identity and the permutation that interchanges a and

b.
It is our intention to compute A;,y from Aj.

Ai is a 2 group, Let Zi be its action on the level i vertices,
also a 2 group. Construct Syl(Ai). a 285G, of the symmetric group omn

level i vertices that contains Ai'

Form a cone graph from the tree representation of Syl(zg) by
taking each vertex of level i+l and creating a hyperedge out of the set
of level i vertices it is adjacent to. Using the modified version of
Hotfmann's algorithm, calculate Hi' the automorphism group of this cone

graph. Let Hi be Hi restricted to the level i vertices.

The group E;nZ; consists of just those permutations of level i
vertices that can be extended to automorphisms of Gi+1' Generators for
E;n;; can be determined in polynomial time since both groups lie under
Syl(;;). The automorphism group Ay will be constructed by extending

X = HinAi to act on Gi*l'

To get at Ai+1 we first construct B.» the subgroup of A whose

restriction to level i vertices is in X. To test whether an element y

is in B;s we can restrict y to operate on the level i vertices and test




if the restriction is in X. Therefore, B; is polynomial-time

recognizable,

When X was constructed, a polynomially accessible tower from Zi
through X to I could have been found. Let
LY Dj > eee 3D, = X D eee D I be this tower. Define R; to be the

J
subgroup of Ai which, when restricted to level i vertices, is in D.,

The group Bi can be trapped in the polynomially accessible tower
A 2 Ry @ ***+ >R =B, > C; @ ¢*e > I, in which the Cj are just groups
fixing successively more vertices., From this tower, gemerators
bl""’bt for B; can be found in polynomial .time. Baving these

generators, Bi can be extended to Ayre

Let Fi+1 be the subgroup of Ai+1 in which level i vertices and

below are fixed. Find generators for F by direct examinatiop of the

i+l
graph Gi+1' For each bj. consider its action on level i vertices and
pick any extemsion bj that includes level i+l vertices and is an

automorphism of G,

j41 Generators for Ai+1 are the bj together with

generators for Fie1®

6.2 Timing Analysis

The only step that takes more than a polynomial amount of time is
determining the automorphism group of a cone graph. The number of times
this step is performed corresponds to the number of levels in the graph,

which is at most n. Therefore, the whole algorithm runs in time

nclogn).

o(
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