EFFECT OF THE CHAIN ALIGNMENT ON THE BRILLOUIN SCATTERING SPECT (ETC(U))

D B CAVANAUGH, C H WANG

UNCLASSIFIED TR-3
A detailed Brillouin scattering study of hydrostatically extruded polypropylene at room temperature is carried out. The spectra obtained in various scattering configurations are used to determine the hypersonic velocity and elastic constants of the uniaxially deformed polycrystalline polymer. As polypropylene is extruded, C_{33} increases rapidly with increasing extrusion, whereas C_{11} decreases slightly. This result reflects the...
creasing alignment of the polymer chain segment along the direction of extrusion. The elastic constant C_{13} decreases slightly, but C_{44} does not undergo significant change as the sample is extruded, thus indicating that the shear modulus is insensitive to the orientation of chain segments in polycrystalline polypropylene. Comparison of the Brillouin scattering results with the ultrasonic values indicate that considerable frequency dispersion in the elastic constants is present. Calculation of the orientation parameter using Moseley's theory does not yield correct results. The discrepancy indicates that Moseley's model should be used with care.
Effect of the Chain Alignment on the Brillouin Scattering Spectra of Hydrostatically Extruded Polypropylene

by

David B. Cavanagh & C. H. Wang

Department of Chemistry
University of Utah
Salt Lake City, Utah 84112

Prepared for Publication in Macromolecules

December 18, 1980

Reproduction in whole or in part is permitted for any purpose of the United States Government.

This document has been approved for public release; its distribution is unlimited.
EFFECT OF THE CHAIN ALIGNMENT ON THE BRILLOUIN SCATTERING SPECTRA OF HYDROSTATICALLY EXTRUDED POLYPROPYLENE

By

David B. Cavanaugh and C. H. Wang*
Department of Chemistry
University of Utah
Salt Lake City, Utah 84112

* To whom requests for reprints should be addressed.
A detailed Brillouin scattering study of hydrostatically extruded polypropylene at room temperature is carried out. The spectra obtained in various scattering configurations are used to determine the hypersonic velocity and elastic constants of the uniaxially deformed polycrystalline polymer. As polypropylene is extruded, C_{33} increases rapidly with increasing extrusion, whereas C_{11} decreases slightly. This result reflects the increasing alignment of the polymer chain segment along the direction of extrusion. The elastic constant C_{13} decreases slightly, but C_{44} does not undergo significant change as the sample is extruded, thus indicating that the shear modulus is insensitive to the orientation of chain segments in polycrystalline polypropylene. Comparison of the Brillouin scattering results with the ultrasonic values indicate that considerable frequency dispersion in the elastic constants is present. Calculation of the orientation parameter using Mosely's theory does not yield correct results. The discrepancy indicates that Mosely's model should be used with care.
INTRODUCTION

When a high polymer sample is uniaxially deformed by extrusion it exhibits anisotropic mechanical properties. It has been known for some time that the sound velocity along the draw direction increases progressively with increasing orientation, whereas the sound velocity transverse to the draw direction may decrease or remain unchanged. It is the purpose of this paper to investigate the effect of extrusion on the elastic constants in hydrostatically extruded polypropylene using the Brillouin scattering technique.

Brillouin scattering is very useful in characterizing both the equilibrium and dynamic state of polymeric materials. In Brillouin scattering, light is inelastically scattered from thermal phonons to produce side bands which are shifted from the incident frequency by an amount \(v \) given by:

\[
v = \pm \frac{V}{\lambda_0} \left(n_1^2 + n_s^2 - 2n_1n_s \cos \theta \right)^{1/2}
\]

(1)

where \(\theta \) is the scattering angle, \(\lambda_0 \) is the wavelength of the incident light in vacuo, \(V \) is the acoustic phonon velocity and \(n_1 \) and \(n_s \) are respectively, indices of refraction of the incident and scattering light waves.

Most previous Brillouin scattering studies of polymers deal with liquid or clear solid amorphous samples, due to the experimental difficulty associated with a very strong central elastic peak which covers up the
1,2 much weaker Brillouin side bands. As a result, Brillouin scattering has not been used extensively in the study of polycrystalline polymers. However, recent development of high-contrast interferometry has alleviated the experimental difficulty, and allows opaque samples to be studied.

In this paper, we report the Brillouin scattering study of hydrostatically extruded isotactic polypropylene using a five-pass Fabry-Perot interferometer system. We have examined the effect of extrusion on the elastic constants of polycrystalline polypropylene in various deformation states. The orientation function is obtained from the study. This study should compliment the results of polarized Raman scattering studies which we have reported previously.

EXPERIMENTAL

The extruded polypropylene samples are kindly provided by Dr. H. Kanetsuna. The technique of preparation has been described previously. An unextruded sample and samples with extrusion ratio (R_e) equal to 2.7, 3.0, 4.5 and 6.3, are used for the Brillouin scattering experiment. The extrusion ratio is defined as the ratio of the cross-sectional area of the original billet to that of final extrudate. In each sample, three faces parallel to the extrusion axis are cut at right angles. The faces are carefully polished with jewlers rouge to minimize surface imperfections which can give rise to polarization scrambling of the scattered light. The sample clarity changes from opaque in the unextruded virgin sample to translucent in the $R_e = 6.3$ extruded sample. A jig which is used to align the
polymer rods during cutting and polishing operations is subsequently used to hold the samples at fixed angles in the light scattering experiment.

The sample density is measured using a density gradient column. No detectable volume changes are observed in the unextruded and extruded samples. The density of all samples are found to be equal to 0.888 ± 0.003 gm/cm³. The index of refraction of the sample is measured from the angle of critical reflectance at the base of a prism. This method gives the index of refraction to be equal to 1.49 for all samples, and is not sensitive enough to detect optical birefringence and the slight change of the index of refraction in polypropylene due to extrusion. Thus, we shall assume that \(n_i \) and \(n_s \) in Eq. (1) are equal. As a result, the sound velocity will be accurate only to 3% due to the neglect of birefringence.

The Brillouin spectra are obtained using a Fabry-Perot interferometer operated in five passes. An argon ion laser equipped with an intracavity etalon tuned to a single frequency at about 4880 A is used for excitation. The free spectral ranges used are 33 and 40 GHz and the overall instrumental finesse is over 60.

The incident laser polarization is selected with or without the use of a half-wave plate which rotates the laser polarization by 90°. The polarization of the scattered light is analyzed with a Gran-Thomson prism polarizer. Both 90° and back scattering (±180°) scattering geometries are used to obtain the Brillouin spectra.
RESULTS AND DISCUSSION

We have obtained Brillouin spectra of hydrostatically extruded isotatic polypropylene in various scattering configurations. Representative Brillouin scattering spectra obtained for the sample with $R_e = 4.5$ using the back scattering geometry in the $x(zz)x$ configuration and using 90° geometry in the $x(yy)z$ configuration are shown in Fig. 1. The cylindrical axis is the axis of extrusion, which is taken to be the z-axis. x and y axes are perpendicular to z. Here the Porto notation is used to denote the scattering configuration. In the $x(zz)x$ only one peak is observed while two peaks are present in the $x(yy)z$ spectrum. No detectable difference in the scattering spectrum is observed by rotating the sample about the z-axis; thus, the hydrostatically extruded polypropylene exhibits isotropic mechanical properties across the transverse plane.

The intensity of the Brillouin spectrum obtained in the $m(ij)n$ scattering configuration is proportional to the square of $\delta\varepsilon_{ij}(q)$, the change of the dielectric tensor, $\varepsilon_{ij}(q)$. Here the scattering vector, q, is determined by the propagation direction of the incident and scattering light waves designed by the indicies m and n, respectively. Since the changes in the dielectric tensor are linearly related to the strain tensor, S_{kl}, according to the expression (given in the principal axis system)\(^7\)

$$\delta\varepsilon_{ij} = -n_i^2 n_j^2 \sum_{k,l} P_{ijkl} S_{kl}$$ \hspace{1cm} (2)

where P_{ijkl} are Pockel's photoelastic constants, both $\delta\varepsilon_{ij}$ and S_{kl} are
functions of q, but the q dependence is omitted in Eq. (2) for brevity in notation.

The $x(zz)y$ spectrum has only one peak and corresponds to scattering from a longitudinal acoustic phonon propagating in the xy plane. According to Eq. (2), the intensity of this peak is proportional to p_{1133}^2 (or P_{13}^2 in the Voigt notation; the subscripts 1 and 3 refer to both xx and zz as well as the x and z axes, respectively). The spectra obtained in the $x(zz)y$ configurations yields the same information as the $x(zz)y$ spectrum due to the transverse isotropy of the uniaxial system. Here the wavy lines above x and y refer to any direction perpendicular to z; \tilde{x} and \tilde{y} may not be perpendicular to each other.

The two peak spectrum present in the $x(yy)z$ configuration corresponds to scattering from mixed transverse and longitudinal acoustic phonons. The intensity of the spectrum is determined by p_{12} and p_{13}.

The intensity of the $x(yx)y$ spectrum is weak compared with the $x(zz)y$ spectrum, indicating that p_{66} is small compared with p_{13}. Scattering from $x(zx)z$ is associated with p_{44}. In Table I, we summarize the relation of the change in the dielectric tensor to the strain tensor in an uniaxial system.

The hypersonic velocities of longitudinal transverse acoustic phonons propagating in various direction are determined from the Brillouin frequency shifts using Eq. (1). The results are shown in Fig. 2 as a function of extrusion ratio. In Fig. 2, the letters L and T indicate longitudinal and transverse modes respectively. QL and QT are
By the elastic strain tensor related to the elastic displacement vector u by

$$T = \text{stress tensor in the absence of displacement stress}$$

where T_4 is the stress tensor.

$$T_4 = \frac{1}{E}$$

The elastic constant matrix relates the stress tensor to strain tensor by

$$\begin{pmatrix}
C_{66} & 0 & 0 & 0 & 0 & 0 \\
0 & C_{11} & 0 & 0 & 0 & 0 \\
0 & 0 & C_{11} & 0 & 0 & 0 \\
0 & 0 & 0 & C_{33} & C_{13} & C_{15} \\
0 & 0 & 0 & 0 & C_{11} & C_{12} \\
0 & 0 & 0 & 0 & 0 & C_{11}
\end{pmatrix} = T_4$$

Constant (stiffness) matrix.

The velocities of the longitudinal and transverse modes in a uniaxially oriented sample are completely determined by the elastic constants. The velocities of the various acoustic phonons propagating in a uniaxial crystal are determined by the constants E, v_0, and v_1. When the plane perpendicular to the extension axis decreases, when the plane perpendicular to the extension axis increases, and the extension velocity of the longitudinal and transverse phonon modes increases with increasing extension velocity. The modes that are longitudinal or transverse modes mixed modes, longitudinal, transverse, and transverse modes.

$$v = \frac{E}{\rho}$$
\[
\rho \frac{\partial^2}{\partial t^2} u_i = \sum_j \frac{\partial}{\partial x_j} T_{ij} \sum_{jkl} \frac{\partial}{\partial x_j} (C_{ijkl} \xi_k) \quad (5)
\]

where \(i = x, y, z \).

Equations (4) and (5), together with Table I and the transverse nature of the incident and scattered light waves complete the description of the Brillouin scattering spectra of a uniaxial system.

The sound velocity curves obtained from the \(z(xx)\bar{z} \) and \(x(zz)\bar{x} \) scattering configurations are used to determine the elastic constants \(C_{11} \) and \(C_{33} \) by using the expressions: \(V(x(zz)\bar{x}) = \frac{\sqrt{C_{11}/\rho}}{\rho} \) and \(V(z(xx)z) = \frac{\sqrt{C_{33}/\rho}}{\rho} \), respectively. Within the accuracy of the present experiment, the velocity obtained from the \(x(zz)y \) scattering configuration agrees with that from \(x(zz)\bar{x} \), indicating the consistency of the experimental result with the assumed cylindrical symmetry for the extruded polypropylene. However, a weak high frequency component also appears in the \(x(zz)y \) spectrum (see Fig. 3). The frequency of this component increases with extrusion ratio but its intensity depends on scattering angle (It disappears in the \(x(zz)\bar{x} \) spectrum, see Fig. 1). Since this component is not predicted by the cylindrical symmetry model, it is possible that the appearance of this peak is associated with the inherent structure of polycrystalline polypropylene. The presence of small concentration of voids may cause the effect; however, clarification of the nature of this weak component requires a further detailed study.

Elastic constant \(C_{44} \) is determined directly from the \(x(zx)y \) spectrum, as the velocity associated with the Brillouin peak is equal
Knowing C_{11}, C_{33} and C_{44}, we have determined C_{13} from the V_{QL} and V_{QT} obtained from the $x(y,y)z$ scattering spectrum, as shown in Fig. 2, with the help of the expressions (+ for QL and - for QT):

$$\rho V_{\parallel}^2 = \left(\frac{1}{2}(C_{11} + C_{33}) + C_{44}\right) \pm \sqrt{\left(\frac{1}{4}(C_{11} - C_{33})^2 + (C_{13} + C_{44})^2 \right)^2 + C_{44}(6)}$$

The results for the various elastic constants as a function of extrusion ratio are given in Fig. 4. The elastic constant C_{66} (or C_{12}) is not shown due to the fact that for cylindrical symmetry the acoustic wave associated with the elastic constant C_{66} (or C_{12}) is not active in Brillouin scattering.

One notes that at $R_e = 1$, C_{11} is equal to C_{13}. This result is consistent with the fact that unextruded samples have isotropic mechanical properties. One further notes that the elastic constant associated with the longitudinal wave (C_{11} and C_{33}) is higher than that associated with the transverse wave (C_{13} and C_{44}). This is easily understood from the fact that the intrachain covalent bond is stronger than the interchain van der Waals interaction, and the restoring forces for shear motion is much lower than that for compression. As the sample is extruded, C_{33} rises sharply, and C_{11} decreases gradually. The sharp rise of C_{33} and the accompanying gradual decrease of C_{11} reflects the increasing alignment of the chain segments along the symmetry axis as the sample is extruded. The elastic constants C_{13} decreases slightly, but C_{44} does not undergo significant change as the sample is extruded, thus suggesting that shear modulus is insensitive to the orientation of chain segments. C_{13} does not
display the sharp increase at $R_e = 3.5$ as reported in the ultrasonic study.

It is useful to compare the C_{11} and C_{33} values obtained using Brillouin scattering with the corresponding quantities obtained using the ultrasonic technique at 10 MHz. The ultrasonic measurements at 190K show that C_{11} (or C_{33}) for the unextruded sample is about equal to 5.8×10^{10} dyn cm$^{-2}$. This value is slightly smaller than the Brillouin scattering value ($= 6.2 \times 10^{10}$ dyn cm$^{-2}$) obtained at room temperature ($= 294K$). At $R_e = 6.4$, the ultrasonic value at 190K for C_{33} is 12.4×10^{10} dyn cm$^{-2}$ and for C_{11} is 3.5×10^{10} dyn cm$^{-2}$, in contrast to the room temperature Brillouin scattering values of 15.8×10^{10} dyn cm$^{-2}$ for C_{33} and 5.2×10^{10} dyn cm$^{-2}$ for C_{11}. Over the entire $R_e = 1 - 6.4$ range, the Brillouin scattering results for C_{11} and C_{33} at room temperature are consistently higher than the ultrasonic values at 190K. Since the glass transition temperature for polypropylene is about 250K, the amorphous phase at 190K is in the glass state and at 294K it is in the rubber state. Thus, because the restoring force decreases with increasing temperature, one expects that, in the absence of other mechanisms, the elastic constants at 190K should be greater than those at 294K, in contrast to the experimental results, mentioned above. The fact that the Brillouin scattering values at 294K are higher than the ultrasonic ones may suggest that the intercrystalline tie molecules show a larger restoring effect when the amorphous region is in the rubber state. However, the temperature dependent study reported in Ref. 8 shows that over the 190 to 270K range, the velocity of the
longitudinal acoustic wave propagating along the extrusion direction decreases slightly with increasing temperature. Thus, the greater elastic constants observed in Brillouin scattering is probably due to the presence of dispersion in the frequency range between 10 MHz and 10 GHz. Since Brillouin scattering monitors acoustic phonons at considerably higher frequency (about 3 orders of magnitude higher) than the ultrasonic ones, any dispersive mechanism, if present, will render Brillouin scattering elastic constants to be higher in value. Thus, it appears that in polypropylene, the dispersion effect causing the velocity increase outweigh the softening effect due to the temperature increase.

The rise of C_{33} with increasing extrusion as polypropylene is extruded from $R_e = 1$ to $R_e = 6.4$ is about a factor of 2.6 in Brillouin scattering, in contrast to a factor of 2.1 in the ultrasonic study. This result is consistent with that obtained previously, and indicates the reinforcing effect of the intercrystalline tie molecules in the amorphous region of polypropylene is more effective in the rubber state than in the glass state.

As mentioned above, the increase in C_{33} with increasing extrusion is related to the chain segment orientation. If the deformation occurs with no change in volume, as approximately is the case in polypropylene, the increase in C_{33} is closely related to the orientation parameter.

Since orientation of polymer chain segments can occur in both the crystalline and amorphous regions, deduction of the orientation function
in a polycrystalline sample using the sonic data presents some difficulty. Moreover, wide-angle x-ray data indicate that most crystalline orientation has occurred during deformation up to \(R_e = 5 \); it is clear that the rapid increase in \(C_{33} \) with increasing extrusion reflects both crystalline and amorphous orientations.

Moseley has related the sonic velocity of oriented polymers to Herman's orientation parameter \(\alpha \) by a simple expression,

\[
\alpha = \frac{1}{2} \left< 3 \cos^2 \theta - 1 \right> = 1 - \left(\frac{V_u}{V} \right)^2 = 1 - \frac{C_0^{33}}{C_{33}^{33}}
\]

where \(V_u \) is the longitudinal velocity of an unoriented sample and \(V \) is the corresponding velocity of sound propagating along the direction of orientation in an oriented sample. \(\theta \) is the angle between the polymer chain axis and the direction of sound propagation, which coincides with the direction of alignment. \(C_0^{33} \) is the elastic constant of the unoriented sample.

While Eq. (7) has been shown to be useful for obtaining the orientation parameter in the amorphous phase of poly(ethylene terephthalate) it is not expected to have a general applicability, due to drastic approximations introduced in devising Eq. (7). To test the validity of Eq. (7) in polypropylene, we have computed the quantity \(1 - \frac{C_0^{33}}{C_{33}^{33}} \), using the result given in Fig. 4. The calculated result is labelled as Brillouin in Fig. 5 together with the Herman orientation function obtained by Raman scattering for comparison.

The Herman orientation orientation was obtained from the Raman intensity measurements of the band at 1256 cm\(^{-1}\), assigned to be a \(\text{CH}_2 \)
twisting mode with A symmetry. Since the 1256 cm$^{-1}$ band arises from the mixture of crystalline and amorphous regions13, the Herman orientation parameter, labelled as Raman in Fig. 5, represents the combined crystalline and amorphous orientation. The Raman result is accurate and is in fact in agreement with the orientation parameter deduced from the birefringence data. The discrepancy between the Brillouin and Raman results, shown in Fig. 5, is believed to be due to the invalidity of Eq. (7) for polypropylene.

Since the Herman orientation parameter is the average of the local orientation function of polymer chain segments, whereas the sound velocity (or the elastic constant) is a collective property, unless the pair orientation correlation effect is negligible, Eq. (7) is expected to become inadequate for approximating the Herman orientation parameter. In fact, following Born and Huang, it can be shown that the crystalline part of the elastic constant C_{33}^c is given by

$$C_{33}^c = \rho \sum_{k,k'} \left(\frac{1}{m_k m_{k'}} \right)^{1/2} \left\langle \phi_{zz}^{kk'}(n,l) \left[z_k^{(n,l)} - z_l^{(n,l)} \right]^2 \right\rangle,$$

where $\phi_{zz}^{kk'}(n,l) = \frac{1}{2} \left\langle \frac{\partial^2 \phi}{\partial z_{k}^{(n,l)} \partial z_{k'}^{(n,l)}} \right\rangle$, ϕ being the intermolecular potential of the crystal. m_k is the mass of the k^{th} segment in the n^{th} unit cell. ρ is the number density of segments in a unit cell, and the angular brackets represent the ensemble average. $z_k^{(n,l)}$ is the projection of the segment k in the n^{th} unit cell along the orientation axis. If we represent the orientation angle of the segment with respect to the orientation axis by θ_{nk} and write $z_k^{(n)} = r_{nk} \cos \theta_{nk}$, then Eq. (7) becomes
In Eq. (9) the first two terms represent the single particle orientation functions and the second term represents the pair angular correlation. If the orientation and segment length are statistically independent, we can average the segment length $r_{n,k}$ and orientation angle separately and Equation (9) reduces to

$$C_{33}^C = \rho \left\{ \Delta \left< \cos^2 \theta \right> - \Delta' \left< \cos \theta_1 \cos \theta_2 \right> \right\}$$

(10)

where Δ and Δ' result from the average over the segment lengths. θ, θ_1, and θ_2 represent the orientation angles with respect to the orientation axis. θ_1 and θ_2 are the orientation angles of the two segments which are correlated orientationally. If Δ' is positive, the pair correlation term will decrease C_{33}^C. Clearly, the second term on the right hand side of Eq. (10) is expected to make a contribution to the elastic constants on polycrystalline polypropylene; unfortunately, at present, there is no information about the magnitude of its contribution. The wide-angle x-ray diffraction study of polycrystalline polypropylene in different degrees of crystallinity is expected to provide data that can be used to evaluate the single particle and pair-correlation orientational functions.

In the above, we consider only the contribution due to the crystalline portion. To obtain the total elastic constant, the amorphous portion must
be added so that the effect of deformation on the elastic constants of a polycrystalline solid can be accounted for. However, the microscopic expression for the elastic constants for the amorphous material has not been developed. It is thus premature to accept Eq. (7) as a method for the determination of the orientation parameter for the deformed polycrystalline polymers. Further experimental studies using techniques such as ultrasonic or Brillouin scattering is expected to provide insight for the development of theory to better our understanding of mechanical properties of deformed polymers.

SUMMARY AND CONCLUSION

We have carried out a detailed Brillouin scattering study of hydrostatically extruded polypropylene at room temperature. The spectra obtained in various scattering configurations are used to determine the hypersonic velocities and elastic constants of the uniaxially deformed polycrystalline polymer. For the unextruded sample, the C_{11} and C_{33} are equal, but as the polymer is extruded, the value of C_{33} increases rapidly, accompanied by a mild decrease of C_{11}, thus reflecting the increasing alignment of the polymer chain segments along the direction of extrusion. The elastic constant C_{13} decreases slightly, but C_{44} does not undergo significant change as the sample is extruded, thereby suggesting that the shear modulus is insensitive to the orientation of chain segment in polypropylene.

Comparison of the Brillouin scattering results with the ultrasonic values indicates that considerable dispersion is present, which renders the elastic constants at the GHz frequency to be greater than the values
at 10 MHz. The Brillouin result also supports the earlier conclusion that extrusion has a greater effect on the elastic response of the intercrystalline tie molecules in the rubber state of polypropylene. Comparison of the orientation parameter determined by the hypersonic velocity obtained from Brillouin scattering with that obtained from Raman scattering and birefringence indicates the inadequacy of Moseley's model, which relates the sonic velocity with the orientation parameter. We have pointed out the importance of pair orientation correlation which is left out in Moseley's mode. Extensive experimental work together with theory is needed to develop a reliable model for the determination of the orientation parameter from the elastic constants for the deformed polycrystalline polymer.

Acknowledgement

We acknowledge the Office of Naval Research and the NSF Polymer Program, grant No. DMR79-12457 for providing financial support of this research. We also thank Dr. S. Satija for carrying out preliminary Brillouin scattering experiments on the highly extruded samples.
REFERENCES

4) K. Nakayama and H. Konetsuna, J. Mater. Sci. 10, 1105 (1975)
5) T. Williams, J. Mater. Sci., 8, 59 (1973)
12) R. J. Samuels, J. Polymer Sci. A3, 1741 (1965)

TABLE I

RELATION OF THE CHANGE IN THE DIELECTRIC TENSOR TO THE STRAIN TENSOR IN AN UNIAXIAL SYSTEM

\[
\begin{align*}
\delta\epsilon_{xx} &= -\varepsilon_1^2 (P_{11}\varepsilon_{xx} + P_{12}\varepsilon_{yy} + P_{13}\varepsilon_{zz}) \\
\delta\epsilon_{xy} &= -\varepsilon_1^2 \ P_{66} \varepsilon_{xy} \\
\delta\epsilon_{xz} &= -\varepsilon_1 \varepsilon_{11} \ P_{44} \varepsilon_{xz} \\
\delta\epsilon_{yy} &= -\varepsilon_1^2 (P_{12}\varepsilon_{xx} + P_{11}\varepsilon_{yy} + P_{13}\varepsilon_{zz}) \\
\delta\epsilon_{yz} &= -\varepsilon_1 \varepsilon_{11} \ P_{44} \varepsilon_{yz} \\
\delta\epsilon_{zz} &= -\varepsilon_1^2 (P_{13}\varepsilon_{xx} + P_{13}\varepsilon_{yy} + P_{33}\varepsilon_{zz})
\end{align*}
\]
FIGURE CAPTIONS

Fig. 1 Brillouin spectra of polypropylene obtained in the backscattering, x(zz)z, and 90° scattering x(yy)z configurations.

Fig. 2 The various hypersonic velocities obtained with different scattering configurations.

Fig. 3 Brillouin scattering spectra obtained in two x(zz)y configurations. Note the presence of extraneous components indicated by arrows.

Fig. 4 The various elastic constants of polypropylene determined by Brillouin scattering as a function of extrusion ratio.

Fig. 5 The orientation parameter for polypropylene as a function of extrusion ratio as deduced from Raman (ref. 3) and Brillouin scattering (this work). Note the difference at high extrusion ratio.
Fig. 1

Brillouin frequency (GHz)

$x(zz)\bar{x}$

$x(yy)z$
No. Copies	Office of Naval Research Attn: Code 472 800 North Quincy Street Arlington, Virginia 22217 2
No. Copies	U.S. Army Research Office Attn: CRD-AA-IP P.O. Box 1211 Research Triangle Park, N.C. 27709 1
No. Copies	Naval Ocean Systems Center Attn: Mr. Joe McCartney San Diego, California 92152 1
No. Copies	Naval Weapons Center Attn: Dr. A. B. Amster, Chemistry Division China Lake, California 93555 1
No. Copies	Naval Civil Engineering Laboratory Attn: Dr. R. W. Drisko Port Hueneme, California 93401 1
No. Copies	Department of Physics & Chemistry Naval Postgraduate School Monterey, California 93940 1
No. Copies	Dr. A. L. Slafkosky Scientific Advisor Commandant of the Marine Corps (Code RD-1) Washington, D.C. 20380 1
No. Copies	Office of Naval Research Attn: Dr. Richard S. Miller 800 N. Quincy Street Arlington, Virginia 22217 1
No. Copies	Naval Ship Research and Development Center Attn: Dr. G. Bosmajian, Applied Chemistry Division Annapolis, Maryland 21401 1
No. Copies	Naval Ocean Systems Center Attn: Dr. S. Yamamoto, Marine Sciences Division San Diego, California 91232 1
No. Copies	Mr. John Boyle Materials Branch Naval Ship Engineering Center Philadelphia, Pennsylvania 19112 1

TECHNICAL REPORT DISTRIBUTION LIST, GEN

Office of Naval Research
Attn: Code 472
800 North Quincy Street
Arlington, Virginia 22217

ONR Branch Office
Attn: Dr. George Sandoz
536 S. Clark Street
Chicago, Illinois 60605

ONR Area Office
Attn: Scientific Dept.
715 Broadway
New York, New York 10003

ONR Western Regional Office
1030 East Green Street
Pasadena, California 91106

ONR Eastern/Central Regional Office
Attn: Dr. L. H. Peebles
Building 114, Section D
666 Summer Street
Boston, Massachusetts 02210

Director, Naval Research Laboratory
Attn: Code 6100
Washington, D.C. 20390

The Assistant Secretary of the Navy (RE&S)
Department of the Navy
Room 4E736, Pentagon
Washington, D.C. 20350

Commander, Naval Air Systems Command
Attn: Code 310C (H. Rosenwasser)
Department of the Navy
Washington, D.C. 20360

Defense Technical Information Center
Building 5, Cameron Station
Alexandria, Virginia 22314

Dr. Fred Saalfeld
Chemistry Division, Code 6100
Naval Research Laboratory
Washington, D.C. 20375
<table>
<thead>
<tr>
<th>No.</th>
<th>Copies</th>
</tr>
</thead>
</table>
| Dr. Rudolph J. Marcus
Office of Naval Research
Scientific Liaison Group
American Embassy
APO San Francisco 96503 | 1 |
| Mr. James Kelley
DTNSRDC Code 2803
Annapolis, Maryland 21402 | 1 |
<table>
<thead>
<tr>
<th>No. Copies</th>
<th>No. Copies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dr. Stephen H. Carr</td>
<td>Picatinny Arsenal</td>
</tr>
<tr>
<td>Department of Materials Science</td>
<td>Attn: A. M. Anzalone, Building 3401</td>
</tr>
<tr>
<td>Northwestern University</td>
<td>SMUPA-FR-M-D</td>
</tr>
<tr>
<td>Evanston, Illinois 60201</td>
<td>Dover, New Jersey 07801</td>
</tr>
<tr>
<td>Dr. M. Broadhurst</td>
<td>1</td>
</tr>
<tr>
<td>Bulk Properties Section</td>
<td>Dr. J. K. Gillham</td>
</tr>
<tr>
<td>National Bureau of Standards</td>
<td>Department of Chemistry</td>
</tr>
<tr>
<td>U.S. Department of Commerce</td>
<td>Princeton University</td>
</tr>
<tr>
<td>Washington, D.C. 20234</td>
<td>Princeton, New Jersey 08540</td>
</tr>
<tr>
<td>Professor G. Whitesides</td>
<td>2</td>
</tr>
<tr>
<td>Department of Chemistry</td>
<td>Douglas Aircraft Co.</td>
</tr>
<tr>
<td>Massachusetts Institute of Technology</td>
<td>Attn: Technical Library</td>
</tr>
<tr>
<td>Cambridge, Massachusetts 02139</td>
<td>Cl 290/36-84</td>
</tr>
<tr>
<td>Professor J. Wang</td>
<td>AUTO-Sutton</td>
</tr>
<tr>
<td>Department of Chemistry</td>
<td>3855 Lakewood Boulevard</td>
</tr>
<tr>
<td>University of Utah</td>
<td>Long Beach, California 90846</td>
</tr>
<tr>
<td>Salt Lake City, Utah 84112</td>
<td></td>
</tr>
<tr>
<td>Dr. V. Stannett</td>
<td>Dr. E. Baer</td>
</tr>
<tr>
<td>Department of Chemical Engineering</td>
<td>Department of Macromolecular Science</td>
</tr>
<tr>
<td>North Carolina State University</td>
<td>Case Western Reserve University</td>
</tr>
<tr>
<td>Raleigh, North Carolina 27607</td>
<td>Cleveland, Ohio 44106</td>
</tr>
<tr>
<td>Dr. D. R. Uhlmann</td>
<td>Dr. K. D. Pae</td>
</tr>
<tr>
<td>Department of Metallurgy and Material Science</td>
<td>Department of Mechanics and Materials Science</td>
</tr>
<tr>
<td>Massachusetts Institute of Technology</td>
<td>Rutgers University</td>
</tr>
<tr>
<td>Cambridge, Massachusetts 02139</td>
<td>New Brunswick, New Jersey 08903</td>
</tr>
<tr>
<td>Naval Surface Weapons Center</td>
<td>1</td>
</tr>
<tr>
<td>Attn: Dr. J. M. Augl, Dr. B. Hartman</td>
<td>NASA-Lewis Research Center</td>
</tr>
<tr>
<td>White Oak</td>
<td>Attn: Dr. T. T. Serofini, MS-49-1</td>
</tr>
<tr>
<td>Silver Spring, Maryland 20910</td>
<td>21000 Brookpark Road</td>
</tr>
<tr>
<td>Cleveland, Ohio 44135</td>
<td>Cleveland, Ohio 44135</td>
</tr>
<tr>
<td>Dr. G. Goodman</td>
<td>Dr. Charles H. Sherman</td>
</tr>
<tr>
<td>Globe Union Incorporated</td>
<td>Code TD 121</td>
</tr>
<tr>
<td>5757 North Green Bay Avenue</td>
<td>Naval Underwater Systems Center</td>
</tr>
<tr>
<td>Milwaukee, Wisconsin 53201</td>
<td>New London, Connecticut</td>
</tr>
<tr>
<td>Professor Hatsuo Ishida</td>
<td>Dr. William Risen</td>
</tr>
<tr>
<td>Department of Macromolecular Science</td>
<td>Department of Chemistry</td>
</tr>
<tr>
<td>Case Western Reserve University</td>
<td>Brown University</td>
</tr>
<tr>
<td>Cleveland, Ohio 44106</td>
<td>Providence, Rhode Island 02192</td>
</tr>
<tr>
<td>Dr. Alan Gent</td>
<td>1</td>
</tr>
<tr>
<td>Department of Physics</td>
<td>University of Akron</td>
</tr>
<tr>
<td>University of Akron</td>
<td>Akron, Ohio 44304</td>
</tr>
<tr>
<td>No.</td>
<td>Copies</td>
</tr>
<tr>
<td>-----</td>
<td>--------</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>