The Nature of Intelligence

Robert J. Sternberg

Department of Psychology
Yale University
New Haven, Connecticut 06520

Technical Report No. 27
October, 1980

Approved for public release; distribution unlimited. Reproduction in whole or in part is permitted for any purpose of the United States Government.

This research was sponsored by the Personnel and Training Research Programs, Psychological Sciences Division, Office of Naval Research, under Contract No. N0001478C0025. Contract Authority Identification Number NR 150-412.
This article discusses the nature of intelligence, introducing a new distinction between macrocomponents and microcomponents of human intelligence. Macrocomponents are the global-level constellations of processes that are formed from concatenations of microcomponents, and include general, abstract, practical, crystallized, and fluid intelligence, as well as motivation. Microcomponents are fairly elementary operations such as inference and calculation of analogical relations. The article considers what the macro-...
ponents and microcomponents of intelligence are, and examines the extent to which IQ tests measure these components.
The Nature of Intelligence

Robert J. Sternberg
Yale University
The Nature of Intelligence

A storm of controversy has descended upon the once placid IQ-testing establishment. If we are to seek a nontrivial understanding of the relationship between natural intelligence on the one hand, and measured intelligence (IQ) on the other, there is one route to solution that will clearly not lead us to the heart of the problem, and that we must avoid at all costs. This is the route in which one defines away (rather than defines) intelligence as whatever it is that IQ tests measure.

Like other investigators in the field of intelligence, I have my own preferred bag of tricks for studying intelligent functioning. I believe my methods have worked rather well, and I will certainly share the major details of some of these methods with you. But I do not claim that they, and they alone, can tell us the true nature of intelligence. Instead, I am prepared to make an even more daring claim, namely, that most of the analytic methods for studying intelligence that have been used have told us a fair amount about the nature of intelligence, and that a careful examination of their findings reveals a common core of generalizations. The fact that this common core exists essentially independently of the method of analysis used convinces me that we need not turn in despair to operational definitions, because we can make some generalizations about the nature of intelligence that are not idiosyncratic to the methodological or theoretical preferences of any particular school of thought. Let us consider now what four of these schools of thought are, some findings that have emerged from them, and how these findings generalize across the various schools.

Definitions of Intelligence

One approach to understanding what intelligence is involves simply asking people to define it (in a nontrivial way). Usually, these people are experts. The most famous example of this approach in action can be found in "Intelligence..."
and its Measurement," a symposium in which the editors of the Journal of Educational Psychology asked experts in the field of intelligence to indicate what they conceive 'intelligence' to be." (1) Fourteen experts responded, and although the symposium was presented way back in 1921, one might speculate that similar kinds of responses would be obtained from experts today. The definitions included (a) the power of good responses from the point of view of truth or fact (E. L. Thorndike); (b) the ability to carry on abstract thinking (L. M. Terman); (c) having learned or ability to learn to adjust oneself to the environment (S. S. Colvin); (d) ability to adapt oneself adequately to relatively new situations in life (R. Pintner); (e) the capacity for knowledge and knowledge possessed (V. A. C. Henmon); (f) a biological mechanism by which the effects of a complexity of stimuli are brought together and given a somewhat unified effect in behavior (J. Peterson); (g) the capacity to inhibit an instinctive adjustment, the capacity to redefine the inhibited adjustment in the light of imaginally experienced trial and error, and the volitional capacity to realize the modified instinctive adjustment into overt behavior to the advantage of the individual as a social animal (L. L. Thurstone); (h) the capacity to acquire capacity (H. Woodrow); and (i) the capacity to learn or to profit by experience (W. F. Dearborn). The other experts did not answer the question directly.

Viewed narrowly, there seem to be as many definitions of intelligence as there were experts asked to define intelligence. Viewed broadly, however, at least three themes seem to run through many of these definitions. One theme is the ability to learn or profit from experience, and the knowledge actually acquired in this way; a second theme is real-world problem solving of the kind needed for adaptation to the vagaries of an uncertain and changing environment; and a third theme is abstract thinking or reasoning ability, such as that required in integrating information from a variety of diverse sources. There is also a hint in some of these definitions, particularly in that of Thurstone, and in the text of the symposium as a whole.
a motivational component in intelligence. In Thurstone's conceptualization, the intelligent organism is one with the volitional capacity to translate the products of the mind into actions that benefit the organism in its social milieu.

I noted above the possibility one might speculate that similar kinds of responses might be obtained from the experts of today. In fact, some colleagues and I at Yale conducted a survey by mail in which experts in the field of intelligence were asked to rate (on a 1 to 9 scale) either how important each of 158 behaviors is in defining their conception of an "ideally intelligent person," or how characteristic each of these behaviors is in the behavioral repertoire of such a person. (2) We used the statistical technique of factor analysis to identify the main constellations of behaviors that emerged from the responses of the 142 experts who replied. Factor analysis groups into constellations, or factors, ratings or scores that are highly related to (i.e., correlated with) each other, and separates ratings or scores that are only weakly related. Three such constellations emerged. The first, which we labeled "verbal intelligence," included general learning and comprehension abilities, as well as the knowledge gleaned from them. Examples of behaviors entering into this factor were "displays a good vocabulary," "reads with high comprehension," "is intellectually curious," "learns rapidly," "converses easily on a variety of subjects," and "reads widely." The second constellation, which we labeled "problem solving ability," included behaviors of the kind that might be viewed as involving abstract thinking or reasoning in the integration of information, for example, "able to apply knowledge to problems at hand," "poses problems in an optimal way," "solves problems well," "plans ahead," "gets to the heart of problems," "considers the end result of actions," and "approaches problems thoughtfully." The third constellation, which we labeled "practical intelligence," included real-world adaptive behaviors such as "sizes up situations well," "determines how to achieve goals," "displays awareness to the world around him or her,"
"displays interest in the world at large." Although I would not claim that these three factors coincide exactly with the three themes identified in a different way at a different time with different experts participating in the 1921 symposium, there is an apparent and I believe striking convergence in the abilities that were identified. The motivational component that seemed to run through some of the earlier responses also seems to run through some of the more recent ones, if anything, even more forcefully.

Even more striking, perhaps, than the convergence in views between the experts of yesterday and those of today is the convergence in views between the experts and laypeople of our own time. When the same survey that was given to the experts was given to a general sample of adults (nonstudents) in the New Haven area who answered a newspaper advertisement to participate in a psychology experiment, the correlations between the responses of the experts and the laypeople were almost as high as the reliabilities of the respective sets of responses would permit, both for the ratings of importance and for the ratings of characteristicness. Although the experts in our sample all had received doctoral degrees in psychology, were all employed at major colleges or universities, and had all published major research in the field of intelligence, their conceptions of intelligence differed hardly at all from the conceptions of the general adult population.

Factors of Intelligence

In the study of experts' and laypersons' conceptions of intelligence mentioned above, my colleagues and I factor analyzed people's ratings of behaviors that might be labelled "intelligent." A more conventional use of factor analysis, however, is in the analysis of the actual behaviors themselves. For example, an investigator might factor analyze patterns of correlations between scores on a large number of ability tests, looking for constellations of test scores that are highly related to each other, and hoping thereby to discover the
latent sources of individual differences that are hypothesized to generate observable differences in scores on the tests.

A number of different factorial theories of intelligence have been proposed, each based upon factor analyses of various kinds of mental-ability tests. Investigators usually propose or select among factorial theories on the bases of criteria such as psychological plausibility, parsimony, statistical goodness of fit, and the like.

The earliest factorial theory of the nature of intelligence was formulated by the inventor of factor analysis, Charles Spearman. (3) Spearman's analysis of relations among the kinds of mental tests he and other psychologists had been administering led him to propose what he inappropriately called a "two-factor" theory of intelligence. According to this theory, intelligence comprises two kinds of factors (rather than just two factors)—a general factor and specific factors. General ability, or \(g \), as measured by the general factor, is required for performance on mental tests of all kinds. Each specific ability, as measured by each specific factor, is required for performance on just one kind of mental test. Because there are as many specific factors as there are tests, specific factors are wholly unparsimonious, i.e., fail to provide any reduction of the data, and hence are of little interest. There is only a single general factor, however, making this factor of considerable interest.

As might be expected, the attempt to account for what is interesting in intelligent behavior via just a single factor proved to be too parsimonious for the tastes of most theorists: the single factor just didn't account for enough of the variation in different individuals' scores to render it a reasonably complete explanation of intelligence. More recent theorists have subdivided the general factor into two or more subfactors, and, interestingly, there seems to be rather broad agreement among contemporary factor theorists as to what at least two of these subs-
factors should be. They are what have been called "crystallized" and "fluid" abilities by Cattell, Horn, and their followers, and "verbal-educational" and "practical-mechanical" abilities by Vernon and his followers. The corresponding abilities match very closely for two different theories proposed by two different research groups. No investigators, including the present ones, would claim that these are the only subfactors that might be identified, or that these subfactors could not be subdivided further. To the contrary, most contemporary factor theorists accept a hierarchical model of intelligence whereby further subdivisions are an integral part of their theories. What is striking, rather, is that a large number of investigators find this particular division to be a plausible, although partial, one.

In the Cattell-Horn terminology, crystallized ability includes the knowledge and skills measured by tests of vocabulary, general information, and reading comprehension. To a large extent, then, it represents the extent of a person's acculturation, both in terms of the outcomes of acculturation (vocabulary, general information) and the processes of acculturation (reading comprehension). Stated in another way, it may be viewed as a person's ability to learn or profit from experience, and the knowledge actually acquired in this way. When viewed in this way, "crystallized ability" is a label for one of the three themes that ran through the definitions of intelligence considered earlier. Fluid ability includes the skills and knowledge measured by abstract reasoning tests such as figural analogies (requiring individuals to indicate which of several answer options is related to a C term in the same way that a B term is related to an A term), figural series completions (requiring individuals to indicate which of several answer options completes a geometric progression), and figural classifications (requiring individuals to indicate which of several answer options is most similar to several given geometric figures). Fluid ability may be viewed as a person's ability to think and reason abstractly, another one of the themes that ran through the definitions of intelligence considered earlier.
There is nothing in the Cattell-Horn or Vernon theories that corresponds to the theme of practical problem-solving or adaptational ability. Indeed, although some investigators, such as Guilford, have included one or more factors of practical intelligence in their theories, the search for a replicable factor of practical or social intelligence that appears in multiple investigations has been an elusive one. (5) The motivational component that ran through the definitions of intelligence can also be seen running through the writings of Cattell, and is perhaps most clearly seen in Spearman's equation of g with "mental energy." (6)

For complex statistical reasons that I have discussed elsewhere, it is possible for the factor analysis of a given set of tests for a given set of subjects to support more than one theory. (7) I have also shown, however, that these "different" theories may all be viewed as special cases of a single theory, with each special case highlighting different aspects of the nature of intelligence. (8) I believe, therefore, that too much has been made of differences among theories in past writings, and not enough of their similarities.

Processes of Intelligence

Until about 1960, research on the nature of intelligence was dominated by the factorial approach to intelligence (which is sometimes called the differential approach or the psychometric approach). The publication in 1960 of two classic works by two different sets of "information-processing psychologists"--Miller, Galanter, and Pribram, and Newell, Shaw, and Simon--initiated a change in emphasis from research seeking to factor analyze the products of test performance to research seeking to isolate the processes of test performance. (9) By the 1970's, the information-processing approach was firmly entrenched in the study of intelligence. The adoption of the information-processing approach has not necessitated the rejection of what we learned from factor analysis. Rather, information-processing psychologists have sought to supplement our understanding of the factors of intelligence with an understanding of the processes that are responsible at
least in part for the generation of these factors as sources of individual differences. Examples of processes include encoding stimulus information, inferring relations between stimuli, and applying these relations to new contexts.

A number of different information-processing theories and methods have been proposed by researchers such as Jack Carroll, Earl Hunt, Arthur Jensen (whose work on information processing can and should be distinguished from his work on group differences in intelligence), James Pellegrino and Robert Glaser, Richard Snow, and myself. These theories are similar in their postulation of sets of basic processes that are proposed to be used in intelligent information processing. They differ in the identities of the processes, the complexity of the processes, and the tasks from which the processes are isolated and which are alleged to measure intelligent performance. The tasks range in complexity from choice reaction time to complex reasoning problems. For example, in Hunt's theory, individual differences in verbal ability are understood in terms of people's differential rates of access to highly overlearned information stored in memory. In my own theory, individual differences in verbal ability are understood in terms of people's differential incidental learning of new concepts presented in everyday contexts.

It is not possible in the space allotted here to do justice to all of these theories, or even to describe any of them in great detail. I will, however, present the bare bones of my favorite theory, my own.

Whereas factorial theories use the factor (e.g., verbal comprehension, spatial visualization, and the like) as the unit of analysis, my theory and certain other information-processing theories use as the unit of analysis the component. Whereas a factor can be any kind of underlying source of individual differences, a component is an elementary information process that operates upon internal representations of objects or symbols. It should be emphasized that what is called "elemen-
tary" in one theory might be called "complex" in another. A component is elementary or complex with respect to the level of behavior a given theory is attempting to account for. A component may translate a sensory input into a conceptual representation, transform one conceptual representation into another, or translate a conceptual representation into a motor output. (11)

Components of intelligence can be subdivided on the basis of the functions they perform in intelligent problem solving. The subdivision is basically a matter of a given theorist's choice, and must be evaluated for its plausibility. Consider the possible form this subdivision takes in my own theory.

Components can be distinguished on the basis of function into five different kinds: metacomponents, performance components, acquisition components, retention components, and transfer components. The functions of these kinds of components will be illustrated in the context of their possible application to the solution of analogy problems.

Metacomponents are higher-order control processes used for executive planning and decision-making in problem solving. In an analogy problem, for example, one needs to (a) decide just what kind of answer the problem requires—multiple-choice, fill-in, or whatever; (b) select the inductive operations that are needed to solve an analogy; (c) decide upon an order in which the inductive or other operations should be applied; (d) decide whether to represent information contained in the terms of the analogy using a list of attributes, a multidimensional imaginal space, or whatever; (e) decide how much time can be allotted to a given analogy; and (f) monitor how well one is progressing toward finding the best of several analogy completions.

Bill Salter and I have collected data in which we have isolated two metacomponents of strategy selection (c in the above list) that we refer to as global planning and local planning. The metacomponents were isolated by mathematical
modeling of response time data in a complex analogical-reasoning test. (12) Global planning is applied to a set of problems that needs to be solved (e.g., an analogies subtest on an IQ test) and is heavily influenced by the context in which the problems are presented; but it is uninfluenced by the particulars of individual problems within the set. Local planning is applied to individual problems within a set, rather than to the set of problems as a whole. For very complex analogies, we have found that individuals with higher scores on a psychometric test of reasoning ability tend to spend more time than individuals with lower scores on global planning, but less time on local planning. The brighter individuals, in other words, seem to do more of their planning "up front" in performing a task.

Performance components are processes used in the execution of strategies for task performance. Performance components may be viewed as executing the plans and implementing the decisions laid down by the metacomponents.

My collaborators and I have isolated performance components from a number of different tasks by mathematical modeling of reaction time and error data. In an analogies task, it has been found that individuals with higher scores on psychometric tests of reasoning ability tend to spend more time in encoding the terms of an analogy than do individuals with lower scores, but less time in combining and comparing terms, and in responding. This pattern of results is quite compatible with the metacomponential pattern of results noted above. Brighter individuals spend relatively more time in preparing for (combination and comparison) operations that act upon encodings of analogy stimuli, but relatively less time in actually executing these operations.

Acquisition components are processes involved in learning new information; retention components are processes involved in retrieving information that has been previously acquired; and transfer components are processes involved in carrying over retained information from one situational context to another. Our research has ne
yet reached the point where we are able to specify what these processes are.

How does this information-processing conception of intelligence relate to the definitional conceptions we considered, on the one hand, and to the factorial ones, on the other? In typical testing situations, the measurement of crystallized ability involves, for the most part, accumulated products of past executions of components of acquisition, retention, and transfer. In tests of vocabulary and general information, for example, and to a lesser extent, in tests of reading comprehension, the major determinant of individual differences will be knowledge acquired well before the test was ever taken. In contrast, the measurement of fluid ability involves, for the most part, current execution of components of performance. The components of reasoning required for the solution of items such as figural analogies, series completions, and classifications are executed at the time the test is actually taken.

Viewed in terms of the themes described in the section on definitions of intelligence, operations of acquisition, retention, and transfer components determine to a large extent one's ability to learn or profit from experience, and the knowledge actually acquired from experience; operations of performance components are largely responsible for an individual's abstract thinking or reasoning ability; and the metacomponents drive the components of all the other kinds. The metacomponents may be seen as the motivational element in the present theory, akin in some way to Spearman's concept of "mental energy." What is missing from this account, as from the factorial account, is any firm handle on practical problem solving and adaptation to real-world environments. We are currently attempting to apply our method of componential analysis to simulations of real-world task performance, and are hoping thereby to attain some understanding of how people carry out consequential actions in their everyday encounters with the environments in which they find themselves.
Deficiencies of Intelligence

Numerous investigators have sought to understand the nature of intelligence by assessing what it is that mentally retarded individuals lack. A number of different approaches have been taken to understanding the nature of mental retardation, but three approaches are of particular interest to us here.

A first approach, identified with investigators such as John Belmont, John Borkowski, Ann Brown, Earl Butterfield, Joseph Campione, Norman Ellis, and David Zeaman, seeks to understand mental retardation in terms of ineffective functioning of what were called above acquisition, retention, and transfer components, and particularly, in the interaction between these kinds of components and metacomponents, or control processes. (13) It has been possible in some of the research using this approach to effect dramatic improvements in the learning and recall performance of retarded individuals by training these individuals in strategies for rehearsing items recently presented in word lists, strategies for organizing the words on these lists in a way that makes them easier to recall (e.g., by semantic category membership), strategies for apportioning study time during learning, and the like. In terms of the factorial language, subjects may be viewed as having been trained in skills that lead to improved crystallized ability. In terms of the language of the definitional approach, subjects may be viewed as having been trained to learn or profit from experience.

A second approach, identified with investigators such as Milton Budoff, Carl Bereiter, Sigfried Engelmann, and Reuven Feuerstein, seeks to understand mental retardation in terms of ineffective functioning of what were called above performance components, and particularly, in the interaction between this kind of component and metacomponents. (14) Improvements in performance on IQ tests have been attained through the use of training based upon this approach. Feuerstein's instrumental enrichment program is probably the largest-scale program of this kind, and the results of using it have been highly favorable. In terms of the factorial language,
subjects may be viewed as having been trained in fluid ability skills. In terms of the language of the definitional approach, subjects may be viewed as having been trained in abstract reasoning and thinking skills.

A third approach, identified primarily with Edward Zigler, seeks to understand mental retardation at least partly in terms of motivational variables that operate differently in normal and retarded individuals. (15) Zigler has not claimed that mental retardation should be understood primarily as some kind of motivational deficiency. Rather, he has suggested that in order to understand fully the effects of cognitive deficiencies, one must understand how the effects of cognitive variables are mediated by motivational ones. By effecting quantitative and qualitative changes in the motivational levels of retarded children, Zigler and his colleagues have been able to obtain large improvements in these children's performance on traditional cognitive tasks. I believe that Zigler has persuasively shown that the motivational component running through the notions of intelligence considered earlier is important as well in understanding one source of deficient performance in mentally retarded individuals.

No one seems to have proposed an approach to understanding mental retardation in terms of ineffective functioning in real-world environments (although the motivational approach comes close to this in some respects), and with good reason. Mildly retarded individuals, those who have been by far the most widely studied, function surprisingly well in real-world settings. Indeed, mild retardation seems primarily to be an academic problem and hence a childhood problem. Once the individual's primary adaptation is to spheres other than academic ones, there are a number of societal roles in which he or she can function effectively.

Conclusions

On the basis of the review conducted above, I am prepared to suggest that no fully adequate theory or measure of intelligence needs to take into account at least
four macrocomponents of intellectual performance. I am inclined to refer to them as "macrocomponents" in order to distinguish them from the "microcomponents" I described earlier in presenting my own theory of intelligence. The four macrocomponents are:

1. Ability to learn and profit from experience and the products of this experience (also referred to earlier as crystallized ability and as the functioning and products of acquisition, retention, and transfer components as driven by metacomponents). An intelligent person learns from his or her interactions with the environment, and uses his or her experience to greater advantage than does a less intelligent person. As a result, the intelligent person tends to know more (except in cases of deprivation of an individual in his or her interactions with the environment, in which cases the opportunities to learn are simply not presented to the individual).

2. Ability to think or reason abstractly (also referred to earlier as fluid ability and as the functioning of performance components as driven by metacomponents). An intelligent person can interrelate between events, apply these relations to new situations, integrate information, and otherwise exploit given and inferred information to greater advantage than can a less intelligent person.

3. Ability to adapt oneself to the vagaries of a changing and uncertain real-world environment. An intelligent person is a better practical problem-solver than is a less intelligent person. He or she is better able to cope with the challenges that life presents. In making a decision as to whether to consummate an important purchase, for example, such a person is likely to consult more sources of information, to consult in particular those sources of information that are most likely to contain critical information, to evaluate and integrate the information that is acquired in a more careful manner, and to investigate more fully the alternatives that are available, such as the purchase of a competing product, or the purchase of no product at all.
4. Ability to motivate oneself to accomplish expeditiously the tasks one needs to accomplish. An intelligent person is more highly motivated than an unintelligent one to accomplish the things that matter for successful adaptation to his or her environment. Such a person expresses more of an orientation toward task accomplishment.

In distilling the findings of four approaches to intelligence in order to identify the macrocomponents that are common to all or almost all of them, I have of course been selective in my inclusion of information, and biased in my interpretation of the information I have included. Whether or not my selections and biases have been unfair is a matter for my readership and my peers in the field to judge. Like all investigators, I would like to believe that I have been reasonable and fair. One possibly promising sign that I have indeed been reasonable and fair is that there is nothing nonobvious about the four macrocomponents I have listed; to the contrary, they are abilities that people in various walks of life have for many years asserted to be integral parts of intelligence. Indeed, that is how they got on the list! To the extent that these four items do seem to emerge in research on intelligence, almost without regard to the approach that is used, one's confidence in their importance to a theory of intelligence increases.

Since the majority of investigators of intelligence switched their allegiance from the factorial approach (upon which IQ tests were originally based) to the information-processing approach, we have learned a lot about certain aspects of intelligent behavior. Consider, for example, the analogy problem that is so frequently found on tests of intelligence. Before the information-processing analysis of analogy task performance, we knew little more than that the analogy was a very good measure of fluid ability. We now know (a) the component processes people use in solving analogies, (b) the various strategies into which these processes combine in order to form a working procedure for solution, (c) upon what kinds of internal
representations for information these component processes and strategies act, (d) approximately how much time is spent on each component process for analogies of different kinds, (e) approximately how likely each of these processes is to be executed accurately, (f) which component processes are responsible to what degree for the analogy's usefulness as a measure of fluid ability, and quite a bit more. We also know how individuals differ in these various aspects of information processing, both within and across age levels. (16)

The knowledge we have gained from intensive information-processing analysis of problems found on IQ tests convinces me that contemporary theories of intelligence are quite adequate in their accounts of the first two macrocomponents listed above. But they are wholly inadequate in their accounts of the last two macrocomponents. If we return to the question posed at the beginning of the article regarding the relationship between natural intelligence and measured intelligence, we find that what IQ tests measure pretty much reflects the current state of theory, regardless of the approach motivating the theory. Intelligence tests are quite strong in their measurement of the first two macrocomponents in the list, but quite weak in their measurement of the last two macrocomponents. Note that factorial and information-processing theories have essentially the same patterns of strengths and weaknesses in this respect: A change from measurement of factors to measurement of microcomponents will not alter the essential coverage of the tests, because the items that have been analyzed via the two kinds of techniques are almost the same. Indeed, I have argued here and elsewhere in detail that the ground covered by factorial and information-processing theories is almost identical. (17)

I do not have any doubt that the motivation required to perform well on IQ tests will provide at least some indication of the motivation an individual has to perform in more typical kinds of situations; nor do I have any doubt that the ability to solve the often somewhat obscure kinds of problems presented on these tests will correlate in some small degree with the ability to solve problems in the
real world. But the measurement of these abilities provided by IQ tests is minimal and certainly less than adequate. Problems such as those both factorial and information-processing investigators have studied can measure only a small subset of the skills that contribute to intelligent behavior. People have tried before to measure motivational and practical problem solving abilities, and they have met with some success, at least in the motivational domain. But I believe we need to redouble these efforts, despite the frequent frustrations with which they have met in past research. Our present policy in research on intelligence—to direct almost all of our efforts toward further understanding and better measurement of those abilities that we have been most successful in understanding and measuring in the past—is an understandable one. This policy has been productive in the past, and I expect it will continue to be productive in the future, at least in the short run. It is not likely to be the most productive policy to follow in the long run, however. I and many others believe we have pretty much reached a ceiling on what we can do with the kinds of tests we presently have. As I stated above, changing the forms of the scores from factorial to information-processing ones will not change the limitations inherent in the narrow range of abilities we are presently studying. In order to improve our measurement of intelligence and our theories of what gives rise to scores on these measurements, we need to supplement what we have, both in terms of measurement and theory. Perhaps we will have to accustom ourselves to experiencing more failures in meeting our short-term goals in order, hopefully, to experience more successes in eventually meeting our long-term goals. These goals would seem to include as an essential part the understanding and measurement of intelligence in the fullest sense of the term, rather than in a narrow and restrictive one.
Notes

12. This research is described in Robert J. Sternberg, "Intelligence and Nontrenchment," Journal of Educational Psychology (in press).

19. Preparation of this article was supported by Contract N0001478C0025 from the Office of Naval Research to Robert J. Sternberg.
Technical Reports Presently in this Series
NR 150-412, ONR Contract N0001478C0025

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Published Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Intelligence Research at the Interface between Differential and Cognitive Psychology</td>
<td>Sternberg, R. J. Intelligence research at the interface between differential and cognitive psychology. Intelligence 1978, 2, 195-222.</td>
</tr>
<tr>
<td>2</td>
<td>Isolating the Components of Intelligence</td>
<td>Sternberg, R. J. Isolating the components of intelligence. Intelligence 1978, 2, 117-128.</td>
</tr>
<tr>
<td>5</td>
<td>A Transitive-Chain Theory of Syllogistic Reasoning</td>
<td>UNPUBLISHED TO DATE</td>
</tr>
<tr>
<td>No.</td>
<td>Name</td>
<td>Published Reference</td>
</tr>
<tr>
<td>-----</td>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>10</td>
<td>Psychometrics, Mathematical Psychology, and Cognition: Confessions of a Closet Psychometrician.</td>
<td>UNPUBLISHABLE.</td>
</tr>
<tr>
<td>11</td>
<td>Understanding and Appreciating Metaphors.</td>
<td>UNPUBLISHED TO DATE.</td>
</tr>
<tr>
<td>14</td>
<td>Contrasting Conceptions of Intelligence and their Educational Implications.</td>
<td>Sternberg, R. J. Factor theories of intelligence are all right almost. Educational Researcher, in press.</td>
</tr>
<tr>
<td>18</td>
<td>Unities in Inductive Reasoning.</td>
<td>UNPUBLISHED TO DATE.</td>
</tr>
<tr>
<td>No.</td>
<td>Name</td>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td>20 (Continued)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>Evaluation of Evidence in Causal Inference. October, 1979.</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>Componential Approaches to the Training of Intelligent Performance. April, 1980.</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>Intelligence and Nonentrenchment. April, 1980.</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>Reasoning, Problem Solving, and Intelligence. April, 1980.</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>Interaction and Analogy in the Comprehension and Appreciation of Metaphors. October, 1980.</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>The Nature of Intelligence. October, 1980.</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>People's Conceptions of Intelligence. October, 1980.</td>
<td></td>
</tr>
</tbody>
</table>

Published Reference

- Sternberg, R. J., Ketron, J. L., & Powell, J. S. Componential approaches to the training of intelligent performance. *Intelligence*, in press.
- UNPUBLISHED TO DATE.
- Sternberg, R. J. *Claims, counterclaims, and components: A countercritique of componential analysis*. Behavioral and Brain Sciences, in press.
- UNPUBLISHED TO DATE.
<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Published Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>Reasoning with Determinate and Indeterminate Linear Syllogisms.</td>
<td>NOT YET PUBLISHED.</td>
</tr>
</tbody>
</table>
1. Dr. Ed Aiken
 Navy Personnel R&D Center
 San Diego, CA 92152

1. Meryl S. Baker
 NPRDC
 Code P31
 San Diego, CA 92152

1. Dr. Jack R. Borsting
 Provost & Academic Dean
 U.S. Naval Postgraduate School
 Monterey, CA 93940

1. Dr. Robert Preaux
 Code N-711
 NAVTRAEEQPCEN
 Orlando, FL 32813

1. Chief of Naval Education and Training
 Liaison Office
 Air Force Human Resource Laboratory
 Flying Training Division
 WILLIAMS AFB, AZ 85224

1. Dr. Larry Dean, LT, MSC, USN
 Psychology Department
 Naval Submarine Medical Research Lab
 Naval Submarine Base
 Groton, CT 06340

1. Dr. Richard Elster
 Department of Administrative Sciences
 Naval Postgraduate School
 Monterey, CA 93940

1. Dr. Pat Federico
 NAVY PERSONNEL R&D CENTER
 SAN DIEGO, CA 92152

1. Mr. Paul Foley
 Navy Personnel R&D Center
 San Diego, CA 92152

1. Dr. John Ford
 Navy Personnel R&D Center
 San Diego, CA 92152

1. Dr. Henry H. Halff
 Department of Psychology, C-009
 University of California at San Diego
 La Jolla, CA 92030

1. LT Steven D. Harris, MSC, USN
 Code 6C21
 Naval Air Development Center
 Warminster, Pennsylvania 18974

1. Dr. Patrick R. Harrison
 Psychology Course Director
 LEADERSHIP & LAW DEPT., (7b)
 DIV. OF PROFESSIONAL DEVELOPMENT
 U.S. NAVAL ACADEMY
 ANNAPOLIS, MD 21402

1. Dr. Jim Hallam
 Code 304
 Navy Personnel R&D Center
 San Diego, CA 92152

1. CDR Charles H. Hutchins
 Naval Air Systems Command HQ
 AIR-34CF
 Navy Department
 Washington, DC 20361

1. CDR Robert S. Kennedy
 Head, Human Performance Sciences
 Naval Aerospace Medical Research Lab
 Box 20407
 New Orleans, LA 70179

1. Dr. Norman J. Kerr
 Chief of Naval Technical Training
 Naval Air Station Memphis (75)
 Millington, TN 38053

1. Dr. William L. Malley
 Principal Civilian Advisor for
 Education and Training
 Naval Training Command, Code OCA
 Pensacola, FL 32501

1. Dr. Knud Parshall
 Scientific Advisor to NCP(11P)
 OPC17
 Washington DC 20370
Navy

1 CAPT Richard L. Martin, USN
Prospective Commanding Officer
USS Carl Vinson (CVN-70)
Newport News Shipbuilding and Drydock Co
Newport News, VA 23607

1 Dr. James McPride
Navy Personnel R&D Center
San Diego, CA 92152

1 Dr. George Mecell
Head, Human Factors Dept.
Naval Submarine Medical Research Lab
Groton, CT 06340

1 Dr. William Fontague
Navy Personnel R&D Center
San Diego, CA 92152

1 Library
Naval Health Research Center
P. O. Box 35122
San Diego, CA 92138

1 Naval Medical R&D Command
Code 44
National Naval Medical Center
Bethesda, MD 20014

1 CAPT Paul Wilson, USN
Chief, Medical Service Corps
Bureau of Medicine & Surgery (MED-71)
U. S. Department of the Navy
Washington, DC 20372

1 Ted M. L. Yellen
Technical Information Officer, Code 201
NAVY PERSONNEL R&D CENTER
SAN DIEGO, CA 92152

1 Library, Code P201L
Navy Personnel R&D Center
San Diego, CA 92152

6 Commanding Officer
Naval Research Laboratory
Code 2627
Washington, DC 20330

Navy

1 Psychologist
ONR Branch Office
Edg 114, Section D
666 Summer Street
Boston, MA 02210

1 Psychologist
ONR Branch Office
536 S. Clark Street
Chicago, IL 60605

1 Office of Naval Research
Code 437
800 N. Quincy Street
Arlington, VA 22217

1 Office of Naval Research
Code 441
800 N. Quincy Street
Arlington, VA 22217

5 Personnel & Training Research Programs
(Code 458)
Office of Naval Research
Arlington, VA 22217

1 Psychologist
ONR Branch Office
1030 East Green Street
Pasadena, CA 91101

1 Office of the Chief of Naval Operations
Research Development & Studies Branch
(OP-115)
Washington, DC 20350

1 Dr. Donald F. Parker
Graduate School of Business Administration
University of Michigan
Ann Arbor, MI 48109

1 LT Frank C. Potho, USN, USN (Ph.D)
Code L51
Naval Aerospace Medical Research Laboratory
Pensacola, FL 32503
Navy

1 Roger W. Remington, Ph.D
Code L52
NAVIRL
Pensacola, FL 32508

1 Dr. Bernard Rimland (O3B)
Navy Personnel R&D Center
San Diego, CA 92152

1 Mr. Arnold Rubenstein
Naval Personnel Support Technology
Naval Material Command (NMT244)
Room 1044, Crystal Plaza #5
2221 Jefferson Davis Highway
Arlington, VA 20360

1 Dr. Worth Scanland
Chief of Naval Education and Training
Code N-5
NAS, Pensacola, FL 32508

1 Dr. Sam Schiflett, SY 721
Systems Engineering Test Directorate
U.S. Naval Air Test Center
Patuxent River, MD 20670

1 Dr. Robert G. Smith
Office of Chief of Naval Operations
OP-9374
Washington, DC 20350

1 Dr. Alfred F. Snedecor
Training Analysis & Evaluation Group
(TAEG)
Dept. of the Navy
Orlando, FL 32813

1 W. Gary Thomson
Naval Ocean Systems Center
Code 7132
San Diego, CA 92152

1 Dr. Ronald Weitzman
Code 54 WZ
Department of Administrative Sciences
U.S. Naval Postgraduate School
Monterey, CA 93940

Navy

1 Dr. Robert Wisher
Code 309
Navy Personnel R&D Center
San Diego, CA 92152

1 Dr. Martin F. Wiskoff
NAVY PERSONNEL R&D CENTER
SAN DIEGO, CA 92152

1 Mr John H. Wolfe
Code P310
U.S. Navy Personnel Research and
Development Center
San Diego, CA 92152
Army

1 Technical Director
U.S. Army Research Institute for the
Behavioral and Social Sciences
5001 Eisenhower Avenue
Alexandria, VA 22333

1 Dr. Michael Kaplan
U.S. Army Research Institute
5001 Eisenhower Avenue
Alexandria, VA 22333

1 Dr. Milton S. Katz
Training Technical Area
U.S. Army Research Institute
5001 Eisenhower Avenue
Alexandria, VA 22333

1 Dr. Harold F. O'Neill, Jr.
Attn: PERT-OK
Army Research Institute
5001 Eisenhower Avenue
Alexandria, VA 22333

1 Dr. Robert Sasmer
U.S. Army Research Institute for the
Behavioral and Social Sciences
5001 Eisenhower Avenue
Alexandria, VA 22333

1 Dr. Joseph Ward
U.S. Army Research Institute
5001 Eisenhower Avenue
Alexandria, VA 22333

Air Force

1 Air University Library
AUL/LSE 75/443
Maxwell AFB, AL 36112

1 Dr. Earl A. Aluisi
HQ, AFHRL (AFCC)
Brooks AFB, TX 78235

1 Dr. Genevieve Haddad
Program Manager
Life Sciences Directorate
AFOSR
Bolling AFB, DC 20322

1 Dr. Ronald G. Hughes
AFHRL/OTR
Williams AFB, AZ 85224

1 Dr. Ross L. Morgan (AFHRL/LR)
Wright-Patterson AFB
Ohio 45433

1 Dr. Malcolm Bee
AFHRL/TP
Brooks AFB, TX 78235

1 Dr. Marty Rockway
Technical Director
AFHRL/OT
Williams AFB, AZ 85224

2 3700 TCHT/TTH/Stop 32
Sheppard AFB, TX 79111

1 Jack A. Thorp, Maj., USAF
Life Sciences Directorate
AFOSR
Bolling AFB, DC 20322
Marines

1 H. William Greenup
 Education Advisor (0371)
 Education Center, MCDEC
 Quantico, VA 22134

1 Headquarters, U.S. Marine Corps
 Code KPI-20
 Washington, DC 20380

1 Special Assistant for Marine
 Corps Matters
 Code 100M
 Office of Naval Research
 800 N. Quincy St.
 Arlington, VA 22217

1 DR. A.L. SLAFKOSKY
 SCIENTIFIC ADVISOR (CODE RD-1)
 HQ, U.S. MARINE CORPS
 WASHINGTON, DC 20380

Coast Guard

1 Chief, Psychological Research Branch
 U.S. Coast Guard (G-P-1/2/TP42)
 Washington, DC 20593

1 Mr. Thomas A. Warm
 U.S. Coast Guard Institute
 P. O. Substation 1
 Oklahoma City, OK 73169
Other DOD

1 Defense Technical Information Center
 Cameron Station, Slde S
 Alexandria, VA 22314
 Attn: TC

1 Dr. Dexter Fletcher
 ADVANCED RESEARCH PROJECTS AGENCY
 1800 WILSON BLVD.
 ARLINGTON, VA 22209

1 Military Assistant for Training and Personnel Technology
 Office of the Under Secretary of Defense
 for Research & Engineering
 Room 3D127, The Pentagon
 Washington, DC 20301

Civil Govt

1 Dr. Susan Chipman
 Learning and Development
 National Institute of Education
 1900 10th Street NW
 Washington, DC 20208

1 Dr. Joseph I. Liepman
 FPRH N-638
 National Science Foundation
 Washington, DC 20550

1 William J. McLaurin
 Ph. 301, Internal Revenue Service
 2201 Jefferson Davis Highway
 Arlington, VA 22202

1 Dr. Andrew R. Melnar
 Science Education Dev.
 and Research
 National Science Foundation
 Washington, DC 20550

1 Personnel R&D Center
 Office of Personnel Management
 1900 E Street NW
 Washington, DC 20415

1 Dr. H. Wallace Simons
 Program Director
 Manpower Research and Advisory Service
 Smithsonian Institution
 501 North Pitt Street
 Alexandria, VA 22314

1 Dr. Frank Withrow
 U. S. Office of Education
 3200 Maryland Ave. SW
 Washington, DC 20202

1 Dr. Joseph L. Young, Director
 Science & Cognitive Processes
 National Science Foundation
 Washington, DC 20550
<table>
<thead>
<tr>
<th>Name</th>
<th>Address</th>
</tr>
</thead>
</table>
| Dr. John P. Carroll | Psychometric Lab
Univ. of N.C. Carolina
Davie Hall 013A
Chapel Hill, NC 27514 |
| Charles Myers Library | Livingstone House
Livingstone Road
Stratford
London E15 2LJ
ENGLAND |
| Dr. William Chase | Department of Psychology
Carnegie Mellon University
Pittsburgh, PA 15213 |
| Dr. Micheline Chi | Learning R & D Center
University of Pittsburgh
3939 O'Hara Street
Pittsburgh, PA 15213 |
| Dr. William Clancey | Department of Computer Science
Stanford University
Stanford, CA 94305 |
| Dr. Kenneth F. Clark | College of Arts & Sciences
University of Rochester
River Campus Station
Rochester, NY 14627 |
| Dr. Herman Cliff | Dept. of Psychology
Univ. of S.C. California
University Park
Los Angeles, CA 90027 |
| Dr. Allan W. Collins | Bell, Hopkins & Newman, Inc.
60 Peucker Street
Cambridge, MA 02139 |
| Dr. Lynn A. Cooper | LRDC
University of Pittsburgh
3939 O'Hara Street
Pittsburgh, PA 15213 |
| Dr. Meredith P. Crawford | American Psychological Association
1200 17th Street, N.W.
Washington, DC 20036 |
| Dr. Kenneth F. Cross | Anacapa Sciences, Inc.
P.O. Drawer Q
Santa Barbara, CA 93102 |
| Dr. Emmanuel Donchin | Department of Psychology
University of Illinois
Champaign, IL 61820 |
| Dr. Hubert Dreyfus | Department of Philosophy
University of California
Berkeley, CA 94720 |
| LCOL J. C. Eggenberger | DIRECTORATE OF PERSONNEL APPLIED RESEARCH
NATIONAL DEFENCE HQ
101 COLONEL BY DRIVE
OTTAWA, CANADA KIA OK2 |
| ERIC Facility-Acquisitions | 4833 Rugby Avenue
Bethesda, MD 20014 |
| Dr. Ed Feigenbaum | Department of Computer Science
Stanford University
Stanford, CA 94305 |
| Dr. W. L. Ferguson | Educational Testing Service
Princeton, NJ 08540 |
1 Dr. Edwin A. Fleishman
Advanced Research Resources Organ.
Suite 900
4330 East West Highway
Washington, DC 20014

1 Dr. John R. Fredriksen
Bolt Beranek & Newman
50 Moulton Street
Cambridge, MA 02138

1 Dr. Alinda Friedman
Department of Psychology
University of Alberta
Edmonton, Alberta
CANADA T6G 2E9

1 Dr. Robert Glaser
LADC
UNIVERSITY OF PITTSBURGH
3939 O'HARA STREET
PITTSBURGH, PA 15213

1 Dr. Marvin D. Glock
217 Stone Hall
Cornell University
Ithaca, NY 14853

1 Dr. Daniel Gopher
Industrial & Management Engineering
Technion-Israel Institute of Technology
Haifa
ISRAEL

1 Dr. James G. Green
LADC
UNIVERSITY OF PITTSBURGH
3939 O'HARA STREET
PITTSBURGH, PA 15213

1 Dr. Ron Hambleten
School of Education
University of Massachusetts
Amherst, MA 01002

1 Dr. Harold Hawkins
Department of Psychology
University of Oregon
Eugene OR 97403

1 Dr. Barbara Hayes-Roth
The Rand Corporation
1700 Main Street
Santa Monica, CA 90406

1 Dr. Frederick Hayes-Roth
The Rand Corporation
1700 Main Street
Santa Monica, CA 90406

1 Dr. James R. Hoffmann
Department of Psychology
University of Delaware
Newark, DE 19711

1 Glenda Greenwald, Ed.
"Human Intelligence Newsletter"
P. O. Box 1163
Birmingham, MI 48012

1 Dr. Lloyd Humphreys
Department of Psychology
University of Illinois
Champaign, IL 61820

1 Library
HumRRO/Western Division
27857 Berwick Drive
Carmel, CA 93923

1 Dr. Paul Hunt
Dept. of Psychology
University of Washington
Seattle, WA 98105

1 Dr. Steven K. Keil
Dept. of Psychology
University of Oregon
Eugene, OR 97403

1 Dr. Walter Kintsch
Department of Psychology
University of Colorado
Boulder, CO 80302
1 Dr. David Kieras
 Department of Psychology
 University of Arizona
 Tucson, AZ 85721

1 Dr. Stephen Kasslyn
 Harvard University
 Department of Psychology
 33 Kirkland Street
 Cambridge, MA 02138

1 Mr. Marlin Kroger
 1117 Via Goleta
 Palos Verdes Estates, CA 90274

1 Dr. Jill Larkin
 Department of Psychology
 Carnegie Mellon University
 Pittsburgh, PA 15213

1 Dr. Alan Lesgold
 Learning R&D Center
 University of Pittsburgh
 Pittsburgh, PA 15260

1 Dr. Charles Lewis
 Faculteit Sociele Wetenschappen
 Rijksuniversiteit Groningen
 Oude Pijlerstraat
 Groningen
 NETHERLANDS

1 Dr. James Lumley
 Department of Psychology
 University of Western Australia
 Nedlands, W.A. 6009
 AUSTRALIA

1 Dr. Mark Miller
 Computer Science Laboratory
 Texas Instruments, Inc.
 Mail Station 771, P.O. Box 225936
 Dallas, TX 75265

1 Dr. Allen Munar
 Behavioral Technology Laboratories
 1745 Elena Ave., Fourth Floor
 Redondo Beach, CA 90277

1 Dr. Donald A. Norman
 Dept. of Psychology C-099
 Univ. of California, San Diego
 La Jolla, CA 92093

1 Dr. Melvin R. Novick
 356 Lindquist Center for Measurement
 University of Iowa
 Iowa City, IA 52242

1 Dr. Jesse Oransky
 Institute for Defense Analyses
 400 Army Navy Drive
 Arlington, VA 22202

1 Dr. Seymour A. Papert
 Massachusetts Institute of Technology
 Artificial Intelligence Lab
 545 Technology Square
 Cambridge, MA 02139

1 Dr. James A. Paulson
 Portland State University
 P.O. Box 751
 Portland, OR 97207

1 MR. LUIGI PETRULLO
 2431 N. EDGEWOOD STREET
 ARLINGTON, VA 22207

1 Dr. Martha Polson
 Department of Psychology
 University of Colorado
 Boulder, CO 80302

1 DR. PETER POLSON
 DEPT. OF PSYCHOLOGY
 UNIVERSITY OF COLORADO
 BOULDER, CO 80309

1 Dr. Steven E. Peltock
 Department of Psychology
 University of Denver
 Denver, CO 80208

1 DR. DIANE M. RAMSFY-KLEE
 R-K RESEARCH & SYSTEM DESIGN
 7047 RIDGEMONT DRIVE
 MALIBU, CA 90265
1. Committee on Cognitive Research
 & Dr. Lonnie R. Sherrod
 Social Science Research Council
 605 Third Avenue
 New York, NY 10016

2. Robert S. Siegler
 Associate Professor
 Carnegie-Mellon University
 Department of Psychology
 Schenley Park
 Pittsburgh, PA 15213

3. Dr. Robert Smith
 Department of Computer Science
 Rutgers University
 New Brunswick, NJ 08903

4. Dr. Richard Snow
 School of Education
 Stanford University
 Stanford, CA 94305

5. DR. ALBERT STEVENS
 HOLT HERAN & NEUMANN, INC.
 50 HUXTON STREET
 CAMBRIDGE, MA 02138

6. Dr. Thomas G. Sticht
 Director, Basic Skills Division
 HUPPMO
 300 N. Washington Street
 Alexandria, VA 22314

7. Dr. David Stone
 ED 236
 SUNY, Albany
 Albany, NY 12222

8. DR. PATRICK SUPPE
 INSTITUTE FOR MATHEMATICAL STUDIES OF
 THE SOCIAL SCIENCES
 STANFORD UNIVERSITY
 STANFORD, CA 94305
Non Govt

1 Dr. Hariharan Suminathan
Laboratory of Psychometric and Evaluation Research
School of Education
University of Massachusetts
Amherst, MA 01003

1 Dr. Kikumi Tatsucka
Computer Based Education Research Laboratory
202 Engineering Research Laboratory
University of Illinois
Urbana, IL 61801

1 Dr. David Thissen
Department of Psychology
University of Kansas
Lawrence, KS 66044

1 Dr. John Thomas
IDM Thomas J. Watson Research Center
P.O. Box 218
Yorktown Heights, NY 10598

1 Dr. Perry Thordike
THE RAND CORPORATION
1700 MAIN STREET
SANTA MONICA, CA 90406

1 Dr. Douglas Towne
Univ. of Sc. California
Behavioral Technology Labs
1845 S. Elena Ave.
Redondo Beach, CA 90277

1 Dr. J. Whalen
Perceptronics, Inc.
5271 Variel Avenue
Woodland Hills, CA 91364

1 Dr. Fenton J. Underwood
Dept. of Psychology
Northwestern University
Evanston, IL 60201

1 Dr. William R. Uttal
University of Michigan
Institute for Social Research
Ann Arbor, MI 48106

Non Govt

1 Dr. Howard Weiner
Bureau of Social Science Research
1900 4th Street, N.W.
Washington, DC 20006

1 Dr. Phyllis Weaver
Graduate School of Education
Harvard University
200 Larsen Hall, Appian Way
Cambridge, MA 02138

1 Dr. David J. Weiss
660 Elliott Hall
University of Minnesota
75 E. River Road
Minneapolis, MN 55455

1 Dr. Keith T. Westcutt
Information Sciences Dept.
The Rand Corporation
1700 Main St.
Santa Monica, CA 90406

1 Dr. Susan E. Whiteley
PSYCHOLOGY DEPARTMENT
UNIVERSITY OF KANSAS
LAURENCE, KANSAS 66044

1 Dr. Christopher Wickens
Department of Psychology
University of Illinois
Champaign, IL 61820

1 Dr. J. Arthur Woodward
Department of Psychology
University of California
Los Angeles, CA 90024