COMPONENTIAL INTERPRETATION OF THE GENERAL FACTOR IN HUMAN INTELLIGENCE

R. J. Sternberg, M. K. Gardner

OCT 80

UNCLASSIFIED

RR-10-80

END

1-81
Exponential Interpretation of the General Factor in Human Intelligence

Robert J. Sternberg and Michael K. Gardner
Department of Psychology
Yale University
New Haven, Connecticut 06520

Technical Report No. 31
October, 1980

Approved for public release; distribution unlimited.
Reproduction in whole or in part is permitted for any purpose of the United States Government.

This research was sponsored by the Personnel and Training Research Programs, Psychological Sciences Division, Office of Naval Research, under Contract No. N0001478C0025, Contract Authority Identification Number NR 150-412.
A Componential Interpretation of the General Factor in Human Intelligence

Robert J. Sternberg and Michael K. Gardner

Department of Psychology
Yale University
New Haven, Connecticut 06520

Office of Naval Research (Code 458)
Arlington, Virginia 22217

Approved for public release; distribution unlimited.


Intelligence, general factor, component

This chapter presents a componential interpretation of the general factor in human intelligence. The article is divided into five parts. First, we present a brief summary of some of the evidence that can be adduced in support of the existence of a general factor in human intelligence. Second, we present an overview of our beliefs regarding the nature of g, and state why we believe it is adequate to the problem, at least at one level of analysis. Third, we describe our present research approach. Fourth, we present evi-
evidence supporting our views regarding the nature of $g$. Fifth, we summarize the main points of our argument.
A Componential Interpretation of the General Factor in Human Intelligence

Robert J. Sternberg and Michael K. Gardner

Yale University

Running head: Componential Interpretation

Send proofs to Robert J. Sternberg
Department of Psychology
Yale University
Box 11A Yale Station
New Haven, Connecticut 06520
USA
A Componential Interpretation of the General Factor in Human Intelligence

Every since Spearman's (1904, 1927) proposal of a general factor permeating all aspects of intelligent behavior, theorists of intelligence have busied themselves trying either to prove or disprove the existence in the mind of Spearman's "g." No doubt this popular pursuit will continue, if only because it provides a way of filling time for those who have had trouble finding other pursuits that strike their fancy.

We interpret the preponderance of the evidence as overwhelmingly supporting the existence of some kind of general factor in human intelligence. Indeed, we are unable to find any convincing evidence at all that militates against this view. We shall present here only a cursory examination of the main findings that lead us to accept the existence of a general factor, since careful and thorough reviews of the documentation exist elsewhere (e.g., Eysenck, 197.; Humphreys, 1979; McNemar, 1964). For the most part, we shall assume that a general factor exists, and proceed to what we believe to be the interesting question facing contemporary theorists of intelligence: What is the nature of the general factor? In particular, we shall attempt to understand g in information-processing terms, applying a metatheoretical framework we refer to as a "componential" one in our attempt to isolate the information-processing origins of g. This framework has been used with at least some success in the analysis of a variety of different kinds of intelligent behavior (see Sternberg, 1977b, 1978a, 1979, 1980b, 1980c, in press-c, in press-e).

We certainly do not wish to claim that the componential framework is the only one in which general intelligence potentially can be understood: Any pie can be sliced in a number of ways, and the best we can hope for is that our way
of slicing the pie yields pieces of a reasonable size and shape.

Our presentation is divided into five parts. First, we present a brief summary of some of the evidence that can be adduced in support of the existence of a general factor in human intelligence. Second, we present an overview of our beliefs regarding the nature of \( g \) as understood in componential terms. Third, we describe the research approach we use to tackle the problem of the nature of \( g \), and state why we believe it is adequate to the problem, at least at one level of analysis. Fourth, we present evidence that supports our views regarding the nature of \( g \). Fifth and finally, we summarize the main points of our argument.

**Selected Evidence Supporting the Existence of General Intelligence**

Various sorts of evidence have been adduced in support of the existence of general intelligence (Humphreys, 1979). Perhaps the most persuasive evidence is everyday experience: Casual observation in everyday life suggests that some people are "generally" more intelligent than others. People's rank orderings of each other may differ according to how they define intelligence, but some rank ordering is usually possible. Moreover, when people are asked to characterize the behaviors that typify a "generally" intelligent person, they have no trouble in doing so, and there is a high degree of consistency both in the sorts of behaviors that are listed and in the perceived relationships among these behaviors, as ascertained by factor analysis (Sternberg, Conway, Ketron, & Bernstein, 1980). Very similar factor structures are obtained both for experts and laypersons: A generally intelligent person is conceived to be one who is particularly adept at the behaviors constituting problem solving, verbal facility, and common sense in interactions with the real world.

Historically, the evidence that has been offered most often in favor of
the existence of general intelligence is the appearance of a general factor in unrotated factor solutions from factor analyses of tests of intelligence (e.g., Spearman, 1927). Other factor-analytic techniques, such as second-order factoring of first-order factoring, can also yield a general factor. (See Jensen, in press, for a discussion of various factorial methods for eliciting a general factor.) In earlier research on the nature of mental abilities (e.g., Thurstone, 1938), and in some contemporary research as well (e.g., Guilford, 1967; Guilford & Hoepfner, 1971), the general factor seems to disappear because of the way in which the factorial axes are rotated. For example, a general factor almost never appears when axes are rotated to Thurstonian "simple structure" (Thurstone, 1947). But when correlated simple-structure factors are themselves factored, a general factor usually appears at the second order of analysis.

Many theorists of intelligence no longer view the debate over whether or not there is a general factor as still viable. Instead, they accept some kind of hierarchical structure of mental abilities whereby intelligence is viewed as comprising a general factor at the highest level, major group factors such as fluid and crystallized abilities (Cattell, 1971; Horn, 1968) or practical-mechanical and verbal-educational abilities (Vernon, 1971) at the next level, minor group factors at a third level, and specific factors at a fourth level. What had seemed like conflicting views at one time, then, are now seen by these theorists, including ourselves, as basically compatible (Snow, 1979; Sternberg, in press–a, in press–c). Accepting this point of view, we can turn to the question of what kinds of entities generate individual differences in performance at the highest level of the hierarchy, that of general intelligence.
Were factor-analytic evidence the only kind that lent support to the existence of a general factor, one might write off the general factor as a method-specific peculiarity deriving somehow either from the mathematical mechanics of factor analysis or from the particular nature of individual-differences data. If one delves into the nature of variation across stimulus types rather than across subjects, however, a result parallel to the general factor emerges. A number of investigators, including ourselves, have used multiple regression techniques to isolate sources of stimulus variation in task performance. For example, we have attempted to predict response times to answer various kinds of analogies on the basis of manipulated sources of task difficulty in the solution of the analogies, e.g., the degree of relatedness between the first two terms, the degree of relatedness between the first and third terms, and so on (see Sternberg, 1977a, 1977b). A result that at first glance appears most peculiar has emerged from many of these task analyses (Egan, 1976; Hunt, Lunneborg, & Lewis, 1975; Jensen, 1979; Keating & Bobbitt, 1978; Mulholland, Pellegrino, & Glaser, 1980; Sternberg, 1977a, 1977b). The regression intercept, or global "constant," often turns out to be as highly correlated or more highly correlated with scores from IQ tests than do the analyzed parameters representing separated sources of variance. Since the constant includes speed of response, e.g., button pressing, one could interpret such results trivially as indicating that motor speed is an essential ingredient of intelligence. A more plausible interpretation, and, as it will turn out, one more consistent with the bulk of the data, is that there are certain constancies in information-processing tasks that tend to be shared across wide variations in item types. We suggest that the search for the general component(s) and the search for the general factor are one and the same search—that whatever it is that leads to a unitary source of individual differences across subjects also leads to a unitary source of differences across stimulus types.
What is General Intelligence?

On the componential view, the basic construct underlying intelligent functioning is the information-processing component. A component is an elementary information process that operates upon internal representations of objects or symbols (Sternberg, 1977; see also Newell & Simon, 1972). The component may translate a sensory input into a conceptual representation, transform one conceptual representation into another, or translate a conceptual representation into a motor output. What is considered elementary enough to be labeled a component depends upon the level of theorizing that is desired. Just as factors can be split into successively finer subfactors, so can components be split into successively finer subcomponents. Thus, no claim is made that any of the components referred to later are elementary at all levels of analysis. Rather, they are claimed to be elementary at a convenient level of analysis. The same caveat applies to the typology of components that will be proposed. Doubtless, other typologies could be proposed that would serve the present or other theoretical purposes as well or better. The particular typology proposed, however, has proved to be convenient in at least certain theoretical and experimental contexts. A number of theories have been proposed during the past decade that might be labeled, at least loosely, as componential (e.g., Butterfield & Belmont, 1977; Campione & Brown, 1979; Carroll, 1976, 1980; Hunt, 1978; Jensen, 1979; Pellegrino & Glaser, 1980; Snow, 1979). The present theory, then, is just one of this general class of theories, although it is probably a bit more elaborated than at least some of the other theories.

Properties of Components

Each component has three important properties associated with it: duration, difficulty (i.e., probability of being executed erroneously), and probability of
Componental Interpretation

execution. Methods for estimating these properties of components are described in Sternberg (1978b) (see also Sternberg, 1977b, 1980b; Sternberg & Rifkin, 1979). It is dangerous to make inferences about one property of a component on the basis of information about another. We have found, for example, that the duration of a component is not necessarily correlated with its difficulty (Sternberg, 1977a, 1977b, 1980b).

Kinds of Components

Kinds of components can be classified in two different ways: by function and by level of generality.

Function. Components perform (at least) five kinds of functions. Meta-components are higher-order control processes that are used for executive planning and decision-making in problem solving. Performance components are processes that are used in the execution of a problem-solving strategy. Acquisition (or storage) components are processes used in learning new information. Retention (or retrieval) components are processes used in retrieving previously stored knowledge. Transfer components are processes used in generalization, that is, in carrying over knowledge from one task or task context to another. Generally speaking, metacomponents act on other kinds of components (and on themselves), whereas performance, acquisition, retention, and transfer components act on information of various kinds.

Level of generality. Components can be classified in terms of three levels of generality. General components are required for performance of all tasks within a given task universe. Class components are required for performance of a proper subset of tasks that includes at least two tasks within the task universe. Specific components are required for the performance of single tasks within the task universe. Tasks requiring intelligent performance differ in the numbers of components they require for completion and in the number of each kind of component they require.
Componential Interpretation

Components and General Intelligence

To communicate early on the conclusion we will reach from an evaluation of the data we have collected, we assert here that individual differences in general intelligence can be attributed in part to individual differences in the effectiveness with which general components are performed. Since these components are common to all of the tasks in a given task universe, factor analyses will tend to lump these general sources of individual-differences variance into a single general factor. As it happens, the metacomponents have a much higher proportion of general components among them than do any of the other kinds of components, presumably because the executive routines needed to plan, monitor, and possibly replan performance are highly overlapping across tasks of a widely differing nature. Thus, individual differences in metacomponential functioning are largely responsible for the persistent appearance of a general factor in mental-test data.

Metacomponents are probably not solely responsible for "g," however. Most behavior, and probably all of the behavior exhibited on intelligence tests, is learned. There may be certain acquisition components general across a wide variety of learning situations, which also enter into the general factor. Similarly, components of retention and transfer may also be common to large numbers of tasks. Finally, certain aspects of performance—such as encoding and response—are common to virtually all tasks, and they, too, may enter into the general factor. Therefore, although the metacomponents are primarily responsible for individual differences in general intelligence, they are almost certainly not solely responsible. Acquisition, transfer, retention, and performance components that are general across tasks also can be expected to contribute to individual differences in the general factor underlying intelligent performance.
In the second part of the chapter, we have given a very compact view of the nature of components and of how components enter into general intelligence. We proceed now to describe in some detail the methods of two as yet unpublished experiments addressed primarily to the question of what is general intelligence (Sternberg & Gardner, 1980), and then describe more briefly other experiments upon which we shall draw that also address this question (Sternberg, 1977a; Sternberg & Nigro, 1980; Sternberg & Rifkin, 1979; Sternberg & Salter, 1980).

Some Experimental Paradigms for Isolating the Information-Processing Origins of General Intelligence

We have conducted a number of experiments that have led us to the views described in the preceding part of the chapter. In terms of our present exposition, two particular experiments have been central to our conceptualizations, and several other experiments have been peripheral to these conceptualizations.

The "Central" Paradigm

The basic problem we confronted is that of isolating the information-processing origins of the general factor in human intelligence. Our basic strategy was to (a) select items that have been shown in the past to be excellent measures of $g$; (b) model response choices and response times in each of these items; (c) examine what emerged as common across the models and the tasks; and (d) propose an information-processing account of $g$ on the basis of the observed communalities (Sternberg & Gardner, 1980).

In most psychometric investigations of intelligence, the psychometric technique upon which the investigation has been based has been factor analysis. In such investigations, a representative sample of subjects from a population of interest would be given a range of tests sampling a wide variety of mental abilities, such as vocabulary, analogies, spatial visualization-
Componential Interpretation

A thorough analysis of general intelligence, classification, memory, and word fluency; then, an intercorrelation matrix would be computed between all possible pairs of these tests; next, the intercorrelation matrix would be factor analyzed to yield hypothesized latent sources of individual differences in the observable test scores; finally, interpretations would be assigned to these factors on the basis of the clusters of tests that showed high or low loadings on the various factors.

In our investigation of general intelligence, we also drew heavily upon a psychometric technique for analysis of the data. The technique we used was nonmetric multidimensional scaling rather than factor analysis, however (see Kruskal, 1964a, 1964b; Shepard, 1962a, 1962b, 1974). In our use of this technique, the goal was to discover the dimensions underlying a hypothetical semantic space comprising names of mammals, such as "lion," "tiger," "giraffe," "beaver," "donkey," and "rabbit." In a typical multidimensional-scaling study, subjects are asked to rate the similarity (or dissimilarity) between all possible pairs of terms to be scaled, which, in our case, was 30 mammal names. Next, a proximity matrix is formed comprising the mean rated similarity (or dissimilarity) of each term to every other term. It is usually assumed in advance that the matrix is reflexive (i.e., the dissimilarity between a term and itself is zero), symmetrical (i.e., that the dissimilarity between one term and another is equal to the dissimilarity between the second term and the first), and that the triangle equality is satisfied (i.e., that if the distance between a first term and a second term is large, and the distance between that first term and a third term is large, then the distance between the second term and the third term is also large). Then, the multidimensional scaling algorithm is applied to the similarity or dissimilarity data, using only ordinal properties of the data, and yielding a psychological space comprising underlying dimensions of relationship among stimuli. Finally, the
dimensions are interpreted on the basis of clusters of stimuli that have high or low loadings on each of the dimensions.

We were spared the need of actually doing the scaling ourselves by the fact that it had been done earlier on the set of mammal names by Henley (1969), who used a variety of different measures of relationship as input to the scaling algorithm and found striking consistencies in the outcome space without regard to the measure of relationship used. Henley found that the relations among mammal names could be captured very well by a three-dimensional spatial solution, with dimensions of size, ferocity, and human-ness. For example, a gorilla would have a high loading on all three of these dimensions, whereas a beaver would have a low loading on all three. Henley used orthogonal dimensions in her solution, so that for the total set of mammal names, there was no correlation between loadings on pairs of dimensions.

We used the mammal names from the Henley (1969) scaling of proximity data to form 30 mammal-name analogies, series completions, and classifications. The analogies were taken from Rumelhart and Abrahamson's (1973) study of analogical reasoning with mammal names; the classifications and series completions were of our own construction. In Experiment 1, we administered each item untimed in four-choice, multiple-option format, with the subjects' task to rank-order each of the options in terms of its goodness of fit as a possible solution. In Experiment 2, we administered the same items, retaining just two of the four options; in this experiment, subjects were asked to select the better option as rapidly as they could. Examples of items are shown in Table 1. Subjects in the two experiments were 30 and 36 (different) college undergraduates respectively; obviously, our subject pool was not representative of the general population (in this or any of our experiments). Subjects received the three reasoning tasks in counterbalanced order, and then received a set of mental ability tests stressing reasoning abilities.

Insert Table 1 about here
The "Peripheral" Paradigms

Sternberg (1977a) administered schematic-picture, verbal, and geometric analogies tachistoscopically to Stanford undergraduates. The first two kinds of analogies were presented in true-false format; the last kind was presented in forced-choice format. The analogies were standard in form (A : B :: C : D, where D could be either a true or false completion or one of two answer options), and were easy enough to allow almost error-free performance in the subject population.

Sternberg and Nigro (1980) administered verbal analogies to 20 students in each of grades 3, 6, 9, and college. The college students were Yale undergraduates; the other students were public-school students from a middle-class suburb of New Haven. All subjects received the same 180 verbal analogies in which vocabulary level was restricted to grade 3 or below according to the Thorndike-Lorge norms. Analogies were presented in three formats differing in the numbers of terms in the analogy stem versus in the analogy options. Specifically, the number of terms in the analogy stem could be either three, two, or one. The remaining terms were options. Consider an example of each format: (a) NARROW : WIDE :: QUESTION : (trial) (statement) (answer) (task); (b) WIN : LOSE :: (dislike : hate) (ear : hear) (enjoy : like) (above : below); (c) WEAK : (sick :: circle : shape) (strong :: poor : rich) (small :: garden : grow) (health :: solid : firm). Each option appeared on a separate line of print. Numbers of answer options varied from two to four. Items were presented tachistoscopically, and subjects were told to respond as quickly as possible.

Sternberg and Rifkin (1979) administered schematic-picture analogies to between 15 and 21 parochial-school children in each of grades 2, 4, and 6, and college-level adults at Yale. Analogies were presented in forced-choice format in 24 test booklets, each containing 16 analogies composed of binary attributes.
Componential Interpretation

including height (tall, short), garment color (black, white), sex (male, female), and weight (fat, thin) (as in Sternberg, 1977a). Items within each of the 24 booklets were homogeneous in terms of the number of attributes varied from the first term to the second, from the first term to the third, and between the two answer options. Since identities of actual values on attributes varied across analogies, however, no two analogies were identical. Each booklet was timed for 64 seconds. The main dependent variable, solution latency for items correctly answered, was computed by dividing 64 by the number of items correctly completed in a given booklet.

Sternberg and Salter (1980) (see also Sternberg, in press-c) administered to 20 Yale undergraduates verbal analogies that differed from standard analogies in that the positions of from one to three analogy terms could be occupied by multiple-choice options. The particular positions that were thus occupied differed from one item type to another. Either two or three alternative answer options were substituted for each missing analogy term (see also Lunzer, 1965). An example of such a problem is MAN : SKIN : : (dog, tree) : (bark, cat). The correct answers are "tree" and "bark." The complete set of formats include the following item types, where terms with the subscript 1 are missing ones with either two or three answer options substituted for the missing term: \( A_1 : B :: C : D; A : B_1 :: C : D; A : B :: C_1 : D; A : B :: C : D_1; A_1 : B :: C_1 : D_1; A : B :: C_1 : D_1; \) and \( A : B :: C_1 : D_1. \)

Item types from these peripheral paradigms, as well as those from the central paradigm, form the basis of the task analyses presented in the next part of the chapter.
Componential Interpretation

Componential Investigations of General Intelligence

We have proposed a metatheoretical framework for theory construction in a recent chapter (Sternberg, in press-e) that comprises a list of questions that a complete theory of intelligence ought at least to be able to address. We shall organize our discussion of our componential investigations of general intelligence around the questions proposed by this framework.

1. **What kind or kinds of problems does the theory address?** Any attempt to provide an information-processing account of general intelligence (or any other kind of account) must start off with an appropriate set of tasks on the basis of which conclusions about general intelligence will be drawn. If the set of tasks is inappropriate, obviously, it doesn't matter much what kind of theorizing follows from it. In our approach, tasks are selected on the basis of four criteria originally proposed by Sternberg and Tulving (1977) in a different context and proposed in the present context by Sternberg (in press-d): quantifiability, reliability, construct validity, and empirical validity. The first criterion, quantifiability, assures the possibility of the "assignment of numerals to objects or events according to rules" (Stevens, 1951, p. 1). The second criterion, reliability, measures true-score variation relative to total-score variation. In other words, it measures the extent to which a given set of data is systematic. The third criterion, construct validity, assures that the task has been chosen on the basis of some psychological theory. The theory thus dictates the choice of tasks, rather than the other way around. The fourth criterion, empirical validity, assures that the task serves the purpose in the theory that it is supposed to serve. Thus, whereas construct validity guarantees that the selection of a task is motivated by theory, empirical validity tests the extent to which the theory is empirically supportable.
Our choice of tasks in the investigation of general intelligence has included as its mainstays analogies, series completions, and classifications. The choice of these tasks was motivated largely by the criteria described above. First, performance on each of these tasks is readily quantifiable in terms of solution latency, error rate, response choice, and the like. Second, performance on these tasks has been reliably measured in countless tests of mental ability, as well as in a number of information-processing analyses of human intelligence. Third, the construct validity of these item types has been demonstrated in multiple ways. Factor analyses of intelligence-test batteries have shown these three kinds of items to be among those loading most highly on the general factor (see Cattell, 1971; Guilford, 1967; Guilford & Hoepfner, 1971; Spearman, 1927; Thurstone, 1938). These tasks have played a central role in information-processing analyses of intelligence (see, e.g., Evans, 1968; Greeno, 1978; Mulholland, Pellegrino, & Glaser, 1980; Pellegrino & Glaser, 1980; Simon, 1976; Sternberg, 1977b, 1979) as well as in psychometric investigations; and they have even played an important role in Piagetian investigations (see, e.g., Piaget, 1972; Piaget with Montangero & Billeter, 1977). Indeed, the inclusion of these item types in so many theoretical investigations as well as practical measurements of intelligence strongly attests to their construct validity. Finally, the items have been shown in correlational analyses (usually presented in technical manuals for tests) to be highly correlated both with total scores on the test batteries in which they are contained and with external kinds of performance, such as school grades (see, e.g., Cattell & Cattell, 1963).

We make no claim that these are the only item types one might have chosen to study as an entree to the general factor in intelligence, or even that they are the best item types to study. Another likely candidate, for example, is
the matrix problem, which we interpret as consisting of multiple converging series completions presented in two dimensions (see, e.g., Hunt, 1974). We do believe, however, that our set of three tasks comprises an appropriate, although obviously incomplete, battery on the basis of which one may begin to analyze the general factor in human intelligence.

2. **What performance components are posited by the theory?** A theory of general intelligence should state the performance components involved (either necessarily or optionally) in solution of the kinds of items dealt with by the theory. Investigators differ, of course, in where their ideas come from regarding the components used. They may do an implicit task analysis by going through a task themselves; they may use verbal reports supplied by subjects after testing; they may use think-aloud protocols supplied by subjects during test; or they may use their intuitions to expand or modify previous theories. Whatever their origin, the performance components should be specified and described.

The proposed theory posits use of up to seven performance components in the solution of analogies, series completions, and classification problems. The components are most easily explicated and their use in the task contexts shown by some examples of how they might be used in the solution of actual test problems as might be found on intelligence tests.

Consider as an example the analogy, LAWYER : CLIENT :: DOCTOR : (a. medicine, b. patient). According to the theory, a subject encodes each term of the analogy, retrieving from semantic memory and placing in working memory attributes that are potentially relevant for analogy solution; next, the subject infers the relation between LAWYER and CLIENT, recognizing, say, that a lawyer provides professional services to a client; then, the subject maps the higher-order relation between the first and second halves of the analogy, here recog-
nizing that the first half of the analogy deals with the services of the legal profession and that the second half of the analogy deals with the services of the medical profession; next, the subject applies the relation inferred between the first two terms from the third analogy term, here, DOCTOR, to form an ideal point representing the ideal solution to the analogy; then, the subject compares answer options, seeking the ideal solution from among the answers presented; if none of the answer options corresponds to the ideal point, the subject must justify one of the answer options as preferable to the others, in that it is closest to the ideal point; in a rank-ordering task, multiple justifications may be needed as successive options are eliminated; finally, the subject responds with the chosen answer.

The same basic model can be extended to series completion problems. Consider, for example, the series completion, TRUMAN : EISENHOWER : (a. F. Roosevelt, b. Kennedy). The subject must encode each term of the series completion. Next, he or she infers the relation of succession between TRUMAN and EISENHOWER. Mapping is not necessary in this and other series problems, because there is no distinction between domain and range: All terms of the problem derive from a single, homogeneous domain, here, that of presidents of the United States. The subject must, however, apply the relation inferred between TRUMAN and EISENHOWER from EISENHOWER to an ideal point, presumably, Kennedy. Next, the subject compares the answer options, seeking the one corresponding to the ideal point. If neither option (or in the case of more than two options, none of the options) corresponds to the ideal point, the subject justifies one option as closest to the ideal point. Suppose, for example, that option (b) was L. Johnson rather than Kennedy. This option would be preferable to F. Roosevelt, in that it names a successor to EISENHOWER, but would be nonideal, in that it does not name an immediate successor. Finally, the subject responds with the chosen answer. As in the case of analogies, the
rank-ordering task would require multiple justifications to determine which option is closest to the ideal point, of those options not yet ranked.

The model can also be extended to classification problems. Consider, for example, the problem, NEBRASKA, CALIFORNIA, VERMONT, (a. Texas, b. Reno). The subject must encode each term of the problem. Next, the subject must infer what is common to NEBRASKA, CALIFORNIA, and VERMONT, in essence seeking a prototype or centroid that abstracts what is common to the three terms; as was the case in the series completion problems, the subject need not map any higher-order relation, since all of the terms of the problem are from a single, homogeneous domain. In classification problems, application is also unnecessary, because the inferred centroid is the ideal point: The subject need not extrapolate in any way to seek some further ideal point. Next, the subject compares the answer options, seeking the ideal solution. If none is present, the subject justifies one option as closer to the ideal point than the other(s). Finally, the subject responds. As in the case of analogies and series completions, rank-ordering the options requires multiple executions of the justification component. Ranking in these problems and in the series completions proceeds according to a decision rule to be described.

The components of information processing in the three tasks are slightly different: The analogies task requires the full set of seven information-processing components; the series completion task requires a subset of six of the seven parameters in the analogies task; the classification task requires a subset of five of the six parameters in the series completion task. Thus, one would expect that for problems with terms of equal difficulty, analogies would be slightly more difficult than series completion problems, and series completion problems would be slightly more difficult than classification problems. In fact, mean latencies follow this predicted pattern.
The performance components described above are posited to be sufficient for describing the flow of information processing from the beginning to the end of task solution. Each contributes in some amount to the latency and difficulty of a given task item. In order to account for subjects' choices of response alternatives, it is necessary to supplement these components with a decision rule for option selection. The decision rule we use, following Rumelhart and Abrahamson (1973), is Luce's (1959) choice axiom. We further propose, as did Rumelhart and Abrahamson, that relative rankings of answer options follow a negative exponential decay function, with the form of the decay function in part determined by the representation of information that is used. We shall describe our implementation of the rule further in the next section on representation.

3. Upon what representation or representations do these components act? We doubt that there is any known test that is reasonably conclusive in distinguishing one form of representation from another. We therefore tend to assume our representations, and accept as indirect evidence supporting them the fits of process or response-choice models that are based upon these representations.

We believe that the form of representation a subject uses in solving a problem depends in part upon the content of the particular problem, and in part upon the subject's own preferences. In a standard item from an intelligence test, such as the analogy WASHINGTON : 1 :: LINCOLN : (a. 10, b. 5), for example, we believe subjects are likely to use an attribute-value representation. In such a representation, WASHINGTON might be encoded as

\[
\{ \text{president (first)}, \text{portrait on currency (dollar)}, \text{war hero (Revolutionary)} \}
\]

1 might be encoded as

\[
\{ \text{counting number (one)}, \text{ordinal position (first)}, \text{amount (one unit)} \}
\]

LINCOLN might be encoded as

\[
\{ \text{president (sixteenth)} \}
\]
Componential Interpretation

(portrait on currency (five dollars)), (war hero (Civil)), and so on. The attribute-value representation can be extended to pictorial as well as verbal kinds of items. A black square inside a white circle, for example, might be represented as (((shape (square)), (position (surrounded)), ((color (black))), ((shape (circle)), (position (surrounding)), ((color (white)))).

In our joint research on mammal-name analogies, we have assumed the spatial representation of mammal names used by Henley (1969), Rips, Shoben, and Smith (1973), and Rumelhart and Abrahamson (1973). The conceptual basis for the use of this representation in reasoning was first provided by these last investigators. Rumelhart and Abrahamson suggested that reasoning occurs when information retrieval depends upon the form of one or more relationships among words (or other units). Pursuing this definition of reasoning, these investigators claimed that probably the simplest possible reasoning task is the judgment of the similarity or dissimilarity between concepts. They assumed that the degree of similarity between concepts is not directly stored as such, but is instead derived from previously existing memory structures. Judged similarity between concepts is a simple function of the "psychological distance" between these concepts in the memory structure. The nature of this function and of the memory structure upon which it operates is clarified by their assumptions (after Henley, 1969) that (a) the memory structure may be represented as a multidimensional Euclidean space and that (b) judged similarity is inversely related to distance in this space.

On this view, analogical reasoning (and, as we shall show, other forms of reasoning as well) may itself be considered to be a kind of similarity judgment, one in which not only the magnitude of the distance but also the direction is of importance. For example, we would ordinarily interpret the analogy problem, $A : B :: C : X_f$, as stating that $A$ is similar to $B$ in
Componential Interpretation

exactly the same way that C is similar to X_i. According to the assumptions
outlined above, we might reinterpret this analogy as saying that the directed
or vector distance between A and B is exactly the same as the vector distance
between C and X_i. The analogy is imprecise to the extent to which the two
vector distances are not equal.

Rumelhart and Abrahamson formalized the assumptions of their model by
stating that given an analogy problem of the form A : B :: C : (X_1, X_2, ..., X_n),
it is assumed that

A1. Corresponding to each element of the analogy problem there is a
    point in an m-dimensional space....

A2. For any analogy problem of the form A : B :: C : ?, there exists a
    concept I such that A : B :: C : I and an ideal analogy point, denoted I
    such that I is located the same vector distance from C as B is from A. The
    coordinates of I are given by the ordered sequence \( c_i + b_i - a_i \), \( i = 1, m \).

A3. The probability that any given alternative X_i is chosen as the best anal-
    ogy solution from the set of alternatives X_1, ..., X_n is a monotonic
    decreasing function of the absolute value of the distance between the point
    X_i and the point I, denoted \( |X_i - I| \). (p. 4)

The first assumption simply states that the concepts corresponding to the
elements of the analogy exist and are locatable within the m-dimensional
space representing the memory structure. The second assumption states that
an ideal solution point also exists within the memory structure, and that this
point also represents a concept; it is quite likely that the ideal point may
not have a named mammal in the English (or any other) language. The third
assumption states that the selection of a correct answer option is governed
by the distance between the various answer options and the ideal point, such
that less distant answer options are selected more often than are more distant
answer options.
These assumptions permit ordinal predictions about the goodness of the
various answer options, but do not permit quantitative predictions. In order
to make quantitative predictions of response choices, Rumelhart and Abrahams-
son made assumption 3 more specific, and added two more assumptions:

3'. The probability that any given alternative $X_j$ is chosen from the set
of alternatives $X_1, \ldots, X_n$ is given by

$$Pr(X_j | X_1, \ldots, X_n) = \frac{v(d_j) / \sum_j v(d_j)}{\sum_j v(d_j)},$$

where $v(\cdot)$ is a monotonically decreasing function of its argument.

4. $v(x) = \exp(-\alpha x)$, where $\alpha$ is a positive number.

5. We assume that the subjects rank a set of alternatives by first
choosing the Rank 1 element according to 3' and, then, of the remaining
alternatives, deciding which is superior by application of 3' to the
remaining set and assigning that Rank 2. This procedure is assumed to
continue until all alternatives are ranked. (pp. 8-9)

The more specific version of assumption 3 (labeled 3') is an adoption of
Luce's (1959) choice rule to the choice situation in the analogy. Assumption
4 further specifies that the monotone decrease in the likelihood of choosing
a particular answer option as best follows an exponential decay function with
increasing distance from the ideal point. The model of response choice there-
fore requires a single parameter, $\alpha$, representing the slope of the function.

Rumelhart and Abrahamson actually had their subjects rank-order answer options.
The investigators predicted the full set of rank orderings by assuming (in
assumption 5) that once subjects had ranked one or more options, they would
rank the remaining options in exactly the same way that they had ranked the
previous options, except that they would ignore the previously ranked options
in making their further rankings. Rumelhart and Abrahamson (1973) carried out
three ingenious experiments that lent credence to their response-choice model
of analogical reasoning.
We proposed a modest extension of the Rumelhart-Abrahamson model so that it could account for response choices in series completion and classification problems as well as in analogy problems. Figure 1 shows how the extended model accounts for response choices in each of the three types of problems.

Consider an analogy problem of the form, $A : B :: C : (D_1, D_2, D_3, D_4)$, where the subject's task is to rank-order the answer options in terms of how well their relation to $C$ is parallel to that between $B$ and $A$. In an analogy problem such as this one, the subject must find an ideal point, $I$, that is the same vector distance from $C$ as $B$ is from $A$. Having found this point, the subject rank-orders answer options according to their overall Euclidean distance from the ideal point. The probability of selecting any one answer option as best is assumed to follow an exponential decay function, with probability decreasing as distance from the ideal point increases. The same selection rule is applied in rank-ordering successive options, with previously selected options removed from consideration.

Consider next a series completion problem of the form, $A : B : (C_1, C_2, C_3, C_4)$, where the subject's task is to rank-order the answer options in terms of how well they complete the series carried from $A$ to $B$. Here, the subject must find an ideal point, $I$, that is the same vector distance from $B$ that $B$ is from $A$. Note that the difference between a series completion problem and an analogy is that whereas the terms of an analogy form a parallelogram (or its $n$-dimensional analogue) in the multidimensional space, the terms of a series completion form a line segment (or its $n$-dimensional analogue) in the space. The same principle would apply, regardless of the number of terms in the item stem. Having found the ideal point, the subject rank-orders answer options with respect to the ideal
point in just the same way that he or she would in an analogy problem.

Consider finally a classification problem of the form, A, B, C, (D₁, D₂, D₃, D₄), where the subject's task is to rank-order the answer options in terms of how well they fit with the three terms of the item stem. In this type of problem, the subject must find an ideal point, I, that represents the centroid in multidimensional space of A, B, and C. Having found this point, the subject rank-orders the answer options according to their overall Euclidean distance from the ideal point, in just the same way as he or she would for analogies or series completions. Again, the same basic principle applies without regard to the number of terms in the item stem. The centroid of the points is theorized always to serve as the ideal point.

Thus, we believe that the spatial representation can be used, at least in the context of terms falling into a semantic field, to represent information in a way that is suitable for the solution of three of the main types of problems used to measure general intelligence— analogies, series completions, and classifications.

4. By what strategy or strategies are the components combined? Strategy refers to the order and mode in which components are executed. By "mode," we refer to whether the execution of a given set of components is serial or in parallel, exhaustive or self-terminating, and independent or nonindependent. In serial processing, components are executed sequentially; in parallel processing, they are executed simultaneously. In exhaustive processing, all possible executions of a given component or set of components are performed; in self-terminating processing, execution of components terminates before all possible executions have occurred. In independent processing, the execution of a given component has no effect upon whether any other component is executed; in dependent processing, execution of one component does affect whether one or
more other components are executed.

In the Sternberg-Gardner experiments, we addressed the question of strategy only at a rather global level. The tests of the process model (in Experiment 2) were designed primarily to identify the components subjects actually used in solving the problems, rather than to identify how these components were combined. Our best evidence indicates that for the analogies, subjects would (a) encode the first term, (b) encode the second term, (c) infer the relation between the two terms, (d) encode the third term, (d) map the higher-order relation from the first half of the analogy to the second, (e) apply the previously inferred relation as mapped to the second half of the analogy to generate an ideal solution, (f) encode the two answer options, (g) compare the options, (h) justify one of the options as preferred, if nonideal, and (i) respond. For the series completions, we believe subjects would (a) encode the first term, (b) encode the second term, (c) infer the relation between the two terms, (d) apply the inferred relation to generate an ideal solution, (e) encode the two answer options, (f) compare the options, (g) justify one of the options as preferred, if nonideal, and (h) respond. For the classifications, subjects would (a) encode the first term, (b) encode the second term, (c) encode the third term, (d) infer the centroid, (e) compare the two answer options, (f) justify one of the options as preferred, if nonideal, and (g) respond.

More penetrating analyses of subjects' strategies were conducted in the analogical-reasoning experiments of Sternberg (1977a), Sternberg and Nigro (1980), and Sternberg and Rifkin (1979). These analyses enabled us to form detailed process models for the solution of each type of analogy. A flow chart representing the strategy most often used by adults for a wide variety of analogy types (schematic-picture, verbal, geometric) would show that
subjects encode and infer as many attributes as they can find (exhaustive information processing), but map, apply, compare, and justify only a limited number of attributes (self-terminating processing). Subjects execute the self-terminating components in a self-terminating loop whereby they map, apply, and compare a single attribute at a time, seeking to disconfirm all but one answer option and then to justify one as acceptable; if the loop does not yield a satisfactory solution the first time around, it is iterated, this time with a second attribute. The process continues until it is possible to select one answer as the best of the given ones. Note that in this strategy, all components are assumed to be executed serially, and there is heavy process dependence in the sense that the outputs of earlier component executions are needed for later component executions. We have never actually compared serial versus parallel models of task performance, being convinced that the comparison is an extremely difficult one to carry out (see Pachella, 1974).

5. What are the durations, difficulties, and probabilities of component execution? Table 2 shows parameter estimates for latencies of each component that was common to each of the three tasks studied in the Sternberg-Gardner experiments (except for inference, which was not statistically reliable in all three cases). If the three tasks truly involve the same components of information processing, then the parameter estimates should be equal within a margin of error of estimation across tasks. A one-way analysis of variance was conducted across tasks upon each of the four parameter estimates of interest. Only the value of the justification parameter differed significantly across tasks (at the .001 level). Hence, the data are consistent with the notion that at least three of the components are common in kind across tasks, although obviously, further tests are needed. Justification could still be common across tasks but differentially difficult to execute, so that the existence of a significant

Insert Table 2 about here
difference does not totally refute the claim that the components are the same. Values of latency components differ, of course, with item content and format. We found, for example, that component latencies are generally lower for simple schematic-picture analogies than for simple verbal analogies, and lower for the verbal analogies than for geometric ones. What is of greatest interest is the relative amounts of time the various components consume. Encoding is always quite time-consuming, and the proportion of time it consumes is directly proportional to the complexity of the stimulus terms. The latency of response is about the same for different kinds of analogies, although the estimated parameter may differ as a function of other components that are sometimes confounded with response. (This confounding happens because response is estimated from the regression constant, which includes within it any source of latency that is common across all of the item types.) The amounts of time devoted to the other components vary greatly with analogy type, although it has been found that even small discrepancies between the ideal solution and the best of the given answer options can result in fairly substantial amounts of time spent in justifying this answer option as best, although nonideal (Sternberg, 1977a, 1977b).

Sternberg (1977a, 1977b) predicted error rates as well as latencies for item solution. The finding of major interest was that self-terminating components were largely responsible for the errors that were made in item solution. In other words, the time saved by terminating information processing early is paid for in terms of the greater frequency of errors that are made due to what turns out to be premature termination of processing.

Sternberg and Gardner (1980) estimated \( \bar{f} \) as 2.52 for analogies, 2.56 for series completions, and 2.98 for classifications. Although these values did differ significantly from each other (due, obviously, to the higher value
Componential Interpretation

28

of \( \alpha \) for the classification task), they are certainly in the same ballpark, and even the most extreme value corresponds roughly to that obtained by Rumelhart and Abrahamson for their analogies, 2.91.

The fits of the proposed theory to the various kinds of data were generally quite good in all of the experiments. In the Sternberg (1977a, 1977b) experiments, values of \( R^2 \) between predicted and observed latencies were .92, .86, and .80 for schematic-picture, verbal, and geometric analogies respectively. Values of \( R^2 \) were .85 and .89 respectively in the Sternberg-Nigro (verbal analogies) and Sternberg-Rifkin (schematic-picture analogies) experiments. And values of \( R^2 \) were .77, .67, and .61 for the analogies, series completions, and classifications in the Sternberg-Gardner experiment. For the model of response choice in this study, the values of \( R^2 \) were .94, .96, and .98 for analogies, series completions, and classifications, respectively.

6. **What metacomponents are used in this form of information processing?**

We have proposed six metacomponents that we believe are critical in understanding intelligent information processing (Sternberg, in press-):

1. **Recognition of just what the problem is that needs to be solved.** Anyone who has done research with young children knows that half the battle is getting the children to understand just what is being asked of them. Communication can also be a problem with adults, of course. Indeed, Resnick and Glaser (1976) have argued that intelligence is in large part the ability to learn in the absence of direct or complete instruction. Distractors on intelligence tests are frequently chosen so as to be the right answers to the wrong problems, so that they are chosen by those who do not recognize the problem that has been presented to them.
We found a rather striking example of the operation (or failure to operate) of this metacomponent in our developmental study with schematic-picture analogies (Sternberg & Rifkin, 1979). In this experiment, certain second-graders consistently circled as correct one or the other of the first two analogy terms, rather than one or the other of the last two terms that constituted the answer options. We were puzzled by this systematic misunderstanding until we put together three facts—(a) that we were testing children in a Jewish parochial school, (b) that the children normally did their lessons in English in the morning and in Hebrew in the afternoon, and that (c) we happened to be doing our testing in the afternoon. Apparently, some of these young children perseverated in their normal afternoon right-to-left visual scanning, even in a task presented in English and where it was explicitly stated that the options were at the right. In the verbal analogies experiment of Sternberg and Nigro (1980), we also found a failure in the operation of this metacomponent: Some of the younger children (third and sixth graders) used association between words heavily in solving analogies, despite the fact that the task was presented as an analytical reasoning task.

(2) **Selection of lower-order components.** An individual must select a set of lower-order (performance, acquisition, retention, or transfer) components to use in the solution of a given task. Selection of a nonoptimal set of components can result in incorrect or inefficient task performance. In some instances, choice of components will be partially attributable to differential availability or accessibility of various components. For example, young children may lack certain components that are necessary or desirable for the accomplishment of particular tasks, or may not yet execute these components in a way that is efficient enough to facilitate task solution.
Two examples of changes in the selection of metacomponents with age come from our research on the development of analogical reasoning. First, we have found that young children (in Piagetian terms, those who are not yet formal-operational or even transitional into this period of development) do not map higher-order relations between the two halves of an analogy in their solution of analogy items. The mapping component is apparently either unavailable or inaccessible to such children (Sternberg & Rifkin, 1979). Comparable results have been found by others as well (see, e.g., Piaget with Montangero and Billeter, 1977). Second, we have found that whereas younger children are quite prone to use an associative component in their solution of analogies, older children (those who are well into formal-operational thinking) do not (Sternberg & Nigro, 1980). Again, these results are consistent with those of others (see, e.g., Achenbach, 1970, 1971).

(3) Selection of a strategy for combining lower-order components.

In itself, of course, a set of components is insufficient to perform a task: The components must be combined into a strategy. Strategy selection, like component selection, depends in part upon developmental level. In our developmental research on analogies, for example, we have found that children tend to modify their strategy for solving analogies as they grow older such that the strategy becomes increasingly more nearly exhaustive. The tendency to become more nearly exhaustive in information processing applies both within and between terms of analogies: Older children are more likely to encode as many attributes of each analogy term as they can and to infer as many relations between attributes of the first two analogy terms as they can than are younger children (Sternberg & Rifkin, 1979); the older children are also more likely to search through all of the answer options in a given analogy, rather than choosing an answer as soon as they see an option that seems potentially appropriate (Sternberg & Nigro, 1980).
(4) **Selection of one or more representations or organizations for information.** A given component is often able to operate upon any one of a number of different possible representations or organizations for information. The choice of representation or organization can facilitate or impede the efficacy with which the component operates. In our research on the development of analogical reasoning, we have found evidence of changes in representation with age. Specifically, younger children are more likely to encode each of the attributes of a schematic-picture analogy separably, and then to make comparisons on each of the individual attributes; older children are more likely to integrate attributes and to treat the schematic pictures in a configural way (Sternberg & Rifkin, 1979, Experiment 2). We have also found at least tentative evidence of individual differences in representations in adults. In our animal-name reasoning studies, we found that some individuals were more prone to use overlapping clusters of animal terms in addition to spatial dimensions than were others. For example, such a person might try to facilitate their analogy solution by realizing that animals like a tiger, lion, and panther are related in terms of dimensions such as size, ferocity, and humanness, but also in their all being jungle animals. Cats and dogs, on the other hand, are domesticated pets. But a household cat is related to the jungle animals by virtue of its being a feline animal, whereas a dog is not. The idea, then, is that animals are interrelated in a network of overlapping clusters that complements their dimensional attributes.

(5) **Decision regarding allocation of componential resources.** One of the barriers problem solvers encounter in solving problems is in the processing capacity they can bring to bear on a problem. Given that one's resources are limited, one must decide how many resources one can bring to bear on any given problem, given that there are usually competing demands for these resources.
An example of differential resource allocation in action can be seen in our research on analogies with both children and adults. First, as children grow older, their latencies for analogy solution decrease. However, this composite latency can be decomposed into a series of component latencies that show that the global result is a gross oversimplification of what happens in analogy solution. It turns out that older subjects spend relatively more time than do the younger subjects in encoding the stimulus terms, but relatively less time in operating upon these encodings (Sternberg & Rifkin, 1979, Experiment 1). Apparently, the older children realize that obtaining a good fix on the nature of the stimulus later enables on to process that stimulus more efficiently, and thereby to save time, overall. Second, better adult reasoners solve analogy problems more quickly than do poorer adult reasoners. But this result, too, is an oversimplification. Complementarily to the developmental finding is one that among adults, better reasoners tend to spend more time in encoding analogy terms than do poorer reasoners, but less time in operating upon these encodings (Sternberg, 1977a, 1977b). Thus, more sophisticated allocation of componential resources results in an overall improvement in performance.

(6) Solution monitoring. As individuals proceed through a problem, they must keep track of what they have already done, what they are currently doing, and what they still need to do; the relative importances of these three items of information may differ across problems, but nevertheless, all must be accomplished to some extent in every problem. That younger children are often less adept at solution monitoring than are older children is seen in the tendency of some of the second-graders in the pictorial analogies experiment to circle one of the two analogy terms at the left rather than the right of the problem (Sternberg & Rifkin, 1979). Almost all of the second-graders were
able to solve most analogies successfully, given that they understood what to do. The insensitivity of these subjects to the fact that right-to-left solution almost never yielded a suitable solution, much less, a suitable analogy, can be viewed as a failure of these subjects to monitor their solution processes adequately.

Even very young children do monitor their solutions to some extent, however. The use of solution monitoring in even the reasoning of very young children can be seen in the metacomponential decision of children of as young as the third-grade level to use a justification component in the solution of verbal analogies. The component continues to be used throughout the age span to adulthood. This performance component is elicited upon the recognition by a subject that none of the presented answer options in a multiple-choice analogy provides an ideal completion for the given problem. In such an event, the subject may have to justify one of the presented options as nonideal, but superior to the alternative options. The justification component is something of a "catchall," in that it includes in its latency any reexecution of previously executed performance components that may be attempted in an effort to see whether a mistaken intermediate result has been responsible for the subject's failure to find an optimal solution. The decision to use this component reflects an awareness on the part of the subject that things are not going quite right: The path to solution has reached a deadend, and some route must be found that will yield an ideal answer, or else an answer must be selected that is acceptable, if nonideal.

(7) What are the effects of (a) problem format, (b) problem content, and (c) practice upon intellectual performance? All of these variables have effect upon intellectual performance, at least in reasoning by analogy. Consider, for example, the effect of true-false versus multiple-choice format. In
true-false analogies, solution can be quite simple if analogies are essentially
digital in character, by which we mean that an answer is clearly either right
or wrong. In schematic-picture analogies, for example, specific attributes
such as height, clothing color, sex, and weight of pictures of people might
be manipulated: The correct answer would be one that had the appropriate
values on each of these four attributes. Suppose that one is asked instead
to solve verbal analogies, however. It is actually quite rare that any
given fourth term will be precisely correct; indeed, it is not even clear
what "precisely correct" means for verbal analogies. For example, is HAPPY :
SAD :: TALL : SMALL a true analogy or a false one? Usually, SHORT rather than
SMALL is contrasted antonymously to TALL. Whereas SMALL does not seem quite
right, it doesn't quite seem wrong either. Or consider the analogy, CAR : GAS
:: PERSON : FOOD. Obviously, the two lower-order relationships (between CAR
and GAS and between PERSON and FOOD) that comprise this analogy are parallel
in some ways, but not in others. On what basis could one say whether the analogy
is "true" or "false," however? In multiple-choice analogies, the situation is
different. On the one hand, one's task is complicated by the fact that it is
now necessary to eliminate several incorrect options, some of which may be quite
close to the best answer, rather than merely to indicate whether a given answer
is correct or not; on the other hand, one's task is to choose the best answer,
not the right answer. One can select an option knowing full well that it is
not right or ideal in any meaningful sense of those terms, but that it is the
best of the options that have been presented. The sources of difficulty are
thus changed considerably when one moves from true-false to forced-choice
analogical reasoning (Sternberg, 1977b).

The effects of problem content are sometimes hard to predict in advance.
Sternberg (1977a, 1977b), for example, found that people handle verbal and provo:
Componential Interpretation

35

analogies in surprisingly similar ways. Sternberg and Rifkin (1979), however, found that two kinds of schematic-picture analogies that on their face look quite similar are processed in quite different ways. Analogies with clearly separable attributes are processed with maximum self-termination by adult subjects; analogies with attributes that are integral are processed with a combination of self-terminating and exhaustive information-processing components.

Consider finally the effects of practice upon analogy solution. Sternberg (1977b) compared performance during a first session of schematic-picture analogy solution to performance during a fourth (and final) session. As would be expected, latencies and error rates decreased from the first session to the fourth. All components showed shorter latencies during the fourth session than during the first except for inference. There was no evidence of strategy change across sessions: Fits of the various models and variants of models were almost identical in the two different sessions. The most interesting difference showed up during external validation of scores: In the first session, no correlations of latencies for the analogy items with scores on reasoning tests were significant; in the fourth session, more than half of the correlations were significant, and many of them were of high magnitude, reaching into the .60s and .70s. Results such as these led Glaser (1967) to conclude that psychometric test scores are more highly correlated with performance after asymptote is reached than with performance during initial trials of practice.

8. What are the salient sources of individual differences in intellectual performance at a given age level? The major loci of individual differences in intellectual performance in the componential approach to intelligence reside in the various kinds of components of human intelligence. Each component of each kind potentially can generate individual differences in performance. Sternberg:
Componential Interpretation

(1977b) found substantial individual differences in the speeds at which the various performance components of analogical reasoning are executed, and in the degree to which subjects used any systematic strategy at all. No substantial individual differences were found in components or forms of representation used (although Sternberg & Gardner did find evidence of such representational differences). In terms of strategy differences, the main source of variation was that some adults seemed to be self-terminating in their inference process, although most were apparently exhaustive in this process.

9. What are the salient sources of individual differences in intellectual performance across age levels (i.e., in intellectual development)? We believe that the most important sources of developmental differences are metacomponential ones. Indeed, the section on metacomponents (No. 6) showed developmental trends in all of the metacomponents considered. On this view, the major source of development is in executive planning and decision making in problem solving. We have also found developmental differences in rates and accuracies of component execution (e.g., Sternberg, 1979a, 1980; Sternberg & Nigro, 1980; Sternberg & Rifkin, 1979). But the significance of these changes for development seems much smaller than the significance of the metacomponential changes, and indeed, we believe that these differences are attributable in large part to metacomponential changes. More efficacious planning and decision-making enable problem solvers to become more rapid and accurate in their problem solving. Consider, for example, the large decrease in error rates that have been observed in our developmental studies of analogical reasoning. Earlier analyses (Sternberg, 1977b) had shown that errors in analogy solution were due almost entirely to premature self-termination of information processing. This finding, coupled with the finding that children
become more nearly exhaustive in their information processing with increasing age, suggest that the tendency to become more nearly exhaustive may account at least in part for the developmental decrease in error rates that is observed.

10. **Relationships between components of various intellectual tasks.**

Individual parameter estimates were not reliable in the Sternberg-Gardner study, so it was not feasible to intercorrelate them. Intercorrelations were computed, however, between mean response latencies for subjects for each pair of data sets: The correlations were .85 between analogies and series completions, .86 between analogies and classifications, and .88 between series completions and classifications. A principal-components factor analysis of the three sets of latencies revealed a strong general factor in the individual-differences data, with the first, unrotated principal component accounting for 91% of the variance in the data. Had the tests shown no overlap in individual-differences variation (zero intercorrelations), this factor would have accounted for only 33% of the variation. The data are thus consistent with the notion that a single real-time information-processing model might apply across tasks.

A comparable set of analyses was performed on the ability-test scores: Here, the correlations were .72 between analogies and series completions, .45 between analogies and classifications, and .65 between series completions and classifications. A principal-components factor analysis of the three sets of test scores (numbers correct) revealed an unrotated, general first factor accounting for 74% of the variance in the individual-differences data. Again, such a factor would have accounted for only 33% of the variation had the tasks been unrelated. These results, too, therefore, are consistent with the notion of common processes across tasks.
Finally, intercorrelations were computed between task scores across the two forms of task presentation (tachistoscopic, leading to response latencies, and pencil-and-paper, leading to numbers correct). Correlations across task format were lower than those within format, as would be expected if there were at least some medium-specific variance that were not shared across task formats. Such medium-specific variance might result from differences across task formats in speed-accuracy tradeoffs, in attentional allocations for items presented singly (as in a tachistoscopic task) and for items presented as a group (as in a pencil-and-paper task), in kinds of strategy or other planning required, or in what is measured by latency and accuracy scores. The correlations ranged from -.21 to -.41, with a median for the nine inter-task correlations of -.35 (p < .05). Correlations of tasks with their analogues across formats (e.g., tachistoscopic analogies with pencil-and-paper) were only trivially higher than correlations of nonanalogous tasks across formats (e.g., tachistoscopic analogies with pencil-and-paper series completions). The median correlation for analogous tasks was -.35 (p < .05), whereas the median correlation for nonanalogous tasks was -.30 (p < .05). A factor analysis of the six tasks (three tachistoscopic and three pencil-and-paper) yielded a first, unrotated principal component accounting for 57% of the variance in the data. If tests were unrelated, a value of 17% would have been expected. As expected, the second unrotated principal component, accounting for 26% of the variance in the data, was a bipolar factor distinguishing pencil-and-paper tasks from response-latency ones. The general factor unifying the various kinds of tasks was thus about twice as strong as the medium-specific factor differentiating the two task formats. Subsequent factors were of little interest.
11. **What are the relationships between the components of the set of intellectual tasks of interest and general intelligence?** Sternberg (1977b) found that each of the major components in analogical reasoning— inference, mapping, application, justification—can correlate with performance on tests of general intelligence when the attributes of the analogies being solved are nonobvious. As would be expected, faster latencies were associated with higher test performance. The latency of the response component was also very highly correlated with IQ test scores, although this finding was given a metacomponential interpretation: Metacomponents constant across the item types were at least partly responsible for the high correlation between the regression constant and the test scores (see Sternberg, 1979). Finally, encoding was also correlated with test scores, but in the opposite direction (as mentioned earlier): Slower encoding was associated with higher reasoning abilities. This finding, too, was interpreted metacomponentially as indicating a strategy whereby slower encoding was associated with faster operations upon the better encodings that resulted, so that overall performance was facilitated. Many of these findings have since been replicated (e.g., Mulholland, Pellegrino, & Glaser, 1980).

12. **What are the practical implications of what we know about the forms of intellectual behavior covered by the given theory?** We have devised a training program for the metacomponents and performance components described earlier that we hope to implement in the near future (see Sternberg, in press). To date, we have done research only on training the performance components of analogical reasoning (see Sternberg, Ketron, & Powell, in press). We have found that it is possible to train people to use various different strategies for solving analogies, and that strategy training can greatly reduce correlation between component latencies and measured intelligence.
Sternberg (1977b) has argued that inductive reasoning such as that measured by series completions, classifications, and especially analogies is pervasive in everyday experience. "We reason analogically whenever we make a decision about something new in our experience by drawing a parallel to something old in our experience. When we buy a new pet hamster because we liked our old one or when we listen to a friend's advice because it was correct once before, we are reasoning analogically" (p. 99).

Oppenheimer (1956) has pointed out the signal importance of analogy in scientific reasoning of the kind done by scientists and even nonscientists on an everyday basis:

Whether or not we talk of discovery or of invention, analogy is inevitable in human thought, because we come to new things in science with what equipment we have, which is how we have learned to think, and above all how we have learned to think about the relatedness of things. We cannot, coming into something new, deal with it except on the basis of the familiar and old-fashioned. The conservatism of scientific enquiry is not an arbitrary thing; it is the freight with which we operate; it is the only equipment we have. (pp. 129-130)

Analogical reasoning also plays an important role in legal thinking, where it may be called "reasoning by example" (Levi, 1949):

The basic pattern of legal reasoning is reasoning by example. It is reasoning from case to case. It is a three-step process described by the doctrine of precedent in which a proposition descriptive of the first case is made into a rule of law and then applied to a next similar situation. The steps are these: similarity is seen between cases; next the rule of law inherent in the first case is announced; then the rule of law is made applicable to the second case. This is a method of reasoning necessary for the law, but it has characteristics which under other circumstances might be considered imperfections. (pp. 1-2)
Consider, in general, how the metatheoretical framework described in this chapter might be applied to diagnostic and prescriptive problems in educational and everyday theory and practice.

Suppose we know that a certain child is a poor reasoner. We might know this because of the child's low scores on psychometric tests of reasoning ability or because the child performs poorly in school on problems requiring various kinds of reasoning. The kinds of analyses suggested here yield a number of indices for each child (or adult) that can help localize the source of difficulty. These sources correspond to the basic sources of individual differences described earlier. One can discover whether certain components needed to solve one or more kinds of intellectual problems are unavailable, or available but not accessed when needed; whether the child is using a sub-optimal strategy, that is, one that is time-consuming, inaccurate, or unable to yield any solution at all; whether the child finds execution of certain components especially difficult or time-consuming; whether the child is inconsistent in his or her use of strategy; or whether the child fails in metacomponential decision-making about problem solution. This information can be used to prescribe the kind of remediation needed by the child.

Summary

To summarize, general intelligence can be understood componentially as deriving in part from the execution of general components in information processing behavior. Most general components are metacomponents, although performance, acquisition, retention, and transfer components also can be general in nature. Metacomponents dominate the information-processing system because they are the source of all direct activation of other kinds of components and because only they receive direct feedback from other kinds of components, as well as among themselves.
Componential metatheory requires a theory of general intelligence to deal with twelve questions about the nature of intelligence and its interaction with the real world. These questions were posed, and answers were given based on the research we and our colleagues have done using various componential techniques. The proposed theory was able at least to provide tentative answers to all of these questions.

We wish to emphasize in closing that we know, as should others, that our account of general intelligence is limited to one level of analysis, and is incomplete in many respects. We believe, for example, that the functioning of general intelligence in the real world cannot be understood completely without reference to the motivational variables that drive intellectual functioning, and hence that any account of general intelligence that is wholly cognitive (as is ours) cannot account for all of the behavioral patterns that we can reasonably label as "generally intelligent" (see also Zigler, 1971). Hence, we present our account as one step toward a more all-encompassing theory that will view intelligence in all of its multifarious aspects.
References


Humphreys, L. B. The construct of general intelligence. *Intelligence*, 1979, 3, 105-120.


Jensen, A. R. *g*: Out moded theory or unconquered frontier? *Creative Science*


Kruskal, J. B. Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis. *Psychometrika*, 1964, 29, 1-27. (a)

Kruskal, J. B. Nonmetric multidimensional scaling: A numerical method. *Psychometrika*, 1964, 29, 28-42. (b)


Shepard, R. N. The analysis of proximities: Multidimensional scaling with an unknown distance function. I. Psychometrika, 1962, 27, 125-140. (a)

Shepard, R. N. The analysis of proximities: Multidimensional scaling with an unknown distance function. II. Psychometrika, 1962, 27, 219-246. (b)


Sternberg, R. J. Component processes in analogical reasoning. Psychological Review, 1977, 84, 353-378. (a)


Sternberg, R. J. Isolating the components of intelligence. Intelligence, 1978, 2, 117-128. (b)

Sternberg, R. J. Developmental patterns in the encoding and combination of logical connectives. Journal of Experimental Child Psychology, 1979, 28, 469-498. (a)


Sternberg, R. J. Representation and process in linear syllogistic reasoning. Journal of Experimental Psychology: General, 1980, 109, 119-159. (b)

Sternberg, R. J. Toward a unified componential theory of human intelligence: I. Fluid abilities. In M. Friedman, J. Das, & N. O'Connor (Eds.), Intelligence and learning. New York: Plenum, 1980. (c)

Sternberg, R. J. Factor theories of intelligence are all right almost. Educational Researcher, in press. (a)

Sternberg, R. J. Instrumental and componential approaches to intelligence and its training. Proceedings of a Conference on Thinking and Learning Skills, Pittsburgh, in press. (b)
Sternberg, R. J. Intelligence and nonentrenchment. *Journal of Educational Psychology*, in press. (c)


Sternberg, R. J. Sketch of a componential subtheory of human intelligence. *Behavioral and Brain Sciences*, in press. (e)


Sternberg, R. J., Ketron, J. L., & Powell, J. S. Componential approaches to the training of intelligent performance. *Intelligence*, in press.


Footnote

Preparation of this chapter was supported by Contract N0001478C0025 from the Office of Naval Research to Robert J. Sternberg.
### Example of Problems Used in Mammal Names Reasoning Experiments

<table>
<thead>
<tr>
<th>Problem Type</th>
<th>Experiment</th>
<th>Response Choice</th>
<th>Response Time</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Analogy</strong></td>
<td>TIGER : CHIMPANZEE :: WOLF :</td>
<td>(a. RACCOON, b. CAMEL, c. MONKEY, d. LEOPARD)</td>
<td>(a. RACCOON, b. MONKEY)</td>
</tr>
<tr>
<td><strong>Series Completion</strong></td>
<td>SQUIRREL : CHIPMUNK :</td>
<td>(a. RACCOON, b. HORSE, c. DOG, d. CAMEL)</td>
<td>(a. HORSE, b. CAMEL)</td>
</tr>
<tr>
<td><strong>Classification</strong></td>
<td>ZEBRA, GIRAFFE, GOAT,</td>
<td>(a. DOG, b. COW, c. MOUSE, d. LEOPARD)</td>
<td>(a. MOUSE, b. LEOPARD)</td>
</tr>
</tbody>
</table>
Componential Interpretation

52

Table 2
Parameter Estimates for Latency Components

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Task</th>
<th>Parameter Estimate</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Analogies</td>
<td>1.22</td>
</tr>
<tr>
<td>Encoding</td>
<td>Series Completions</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>Classifications</td>
<td>.79</td>
</tr>
<tr>
<td></td>
<td>Analogies</td>
<td>.13</td>
</tr>
<tr>
<td>Comparison</td>
<td>Series Completions</td>
<td>.14</td>
</tr>
<tr>
<td></td>
<td>Classifications</td>
<td>.14</td>
</tr>
<tr>
<td></td>
<td>Analogies</td>
<td>.36</td>
</tr>
<tr>
<td>Justification</td>
<td>Series Completions</td>
<td>.18</td>
</tr>
<tr>
<td></td>
<td>Classifications</td>
<td>.24</td>
</tr>
<tr>
<td></td>
<td>Analogies</td>
<td>1.36</td>
</tr>
<tr>
<td>Response+</td>
<td>Series Completions</td>
<td>3.36</td>
</tr>
<tr>
<td></td>
<td>Classifications</td>
<td>2.93</td>
</tr>
</tbody>
</table>

Note: Parameter estimates, expressed in seconds, are unstandardized linear regression coefficients. Comparison was estimated as a "time savings" for greater distance, but is expressed here in unsigned form. All coefficients are statistically significant at the 5% level or better.
Figure Caption

Figure 1. Schematic diagrams showing rules for arriving at ideal point, \( \mathbf{I} \), in each of three induction tasks. In analogies, \( \mathbf{I} \) is located as the fourth vertex in a parallelogram having \( \mathbf{A}, \mathbf{B}, \) and \( \mathbf{C} \) as three given vertices. In series completions, \( \mathbf{I} \) is located as the completion of a line segment that is at the same vector distance from \( \mathbf{B} \) that \( \mathbf{B} \) is from \( \mathbf{A} \). In classifications, \( \mathbf{I} \) is the centroid of the triangle with \( \mathbf{A}, \mathbf{B}, \) and \( \mathbf{C} \) as vertices. The rules can be extended to \( n \) dimensions by assuming \( n \)-dimensional analogues to the two-dimensional figures depicted. In each type of problem, options are presented at successively greater Euclidean distances from the ideal point.
Technical Reports Presently in this Series
NR 150-412, ONR Contract N0001478C0025

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Published Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Isolating the Components of Intelligence</td>
<td>January, 1978.</td>
</tr>
<tr>
<td>6</td>
<td>Components of Syllogistic Reasoning</td>
<td>April, 1978.</td>
</tr>
<tr>
<td>No.</td>
<td>Name</td>
<td>Published Reference</td>
</tr>
<tr>
<td>-----</td>
<td>----------------------------------------------------------------------</td>
<td>----------------------------------------------------------</td>
</tr>
<tr>
<td>10</td>
<td>Psychometrics, Mathematical Psychology, and Cognition: Confessions of a Closet Psychometrician.</td>
<td>UNPUBLISHABLE.</td>
</tr>
<tr>
<td>11</td>
<td>Understanding and Appreciating Metaphors.</td>
<td>UNPUBLISHED TO DATE.</td>
</tr>
<tr>
<td>14</td>
<td>Contrasting Conceptions of Intelligence and their Educational Implications.</td>
<td>Sternberg, R. J. Factor theories of intelligence are all right almost. Educational Researcher, in press.</td>
</tr>
<tr>
<td>18</td>
<td>Unities in Inductive Reasoning.</td>
<td>UNPUBLISHED TO DATE.</td>
</tr>
<tr>
<td>No.</td>
<td>Name</td>
<td>Published Reference</td>
</tr>
<tr>
<td>-----</td>
<td>------</td>
<td>---------------------</td>
</tr>
<tr>
<td>20 (Continued)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>October, 1979.</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>Componential Approaches to the Training of Intelligent Performance</td>
<td>Sternberg, R. J., Ketron, J. L., &amp; Powell, J. S. Componential approaches to the training of intelligent performance. Intelligence, in press.</td>
</tr>
<tr>
<td></td>
<td>April, 1980.</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>Intelligence and Nonentrenchment</td>
<td>UNPUBLISHED TO DATE.</td>
</tr>
<tr>
<td></td>
<td>April, 1980,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>April, 1980.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>June, 1983.</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>Interaction and Analogy in the Comprehension and Appreciation of Metaphors</td>
<td>UNPUBLISHED TO DATE.</td>
</tr>
<tr>
<td></td>
<td>October, 1980.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>October, 1980.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>October, 1980.</td>
<td></td>
</tr>
<tr>
<td>No.</td>
<td>Name</td>
<td>Published Reference</td>
</tr>
<tr>
<td>-----</td>
<td>----------------------------------------------------------------------</td>
<td>-------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>30</td>
<td>Reasoning with Determinate and Indeterminate Linear Syllogisms.</td>
<td>NOT YET PUBLISHED.</td>
</tr>
</tbody>
</table>
1 Dr. Ed Aiken  
Navy Personnel R&D Center  
San Diego, CA 92152

1 Meryl S. Baker  
NPRDC  
Code P300  
San Diego, CA 92152

1 Dr. Jack R. Dorsting  
Provost & Academic Dean  
U.S. Naval Postgraduate School  
Monterey, CA 93940

1 Dr. Robert Preaux  
Code N-711  
NAVTRAECQCPEN  
Orlando, FL 32813

1 Chief of Naval Education and Training  
Air Force Human Resource Laboratory  
Flying Training Division  
WILLIAMS AFB, AZ 85224

1 Dr. Larry Dean, LT, MSC, USN  
Psychology Department  
Naval Submarine Medical Research Lab  
Naval Submarine Base  
Groton, CT 06340

1 Dr. Richard Elster  
Department of Administrative Sciences  
Naval Postgraduate School  
Monterey, CA 93940

1 DR. PAT FREDERICO  
NAVY PERSONNEL R&D CENTER  
SAN DIEGO, CA 92152

1 Mr. Paul Foley  
Navy Personnel R&D Center  
San Diego, CA 92152

1 Dr. John Ford  
Navy Personnel R&D Center  
San Diego, CA 92152

1 Dr. Henry M. Half  
Department of Psychology, C-009  
University of California at San Diego  
La Jolla, CA 92033

1 LT Steven D. Harris, MSC, USN  
Code 6021  
Naval Air Development Center  
Warminster, Pennsylvania 18974

1 Dr. Patrick R. Harrison  
Psychology Course Director  
LEADERSHIP & LAW DEPT. (7b)  
DIV. OF PROFESSIONAL DEVELOPMENT  
U.S. NAVAL ACADEMY  
ANNAPOLIS, MD 21402

1 Dr. Jim Homan  
Code 304  
Navy Personnel R&D Center  
San Diego, CA 92152

1 CDR Charles N. Hutchins  
Naval Air Systems Command Hq  
AIR-3HOF  
Navy Department  
Washington, DC 20361

1 CDR Robert S. Kennedy  
Head, Human Performance Sciences  
Naval Aerospace Medical Research Lab  
Box 20407  
New Orleans, LA 70119

1 Dr. Norman J. Kerr  
Chief of Naval Technical Training  
Naval Air Station Memphis (75)  
Millington, TN 38053

1 Dr. William L. "Hale"  
Principal Civilian Advisor for Education and Training  
Naval Training Command, Code CDA  
Pensacola, FL 32509

1 Dr. Phoebe Marshall  
Scientific Advisor to LER-3(EPT)  
ORION  
Washington, DC 20370
<table>
<thead>
<tr>
<th>Navy</th>
<th>Navy</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 CAPT Richard L. Martin, USN</td>
<td>1 Psychologist</td>
</tr>
<tr>
<td>Prospective Commanding Officer</td>
<td>ONR Branch Office</td>
</tr>
<tr>
<td>UGS Carl Vinson (CV-70)</td>
<td>Fldg. 114, Section D</td>
</tr>
<tr>
<td>Newport News Shipbuilding and Drydock Co</td>
<td>506 Summer Street</td>
</tr>
<tr>
<td>Newport News, VA 22607</td>
<td>Boston, MA 02210</td>
</tr>
<tr>
<td>1 Dr. James McPride</td>
<td>1 Psychologist</td>
</tr>
<tr>
<td>Navy Personnel R&amp;D Center</td>
<td>ONR Branch Office</td>
</tr>
<tr>
<td>San Diego, CA 92152</td>
<td>536 S. Clark Street</td>
</tr>
<tr>
<td>1 Dr. George Keller</td>
<td>Chicago, IL 60605</td>
</tr>
<tr>
<td>Head, Human Factors Dept.</td>
<td></td>
</tr>
<tr>
<td>Naval Submarine Medical Research Lab</td>
<td></td>
</tr>
<tr>
<td>Groton, CA 06340</td>
<td></td>
</tr>
<tr>
<td>1 Dr William Ponceg</td>
<td>1 Office of Naval Research</td>
</tr>
<tr>
<td>Navy Personnel R&amp;D Center</td>
<td>Code 437</td>
</tr>
<tr>
<td>San Diego, CA 92152</td>
<td>800 N. Quincy Street</td>
</tr>
<tr>
<td>1 Library</td>
<td>Arlington, VA 22217</td>
</tr>
<tr>
<td>Naval Health Research Center</td>
<td></td>
</tr>
<tr>
<td>P. O. Box 35122</td>
<td></td>
</tr>
<tr>
<td>San Diego, CA 92130</td>
<td></td>
</tr>
<tr>
<td>1 Naval Medical R&amp;D Command</td>
<td>1 Office of Naval Research</td>
</tr>
<tr>
<td>Code 44</td>
<td>Code 44</td>
</tr>
<tr>
<td>National Naval Medical Center</td>
<td>800 N. Quincy Street</td>
</tr>
<tr>
<td>Bethesda, MD 20214</td>
<td>Arlington, VA 22217</td>
</tr>
<tr>
<td>1 CAPT Paul Nelson, USN</td>
<td>5 Personnel &amp; Training Research Programs</td>
</tr>
<tr>
<td>Chief, Medical Service Corps</td>
<td>(Code 458)</td>
</tr>
<tr>
<td>Bureau of Medicine &amp; Surgery (IIP-21)</td>
<td>Office of Naval Research</td>
</tr>
<tr>
<td>U. S. Department of the Navy</td>
<td>Arlington, VA 22217</td>
</tr>
<tr>
<td>Washington, DC 20372</td>
<td></td>
</tr>
<tr>
<td>1 Ted M. T. Yellen</td>
<td>1 Psychologist</td>
</tr>
<tr>
<td>Technical Information Office, Code 201</td>
<td>ONR Branch Office</td>
</tr>
<tr>
<td>NAVY PENTHELI R&amp;D CENTER</td>
<td>1020 East Green Street</td>
</tr>
<tr>
<td>SAN DIEGO, CA 92152</td>
<td>Bethesda, MD 20214</td>
</tr>
<tr>
<td>1 Library, Code P201</td>
<td>1 Office of the Chief of Naval Operations</td>
</tr>
<tr>
<td>Navy Personnel R&amp;D Center</td>
<td>Research Development &amp; Studies Branch</td>
</tr>
<tr>
<td>San Diego, CA 92152</td>
<td>(OP-115)</td>
</tr>
<tr>
<td>6 Commanding Officer</td>
<td>Washington, DC 20350</td>
</tr>
<tr>
<td>Naval Research Laboratory</td>
<td></td>
</tr>
<tr>
<td>Code 2627</td>
<td></td>
</tr>
<tr>
<td>Washington, DC 20300</td>
<td></td>
</tr>
<tr>
<td>Library</td>
<td></td>
</tr>
<tr>
<td>Code 201</td>
<td></td>
</tr>
<tr>
<td>Navy Personnel R&amp;D Center</td>
<td></td>
</tr>
<tr>
<td>San Diego, CA 92152</td>
<td></td>
</tr>
<tr>
<td>1 Library, Code P201</td>
<td></td>
</tr>
<tr>
<td>Naval Personnel R&amp;D Center</td>
<td></td>
</tr>
<tr>
<td>San Diego, CA 92152</td>
<td></td>
</tr>
<tr>
<td>6 Commanding Officer</td>
<td></td>
</tr>
<tr>
<td>Naval Research Laboratory</td>
<td></td>
</tr>
<tr>
<td>Code 2627</td>
<td></td>
</tr>
<tr>
<td>Washington, DC 20300</td>
<td></td>
</tr>
</tbody>
</table>
Navy

1 Roger W. Remington, Ph.D
   Code L52
   NAHRL
   Pensacola, FL 32508

Dr. Bernard Rimland (03B)
Navy Personnel R&D Center
San Diego, CA 92152

Mr. Arnold Rubenstein
Naval Personnel Support Technology
Naval Material Command (08T244)
Room 1044, Crystal Plaza #5
2221 Jefferson Davis Highway
Arlington, VA 20360

Dr. Worth Scanland
Chief of Naval Education and Training
Code N-5
NAS, Pensacola, FL 32508

Dr. Samuel Schiflett, SY 721
Systems Engineering Test Directorate
U.S. Naval Air Test Center
Patuxent River, MD 20670

Dr. Robert G. Smith
Office of Chief of Naval Operations
OP-987H
Washington, DC 20350

Dr. Alfred F. Snedec
Training Analysis & Evaluation Group (TAFG)
Dept. of the Navy
Orlando, FL 32813

W. Gary Thomson
Naval Ocean Systems Center
Code 7132
San Diego, CA 92152

Dr. Ronald Weitzman
Code 54 W
Department of Administrative Sciences
U.S. Naval Postgraduate School
Penterey, CA 93940

Navy

1 Dr. Robert Wisher
   Code 309
   Navy Personnel R&D Center
   San Diego, CA 92152

Dr. Martin F. Wiskoff
NAVY PERSONNEL R&D CENTER
SAN DIEGO, CA 92152

1 Mr. John H. Wolfe
   Code P310
   U.S. Navy Personnel Research and Development Center
   San Diego, CA 92152
Army

1 Technical Director
U. S. Army Research Institute for the
Behavioral and Social Sciences
5001 Eisenhower Avenue
Alexandria, VA 22333

1 HQ USAFJUE & 7th Army
ODCOPS
USAJFUE Director of GED
APO New York 09401

1 DR. RALPH DU FKEY
U.S. ARMY RESEARCH INSTITUTE
5001 EISENHOWER AVENUE
ALEXANDRIA, VA 22333

1 Dr. Michael Kaplan
U.S. ARMY RESEARCH INSTITUTE
5001 EISENHOWER AVENUE
ALEXANDRIA, VA 22333

1 Dr. Milton S. Katz
Training Technical Area
U.S. Army Research Institute
5001 Eisenhower Avenue
Alexandria, VA 22333

1 Dr. Harold F. O'Neill, Jr.
Attn: PER-OK
Army Research Institute
5001 Eisenhower Avenue
Alexandria, VA 22333

1 Dr. Robert Sasser
U. S. Army Research Institute for the
Behavioral and Social Sciences
5001 Eisenhower Avenue
Alexandria, VA 22333

1 Dr. Frederick Steinheiser
U. S. Army Research Institute
5001 Eisenhower Avenue
Alexandria, VA 22333

1 Dr. Joseph Vard
U.S. Army Research Institute
5001 Eisenhower Avenue
Alexandria, VA 22333

Air Force

1 Air University Library
AU/LSE 75/443
Maxwell AFB, AL 36112

1 Dr. Carl A. Allouis
HQ, AFHRL (AFRC)
Brooks AFB, TX 78235

1 Dr. Genevieve Haljad
Program Manager
Life Sciences Directorate
AFOSR
Bolling AFB, DC 20332

1 Dr. Ronald G. Hughes
AFHRL/OTR
Williams AFB, AZ 85255

1 Dr. Ross L. Ferguson (AFHRL/LR)
Wright-Patterson AFB
Ohio 45433

1 Dr. Malcolm Lee
AFHRL/TP
Brooks AFB, TX 78235

1 Dr. Daniels Beckley
Technical Director
AFHRL/DT
Williams AFB, AZ 85255

2 TCH 117CH 962
Sheppard AFB, TX 76311

1 Jack E. Thorp, Maj., USA
Life Sciences Directorate
AFOSR
Bolling AFB, DC 20332
Marines

1 H. William Greenup
   Education Adviser (E931)
   Education Center, MCPEC
   Quantico, VA 22134

1 Headquarters, U. S. Marine Corps
   Code KPI-20
   Washington, DC 20380

1 Special Assistant for Marine
   Corps Matters
   Code 10PH
   Office of Naval Research
   300 N. Quincy St.
   Arlington, VA 22217

1 DR. A.L. SLAFKOWSKY
   SCIENTIFIC ADVISOR (CODE RD-1)
   HQ, U.S. MARINE CORPS
   WASHINGTON, DC 20380

Coast Guard

1 Chief, Psychological Research Branch
   U. S. Coast Guard (G-P-1/2/TPA2)
   Washington, DC 20593

1 Mr. Thomas A. Warm
   U. S. Coast Guard Institute
   P. O. Substation 13
   Oklahoma City, OK 73169
Other DoD

12 Defense Technical Information Center
Cameron Station, Bldg. 5
Alexandria, VA 22314
Attn: TC

1 Dr. Dexter Fletcher
ADVANCED RESEARCH PROJECTS AGENCY
1400 WILSON BLVD.
ARLINGTON, VA 22209

1 Military Assistant for Training and
Personnel Technology
Office of the Under Secretary of Defense
for Research & Engineering
Room 3D120, The Pentagon
Washington, DC 20301

Civil Govt

1 Dr. Susan Chipman
Learning and Development
National Institute of Education
1200 19th Street NW
Washington, DC 20208

1 Dr. Joseph L. Lipson
National Science Foundation
Washington, DC 20550

1 William J. McLaurin
Ministry of Finance
2221 Jefferson Davis Highway
Arlington, VA 22202

1 Dr. Andrew R. Holnar
Science Education Dev.
National Science Foundation
Washington, DC 20550

1 Personnel R&D Center
Office of Personnel Management
1900 E Street NW
Washington, DC 20415

1 Dr. H. Wallace Simpson
Program Director
Manpower Research and Advisory Services
Smithsonian Institution
801 North Pitt Street
Alexandria, VA 22314

1 Dr. Frank Withrow
U. S. Office of Education
400 Maryland Ave., NW
Washington, DC 20202

1 Dr. Joseph L. Young, Director
Army & Cognitive Processes
National Science Foundation
Washington, DC 20550
Non Govt

1 Dr. John R. Anderson
Department of Psychology
Carnegie Mellon University
Pittsburgh, PA 15213

1 Anderson, Thomas H., Ph.D.
Center for the Study of谪ing
174 Children's Research Center
51 Gerty Drive
Champaign, IL 61820

1 Dr. John Annett
Department of Psychology
University of Warwick
Coventry CV4 7AL
ENGLAND

1 Dr. Michael Atwood
SCIENCE APPLICATIONS INSTITUTE
40 DENVER TECH. CENTER WEST
7935 E. PRENTICE AVENUE
ENGLEWOOD, CO 80110

1 psychological research unit
Dept. of Defense (Army Office)
Campbell Park Offices
Canberra ACT 2600, Australia

1 Dr. Alan Raddeley
Medical Research Council
Applied Psychology Unit
15 Chaucer Road
Cambridge CB2 2EF
ENGLAND

1 Dr. Patricia Patrizz
Department of Psychology
University of Denver
University Park
Denver, CO 80203

1 Mr. A. Carr
Department of Computer Science
Stanford University
Stanford, CA 94305

Non Govt

1 Dr. Jackson Beatty
Department of Psychology
University of California
Los Angeles, CA 90024

1 Dr. Isaac Bejar
Educational Testing Service
Princeton, NJ 08540

1 Dr. Nicholas A. Bond
Dept. of Psychology
Sacramento State College
600 Jay Street
Sacramento, CA 95819

1 Dr. Lyle Borden
Department of Psychology
University of Colorado
Boulder, CO 80309

1 Dr. Robert Bremen
American College Testing Programs
P. O. Box 168
Iowa City, IA 52240

1 Dr. John S. Brown
XEROX Palo Alto Research Center
3333 Coyote Road
Palo Alto, CA 94304

1 Dr. Bruce Buchanan
Department of Computer Science
Stanford University
Stanford, CA 94305

1 DR. C. VICTOR BUNDORSEN
WIGAT INC.
UNIVERSITY PLAZA, SUITE 10
1160 ST. STATE ST.
OREGON, UT 84057

1 Dr. Pat Carpenter
Department of Psychology
Carnegie-Mellon University
Pittsburgh, PA 15213
Dr. John P. Carroll
Psychometric Lab
Univ. of N.C. Caroline
Davie Hall 415A
Chapel Hill, NC 27514

Dr. William Chase
Department of Psychology
Carnegie Mellon University
Pittsburgh, PA 15213

Dr. Micheline Chi
Learning R & D Center
University of Pittsburgh
3939 O'Hara Street
Pittsburgh, PA 15213

Dr. William Clancey
Department of Computer Science
Stanford University
Stanford, CA 94305

Dr. Kenneth F. Clark
College of Arts & Sciences
University of Rochester
River Campus Station
Rochester, NY 14627

Dr. Herman Cliff
Dept. of Psychology
Univ. of Ca. California
University Park
Los Angeles, CA 90027

Dr. Allan M. Collins
Bell/Perkins & Newman, Inc.
50 Moulton Street
Cambridge, MA 02139

Dr. Lynn A. Cooper
LRDC
University of Pittsburgh
3939 O'Hara Street
Pittsburgh, PA 15213

Dr. Meredith P. Crawford
American Psychological Association
1200 17th Street, N.W.
Washington, DC 20036

Dr. Kenneth F. Cross
Anacap Sciences, Inc.
P.O. Drawer 0
Santa Barbara, CA 93102

Dr. Emmanuel Donchin
Department of Psychology
University of Illinois
Champaign, IL 61820

Dr. Hubert Dreyfus
Department of Philosophy
University of California
Berkeley, CA 94720

Dr. Sheldon S. Fainerberger
DIRECTORATE OF PERSONNEL APPLIED RESEARCH
NATIONAL DEFENCE HQ
101 COLONEL BY DRIVE
OTTAWA, CANADA K1A 0X2

Dr. Ed Feigenbaum
Department of Computer Science
Stanford University
Stanford, CA 94305

Dr. John L. Ferguson
Testing College Testing Program
University of Pit.
New York, NY 10015
Non Govt

1 Dr. Edwin A. Fleishman
Advanced Research Resources Organ.
Suite 100
4330 East West Highway
Washington, DC 20018

1 Dr. John R. Frederiksen
Rolt Peranaek & Newman
50 Maclean Street
Cambridge, MA 02138

1 Dr. Alinda Friedman
Department of Psychology
University of Alberta
Edmonton, Alberta
CANADA T6G 2E9

1 Dr. R. Edward Geiselman
Department of Psychology
University of California
Los Angeles, CA 90024

1 Dr. Robert Glaser
LRDC
UNIVERSITY OF PITTSBURGH
3939 O'HARA STREET
PITTSBURGH, PA 15213

1 Dr. Marvin D. Glick
217 Stone Hall
Cornell University
Ithaca, NY 14853

1 Dr. Paul Gopher
Industrial & Management Engineering
Technion-Israel Institute of Technology
Haifa
ISRAEL

1 Dr. James G. Green
LRDC
UNIVERSITY OF PITTSBURGH
3939 O'HARA STREET
PITTSBURGH, PA 15213

1 Dr. Ron Kastle
School of Education
University of Massachusetts
Amherst, MA 01003

1 Dr. Harald Hawkins
Department of Psychology
University of Oregon
Eugene, OR 97403

1 Dr. Barbara Hayes-Roth
The Rand Corporation
1700 Main Street
Santa Monica, CA 90406

1 Dr. Frederick Hayes-Roth
The Rand Corporation
1700 Main Street
Santa Monica, CA 90406

1 Dr. James R. Hoffman
Department of Psychology
University of Delaware
Newark, DE 19711

1 Glenda Greenwald, Ed.
"Human Intelligence Newsletter"
P. O. Box 1763
Birmingham, MI 48012

1 Dr. Lloyd Humphreys
Department of Psychology
University of Illinois
Champaign, IL 61820

1 Library
HumRRO/Western Division
27857 Hermit Park Drive
Carmel, CA 93923

1 Dr. Earl Hunt
Dept. of Psychology
University of Washington
Seattle, WA 98105

1 Dr. Steven K. Kroe
Dept. of Psychology
University of Oregon
Eugene, OR 97403

1 Dr. Walter Kintsch
Department of Psychology
University of Colorado
Boulder, CO 80302
<table>
<thead>
<tr>
<th>Non Govt</th>
<th>Non Govt</th>
</tr>
</thead>
</table>
| 1 Dr. David Kieras  
Department of Psychology  
University of Arizona  
Tucson, AZ 85721                                                      | 1 Dr. Donald A. Norman  
Dept. of Psychology C-539  
Univ. of California, San Diego  
La Jolla, CA 92033                                                    |
| 1 Dr. Stephen Kosslyn  
Harvard University  
Department of Psychology  
33 Kirkland Street  
Cambridge, MA 02138                                                   | 1 Dr. Melvin R. Kovick  
336 Lindquist Center for Measurement  
University of Iowa  
Iowa City, IA 52242                                                  |
| 1 Mr. Harlin Kroger  
1117 Via Gelta  
Pala Verdes Estates, CA 90274                                          | 1 Dr. Jesse Orlandsky  
Institute for Defense Analyses  
400 Army Navy Drive  
Arlington, VA 22202                                                 |
| 1 Dr. Jill Larkin  
Department of Psychology  
Carnegie Mellon University  
Pittsburgh, PA 15213                                                  | 1 Dr. Seymour A. Papert  
Massachusetts Institute of Technology  
Artificial Intelligence Lab  
545 Technology Square  
Cambridge, MA 02139                                                 |
| 1 Dr. Alan Lesgold  
Learning R&D Center  
University of Pittsburgh  
Pittsburgh, PA 15260                                                  | 1 Dr. James A. Paulson  
Portland State University  
P.O. Box 751  
Portland, OR 97207                                                  |
| 1 Dr. Charles Lewis  
Faculteit Sociale Wetenschappen  
Rijksuniversiteit Groningen  
Oude Pateringestraat  
Groningen, NETHERLANDS                                               | 1 MR. LUIGI PETRULLO  
2431 N. EDDISON STREET  
ARLINGTON, VA 22207                                                |
| 1 Dr. James Lumsden  
Department of Psychology  
University of Western Australia  
Medlands P.A. 6909  
AUSTRALIA                                                             | 1 Dr. Martha Pelson  
Department of Psychology  
University of Colorado  
Boulder, CO 80302                                                   |
| 1 Dr. Mark Miller  
Computer Science Laboratory  
Texas Instruments, Inc.  
Rail Station 771, P.O. Box 225936  
Dallas, TX 75266                                                     | 1 DR. PETER POLDMAN  
DEPT. OF PSYCHOLOGY  
UNIVERSITY OF COLORADO  
BOULDER, CO 80309                                                   |
| 1 Dr. Allen Puerc  
Behavioral Technology Laboratories  
1985 Elena Ave., Fourth Floor  
Redondo Beach, CA 90277                                               | 1 Dr. Steven E. Pelcrom  
Department of Psychology  
University of Denver  
Denver, CO 80208                                                     |
| 1 Mr. Diane E. Ramey-Hing  
L.P. RESEARCH & TESTING DESIGN  
377 RIDGEBROOK DRIVE  
MALIBU, CA 90265                                                    | 1 Mr. Ethical Review Board  
L.P. RESEARCH & TESTING DESIGN  
377 RIDGEBROOK DRIVE  
MALIBU, CA 90265                                                    |
Committee on Cognitive Research

Dr. Lonnie R. Sherrod
Social Science Research Council
605 Third Avenue
New York, NY 10016

Robert S. Siegler
Associate Professor
Carnegie-Mellon University
Department of Psychology
Schenley Park
Pittsburgh, PA 15213

Dr. Robert Smith
Department of Computer Science
Rutgers University
New Brunswick, NJ 08903

Dr. Richard Snow
School of Education
Stanford University
Stanford, CA 94305

Dr. ALFFEPT STEVENS
HOLT RINEHART & WINSTON, INC.
50 HOUTON STREET
CAMBRIDGE, MA 02138

Dr. Thomas G. Sticht
Director, Basic Skills Division
HUPBRO
300 N. Washington Street
Alexandria, VA 22314

Dr. David Stone
FD 276
SUNY, Albany
Albany, NY 12222

Dr. Patrick Suppes
INSTITUTE FOR MATHEMATICAL STUDIES IN THE SOCIAL SCIENCES
STANFORD UNIVERSITY
STANFORD, CA 94305
Non Govt

1 Dr. Harihara Swaminathan
Laboratory of Psychometric and Evaluation Research
School of Education
University of Massachusetts
Amherst, MA 01003

1 Dr. Kikumi Tatsuoka
Computer Based Education Research Laboratory
252 Engineering Research Laboratory
University of Illinois
Urbana, IL 61801

1 Dr. David Thissen
Department of Psychology
University of Kansas
Lawrence, KS 66044

1 Dr. John Thomas
IBM Thomas J. Watson Research Center
P.O. Box 218
Yorktown Heights, NY 10598

1 Dr. Perry Thordyke
THE RAND CORPORATION
1700 MAIN STREET
SANTA MONICA, CA 90406

1 Dr. Douglas Tomo
Univ. of Sc. California
Behavioral Technology Labs
1845 S. Elena Ave.
Redondo Beach, CA 90277

1 Dr. J. Weiser
Perceptronics, Inc.
6771 Varial Avenue
Woodland Hills, CA 91364

1 Dr. Penton J. Underwood
Dep. of Psychology
Northwestern University
Evanston, IL 60201

1 Dr. William R. Utzal
University of Michigan
Institute for Social Research
Ann Arbor, MI 48106

Non Govt

1 Dr. Howard Weiner
Bureau of Social Science Research
1900 H Street, N.W.
Washington, DC 20006

1 Dr. Phyllis Weaver
Graduate School of Education
Harvard University
200 Larsen Hall, Appion Way
Cambridge, MA 02138

1 Dr. David J. Weiss
8660 Elliott Hall
University of Minnesota
75 E. River Road
Minneapolis, MN 55455

1 Dr. Keith T. Weiszencert
Information Sciences Dept.
The Rand Corporation
1700 Main St.
Santa Monica, CA 90406

1 Dr. Stephen F. Whiteley
PSYCHOLOGY DEPARTMENT
UNIVERSITY OF KANSAS
LAWRENCE, KANSAS 66604

1 Dr. Christopher Wicksens
Department of Psychology
University of Illinois
Champaign, IL 61820

1 Dr. J. Arthur Woodward
Department of Psychology
University of California
Los Angeles, CA 90024