Pulsed Submillimeter Laser Program.

LEVEL II

Contract DAAB07-77-C-2177

30 August 1977 through 15 May 1979

FINAL TECHNICAL REPORT
30 Aug 77-15 May 79
Pulsed Submillimeter Laser Program

TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0 INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>2.0 SYSTEM OVERVIEW</td>
<td>2</td>
</tr>
<tr>
<td>3.0 LASER AND RECEIVER SUBSYSTEM</td>
<td>7</td>
</tr>
<tr>
<td>3.1 Pulsed CO(_2) TE Pump Laser</td>
<td>7</td>
</tr>
<tr>
<td>3.2 Pulsed Submillimeter Wave Laser</td>
<td>16</td>
</tr>
<tr>
<td>3.3 CW Submillimeter Laser</td>
<td>23</td>
</tr>
<tr>
<td>3.4 CW CO(_2) Pump Laser</td>
<td>33</td>
</tr>
<tr>
<td>3.5 Submillimeter Wave Detectors</td>
<td>37</td>
</tr>
<tr>
<td>3.6 Optoacoustic Locking of the CW CO(_2) Pump Laser</td>
<td>50</td>
</tr>
<tr>
<td>4.0 REFERENCES</td>
<td>69</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>FIR Experimental Layout</td>
<td>3</td>
</tr>
<tr>
<td>2.</td>
<td>FIR Experimental Layout</td>
<td>5</td>
</tr>
<tr>
<td>3.</td>
<td>FIR Experimental Layout</td>
<td>6</td>
</tr>
<tr>
<td>4.</td>
<td>TE CO$_2$ Pump Source</td>
<td>8</td>
</tr>
<tr>
<td>5.</td>
<td>Pulsed Laser Transmitter Dimensional Data</td>
<td>9</td>
</tr>
<tr>
<td>6.</td>
<td>TE Laser Transmitter</td>
<td>10</td>
</tr>
<tr>
<td>7.</td>
<td>TE CO$_2$ Laser with Vibrationally Decoupled Resonator</td>
<td>11</td>
</tr>
<tr>
<td>8.</td>
<td>Optical Pulse for 5% Output Coupling and CO$_2$:N$_2$; He = 1 :0.46:4.1</td>
<td>12</td>
</tr>
<tr>
<td>9.</td>
<td>Pressure Dependence of Pulse Width</td>
<td>13</td>
</tr>
<tr>
<td>10.</td>
<td>Optical Pulse Shape for He:CO$_2$:N$_2$ = 8:1:0</td>
<td>15</td>
</tr>
<tr>
<td>11.</td>
<td>Beam Quality Diagnosis Experiment</td>
<td>17</td>
</tr>
<tr>
<td>12.</td>
<td>Pulsed Recirculating TE Laser Beam Quality with Partially Transmitting Unstable Resonator</td>
<td>18</td>
</tr>
<tr>
<td>13.</td>
<td>Pulsed Recirculating TE Laser Beam Quality with Partially Transmitting Unstable Resonator</td>
<td>19</td>
</tr>
<tr>
<td>14.</td>
<td>Pulsed FIR Cavities</td>
<td>20</td>
</tr>
<tr>
<td>15.</td>
<td>One Meter Steel FIR Gain Cell</td>
<td>21</td>
</tr>
<tr>
<td>16.</td>
<td>CH$_3$F Pulsed Output at 496 µm</td>
<td>24</td>
</tr>
<tr>
<td>17.</td>
<td>CH$_3$Cl Pulsed Output at 944 µm</td>
<td>25</td>
</tr>
<tr>
<td>18.</td>
<td>CH$_3$F Lasing Gas at 900 Microns Pressure in 38 mm Glass Waveguide</td>
<td>26</td>
</tr>
<tr>
<td>19.</td>
<td>FIR Partial Transmitter</td>
<td>28</td>
</tr>
<tr>
<td>Figure</td>
<td>Description</td>
<td>Page</td>
</tr>
<tr>
<td>--------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>20.</td>
<td>cw FIR Laser</td>
<td>29</td>
</tr>
<tr>
<td>21.</td>
<td>FIR Mirror Mount Assembly</td>
<td>30</td>
</tr>
<tr>
<td>22.</td>
<td>Mode Matching System for cw FIR Laser Pumping</td>
<td>32</td>
</tr>
<tr>
<td>23.</td>
<td>cw CO₂ Pump Laser</td>
<td>34</td>
</tr>
<tr>
<td>24.</td>
<td>50 Watt cw CO₂ Laser</td>
<td>35</td>
</tr>
<tr>
<td>25.</td>
<td>Fast Pyroelectric Detector Response to TEA CO₂ Laser Optical Pulse</td>
<td>38</td>
</tr>
<tr>
<td>26.</td>
<td>Detail of Schottky Diode Construction</td>
<td>39</td>
</tr>
<tr>
<td>27.</td>
<td>Schottky Diode</td>
<td>40</td>
</tr>
<tr>
<td>28.</td>
<td>Characterization of Schottky Diode at Milliwatt Signal Level</td>
<td>42</td>
</tr>
<tr>
<td>29.</td>
<td>Chopped cw 496 μm Laser Output-2mW Average Power</td>
<td>43</td>
</tr>
<tr>
<td>30.</td>
<td>Schottky Detector Performance in RFI Protected Circuit.</td>
<td>45</td>
</tr>
<tr>
<td>31.</td>
<td>Schottky Detector Package with Parabolic Collection Mirror</td>
<td>46</td>
</tr>
<tr>
<td>32.</td>
<td>Schottky Detector with RFI Shielding Tubes</td>
<td>47</td>
</tr>
<tr>
<td>33.</td>
<td>Assembly View of Schottky Detector Showing Wideband Amplifier</td>
<td>48</td>
</tr>
<tr>
<td>34.</td>
<td>Detail of Detector Head Showing Schottky Diode in Brass Mount</td>
<td>50</td>
</tr>
<tr>
<td>35.</td>
<td>Top View of Schottky Detector with Access Panel Removed</td>
<td>51</td>
</tr>
<tr>
<td>36.</td>
<td>FIR Detector Module Circuit</td>
<td>52</td>
</tr>
<tr>
<td>37.</td>
<td>Simplified Energy Level Diagram of (v_3) Mode of Methyl Alcohol</td>
<td>54</td>
</tr>
<tr>
<td>38.</td>
<td>CO₂ Emission and CH₃F Absorption Line Shape Functions</td>
<td>57</td>
</tr>
<tr>
<td>39.</td>
<td>Origin of Optoacoustic Signal for Low Laser Intensity</td>
<td>59</td>
</tr>
</tbody>
</table>
LIST OF FIGURES (Cont'd)

<table>
<thead>
<tr>
<th>Page</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>40</td>
<td>Apparatus for Optoacoustic Locking Experiment</td>
</tr>
<tr>
<td>41</td>
<td>Electronics for Optoacoustic Locking Experiments</td>
</tr>
<tr>
<td>42</td>
<td>Optoacoustic Cell</td>
</tr>
<tr>
<td>43</td>
<td>Connection of Supply Box to Optoacoustic Cell</td>
</tr>
<tr>
<td>44</td>
<td>Optoacoustic Signal vs. Cavity Length</td>
</tr>
<tr>
<td>45</td>
<td>118μ FIR output Power vs Locked and Unlocked CO₂ Laser</td>
</tr>
</tbody>
</table>
Pulsed Submillimeter Laser Program

1.0 INTRODUCTION

This report describes the results of an exploratory development program to investigate various system and component aspects of a pulsed FIR heterodyning laser radar. This work was conducted by United Technologies Research Center (UTRC) during the period 30 August 1977 and 31 May 1979.

During the course of this developmental program a number of interrelated subsystems required for a heterodyning FIR radar were investigated. The work focused on optically pumped FIR lasers which utilize a CO\textsubscript{2\,} laser pump source. Pulsed FIR and CO\textsubscript{2\,} pump lasers are required for the primary radar transmitter, and CW FIR and CO\textsubscript{2\,} lasers are needed for the laser radar local oscillator. The transversely excited (TE) CO\textsubscript{2\,} laser which serves as the pulsed FIR laser pump is itself a central component of the radar system and the performance characteristics of a recirculating, high pulse repetition frequency (PRF) TE CO\textsubscript{2\,} as a FIR pump were experimentally examined. A number of different pulsed FIR laser resonators were investigated with the objective of minimizing system size. The requirement for a stable FIR local oscillator imposes certain constraints on the CW CO\textsubscript{2\,} pump source and a stable single mode CO\textsubscript{2\,} pump source has been designed and characterized. A sealed-off CW FIR laser with an Invar stabilized cavity was constructed for use as a local oscillator source. A number of detectors for use at submillimeter wavelength were examined and pulsed and CW detection with two micron Schottky diodes were performed.

Because of the extreme sensitivity of the CW FIR laser and pump source to temperature fluctuation a technique for stabilizing the CO\textsubscript{2\,} utilizing the photoacoustic effect in the FIR medium was examined and found to be very promising.
A heterodyning submillimeter wave radar transceiver necessarily includes the following components: (1) pulsed FIR laser; (2) pulsed CO\textsubscript{2} laser pump; (3) CW FIR laser; (4) CW CO\textsubscript{2} laser pump; (5) FIR mixer-detector; (6) transmitter and local oscillator frequency stabilization control loops. A schematic layout of the lasers and detector is shown in Fig. 1. Each of the components listed above is in itself a subsystem of considerable complexity. As the current program evolved it became clear that any serious effort to construct an FIR radar must be preceded by a phase in which the various subsystems are developed and parameterized. The direction of the program accordingly moved toward addressing the development of the laser and detector subsystems and identifying those areas in need of additional research.

Summarized below are the areas in which the Pulsed Submillimeter Laser Program efforts were concentrated, and why these particular topics required a focused R&D effort.

The pulsed discharge TE CO\textsubscript{2} laser serves as the optical pumping source for the pulsed submillimeter transmitter. With typical 10\mu m to FIR conversion efficiencies of less than 1 percent, the TE CO\textsubscript{2} must have a pulse energy 100 mJ or greater. Maximum PRF's of up to 1 kHz are of interest for radar applications and thus the TE pump becomes a device of up to several hundred watts average power with peak pulse powers in the megawatt range. UTKC has for some years conducted a program of research and development in the area of high PRF TE CO\textsubscript{2} lasers and one such device (Ref. 1) was utilized as the pulsed FIR pump source in this program. In addition to using the existing laser as an FIR pump, a number of questions concerning TE CO\textsubscript{2} laser development as it relates to FIR laser pumping were addressed within the scope of the current program. These areas include: frequency stability; transverse mode purity; discharge circuit design; high PRF beam quality; gas chemistry changes at high PRF.

Because there are no pulsed discharge considerations the pulsed FIR laser is a relatively simple device compared to the TE CO\textsubscript{2} laser. The principal issues involve resonator design, frequency stability and laser linewidth, and vacuum structure design. Both 496 \mu m and 944 \mu m pulsed laser outputs were obtained and observed with high-speed detectors, and several resonator configurations were tested. The energy per pulse of the CH\textsubscript{3}F laser at 496 \mu m was also examined at PRF's to 350 Hz.

The CW local oscillator FIR laser and the associated CW CO\textsubscript{2} pump form a subsystem analogous to the pulsed-laser pair. The development of the CW laser emphasized frequency stability and mode purity for three reasons: first, a
frequency stable local oscillator is a fundamental prerequisite for a heterodyning radar which can exploit the signal-to-noise ratio enhancement which is made possible by a narrow receiver bandwidth; second, the CW laser serves as a somewhat simpler testbed which can be used to develop techniques applicable to the pulsed laser system; third, the availability of a stable CW FIR laser permits a more detailed characterization of FIR detectors. Issues addressed in the course of the program include the following: (1) CW FIR resonator design; (2) sealed-off FIR laser structure design; (3) CW CO\textsubscript{2} laser design; (4) CO\textsubscript{2} laser frequency stabilization by optoacoustic absorption technique.

Several different devices were initially considered as candidate submillimeter wave detectors. The fast response and high sensitivity of Schottky diodes indicated fairly early in the program that this would be the detector of choice provided devices with response to 600 GHz could be obtained. A number of detectors were obtained and tested with pulsed and CW FIR outputs at 496 m and 944 m. The sensitivity of the small area diodes to RFI induced currents was identified as an issue as a result of the proximity of the pulsed CO\textsubscript{2} TE laser and an RFI shielded detector module was developed.

Figures 2 and 3 show the laboratory setup for both pulsed and CW FIR lasers and their respective pump sources. The individual elements of the system will be discussed in detail in the following section.
3.0 LASER AND RECEIVER SUBSYSTEM

In this section each of the subsystems which were the subjects of this investigation are discussed. Design features as well as experimental methods and results for pulsed and CW lasers, and the FIR receiver are presented.

3.1 Pulsed CO₂ TE Pump Laser

The design of a high PRF, high output energy laser oscillator requires the integration of a suitable pulsed discharge geometry, a high volume recirculating blower, heat exchanger, and appropriate gas ducting. Reference 1 describes work performed at UTRC which culminated in the demonstration of TE CO₂ laser operation at 1 KHz PRF with an average power of 860 W. This basic laser was utilized on the pulsed FIR laser pump, but certain refinements of a basic multimode laser are necessary to optimize it as an FIR pump source. Figure 4 summarizes the characteristics of the TE CO₂ laser as it existed at the beginning of the program and modifications needed for FIR pump applications. The significance of these modifications is that they invariably tend to reduce laser power and increase laser size and weight, both of which have obvious implications for realistic estimates of FIR radar system dimensions. The TE CO₂ laser is based on the gas circulator and discharge head shown in Fig. 5. When configured as a multimode, high power laser the total laser structure as shown in Fig. 6 is not substantially larger than the recirculator assembly. However, in this configuration the vibrational inputs of the blower to the optical elements introduce a source of great frequency instability and the result on the pulsed FIR output is amplitude fluctuations. In order to isolate the optical elements from vibrational inputs the gas circulator is isolated from the optical mounting surfaces by flexible, vacuum tight diaphragms. This arrangement is shown in Fig. 7. The optical mounts are referenced to optical tables which are coupled to the gas circulator only through their common use of the laboratory floor. Intravacuum optics were used for the TE laser in order to avoid the optical damage problems and transverse mode degradation which often accompany the use of Brewster windows.

The PRF and pulse energy of the TE CO₂ laser were originally maximized at a pressure of 250 torr. At this pressure the optical pulse has a relatively long "tail" lasting in excess of 20 µs and containing most of the pulse energy. A typical pulse shape is shown in Fig. 8. This pulse is not efficient for pumping a FIR inversion because of the very short upper level lifetime in the FIR gain medium which generally has maximum gain with a medium pressure on the order of one torr. Even for high energy pump pulses of this shape, the pulse tail is too weak to raise the FIR laser above threshold. The pulse can be shortened to a certain extent by operating at a higher TE laser pressure. Figure 9 illustrates the effect on optical shape of raising laser pressure. It can be seen that considerable pulse shortening occurs as the pressure is raised from
TE CO₂ PUMP SOURCE

• INITIAL CHARACTERISTICS
 • 1 JOULE, MULTIMODE: 1KHz PRF
 • 250 TORR
 • LOW GAIN, 5% OUTPUT COUPLING, NO GRATING
 • RESONATOR ELEMENTS NOT VIBRATIONALLY ISOLATED FROM GAS RECIRCULATOR
 • 150 J/LITER ATM SPECIFIC INPUT

• REQUIRED PERFORMANCE
 • SHORTER PULSE, HIGHER PRESSURE AND/OR REDUCED N₂
 • RETUNING L-R-C DISCHARGE ELEMENTS
 • GAS CHEMISTRY CHANGES LIMIT SPECIFIC INPUT AT HIGHER PRESSURE AND HIGHER PRF
 • REDUCE ELECTRODE WIDTH TO MATCH TEM₀₀ MODE AND MAXIMIZE USEFUL ENERGY INPUT
 • DECOUPLE OPTICS FROM RECIRCULATOR VIBRATION
 SINGLE MODE OUTPUT
 GRATING CONTROL — INTRAVACUUM OPTICS*
 1 KHz BEAM QUALITY

* ITEMS SIGNIFICANTLY AFFECTED BY ≥ 100 Hz OPERATION
TE CO₂ LASER WITH VIBRATIONALLY DECOUPLED RESONATOR
OPTICAL PULSE FOR 5% OUTPUT COUPLING AND CO$_2$: N$_2$: He = 1 : 0.46 : 4.1

a. GAIN-SWITCHED SPIKE PLUS RELAXED PULSE

b. DETAIL OF GAIN-SWITCHED SPIKE
FIG. 9

PRESURE DEPENDENCE OF PULSE WIDTH

(a) TE LASER PULSE
He, CO₂, N₂
8:1:1
TOTAL PRESSURE 674 TORR
HORIZONTAL SCALE 1 S DIV
VERTICAL SCALE 0.5 IMM/DIV

(b) TE LASER PULSE
He, CO₂, N₂
8:1:1
TOTAL PRESSURE 1200 TORR
HORIZONTAL SCALE 1 SDIV
VERTICAL SCALE 0.5 IMM/DIV.
250 torr to 674 torr, but very little further improvement is obtained by going to 1200 torr. Nearly total elimination of the pulse tail is effected by using only He and CO$_2$ as shown in Fig. 10, but this has the substantial disadvantage of reducing the energy within the gain switched spike (within the first 500 ns) by nearly a factor of two from the spike energy obtained with nitrogen. Thus although only the energy in the gain switched spike is effective as pump energy it is worthwhile to use N$_2$ containing mixes. The pulse shortening due to pressure increase saturates at approximately 400 torr and further pulse shortening occurs very slowly with increasing pressure, thus a working pressure of 400-500 torr was determined as most suitable for the FIR pump. There is a distinct advantage in operating a recirculating TE CO$_2$ laser at less than atmospheric pressure as a result of the gas chemistry changes which occur in sealed-off or limited gas makeup conditions. The buildup of CO and O$_2$ in recirculating TE CO$_2$ lasers is well known and avoidance of the attendant discharge arcing has been discussed by several authors (Ref. 2). We have found that lower pressure operation substantially increases the maximum PRF which can be sustained without arcing. For example a gas makeup rate which can support atmospheric pressure operation at only 50 Hz can support a PRF of several hundred Hz at 250 torr. The optimum CO$_2$ pressure is therefore the lowest which yields the shorter optical pulse, i.e. 400-500 torr.

Efficient operation of the CO$_2$ TE laser dictates that the optical mode volume should match the TE laser gain volume. As originally configured for a 1 J pulse energy the TE gain volume was 2 cm x 4 cm x 20 cm long. The Fresnel number for this gain medium is approximately 300 and since there is not sufficient gain to support efficient unstable resonator operation the resonator must be apertured and/or lengthened to achieve an optical Fresnel number of five or less, a range in which single transverse mode operation of a TE CO$_2$ laser has been achieved. For the purposes of this program the optical cavity was lengthened to greater than one meter and the optical volume was defined by a 1 cm aperture. When a grating rotational line selector is used as one end mirror, the single transverse mode laser produced 100-150 mJ vs. the 1.1 J maximum multimode energy. The available single mode energy could be improved by perhaps a factor of two by using a multipass resonator to increase the effective mode volume, however this additional refinement was not deemed necessary for the purposes of the Pulsed Submillimeter Laser Program. This reduction in energy and increase in laser size appears to be typical of the penalty paid in going from a multi-mode laser to a single-mode laser and will accordingly have a significant impact on the design of any FIR radar which incorporates a pulsed TE CO$_2$ laser.

The beam quality of the TE CO$_2$ laser could possibly degrade at higher PRF's as a result of severe acoustic perturbations of the optical medium. Such effects have been observed in high average power CO$_2$ and chemical lasers, and in the TE CO$_2$ laser acoustic perturbations of the amplitude and frequency of the optical pulse can often be observed within a few microseconds of the discharge (Ref. 3). At high PRF's, i.e. greater than a few hundred hertz, the
OPTICAL PULSE SHAPE FOR He: CO₂:N₂ = 8:1.0

TE LASER PULSE: He:CO₂:N₂ 8:1.0
TOTAL PRESSURE: 850 TORR
HORIZONTAL SCALE: 0.5 S/DIV.
VERTICAL SCALE: 0.5 V/DIV.
acoustic shock wave may persist through the interpulse period with enough strength to reduce the energy and/or transverse mode purity of subsequent pulses. In Ref. 1 the question of energy reduction due to high PRF acoustics was specifically examined and determined not to be a problem, but the more subtle effects on beam quality have not until now been investigated. Since the presence of such perturbations could have a significant impact on a submillimeter radar an experiment to determine beam quality in the 100 Hz-1 KHz range was undertaken.

The TE laser cavity was set up as a partially transmitting unstable resonator in order to achieve a high purity, single transverse mode at lower PRF's. The following measurements were also made using a stable resonator with no significant change in the outcome. Figure 11 shows the experimental arrangement for the high PRF beam quality test. The output of the laser resonator was focused through a calibrated aperture and the transmitted power was compared to the power expected for a single mode oscillator. Data were taken with a clearing ratio of 1 to 1.5, that is the gas in the discharge volume was change 1 to 1.5 times between pulses. This relatively low clearing ratio will emphasize the effects of acoustic disturbances whereas higher clearing ratios will reduce the interpulse acoustic effects. The low PRF (100 Hz) beam quality is shown in Fig. 12 where the solid curve is the Airy function expected from the idealized unstable resonator and the circles are the experimentally measured transmitted power. The match is obviously quite good and we may therefore presume that single mode, diffraction-limited performance is demonstrated at 100 Hz. Figure 13 presents the power through three different aperture sizes as a function of PRF from 100 Hz to 1000 Hz. There is no statistically significant variation in transmitted power over this range of PRF's and it may therefore be concluded that whatever acoustic disturbances persist through the interpulse period are insufficient to produce any significant degradation of the output beam quality. Operation of a high PRF submillimeter wave radar involves many fundamental technical issues, but it now appears that degradation of the TE CO₂ pump source at high PRF's will in no way limit the pulsed FIR output.

3.2 Pulsed Submillimeter Wave Laser

The pulsed FIR laser consists of a passive optically pumped gain medium and resonator elements with provision for coupling in the pump radiation and coupling out the FIR radiation with a minimum of interference between the two processes. Figure 14 illustrates the most commonly used input and output optical configurations used for pulsed FIR lasers, and the four resonator configurations implied by Fig. 14 have been tried in the present program.

Since compactness of the laser system is a continuing concern we initially investigated a 1 meter gain cell for the pulsed FIR laser. This device is shown in Fig. 15. Both collimated and focused input beams were tried and both
FIG. 11

BEAM QUALITY DIAGNOSIS EXPERIMENT

M = 1.25
N = 0.9
N_{eq} = 0.48

RESONATOR PARAMETERS

MEDIUM PARAMETERS

GAS PRESSURE
500 TOHR
ENERGY LOADING = 100 J/L-A
PULSE WIDTH = 1.5 μS
CLEARING RATIO = 1

FOCAL PLANE
L = 1.62 cm

APERTURE STATION

1.27 cm DIA

8 MOL 90 REFLECTOR

10 M CC
PULSED RECIRCULATING TE LASER BEAM QUALITY WITH PARTIALLY TRANSMITTING UNSTABLE RESONATOR

INTEGRALED FAR FIELD POWER PERCENT

FOCAL PLANE DIAMETER IN UNITS OF 2.44 LA / D

AIRY FUNCTION FOR CIRCULAR APERTURE OF DIAMETER D
PULSED RECIRCULATING TE LASER BEAM QUALITY WITH PARTIALLY TRANSMITTING UNSTABLE RESONATOR

INTEGRATED FAR FIELD POWER, PERCENT

100
80
60
40
20
0

0.26 \times \frac{2.44L}{D} = 0.86\text{mm}

0.94 \times \frac{2.44L}{D} = 3.1\text{mm}

1.92 \times \frac{2.44L}{D} = 6.35\text{mm}

LASER PRF, HZ

FIG. 13
PULSED FIR CAVITIES
ONE METER STEEL FIR GAIN CELL
large aperture and small aperture output couples were used. Apparently as a consequence of the short gain length no FIR lasing was observed for any optical configuration tried. A second FIR gain tube 2.5 meter in length by 38 mm in diameter was therefore constructed (see Fig. 2) in the interest of bracketing the required FIR gain length for the available 100-150 mJ pump energy. With the 38 mm diameter the laser is expected to oscillate in a waveguide mode, and laser oscillation was obtained for several resonator geometries. When operated with a focused input beam the input spot size was adjusted to match a 6 mm diameter hole in the total reflector which served as the input mirror. This geometry is shown at the top of Fig. 14. The pump beam divergence in this configuration was such that the pump beam just matched the waveguide bore after one pass. At a PRF of 50 Hz with 5 w of 9.55 m power input the average FIR output power at 496 μm was 0.74 mW which corresponds to a power conversion efficiency of 1.4 x 10^{-4}. Average FIR power was measured with an Eppley thermopile which was approximately calibrated using a HeNe laser of known power. Most such detector surfaces are considerably more reflective at submillimeter wavelengths than in the visible and these FIR power measurements may be pessimistic by as much as 20-40 percent. Operating pressure was not critical in the 700 millitorr-1 torr range, but above 1 torr the FIR power begins to drop. At the optimum pressure approximately 70 percent of the input CO_{2} radiation is absorbed by the gain medium. The fractional CO_{2} absorption could be increase by using an even longer gain cell or by providing a shorter pump pulse so that a higher CH_{3}F pressure could be used without a commensurate increase in collisional deexcitation of the upper level. With CH_{3}F as the gain medium the power output is not notably sensitive to resonator configuration. Use of a collimated input beam as shown at the bottom of Fig. 14 gives approximately the same power output as the focused input case. Apparently the increased mode volume of the collimated input case compensates for the loss of feedback which occurs when the NaCl is substituted for the high reflectivity hole coupler. Similarly, addition of feedback at the FIR output coupler does not significantly affect FIR laser power.

In contrast to the methyl fluoride, methyl chloride (CH_{3}Cl) does show a dependence of FIR output on pump frequency tuning and on FIR resonator configuration. The peak power of the 944 μm CH_{3}Cl line is maximum with the single mirror superradiant resonator (SSR) shown as the bottom illustration in Fig. 14, with the peak power being approximately 10-20 percent of the peak CH_{3}F power on the 496 μm line. The FIR output power is quite sensitive to the frequency of the TE CO_{2} pump with the FIR oscillator falling below threshold for certain values of length tuning of the TE CO_{2} pump. The use of a total reflector with 12 mm coupling hole as an output coupler reduces peak power by a factor of two from the maximum obtained with the SSR resonator, but the power stability is greatly improved, with fluctuation being on the order of ± 10 percent about the mean.

The optical pulse shape is of obvious importance for an FIR heterodyne system and significant differences were observed for the 944 μm line of CH_{3}Cl.
and the 496 µm line of CH₃F. Using the Schottky diode detector which will be discussed in more detail in a following section, the direct detected pulse shapes were determined for the 496 µm and 944 µm laser lines. Figure 16 shows the 496 µm line (or lines) of CH₃F. By comparing the pulse shape to the known pulse energy, we find an approximate peak power of 50-100 watts. Much structure is observed in this laser output when pumped by the 9.55 µm CO₂ wavelength. There are several rotational transitions (as many as 8) (Ref. 4) in the neighborhood of the principal 496 µm line and while the 100 mJ input beam does not represent a particularly high pump level, it is possible that more than one transition is above threshold. The presence of several longitudinal modes in the CO₂ pump output also presents the possibility of pumping several K levels within a given vibrational-rotational transition. Addition of a low pressure hybrid gain tube to the TE laser resonator can eliminate any longitudinal mode beating in the TE laser output, but it will not necessarily improve the tendency to oscillate on several different transitions. Figure 17 shows a typical 944 µm pulse from CH₃Cl. The reduced mode beating and absence of structure are noteworthy. This pulse tends to follow the CO₂ pump pulse, although the amplitude of the TE pulse tail is still insufficient to sustain 944 µm lasing above threshold.

The lower levels of typical optically pumped FIR laser transition have lifetimes which may extend into the millisecond range at the low pressures found in FIR lasers. As the PRF of a pulsed FIR laser is increased, the population dynamics will eventually converge to the equilibrium conditions of a CW FIR laser. This will be observed as a nonlinear increase of FIR power with PRF, and the transition region will be a function of gas pressure and gain cell diameter. We have measure average FIR power at 496 µm for PRF's from 50Hz to 350Hz and find no significant dependence of conversion efficiency on PRF over this range. Figure 18 summarizes the results of this measurement, showing the constancy of pulse energy.

3.3 CW Submillimeter Laser

The CW submillimeter laser serves as a local oscillator for heterodyne detection of target returns and may also be useful for injection controlling the pulsed submillimeter laser. CW FIR lasers have been operated with a variety of optical resonators including a conventional free-space mode resonators, waveguide resonators, and free space mode resonators in which the beam follows a zig-zag path through a gain medium which has a cross section greater than the beam cross section (Ref. 5). The waveguide resonator was chosen as most promising for the radar application as a result if its relatively high efficiency and compact size. The CO₂ pump beam is introduced into the FIR resonator by means of a small coupling hole, typical 3mm in diameter. The use of large coupling apertures as in the pulsed FIR resonator is not possible because of
CH$_3$F PULSED OUTPUT AT 496 µm

SCHOTTKY DIODE DRIVING 50Ω

VERTICAL: 200 mDIV
HORIZONTAL: 0.5 µs/DIV
CH$_3$Cl PULSED OUTPUT AT 944 μm

SCHOTTKY DIODE DRIVING 50Ω
VERTICAL 5mV/DIV
HORIZONTAL 0.5 μs/DIV
CH$_3$F LASING GAS AT 900 MICRONS PRESSURE
IN 38mm GLASS WAVEGUIDE

* POWER MEASURED WITH EPPLEY THERMOPILE. CALIBRATION IS
APPROXIMATE AND MAY BE 20-40% BELOW ACTUAL POWER LEVEL.
the greatly reduced gain of the CW FIR laser. The unexcited FIR gain medium is capable of absorbing resonant submillimeter radiation and it is therefore desirable to have a uniform gain distribution parallel to the optic axis of the FIR laser. This uniform axial pumping may be effectively approximated by operating at a gain medium pressure which is low enough to permit multipassing the pump radiation in the FIR laser. The FIR resonator mirrors must therefore be highly reflective at the pump wavelength as well as at the submillimeter wavelength, in contrast to the pulsed submillimeter case. This is easily provided at the pump input end of the laser by using a fold coated mirror with a coupling hole. The FIR output coupler on the other hand must be a partial transmitter at the submillimeter wavelength and a good reflector at the pump wavelength. A mirror design which we have found satisfactory is illustrated in Figure 19. The high resistivity single crystal silicon substrate is first coated for high reflectivity over the 9-11 μm range of wavelength, and is then overcoated with gold except for a circular region (8-15 mm diameter) in the center of the mirror. The 10 μm reflective coating is selected for high transmission at the wavelength of interest (> 100 μm) and the silicon mirror is therefore effectively a hold coupler at submillimeter wavelengths. Standard silicon substrates were initially tried as FIR mirror substrates and although the absorption was acceptably low at the 119μm methanol line, there was no appreciable transmission at either 496 μm or 944 μm for any of five substrates tested. The 100L-cm silicon was found to have negligible absorption loss from 100 μm to 1000 μm. As in case of the substrate material a proper choice of coating materials was also found to be essential for proper laser operation. Based on 118 μm transmission measurements ZnSe-ThF₄ coatings were found to be very lossy while ZnS-Ge coating have negligible transmission loss (Ref. 6).

The complete cw FIR laser is shown in Figure 20. Overall laser length is 1.5 meters and the pyrex waveguide is 38 mm in diameter. The resonator is thermally stabilized with four invar rods and is made mechanically rigid by means of an L-shaped aluminum frame. The laser can be length tuned over a distance of 1 mm by means of a manually adjustable vacuum feedthrough on which the input beam hole coupler is mounted. This mount is shown in Figure 21. The input coupling structure uses an antireflection coated ZnSe window for vacuum seal. The FIR output end of the laser is shown at the bottom of Figure 21. Z-axis cut crystalline quartz is used as the vacuum seal at the end since it has excellent transmission over all wavelengths of interest. The cw FIR laser was designed to be operated in a sealed-off mode in order to make it feasible to use toxic gases such as CH₃Br and costly isotopic species such as C¹³H₃F. A concession to overall vacuum integrity was made in using demountable optical elements, but the added freedom of being able to change resonator elements was deemed necessary for the current developmental program. The ultimate leak rate of laser is limited by the quality of the optical element seals, and using neoprene O-rings between lapped flange surfaces it was possible to achieve sufficiently low leak rates (2-3 millitorr per hour) to permit operation over an
FIR PARTIAL TRANSMITTER

- LASER OPTICAL ELEMENTS
- SI HOLE COUPLER
 STANDARD POLYCRYSTALLINE SI OPAQUE
 100Ω cm LOW LOSS
 ZnSe-ThF$_4$ COATINGS VERY LOSSY
 Ge-ZnS LOW LOSS

![Diagram of FIR Partial Transmitter]

- CW POWER AT 496 μm
 - >5 mW MEASURED ON CALORIMETER
 - FOCUSED, CHOPPED ON SCHOTTKY DIODE
eight hour period with a single gas fill. For truly long-term sealed operation a higher quality vacuum seal will be needed. Hollow, silver-plated stainless steel O-rings were tried as laser vacuum seals but leak rates were unacceptably high even with highly polished flange surfaces. Indium wire seals formed by fitting a 1/8" indium were into the O-ring groove and overlapping the two ends of the wire have also been investigated, and these appear to offer the best long-term sealing characteristics. However, these seals were not included in the delivered hardware because they are not reusable and a certain amount of technique must be learned before one can be reasonably certain of getting a high vacuum seal. Because epoxy seals were used at several joints in the laser built for this program the assembled lasers could not be outgassed at temperatures above approximately 130°F. The pressure response of the system to heating indicated that temperatures higher than 120°F would have further improved the base pressure of the system. A long life system should therefore incorporate glass-metal seals which permit welding or brazing the optical mounts to the waveguide rather than using epoxy for this purpose.

Because of the mechanical complications associated with intravacuum optics and the low operating pressure (<100 millitorr), the vacuum integrity and sealed lifetime of the cw FIR gain cell remain as technical issues that are not fully resolved.

The gain length of 120 cm chosen for the cw FIR lasers is relatively short and was selected in the interest of parameterizing the more compact lasers for which little data are available in the literature. The submillimeter output power was found to be sensitive to input beam probe matching and two mode matching configurations are presented in Figure 22. The optical configuration of Figure 22a produced a theoretical spot size of .9 mm at the 3 mm input coupling hole of the FIR laser and this focused spot size was achieved to within 10% using the cw CO\textsubscript{2} laser which will be described in Section 3.4. For the 496 μm line of CH\textsubscript{3}F using 25 watts of 9.55 μm pump power a maximum output power of 7mW is obtained at the optimum pressure at 75 millitorr. Using the mode matching configuration of Figure 22b the spot size is reduced by 25%. The primary effect of the stronger focus is to increase the divergence of the pump beam within the submillimeter laser resonator. Although the increase in divergence is relatively small, the optimum pressure falls to approximately 40 millitorr and the maximum power decreases to approximately 4.5 mW for the same pump power. This trend suggests that perhaps an input spot size larger than .9 mm should be used, however this will require an input coupling hole larger than 3 mm in diameter and two undesirable phenomena occur as the input hole size is increased. First, as the input beam is matched to larger hole sizes the divergence of the pump beam decreases and an increasingly large fraction of the pump beam escapes from the FIR resonator after one round trip. This reduces efficiency and contributes to instability of the pump laser since the retroreflected beam is coupled back into the pump laser. The second effect is the obvious
MODE MATCHING SYSTEMS FOR CW FIR LASER PUMPING

FIG. 22

CO₂ PUMP LASER

120 cm

5 m CONCAVE

154 cm

5 m CONCAVE ZnSe

3 m CONCAVE

130 cm

FIR LASER

70 cm

PLANO

2m

CO₂ PUMP LASER

FIR LASER

(22a)

(22b)
increase in FIR cavity loss that results from the input aperture which reduces laser power not only by increasing loss but also by tending to support oscillation in an annular mode which is less effectively coupled from the intended output coupling aperture. Laser power was measured with Scientech Model 360001 power meter which has a reduced sensitivity at FIR wavelengths as a result of the increased reflectivity of the sensor surface at the long wavelengths. Power readings may underestimate the power by as much as 40% though this appears to be an outside limit.

The optical coupling of the FIR and CO$_2$ pump resonators results in a long warm-up time before FIR laser output stabilizes. The FIR cavity length tunes as a result of the CO$_2$ pump heating, and the drifting phase of the pump radiation that is reflected back into the CO$_2$ resonator causes the CO$_2$ pump frequency to drift. The change of CO$_2$ frequency produces a changing thermal input to the coupled resonator system and the resulting dynamic behavior of the coupled system can have a very complex temporal history. It is possible that for certain system parameters the FIR output power could be oscillatory in time, although we generally observed long-term warm-up times on the order of two hours for the passively stabilized system. The need for active control of both CO$_2$ and FIR lasers is clear for this coupled resonator system and since thermal effects are dominant a control bandwidth of 10 Hz or even less should greatly improve laser stability.

3.4 CW CO$_2$ Pump Laser

The operational characteristics of the cw submillimeter are strongly dependent on the quality of the CO$_2$ pump laser. The design goals and performance characteristics of the cw CO$_2$ pump laser are listed in Figure 23. Like the submillimeter laser resonator, the CO$_2$ laser is thermally stabilized by Invar rods and is mechanically rigidized by an L-shaped aluminum framework. This laser is shown in Figure 24. The laser has a one meter gain length and a 1.2 meter resonator. Laser power is dependent on gas mixture and flow rate and for slow flow (less than 1 cfm) a maximum power of 54 watts is obtained using a 5 meter concave output coupler with 25% transmission and a flat total reflector. Use of a Littrow grating end reflector is necessary for rotational line control and a loss of 7-20 watts in output power is typical depending on grating quality. Using a high quality grating on a metal substrate (Ref. 7), 47 watts can be obtained on the 10P(20) line, whereas the more resilient original rulings are typically more variable in quality and the range of powers obtained with original rulings span the range of 44 watts to 30 watts. Ideally one would like to be able to tune the CO$_2$ laser over a complete free spectral range without switching from the TEM$_{oo}$ mode, assuming that TEM$_{oo}$ output is achievable. If the CO$_2$ laser is free, or nearly free, of transverse mode switching, the stabilization logic can be much simpler than if mode beating noise is present and the power tuning curve has multiple maxima within one free spectral range. Unambiguous TEM$_{oo}$ operation is desirable even in the absence of control loops since the higher order modes have had different focusing characteristics and generally coupled to the FIR resonator less
CW CO₂ PUMP LASER

- REQUIREMENTS
 - POWER, >20 WATTS
 - MODE, TEM₀₀ FOR LARGE f-NUMBER, SMALL INJECTION HOLE
 - GRATING CONTROLLED
 - FREQUENCY STABLE, NARROW FIR ABSORPTION LINE
 ALSO IMPLIES TEM₀₀

- PERFORMANCE
 - 30-40 WATTS TEM₀₀ IN 9P20
 FUNCTION OF GRATING QUALITY
 - THERMAL LOADING OF GRATING AND BREWSTER WINDOWS GREATLY IMPACTS FREQUENCY
 STABILITY AND TRANSVERSE MODE PURITY
 WATER COOL GRATING AND WINDOWS
 - DIFFRACTION LIMITED PERFORMANCE WITH f/100 FOCUSING OPTICS ACHIEVED
 SUBSTANTIALLY DEGRADED BY LOSSY OR DISTORTED OPTICAL ELEMENTS
 - CAREFUL MODE-MATCHING INTO INJECTION HOLE REQUIRED
 USE OF STANDARD OPTICAL ELEMENTS SIGNIFICANTLY LENGTHENS OPTICAL TRAIN
efficiently than the TEM\textsubscript{00} mode. We have found, for example, that whereas a certain mode matching configuration may couple 95\% of the TEM\textsubscript{00} power into the FIR resonator, this same system couples only 65 percent of the next higher mode into the same FIR resonator.

Obtaining reliable and efficient, TEM\textsubscript{00} operation in higher power CO\textsubscript{2} lasers can be quite difficult due to the tendency of "whisper modes" to oscillate in the high gain regions of the plasma near the glass walls. One can formulate a CO\textsubscript{2} laser design approach which is based on increasing the differential loss between the TEM\textsubscript{00} and TEM\textsubscript{10} modes by using one or two apertures at either end of the laser (Reference 8). This approach has not, in our experience, proven adequate for the higher power CO\textsubscript{2} laser because it ignores the influence of the plasma bore as a guiding surface for the troublesome whisper modes which can dominate the laser output. In the course of the current program it was established that the higher order modes could be effectively suppressed by providing several constrictions spaced 15-20 cm apart inside the plasma tube. Initially the constriction were formed directly into the 9mm I.D. plasma tube by indenting the glass at several places to form an 8mm aperture. An equally effective method, and one which is much simpler to implement is to use several Invar rings which fit the 9mm tube I.D. and have a .4mm wall thickness. The rings are split to provide some flexibility and are simply slipped into position in the plasma bore. Both of these aperturing systems have been found to yield reliable single mode laser operation with no significant (less than 5 percent) reduction in the unapertured laser power. The tuning range over which TEM\textsubscript{00} operation occurs is a function of gas mixture and tube current. When current and/or mix are adjusted to yield a high saturation power and lower unsaturated gain the laser may actually be turned off by length tuning. When higher gain mixes or low tube currents are used transverse mode switching may occur at as much as 75 percent of line center power. The lower gain mixes which typically require higher currents and provide the best transverse mode discrimination yield the same power as higher gain condition, but laser efficiency may be reduced to 9-10 percent which is still acceptable for a single mode laser.

A final consideration in maintaining a single mode output is the need to cool intracavity optical elements. Brewster windows were determined to be a major source of instability until water cooling was provided at each window. The Littrow grating also requires water cooling to reduce its susceptibility to damage and to reduce the long term thermal drifting which occurs when the grating must come to equilibrium at temperatures well above room temperature.

As in the case of the pulsed TEM\textsubscript{00} CO\textsubscript{2} pump source, the cw CO\textsubscript{2} pump laser is a major component of the radar system, having a significant impact on size, reliability and power consumption. Operating the laser in a Q-switched mode would reduce its size but the impact on mode purity and frequency stability is uncertain at present.
3.5 Submillimeter Wave Detectors

A pulsed heterodyning submillimeter wave radar will require a high efficiency detector with 5–50 MHz bandwidth. The semiconductor photon detectors, GaAs in particular, are very sensitive but response falls off quickly above 1–2 MHz and cooling to liquid helium temperature is required. The Schottky diode appears to be the best choice for a wideband sensitive detector at submillimeter wavelengths and the bulk of detector work within the current program has been concentrated on this type of detector. Pyroelectric detectors were for a time considered for use as laboratory pulse detectors and potentially as high signal level heterodyne detectors. Fast pyroelectrics with response times on the order of one nanosecond have become available in recent years and they appeared to offer the possibility of a fast and rugged if somewhat insensitive FIR detector. Two commercially available high speed pyroelectric devices were investigated (Reference 9) and although both detectors functioned satisfactorily in detecting pulses faster than 100 ns, they exhibited severe acoustic resonances when driven with pulses in the 300 ns–3 µs range. Figure 25 shows a typical pulsed output from a fast pyroelectric detector. The risetime is fast but the fall time and subsequent decay time are limited by the acoustic response of the detector and its substrate. This characteristic does not invalidate their use as pulse energy monitors once they have been calibrated; however we were always able to operate at a sufficiently high pulse rate that an average power reading could be used to infer pulse energy.

Schottky diode devices have been widely used as microwave detectors for many years, however devices with response into the 300–600 GHz range are not yet readily available and we therefore obtained a number of high quality diodes on a research basis from Dr. Robert Mattauch who has been developing these devices at the University of Virginia (Reference 10). Future references to Schottky diodes will refer exclusively to data obtained with University of Virginia devices. It should be also be noted that efficiently coupling submillimeter radiation to a diode detector remains a largely unsolved problem and any performance data must be considered lower limits which may considerably underestimate intrinsic device performance.

Figure 26 illustrates in cross section the construction of a Schottky diode. This structure bears a superficial resemblance to the point contact diodes which are commonly used as microwave detectors, but unlike the point contact devices the Schottky diodes utilize the one mil whisker only as an antenna and an electrical contact. The diode itself is formed by photolithography and does not depend on a tenuous contact with the pointed whisker. Figure 27 shows a detector chip which contains several hundred diodes (two small to be seen in this photo) and the phosphor bronze antenna wire which has been contacted to a single diode. The bend in the antenna wire defines the effective length of the antenna, thereby determining the antenna pattern (Reference 11); this bend is also needed to provide some spring force to maintain contact in the presence of ambient temperature variations.
FAST PYROELECTRIC DETECTOR RESPONSE TO TEA CO$_2$ LASER OPTICAL PULSE
FIG. 26

DETAIL OF SCHOTTKY DIODE CONSTRUCTION

WHISPER ANTENNA

GOLD CONTACT

OXIDE INSULATOR

n-TYPE GaAs

n+ GaAs

OHMIC BACK CONTACT

2 µm
Of fundamental importance to the implementation of a heterodyning submillimeter detector is the signal-to-noise ratio obtainable with available local oscillator drive power. The maximum heterodyne S/N is obtained when local oscillator induced shot noise is the dominant source of detector noise; however if detector responsivity at the wavelength of interest is too low, shot noise limited operation may not be possible with available local oscillator drive power or the required drivepower may exceed the detector damage threshold. Using the output of the pulsed FIR laser it was established that the two micron diodes had a voltage responsivity of approximately 100mV/mW when terminated in 50Ω. In order to make a quantitative determination of diode response at local oscillator signal levels, the power from a cw 500μm laser was focused onto the Schottky using a 50 mm focal length paraboloidal mirror. The experimental arrangement is shown schematically in Figure 28. Because of the long wavelength and the 1 cm beam diameter at the focusing mirror, the focused spot size is expected to be several millimeters in diameter; consequently only a small fraction (≈ .6%) of optical power is coupled to the detector. The signal passing through the detector structure was retroreflected by a 30 cm radius mirror with a resulting increase of approximately 30 percent in signal strength. The detector output was then amplified with a total voltage gain of 200, and the signal was viewed on an oscilloscope. Due to the lack of dc response in the amplifiers or a suitable 500 μm source with which to heterodyne, the detector signal was modulated by mechanically chopping the FIR laser output. The chopped waveform as viewed on the Schottky diode is shown in Figure 29. The irregular waveform is a result of the sizes of the beam and chopper aperture and does not markedly affect the accuracy of the measurement. Considering the detector to have an effective cross section of \(\lambda \times \lambda/2 \), we find a detector response of 20mV/mW with 30 μamps of detector bias current. Currents less than 20 μamps result in no detectable response and increased bias currents do not increase detector output. The agreement between the pulsed and cw data reflects the considerable uncertainties in the measurement process which include: greatly differing signal strengths; uncertain beam profile in the focal plane of the collection optics; use of different diodes although electrical characteristics are expected to be similar. These measurements do clearly indicate the suitability of 2 micron Schottky diodes as room temperature detectors for wavelengths at least as short as 500μm, and the voltage sensitivity is comparable to that found in high quality microwave diodes.

For use as a submillimeter heterodyne detector, the simple optical mixer does not appear suitable because of the small fraction of local oscillator power which actually couples to the diode. The current experiments had a very high signal-to-noise ratio because the detection bandwidth was limited to 30 KHz; but if the detection bandwidth were increased to 10 MHz, as would more nearly be the case for the pulsed radar, the S/N will decrease to a value of two. The detector circuit used in the present work has been designed more for noise immunity than for ultimate responsivity and the noise (with or without power on the detector) is about five times the Johnson noise of the 50 Ω source impedance. It therefore
CHARACTERIZATION OF SCHOTTKY DIODE AT MILIWATT SIGNAL LEVEL

- 50mm F.L. PARABOLA
- CHOPPER WHEEL (SMALL APERTURE)
- CW FIR LASER
- 30cm RADIUS REFLECTOR, 30cm FROM FOCUS

Diagram includes:
- RFI PROTECTION CIRCUIT
- BIAS CONTROL AND 10x PREAMP
- VARIABLE GAIN, VARIABLE BANDWIDTH AMPLIFIER
- CRT
CHOPPED CW 496 µm LASER OUTPUT-2 mW AVERAGE POWER

200x VOLTAGE GAIN 30 kHz BANDWIDTH
VERTICAL 5 mV/DIV
HORIZONTAL 0.5 MS/DIV
appears that while some gain in S/N may be realized by further reducing detector
circuit noise, the greatest dividends will result from improving the coupling of
the submillimeter radiation to the detector and possibly increasing local oscil-
lator power, although the latter is probably not necessary if efficient coupling
is achieved. Figure 30 summarizes the performance of the Schottky detector in
the RFI protected circuit discussed below. In order to investigate waveguide
coupling techniques, waveguide components suitable for 325 GHz operation were
ordered midway through the program. Although the ordered waveguides and coup-
lings were readily available in principle, the components were never delivered
and no satisfactory explanation was ever received. This experience was not
totally unexpected and is symptomatic of the generally limited development of
the submillimeter wave technology.

3.5.1 Schottky Detector Modules

In the course of the detector experiments it was found that the RFI from
the TEA CO₂ laser was of sufficient magnitude to destroy an unshielded Schottky
diode and it was therefore necessary to install the diode in an RFI shielded
module. Two detector modules were built for delivery under this contract for
use as wideband pulse detectors or for detection of modulated cw laser output.
Figure 31 shows the assembled detector module mounted on a fixed stage with a 50mm
focal length parabolic collection mirror. The collection mirror is attached to a
two-axis optical mount to facilitate beam alignment onto the detector. Figure 32
shows the detector module with RFI shielding tubes which we have found useful
when working in close proximity to the TEA laser. For effective RFI shielding
it is necessary that the tubes be a few inches longer, and this precludes the
use of the low f# collection optics; however, when working close to the TEA
laser signal strength is not normally a problem. Unfortunately the damage
potential of a given RFI source is very difficult to predict and the conserva-
tive approach would be to use the shielding tubes whenever the focusing mirror
is not needed to obtain sufficient signal intensity. Even without the shielding
tubes the detector is well protected from the ground loop voltages which can be
the major source of noise currents. As a very rough reference point, we have
had no problem in using the detector without shielding tubes at a distance of
two meters from the TEA laser. The optical damage threshold for the detector
is best stated in terms of the detector current. 10 ma is an upper limit and
should not be sustained for more than a minute or so; 5 ma and less are safe
current levels for continuous operation. Figure 33 shows the internal struc-
ture of the detector-preamplifier assembly with the RFI shielding removed.
Figure 34 gives detector mounting details. In the event that the detector
should need to be replaced, the entire brass mount is removed by releasing
the mounting screws. Electrical contact to the pin on which the diode is
mounted is by means of silver conductive paint which may be dissolved with
acetone. A rechargeable Gates cell provides power for the Avantek amplifier
SCHOTTKY DETECTOR PERFORMANCE IN RFI PROTECTED CIRCUIT

• VOLTAGE GAIN: 200x @ 50Ω OUTPUT IMPEDANCE
• SIGNAL LEVEL: 20mV FOR 2mW FIR POWER (TWO-PASS) AND 30μ AMP BIAS
• NOISE LEVEL: 150μ V FOR 30KHz BANDWIDTH
• EXPECTED NOISE FOR 10MHz BANDWIDTH: 9mV
• EXPECTED SIGNAL-TO-NOISE RATIO FOR 10MHz: ~2
• ROOM TEMPERATURE JOHNSON NOISE FOR 50Ω: 0.16μ V x 200 = 32μ V

• RECOMMENDATIONS:
 INCREASE LOCAL OSCILLATOR DRIVE POWER
 MINIMIZE NOISE SOURCES IN RFI PROTECTION CIRCUIT
 IMPROVE DETECTOR CONVERSION EFFICIENCY BY IMPROVING OPTICAL
 COUPLING TO DIODE
SCHOTTKY DETECTOR PACKAGE WITH PARABOLIC COLLECTION MIRROR
SCHOTTKY DETECTOR WITH RFI SHIELDING TUBES
ASSEMBLY VIEW OF SCHOTTKY DETECTOR SHOWING WIDEBAND AMPLIFIER
DETAIL OF DETECTOR HEAD SHOWING SCHOTTKY DIODE IN BRASS MOUNT
and a separate battery provides the bias current for the diode. Figure 35 shows the amplifier and bias on-off switches. The detector bias is adjusted by plugging the microampmeter (provided with the detectors) into the jack and adjusting the potentiometer to obtain the desired current level. The bias circuit is current limited to a value well below the damage threshold. The Gates cell is recharged by plugging the charger (one is provided with each module) into the designated jack. Figure 36 is an electrical schematic for the detector module showing the protection diodes, bias circuit and amplifier. Listed below are the parameters of the specific Schottky diodes which were installed in the delivered detector modules.

Diode Voltage Drop

<table>
<thead>
<tr>
<th>Diode Current</th>
<th>Module #1</th>
<th>Module #2</th>
</tr>
</thead>
<tbody>
<tr>
<td>10(\mu)a</td>
<td>.732v</td>
<td>.730v</td>
</tr>
<tr>
<td>100(\mu)a</td>
<td>.804</td>
<td>.802</td>
</tr>
<tr>
<td>1ma</td>
<td>.884</td>
<td>.879</td>
</tr>
<tr>
<td>10ma</td>
<td>1.031</td>
<td>1.011</td>
</tr>
<tr>
<td>Effective resistance, (R_s)</td>
<td>8.3Ω</td>
<td>6.7Ω</td>
</tr>
<tr>
<td>(\Delta V) (indicates hysteresis in voltage)</td>
<td>.072v</td>
<td>.072v</td>
</tr>
</tbody>
</table>

3.6 Optoacoustic Locking of the CW CO\(_2\) Laser Pump

3.6.1 Introduction - General Theory

To obtain long term stability of an optically pumped FIR laser requires active stabilization of the CO\(_2\) laser pump. Presented is a description of work performed utilizing the optoacoustic effect to lock the CO\(_2\) laser pump at the optimum frequency for conversion of IR (\(P(20)\) 9.55 \(\mu\)m) to FIR (466 \(\mu\)m CH\(_3\)F) wavelengths.
TOP VIEW OF SCHOTTKY DETECTOR WITH ACCESS PANEL REMOVED
The photoacoustic effect has been known for some 95 years now, and a number of review papers on this subject have been written (Ref. 12-14). The basic concept of the optoacoustic effect is relatively straightforward. When radiation is passed through a closed cell containing an absorbing medium, the pressure of the cell will increase. This pressure change can then be detected with a microphone providing information on the interaction. In the present case, the radiation source is a CO₂ laser and the absorbing medium is approximately 0.5 torr of methyl fluoride (CH₃F) located in a 7 cm absorption cell. The signal derived from the interaction occurring in this cell is used in conjunction with phase-sensitive detection techniques to generate an error signal for a feedback control circuit. Prior to this work, this technique has only been used to stabilize the CO₂ pump for the 118 μm transition in methyl alcohol (CH₃OH) (Ref. 15). With the addition of the successful application of this technique to methyl fluoride it appears this technique can be generally applied to optimize the pump frequency for many other optically pumped FIR laser transitions.

At this point it is desirable to obtain a more quantitative picture of the optoacoustic effect specifically applied to the interaction of the P (20) line of the 9μm band with CH₃F. In Figure 37 is shown a simplified energy-level diagram of the prolate symmetric top methyl fluoride molecule. The laser output at 496μm is due mainly to the pumping provided by the absorption of radiation from the K=2, J=12, V=0 level to the K=2, J=12, V=1 level of the ν₃ vibrational mode. Lasing at 496 μm occurs between the J=12 to J=11 rotational states. The V=1 rotational manifold is depopulated by vibrational to translation energy transfer (V=T), diffusion to and subsequent deactivation at the cell walls, and radiative decay. V=T relaxation is the main process causing the required gas heating for the optoacoustic signal.

A microphone located within the absorption cell will respond to pressure fluctuation within the microphone bandwidth. The rate of pressure change with respect to time can be approximated with the following equation (Ref. 12).

$$\frac{dp}{dt} = \frac{2}{3} \epsilon N_1/\tau_C - (P-P_0)/\tau_T$$ \hspace{1cm} (1)

where
- \(P\) = time dependent pressure
- \(P_0\) = ambient pressure
- \(\epsilon\) = energy difference between \(V=0\) and \(V=1\)
- \(N_1\) = population of the \(V=1\) rotational manifold
- \(\tau_C\) = V-T relaxation time constant
- \(\tau_T\) = thermal time constant of absorption cell
SIMPLIFIED ENERGY LEVEL DIAGRAM OF ν_3 MODE OF METHYL ALCOHOL

$V = 1$
N_1

CO$_2$ PUMP
P(20) 9.55 μm

$V = 0$
N_0

J = 12
FIR 496 μm
J = 11
J = 10

J = 12
J = 11
K = 2
An exact solution of this equation does not exist, however, a very simple solution can be obtained if the steady state approximation is invoked. In this case it is assumed that the rate of variation in \(N_I \) is slow compared to \(\tau_c \) and \(\tau_T \), thus

\[
\frac{dp}{dt} \neq 0 = 2/3 \epsilon \frac{N_I}{\tau_c} - \frac{(P-P_0)/\tau_T}{(2)}
\]

Thus

\[
P(t) = P_0 + \frac{2}{3} \epsilon \frac{\tau_T}{\tau_c} N_I(t)
\]

From this equation it is seen that the variation in the gas pressure is proportional to the variation in the population \(N_I \).

For the purpose of explaining the general features of the optoacoustic effect, the following rate equation can be used to determine the \(N_I \) population and is given by

\[
\frac{dN_I}{dt} = -N_I \left(\frac{1}{\tau_c} + A \right) + \frac{I \alpha N_0 \eta}{h \nu} \frac{\lambda^2 g(\nu)}{8\pi}
\]

where

- \(N_I \) = population of the \(V=1 \) rotational manifold
- \(N_0 \) = population of the \(V=0 \) rotation manifold
- \(\alpha \) = \(V=0 \) rotational partition factor
- \(\beta \) = \(V=1 \) rotational partition factor
- \(\nu \) = pump frequency
- \(I \) = pump intensity
- \(A \) = A coefficient of \(N_I \)
- \(\lambda \) = pump wavelength
- \(g(\nu) \) = line shape factor

The solution of this equation can again be easily determined by assuming the steady state approximation. In addition it must be realized that the total number of molecules remains constant, thus

\[
N_0 + N_I = N = \text{constant}
\]

Substituting this into equation (2) and applying the steady state approximation yields
Making a simple substitution this equation simplifies to

\[N_1 = \frac{N_A \alpha A^2 I(\nu) g(\nu)}{\frac{8\pi h\nu}{(\alpha+\beta) A^2 I(\nu) g(\nu) + \frac{1}{\tau_c} + A}} \]

\[\frac{8\pi h\nu}{(\alpha+\beta) K} \]

where

\[K_1 = \frac{\alpha A^2}{8\pi h\nu}, \quad K_2 = \frac{(\alpha+\beta) K}{\alpha} \]

It is to be noted in Eq. (5) that the dependence of the \(N_1 \) population on the pump laser frequency \(\nu \) comes about through the dependence of the laser intensity and the line shape factor of \(\text{CH}_3\text{F} \) on frequency. A variation in operating frequency \(\nu \) will provide a variation in the product of \(I(\nu) g(\nu) \) which causes a variation in \(N_1 \) and correspondingly a variation in \(P(t) \) given by Eq. (2).

It is the detailed dependence of the \(I(\nu) g(\nu) \) product on frequency that will determine the optoacoustic signal generated by a small amplitude dither in pump laser frequency. In Fig. 38 is shown the \(\text{CO}_2 \) laser gain profile, the doppler line shape factor for the methyl fluoride absorption band, and a curve proportioned to the product of these two curves (Ref.16). The \(\text{CO}_2 \) laser gain profile is representative of the actual variation in intensity vs operating frequency obtained with the \(\text{CO}_2 \) laser used in this study. It is to be noted in this figure that the \(\text{CO}_2 \) line center is approximately 43 MHz lower in frequency than the absorption line center. This causes the product curve to have a maximum at approximately +18 MHz relative to the \(\text{CO}_2 \) line center. The present stabilization technique will lock the \(\text{CO}_2 \) laser at the peak of the product curve. This corresponds to the point of maximum power transfer of \(\text{CO}_2 \) radiation to the \(\text{CH}_3\text{F} \) molecule and thus optimizes the pump for the production of maximum FIR laser power. This point of lock does not correspond to the line center of either the \(\text{CO}_2 \) or \(\text{CH}_3\text{F} \) transitions.

Referring to Eq. (5) it can be seen that for very low laser intensities the inequality given by
\[K_2 I(\nu)g(\nu) < \frac{1}{\tau_c} + A \]

(6)

will hold. This is the region of linear absorption. Under this condition Eq. (3) simplifies to

\[N_1 = \frac{NK_1 I(\nu)g(\nu)}{1/\tau_c + A} \]

(7)

Using this equation in conjunction with the product curve given in Fig. (3) allows one to visualize the optoacoustic signal obtained when the CO\textsubscript{2} laser frequency is dithered. Shown in Fig. 39 is the \(N_1 \) population vs. frequency. Under these conditions \(N_1 \) is simply proportional to the product of \(I(\nu) g(\nu) \). Also shown is the \(N_1 \) response to an applied dither in laser frequency at three positions of laser oscillation. It is to be noted that the amplitude in the AC component of \(N_1 \) is proportional the magnitude of \(d\alpha/d\nu \), and the phase of \(N_1 \) relative to the applied dither is equal to the sign of \(d\alpha/d\nu \).

A microphone located within the absorption cell will respond to the AC component of the \(N_1 \) variations which is also shown in Fig. 39. Those familiar with stabilization circuits will recognize this signal as the required error signal for closed loop feedback stabilization. The point of lock is at the null corresponding the maximum \(N_1 \) population.

If the laser signal level is not sufficiently small so as to meet the inequality of Eq. (6), then the resulting optoacoustic signal must be interpreted from the more general form of \(N_1 \) given in Eq. (5). Taking the opposite case of a very intense field such that

\[K_2 I(\nu)g(\nu) \gg 1/\tau_c + A \]

it found from Eq. (5) that

\[N_1 = \frac{NK_1}{K_2} = \frac{\alpha}{\alpha + \delta} \]

which is simply a constant. This is the case of a strongly saturated transition. In this case a dither in CO\textsubscript{2} laser frequency will not yield an optoacoustic signal. Thus under the limits of the present description it is seen that as the intensity of the laser source is increased from very low to very high intensities a maximum in optoacoustic signal will occur. The exception to this is if the CO\textsubscript{2} laser is operating at frequencies corresponding to the peak in the \(N_1 \) population shown in Fig. 39 which for any intensity will always yield a null in optoacoustic signal.
From a practical standpoint it is only the general shape of the optoacoustic amplitude and phase curve, as presented in Fig. 39, that is important to realize feedback stabilization of the CO$_2$ laser pump. As the CO$_2$ laser is tuned over its gain profile, it is only necessary that optoacoustic signal be of an amplitude well above the noise of the detection system which decreases in value, passes thru a null, and then increases in value but with a reversed phase relative to the applied dither. It has been found experimentally that these conditions can easily be met for CH$_3$F even by placing the optoacoustic cell directly at the output of the CO$_2$ laser where the condition of strong saturation is expected.

3.6.2 Experimental Apparatus and Operation

In Fig. 40 is shown a schematic of the apparatus used for optoacoustic locking experiments. It consists of single mode CO$_2$ laser operating on P(20) of the 9 µm band whose PZT tuned output is directed through the optoacoustic cell containing .375 torr of CH$_3$F. The absorption introduced by the cell is less than a percent of the total CO$_2$ power. After passing through the cell the laser beam enters either a power meter or the FIR laser. If the FIR laser is operative, it is monitored with another power meter.

A block diagram of the electronics used for the locking experiment is shown in Fig. 41. The optoacoustic signal is detected with a Knowles Electronics BT-1759 condenser microphone with an integral FET amplifier. This microphone requires a dc supply voltage of approximately 1.5 volts which is obtained from a flashlight battery. In Fig. 42 are shown details of the optoacoustic cell delivered under this contract and in Fig. 43 is shown the manner in which the supply box (supplied with the cell) is connected to the microphone flange.

Returning to Fig. 41 it is seen that the output of the microphone is connected to the input of an Ithaco lock-in amplifier. The phase sensitive detected signal generated by the lock-in amplifier is sent either to a chart recorder for display or to a Burleigh RC-42 ramp generator - operational amplifier combination for closed loop stabilization of the CO$_2$ laser. The lock-in amp was typically set at a sensitivity of 3 mv and a time constant of 125 milliseconds. A reference signal of 100 Hz generated internally by the lock-in was adjusted in amplitude with a potentiometer and then AC coupled to the input of the Burleigh RC-42. The 100 Hz reference signal was amplified by 100 resulting in a 34 volt p-p dither signal applied to a Burleigh PZ-80 PZT. This results in a cavity length dither of .27 µm and a CO$_2$ laser frequency dither of approximately 6 MHz.

If closed loop locking was to be performed, the RC-42 was operated strictly as an operational amplifier. In this case the error signal derived from the lock-in amplifier provided the necessary adjustment in the dc signal applied to the PZT. The phase of the error signal was adjusted with the lock-in to obtain a
ELECTRONICS FOR OPTO-ACOUSTIC LOCKING EXPERIMENTS

+ 1.5V

DITHER AMPLIFIER

3V AT 100 Hz

O THROUGH + 1000V DC

BURLIEGH P2-80 P27

INPUT X 100 = OUTPUT

BURLIEGH RC-42

RAMP GENERATOR +

OP-AMP

-100 mV

10K

100 mF

1/2 uSEC

SENSITIVITY = 30nV

TIME CONSTANT = 1/2 uSEC

ITHICA LOCK-IN AMPLIFIER

FROM POWER METER

DUAL TRACE CHART RECORDER

193 - 08-98 - 7

62
CONNECTION OF SUPPLY BOX TO OPTOACOUSTIC CELL
OPTO-ACOUSTIC CELL

MATERIAL: 304 SERIES SS.
FINISH: 2A ALL OVER
TOLERANCE: ±.002
ASSEMBLY: P.C. CUBICAL SS. TUBES

DRILL #6 (.180)
3 PLACES 120° APART
ON 1.250 B.G.

6-32 3 PLACES
120° APART
ON 1.250 B.G.

MICROPHONE CERAMIC HONEYCOMB

C - DRAIN TUBE (1060 + .006 LONG BELL) 1IN O.D., 300 SERIES TUBE .062 WALL X 2.80 LONG

O-RING #2-001 THP

FIG. 42
stable lock at the null in the optoacoustic signal. If the error signal was to be observed, the lock-in output was displayed on a chart recorder and the RC-42 was used to apply a zero through 1000 volt ramp to the PZT.

It is to be noted that the output of the laser is not the only place the optoacoustic cell could have been positioned. For example the signal coming off of the grating at zero order or the signals derived from the ZnSe Brewster windows could also have been used. In fact these lower level signals should produce a large optoacoustic signal because of the reduction in the effect of saturation mentioned previously.

3.6.3 Experimental Results

The experimental set-up indicated in Figs. 40 and 41 was adjusted to obtain a chart recording of the laser power and the phase-sensitive detected optoacoustic signal as the cavity length was ramped over approximately a 7μm length in a time interval of 50 seconds. The results of this experiment are given in Fig. 44.

A number of points should be noted concerning the CO$_2$ laser power curve shown in Fig. 44. First note that as the cavity length is increased the laser frequency is decreasing in value. Thus, the left-hand side of the figure is at a higher frequency than the right hand side. Secondly note that the laser power curve is asymmetric relative to line center. It has been determined that this effect is due to thermal adjustments to the effective cavity length due to heating or cooling of intracavity optical components as the laser power is increased or decreased respectively. Finally, the fact that the laser can be turned off by a cavity length adjustment is a good indicator of high mode quality of this laser.

Turning to the optoacoustic curve it is seen that zero signal exists when the laser is turned off thus setting the null level for this curve. As the laser starts to oscillate, the intensity is very low, however, a very sizeable optoacoustic signal exists. As the laser intensity increases the optoacoustic signal increases until the laser reaches a power of about 3 watts. At this point the laser is approximately +40 MHz off of line center. The decrease in signal after this point for at least the next ten MHz is attributable to the effects of saturation rather than a decrease in the slope of the $I(v) g(v)$ curve. As the laser frequency is decreased further the optoacoustic signal decreases, passes through a null, then reverses sign and increases in value. The point of lock will occur at the null in optoacoustic signal when the stabilization loop is closed. Note that the null occurs at the +20 MHz relative to the CO$_2$ line center. This value is in good agreement with the predicted value of +18 MHz indicated previously.
OPTO-AcouSTIC SIGNAL VS. CAviTY LEnGTH

(a) PHASE-SENSITIVE DETECTED OPTO-AcouSTIC SIGNAL FROM THE ABsORPTION CELL VS. CO₂ LASER FREQUENCY

(b) CO₂ LASER OUTPUT VS. CAViTY

+ 20MHz LINE CENTER

OPTO-AcouSTIC SIGNAL

LASER POWER

INCREASING CA viTY LENGTH
DECREASING LASER FREQUENCY
In another experiment the CO$_2$ laser pump was allowed to excite the FIR waveguide laser operating at 496 μm. The output of the FIR laser was monitored as the CO$_2$ cavity length was adjusted. As expected the maximum FIR output occurs when the optoacoustic signal was nulled or when the stabilization loop was closed.

Finally the long term stability of the output power of a Methyl Alcohol FIR laser operating at 118 μm was monitored under the conditions of an opto-acoustic locked or unlocked pump laser. The results of this 48 min duration experiment are presented in Fig. 45. As is obvious from this curve the locked pump laser produces a much more stable FIR output than does the unlocked case. This experiment was not be repeated for CH$_3$F, but similar results are expected.

It can be concluded from these results that the optoacoustic effect represents a very simple but effective means of stabilizing CO$_2$ pump lasers at the optimum frequency for IR to FIR conversion in optically pumped FIR laser systems.
118μ FIR OUTPUT POWER VS LOCKED AND UNLOCKED CO₂ LASER

FIG. 45
4.0 REFERENCES

6. Mirrors were fabricated and coated by Laser Optics, Inc., P.O. Box 127, Danbury, Connecticut 06810.

10. Dr. Robert Mattauch, Department of Electrical Engineering, School of Engineering and Applied Science, Thornton Hall, University of Virginia, Charlottesville, Virginia 22901.

REFERENCES (Cont'd)

