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Abstract: Polished (111), (100), and textured (100) single crystal, n-Si
surfaces have been studied in relation to their use as photoanode materials
in a photoelectrochemical device. Textured (100) Si is prepared by
chemically etching the polished (100) surface. The textured surface consists
of pyramids having (111) sides, necessitating the study of polished (111)

Si as a comparison. Electron microscopy and Auger spectroscopy have

been employed to characterize textured and polished surfaces functionalized
with the electroactive reagents (1,1'-ferrocenediyl)dimethylsilane and
(1,1'-ferrocenediyi)dichlorosilane. Electrochemical techniques have beer:
used to determine coverage of electroactive material, and the textured

surface is found to bind about twice as much material as the polished
surfaces. The charge transfer properties of the surface-confined material

on the polished (100) and (111) Si are virtually identical: the position of
the photoanodic wave corresponding to uphill ferrocene oxidation is within

30 mV and the ferricenium reduction peak is also at the same potential. The
textured (100) Si surface shows a slightly more positive (100 mV) photoanodic

and dark cathodic peak. Photoelectrochemical cells based on textured (100)
Si vs. polished (100) Si are about 20% better in overall efficiency due to
Tower reflection losses associated with the textured surface.
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Semiconductor-based devices depend on interfacial structural and

electronic properties. Performance of semiconductor/liquid junction
devices for the conversion of light to electricity and/or fuels have
been shown to depend on semiconductor surface treatments such as
etching and chemical modification!'sln this article we wish to report the
results of a study of single crystal, n-type Si photoanodes that have
been purposely etched to improve surface area and to reduce reflectivity. The
resulting etched surface will be referred to as "textured".

It is known that the (100) face of single crystal Si can be
chemically etched to reveal (111) planes resulting in a textured (100) Si
surface consisting of pyramids having (111) sides.5” Texturing the (100) surface
is a sort of anti-reflection technicue that has been proposed as a way to
improve the efficiency of p-n Si solar cel]s?JIWe undertook a study of the
textured Si surface in connection with semiconductor photoelectrochemistry,
in part to demonstrate that the anti-reflection properties can be exploited
in a liquid junction device. An important difference between the p-n device
and the liquid junction is that the p-n device does not crucially depend on
the surface properties for the photovoltaic effect whereas the surface is

the essential aspect in the photovoltaic effect in the liquid junction.

Thus, surface texturing is not obviously extended to semiconductor/liquid

junctions.

The textured surface also results in an increase in surface area and this
may be useful when the surfaces are to be chemically derivatized with redox
reagents that mediate electron transfer to or from solution species.s’8
Increased surface area for chemically derivatized electrodes would
seemingly be useful in two respects. First, the increased surface area
would result in a Tower turnover rate at a given photocurrent for the
surface-confined redox mediator. Second, the total number of turnovers

needed would be Tower for the higher surface area. Finally, when the

rate of the mediated redox reaction is rate (current) Timiting, increasing
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the surface area would aid in realizing a situation where current

is limited only by 1icht intensity.
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Since texturing the (100) surface of Si reveals (111) planes, we have
made careful comparisons of polished and textured (100) surfaces with
polished (111) surfaces of single crystal Si. It is possible that different
crystal faces will give a different output photovoltage.9 Further, surface i
states may differ to an extent that interfacial charge transfer kinetics could
be altered.

Electron microscopy, Auger spectroscopy, and electrochemical
techniques have been employed to characterize n-type Si surfaces. Redox
reagents I and EI have been used to derivatize the surface of n-type Si

f042

by exploiting chemistry represented by equations (1 and (2),]3 Auger studies have
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been carried out on hydrolyzed samples of E and Pt/pt-oxide and Au/Au-oxide surfaces

derivatized with 2 as a comparison to Si derivatized with !.

Electrochemical behavior of the n-type Si photoanodes has been examined
in non-aqueous (EtOH) electrolyte solutions containing

added ferrocene, since it has previously been shown that this medium can
yield constant output parameters when the n-type Si is il]uminated.]4
Derivatized photoanodes have been characterized in EtOH electrolyte

solution containing no electroactive material.
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oerimenta’

Materials. Single-crystal, P-doped,n-type Si wafers (both (100} and
(111) face exposed) were obtained from Monsanto Co. The polished wafers
were 0.35 mm thick with resistivities between 3-6 Qcm for the (100) face and
between 3-7 Qcm for the (111) face. Absolute EtOH, spectroquality isooctane,

reagent grade KOH, Fe(ns-C:H;)9, and ethylene glycol were used as received from

commercial sources. Electrometric grade [ngu4N]C104 (Southwestern Analytical Chemical,

was dried under vacuum (353°K) for 12 hours, and stored in a dessicator until
used. Hexane was distilled from sodium benzophenoneketyl under Ar.
Ferricenium as the PFS' salt was prepared according tc the 11terature.15

(1,1'-ferrocenediyl)dichlorosilane, 1, and (1,1'-ferrocenediyl)dimethylsilane, I,

10,13

were prepared according to the published procedures. Hydrolysis of I to

produce polymeric material was done accordirng to the literature pr-ocedulr‘e.]2

Electrode Fabrication. Electrodes were made by cutting the wafers into

pieces ~20 nn? and mounting as previously reported.14 The electrode was

rubbed on the back with Ga-In and secured with conducting Ag epoxy to a coiled
or flattened Cu wire. The Cu wire lead was passed through 4 mm Pyrex tubing

and all surfaces were insulated with ordinary epoxy so as to leave only the front
surface exposed.

Just prior to use naked Si electrodes were etched in concentrated UF for 60 s
to remove SiOx and rinsed in distilled H,0 and EtOH. Electrodes to be derivatized
were treated in 10 M NaOH for 60 s after the HF etch, then rinsed with
distilled HZO and acetone. For derivatization the electrodes were exposed
for 1-15 h to an Ar-purged isooctane solution of (1,1-ferrocenediyl)-
dichlorosilane in an Ar atmosphere at 298°K, or for 3-5 h to a hexane
solution of (1,1'-ferrocenediyldimethylsilane in 2 Vacuum Atmospheres
N, dry box.  For derivatization with (1,1'-ferrocenediyl) dimethylsiiane
the HF/NaQOH pretreatment was carried out in an ultrasonic bath. The
process was completed by rinsing the electrode first with isooctane or hexane

and then with acetone. Pt and Au electrodes were mounted, pretreated, and
0-12

. . . - o - L. . 10-
deria-ized ~ith (7,7 ferre a--2 7 dichlyrositane av previnuti, described.
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Etching of (100) Silicon. Silicon with the (100) face exposed was etcnad

according to the procedure given in the 1iteraturefi7 The silicon was first

etched in concentrated HF for 60 s, rinsed with distilled water, and then

placed into a solution which was 19% KOH and 1% ethylene glycol in water.

The silicon was etched for 5-30 min at 78-80°C in an ultrasonic bath,

then rinsed with distilled HZO' The etching solution could not be consistently

reproduced. The half-polished/halftextured electrodes were nrepared by covering aproximately

half of the front face of a 1 ¢m x 4 cm piece of silicon with ordinary

f i epoxy. Then the half-epoxied strip was treated as above, etching for 15 min.

After the etching process, the epoxy was removed by soaking in CH2612 for

several hours. The strip was cut into smaller strips, ~0.5 ¢m by 1 cm, and these

were made into electrodes as described above.

Electrochemical Studies. AT7 experiments were performed in single

compartment Pyrex cells, equipped with a saturated calomel (SCE) reference

electrode, Pt wire counterelectrode, and Si working electrode. Electrodes

were characterized electrochemically in 0.l _M_[p_;—Bu4N]C]04 in EtOH using a

PAR Model 173 potentiostat and a PAR 175 universal programmer. Scans were

recorded on a Houston Instruments X-Y recorder. Irradiation was supplied

with a He-Ne laser emitting ~5.6 mW at 632.8 nm. Laser intensity was varied

with Corning colored glass filters and monitored with a beam splitter and a

Tektronix J16 digital radiometer equipped with a J6502 probe.
2 5

Stirred, Ar purged solutions of 5§ x 10~

Fe(ns-C5H5)2+, and 0.1 M [ﬂ-Bu4N]C104 in EtOH were used for steady state

current potential curves. The E of the solution was measured with a

redox
digital voitmeter by determining the potential difference between a Pt electrode

and an SCE. A jack was used to raisc and Tower the entire cell assembly

when using the half-nolished/half-tertured electrode in order to move the

unexpanded laser beam between the textured and pclished parts of the electrode.
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Auger Electron Spectroscopy. Auger spectra were obtained on a Physical

Electronics Model 590A Scanning Auger Spectrometer, ecuizned with a

sample introduction system. A 5 keV electron beam with beam currents of
0.1-3 uA was used as the excitation source. Electrode samples were mounted
by clipping the electrode Cu wire lead to the sample holder. Pretreated Si
samples were either clipped down or mounted with conducting Ag paint, and the
solid obtained by hydrolyzing (1,1'-ferrocenediyl)dichlorosilane was -ressed
into In for study to avoid problemrs with sample charging.

Scanning Electron Microscopy. SEM's were taken on a Cambridge Mark 2A

=]
Stereoscan, with a resolution of 200 A. The microscope used is equipped
with a Kevex energy dispersive X-ray analyzer. Samples were mounted with

conducting Ag paint. Generally, the samples were not gold coated since

charging was not a problem at the magnifications used.
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Results

a. Electron Microscopy of Electrode Surfaces, Electron microscopy has been

employed to examine the nature of derivatized and textured surfaces.
Electron microscopy has been particularly useful in establishing that the
textured (00) Si surface actually consists of pyramids.
Chemical etching of (100) $i generally produces a rough surface, but there is
irreproducibility in the extent to which the chemical etching produces
a textured surface consisting of pyramids. In some cases, etching
solutions prepared in the same way did not yield the same results. In
fact, the best etching solution was not easily reproduced and virtually
all textured surfaces studied in detail were prepared using a single solution?
Figure 1 shows a comparison of the smooth (100) Si surface and the
textured (100) Si surface. The ~4 mm x 12 mm exposed surface is half-polished
and half-textured according to the procedure used in the Experimental.
The half-polished/half-textured material was subsequently fashioned into a photo-
electrode so that the polished and textured electrode surface could be
compared by illuminating one part or the other using a masked
illumination source. The photograph shows that the polished part is in fact
smooth at magnification 10,000X: though not shown, the polished (100) surfaces
used were shown to be smooth at ~200 K resolution. The micrograph of the
texturzd portion does show sharp, well-developed pyramids, while the region
between the polished and fully textured norticns shows the beginnings of the
grpwth of the pyramids. Polished (111} Si surfaces are smooth at ~2003
resolution.
The low magnification portion of Figure 1 illustrates the
difference in specular reflection of the polished and textured (100) Si surface.

The polished surface clearly reflects the image of the object in the photograph,

whereas the textured surface does not.
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Chemical etching to produce the textured (100) Si surface is irreproducible
as mentioned above. Variation in the textured surfaces is represented by the
scanning electron microscopy data shown in Figure 2. These surfaces were
produced, ostensibly, by the same procedure used to prepare the textured
surface in Figure 1. But clearly there are differences. However, increase
in surface area and decrease in specular reflection are common to all (100)
surfaces etched according to the procedure used. Just what gives rise to the
variations in surface morphology is not known. A1l electrochemical studies of
textured (100) Si were for surfaces for which the photograph in Figure 1 is
representative.

Electron microscopy was also used to examine polished (111) and (100) Si, Au,
and Pt surfaces that were derivatized with I and II. At coverages of [ in the
range 3x10”'0 to 5x107° mol/cm? or of II in the range 3-8x10710 mo1/cm? we were
unable to reproducibly observe anything other than smooth surfaces at a
resolution of ~200 3. These coverages are the number of moles of ferrocenyl-units
per cm2 of projected surface area determined by cyclic voltammetry. The electron
microscopy sometimes reveals alobules, splotches, particles, or what appear to be
blisters on the surface but energy dispersive X-ray analysis (EDAX) of these
particular places does not reveal Fe. For coverages below 5x10‘9 mo]/cm2>95% of
the electrode surface is smooth at 200 R resolution. Gross deposition of samples
of 1 onto electrodes does give structures and EDAX can be used to detect Fe, but
smooth surfaces can be generally found even for electrochemical coverages of

>'5x10'9 mo]/cmz. Gross deposition of [ to give visibly detectable material can
be accomplished by dropwise addition of solutions of I onto the electrode surface
followed by solvent evaporation. Electroactive material exceeds 10'8 mo]/cmz.
The structures (particle, globules, splotches, blisters) that sometimes appear
at this, and lower, coverage are apparently not uniquely related to the derivi-
tization procedure. Thus, we find that derivatization of smooth surfaces with

[+]
[ or II results in uniform coating at a resolution of ~200 A. Electron micro-

scopy of textured (100) Si that has been derivatized with I or II shows no

~~

differences compared to the textures, but non-derivatized surfaces.
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b. Auger Electron Spectroscopy of Electrode Surfaces. We undertook Auger

electron spectroscopy studies of Si, Au, and Pt surfaces functionalized with I
and IE to add to our characterization of the interface. Previous studies of
electrode surfaces have shown that ferrocene-centered redox material derived

from 1 is deficient in Fe.12

Figure 3 shows Auger spectra for Si before and
after functionalization with 1 and for hydrolyzed E and for Pt functionalized
with E. Though much data were collected, little in the way of quantitative
information has been gained. Generally, functionalized Au and Pt show
significantly different Si/Fe ratios from electrode to electrode suggesting a
variable and non-reproducible degree of decomposition in the functionalization

reaction,]2

even when electrochemical coverage is similar. Three qualitative
conclusions can be drawn: (i) functionalized electrodes show Fe everywhere at the
~10 um resolution used in these experiments; (ii) for Si electrodes the coating
of oxide and electroactive material is sufficiently thick that no pure Si is

obser*vab1e;17

and (iii) the Auger of material derived from hydrolysis of Iis
similar to the spectrum for the material on the surface of Pt or Au derivatized
with {. Conclusions regarding the gquantitative aspects of elemental composition
of the surface-confined material cannot be made. Damage of the organometallic
material in the Auger is a possible source of problems in lr‘eproducib'ih't_v,‘I8
but we believe that the main source of irreproducibility lies in the derivatization
reaction itself. We note that hydrolysis of I gives material having a dif ferent
elemental analysis from preparation to preparation. Further, we have

obtained very reproducible, quantitative results from the Auger using other
derivatizing reagents. For now, the Auger clearly shows that Fe is

present on surfaces after exposure to 1 or EE. In the future we will focus

effort on the quantitative aspects of this problem by first concentrating on
13

reagent II, since it should be present only in monolayer coverage.
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c. Electrochemical Characterization of Polished vs. Textured {100) Si.

Several experiments have been carried out to characterize the photoelectro-
chemical behavior of polished and textured (100} Si surfaces. Also,
polished (111) Si has been compared to the (100) Si surfaces, since
the (111) planes are revealed in the textured (100) surface. Electro-
chemical characterization of chemically derivatized surfaces using
reagents 1 and E{ to modify the surface has been performed, in order to
determine whether the textured surface will bind more reagent than the polished
surface. Table I and Figure 4 summarize the essential results. The
textured surface does bind more reagent per unit of projected area. The
enhancement in coverage using reagent E{ is most reliable, since this
reagent has no tendency to form polymer on the surface, under the conditions
Lsed}3 HWe find that the enhancement in coverage is about a factor of two
for the textured surface compared to the polished Si. Surprisingly, the
average coverage for reagent I is also about a factor of two greater for
the textured surface.

After examining the very rough surface in the textured case compared
to the polished (100) Si, Figure 1, the rather small enhancement factor in surface
coverage is surprising. However, geometrical considerations suggest that
the available area should increase by only a small factor (<4) if pyramids
of (111) sides are revealed upon texturing the (100) surface. A definite
increase in surface coverage of the reagent II does occur. Data for
derivative E, where polymerization is possible, is less convincing, since
the overlap of coverages obtained for textured and polished surfaces is
considerable.

The position of the photoanodic current peak for the oxidation of the
surface-confined reagent is a measure of the extent to which the oxidation
can be driven uphill with light of a given intensity. The peak on a

reversible electrode such as Pt or Au gives the formal potential of the

surface-confined ferrocene reagents and it is about +0.50 V vs. S(.‘.E.]0 The
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peak at 0.0 - +0.1 V vs. SCE on the illustrated Si indicates that ferrocene

is oxidized in an uphill sense by about 400-500 mV. There appears to be a
small, but definite, effect upon texturing the surface that results in a

more positive photoanodic current peak (70-100 mV) compared to the polished
surface. The effect on peak position is not simply due to the (111) surfaces
that are exposed. This conclusion is firm because polished (111) and polished
(100) give nearly the same average peak position and the same average

coverage of electroactive material. Texturing the surface apparently

alters the interface properties in such a way that the surface confined
molecule is less easily driven uphill under the conditions employed.

Data for the dark reduction of low concentration of ferricenium in
solution are given in Table II. A comparison of the position of the
cathodic current peak and the peak cathodic current density is given for
textured (100) and polished (100) and (111) Si. The cathodic current peak
occurs ~25-30 mV more positive at the textured electrodes. This
result suggests that the textured (100) surface has a slightly worse back
reaction problem compared to the polished surfaces. The ability to reduce
the ferricenium at the more positive potential indicates that the textured
surface will have more back electron transfer when ferrocene is photooxidized.
However, the effects on back reaction rates appear to be modest. Even fast
scan rates in the cyclic voltammetry reveal little difference between the
polished and textured surfaces..

Tﬁe cathodic peak height and the shape of the wave for textured and
polished Si surfaces are quite similar. The fact that the integrated area
under the cathodic wave for textured and polished surfaces is nearly the same
indicates that the increased area is not important; the roughness is low
compared to the thickness, d, of the electrolyte solution layer that is
jmportant in the cyclic voltammetry. The two possible extremes are sketched

in Scheme I. Electron microscopy shows that the textured (100) Si surface

. 6,7 .
is rough on the -1 - 5. scale. By knowing the area under the cathodic wave,
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the electrode area, and the bulk solution concentration of ferricenium, the
thickness, d, for the polished surfaces can be approximated. At 100 mV/s scan
rates, we find d to be ~20 yu, or several times larcer than the roughness

of the textured (100) Si surface. The value of d ~ 20 u accords well with

19

theory. Thus, we would expect nearly the same area under cyclic

voltammetry waves for the polished and textured (100) Si, as found.

textured
T ZT’ Tt surface N
AN N
d textured a = 3!\0/\V \‘
) surface K
f”v”v“/\/k/\/\/vﬂ/\

{

))’
N
§
t (

Scheme I. Representation of two extremes for relation of textured
surface to thickness, d, of electrolyte solution that
contains accessible electroactive material in a cyclic
voltammetric scan. In (a) the textured surface and a smooth
surface would give the same cyclic voltammetry, whereas in
(b) the textured surface would give a larger integrated
area under the wave.

Scheme I is also useful in understanding the difficulty in interpreting
the derivatized surfaces. When using a derivative that can polymerize and
form a thick coating of thickness, d, the question is again whether the
roughness is of the same order as d. Obviously, when using a material
that does not polymerize and forms covalent bonds only to the surface —OH
groups, I1I (equation (2)), the value of d is Tow compared to the physical
scale of the roughness. When the polymer from } (equation (1)) is
significantly thicker than the scale of roughness, textured and polished
surfaces again become indistinguishable. However, when the polymer
coating has a thickness less than the height of the pyramids then even a
polymeric coating of electroactive material will reveal the roughness.

From the coverages actually found, Table I , we would conclude that the

average value of d for surface derivatives with [ to be well below 1 .

gt
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Auger and electron microscopy are consistent with this finding. We find in

the Auger, for example, that not even the highest coverage, 1.8 x 10'8 moY/cmz,
for £ on Au completely attenuates the Auger signal characteristic of the
underlying Au. The electron microscopy of textured (100) Si surfaces does
not show less definition of the pyramids when the surface has polymeric
coverage of electroactive material. We conclude that for typical coverages
of E or for the ~monolayer coverages of Il there is an important increase
(~2) in the amount of attached electroactive material ner unit of
projected electrode area.

The imnroved surface coverage on textured surfaces means that current
density for mediated oxidation of solution species, B, according to

equations (3) and (4) can be a factor of ~two greater under conditions where

light
potential

k
n-Si-surface-ferricenium + B et n-Si-surface-ferrocenyl + gt (4)

n-Si-surface-ferrocenyl n-Si-surface-ferricenium (3)

neither light intensity nor mass transport of B are current limiting.
Under these conditions current density is directly proportional to

surface coverage of the mediation system (ferricenium/ferrocene)?0
Preliminary results do show an average increase of about two in the photo-
current density for the mediated 1™ - 13' process at textured vs. polished

surfaces using reagent IE as the surface-confined mediator system.

d. Comparison of Energy Conversion Efficiency for Textured and Polished

(100) Si Photoanodes. Figure 5 and Table IIl summarize data for the

conversion of 632.8 nm light to electricity using textured and polished
(100) Si surfaces as the photoanode in a photoelectrochemical cell. The
counterelectrode used was Pt and the cell chemistry is that represented

by equations (5) and (6) in a 0.1 M [ngu4N]C104/EtOH electrolyte solution.

Photoanode Reaction: Ferrocene — Ferricenium + e~ (5)

Cathode Reaction: Ferricenium + e —— Ferrocene (6)
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The comparison was made using a half-polished/half-textured (100) Si electrode
1ike that shown in Figure 1. The only difference was that the polished

or the textured portion was illuminated by suitable manipulation of the
incident He-Ne laser beam used as the input optical source. In such an
experiment the contribution of the polished and the textured (100) Si

surface to reduction of the solution ferricenium is constant, and we have

a true test of the relative photoeffects.

The data show that the textured portion of the photoanode results in
improved energy conversion properties, except at the highest intensity used.
There is a slight improvement in open-circuit photovoltage and the voltage
at the maximum power point. But the main improvement is in the photo-
current. There is about a 20% improvement in short-circuit current.

This improvement is very likely the consequence of lowered specular
reflection from the textured surface. The improvement is significant and
reproducible but we still find overall low efficiency for the n-Si based
cell. The textured surface does not significantly affect parameters other

than the photocurrent.

Conclusions

A comparison of the photoanode properties of polished (100), (111), and

textured (100) Si surfaces reveals only minor differences with respect toinherent

properties. There does appear to be a small Toss in output voltage for surface-

ferrocene oxidation for the textured {100) surface and this appears to be

due to better kinetics for ferricenium reduction than at the polished (100)
or (111) surface. The textured surface is rough (1 - 5upyramids) on a scale
that results in a factor of two greater coverage of electroactive material
compared to polished surfaces that appear smooth at ~200 3 resolution. Even

fcr a surface derivatizing reagent that can polymerize, the textured surface

is rough enough to enhance coverage per unit of projected area. Auger
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spectroscopy and electron microscopy suggest uniform coverage of electro-
active reagent but the resolution is only ~10 u for Auger and

~200 K for electron microscopy. The textured surface does appear to
lower reflection losses compared to polished surfaces and improvement

of ~20% in energy conversion efficiency is possible by texturing the
(100) Si surface. However, overall efficiency of the n-Si-based cell

employing the ferricenium/ferrocene redox couple is still low.
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Table I. Photoelectrochemical Characterization of Derivatized n-Type Si.

Samplea

Derivat‘iveb

c
Epas V vs. SCE

Coverage, molcm™

R o T e i o - o
B T S PRSE

2

d
x1010

PoTTshed (100) S
#12
#3
A4
#15
#11

Textured (100) Si
#16
#17
#18
#19
420
#21
#10
#22

Polished (111) Si
£9
#23
#24
#25
#26
=27

Polished (100) Si
28
£29
£30
431
# 8
#32
#33
#34

Textured (100) Si
#36
#37
#38
£39
5
6
7

Tt T

I1
II
Il
Il
II

—t Pttt e

-0.03
-0.03
+0,10
+0.01
-0.03
Avg. 0.00

+0.07
+0.05
+0.17
+0.17
+0.05
+0.05
+0.18
+0.10
Avg. +0.11

-0.03
0.00
-0.01
0.00
-0.02
+0.10
Avg. +0.01

+0.04
+0.11
0.00
+0.02
+0.01
+0.08
+0.05
+0.05
Avg. +0.05

+0.22
+0.22
+0.20
+0.08
+0.05
+0.12
+0.04
Avg. +0.12

Avg.

36
100
46
22
7.4
33
78

29
Avg.” 44

190
260
160
12
78
31

22
Avg. 115
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Table I. (continued)

2 1410d

C -
Sample? Derivativeb Epy» V vs. SCE Coverage, molcm X0

Polished (111) Si

| # 1 I +0.14 94
| #40 I +0.06 46

‘ #41 I +0.06 9.3
#42 I -0.06 10
| 443 I -0.06 10
#44 I +0.02 20

#45 I -0.06 3.8
| £46 I +0.06 15
' #47 I -0.01 15
#48 I +0.02 13
1 # 4 1 +0.02 21
- Avg. +0.02 Avg. 23

3 ace of silicon exposed ((100) or (111)) and whether or not the electrode was
textured.
b

The derivatives used. I = (1,1'-ferrocenediyl)dichloroylsilane and ][I =
(1,1'-ferrocenediyl)dimethylsilane.

“The potential of the peak of the_photoanodic wave with a scan rate of 0.1 V/sec;
632.8 nm illumination, ~50 mi/cm*.

dThe coverage of electroactive material on the surface calculated by
; integrating the area under the anodic wave and dividing by the
! projected surface area.




Table II. Comparison of Dark Reduction of Ferricenium at Textured and Polished ]
i n-Type si.2
i : 2b o
? Electrode 1pc’ uA/cm Epc’ V vs. SCE
; Polished (100) Si #156 11.0 -0.03
! 4155 10.5 +0.06
- #157 9.5 +0.02
{ i $158 11.0 -0.05
"! Av. 10.5 0.00
x Polished (111) Si #69 1.2 0.00
f #68 10.7 +0.01
£66 9.5 +0.08
464 --- -0.07
Av. 10.5 +0.005
Textured (100) Si #168 12.2 +0.05
#169 11.7 +0.11
#170 9.6 -0.04
#163 --- 0.00
Av. 1.2 +0.03

3pata for 100 mV/sec cathodic sweep from +0.6 V vs. SCE in quiet solutions of
[Fe(n>-Ceg),1PF, in ELOH solvent containing 0.1 M [n-Bu,N1C10,.

Beurrent density at cathodic current peak for [Fe(ns-C5H5)2+] reduction.

Cpotential for cathodic current peak.
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Figure 1. This photograph depicts a half-polished/half-textured sample of
E (100) Si. The left hand portion shows good specular reflection
of the ruled object (0.5 mm/div) for the polished portion while ‘

the textured portion shows no specular reflection. The three

scanning electron micrographs show the polished (top)
partially textured (middle) and fully textured (bottom) regions

|
of the (100) Si sample at the same magnification. ;
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", Fiqure 2. Scanning electron micrographs showing representative results
| from chemical etching of four different samplies of (100) Si
| according to the procedure given in the Experimentai. The

magnification is the same in each case.
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Figure 3. Auger spectra of (a) pretreated, polished (100) Si;
(b) polished (100) Si derivatized with (1,1'-ferrocenediyl)-
! dichlorosilane at 7.4 x 10']0 mol/cmz;(samp1e #8 in Table I);
.A ?

(c) pretreated Pt derivatized with (1,1'-ferrocenediyl)-

9

dichlorosilane at 1.8 x 10~ mol/cmz; and (d) product from

hydrolysis of (1,1'-ferrocenediyl)dichlorosilane pressed

into In.
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.  i Figure 4. Cyclic voltammograms (100 mV/sec) for n-type Si surfaces

Z 1 derivatized with (1,1'-ferrocenediyl)dimethylisilane under 632.8 nm
i1lumination (~50 mW/cm®) in 0.1 M [n-Bu,NIC10,/EXOH electrolyte
solution: (a) polished (111) Si, sampie #9 in Table I and

Table II; (b) polished (100) Si, sample #12 in Table I and

Table II; and (c) textured (100) Si, sample #20 in Table I .
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Figure 5. Steady state current-voltage curves for half-polished/half-textured
n-type (100) Si photoelectrode in stirred EtOH solution of

3

5 x 1072 M Fe(n*~Cgs)ps 1.5 x 1073 M Fe(n®~CHg),PFg, and

0.1 M.[ﬂfBu4N]C104, Eredox = *0-34 V vs. SCE. Irradiation
with 632.8 nm light at the indicated power. The area
illuminated in all cases was 2.8 x 10> cm?. “Polished” and
"textured" refer to the portion of the electrode that was

actually illuminated.
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