NATURAL FREQUENCIES AND MODE SHAPES OF CABLES WITH ATTACHED MAS--ETC(U)
AUG 80 S SERGEV, W D IWAN
CEL-TN-1583

UNCLASSIFIED
title: NATURAL FREQUENCIES AND MODE SHAPES OF CABLES WITH ATTACHED MASSES

author: S. Sergev and W. D. Iwan*

date: August 1980

sponsor: Naval Facilities Engineering Command

program nos: YF59.556.091.01.402

*California Institute of Technology

CIVIL ENGINEERING LABORATORY
NAVAL CONSTRUCTION BATTALION CENTER
Port Hueneme, California 93043

Approved for public release; distribution unlimited.
ACKNOWLEDGMENT

Professor Iwan developed the mode shape solution techniques described here under contract to the Civil Engineering Laboratory. The authors thank California Institute of Technology graduate student Shawn Hall for his efforts in preparing the apparatus and conducting the experiments to determine mode shapes.
NATURAL FREQUENCIES AND MODE SHAPES OF CABLES WITH ATTACHED MASSES

Title: Natural frequencies, mode shapes, strumming, cables, strumming cables, cable dynamics, vibration.

Abstract: An algorithm has been developed to calculate mode shapes and natural frequencies of taut cables with attached masses. The transcendental equations of motion are solved by an iterative technique that allows accurate calculation of extremely high mode numbers. The algorithm has been implemented as a FORTRAN program primarily as a tool in determining drag coefficients of submerged strumming cables; however, any taut cable can be analyzed.

(continued)
To assess the accuracy of the program, a simple experiment was conducted to determine the natural frequencies and mode shapes of a wire with attached masses driven sinusoidally by a shaker. The algorithm shows close agreement with the experimental data.
INTRODUCTION

Many ocean-founded structures rely on cables for support or anchoring. Static and dynamic modeling of the interaction of a structure with the sea requires calculation of the loads due to cable drag. Strumming (vortex-induced vibration) of the cables increases the cable drag coefficient and causes a proportional increase in the total drag force. Several methods have been developed to predict the amplification of drag due to strumming. These methods require a calculated cable mode shape as an input to algorithms that determine drag amplification. The algorithms have been developed from experimental data and represent the state of the art in drag amplification prediction. In the past, matrix methods have been used to determine cable mode shape, but these are costly techniques, subject to inaccuracy, particularly for higher modes.

The Civil Engineering Laboratory (CEL), under sponsorship of the Naval Facilities Engineering Command, has been developing computer models for analyzing the response of cable structures. As part of this project, CEL has developed an iterative solution of the transcendental equations describing cable mode shape. The iterative approach is fast, accurate, and can easily accommodate a variety of system configurations, including bodies attached to the cable.

One of the initial cases analyzed by the new iterative technique was a long cable with 380 attached bodies. This cable is representative of those encountered in ocean engineering applications. Such cables are often excited by ocean currents to vibrate at very high mode numbers. The calculated mode shape for mode 162 is shown in Figure 1. It is apparent that the mode shape is complex and much beyond the range of intuition.

Since the mode shape calculation has a significant influence on the drag calculation, it is considered essential that the determination scheme for the mode shape be verified by comparison to experimental data. Therefore, an experiment was carried out to measure natural
frequencies and mode shapes. The description of the iterative algorithm, the measured results of the experiment, and a comparison between the experimental data and the computed results are presented.

![Figure 1. High mode number for a real cable system.](image)

STRUMMING OF MULTISEGMENT CABLE SYSTEMS

The amplitude of oscillation and the effective drag coefficient of a strumming cable system are determined in the following analysis. The natural frequencies and mode shapes of cable oscillation are obtained by an iterative substitution algorithm that finds the solution satisfying the imposed boundary conditions of the problem.

Cable Dynamics

The cable system considered is shown in Figure 2. It consists of \(n \) cable segments attached to \(n-1 \) masses. The cable segments have an effective mass per unit length, \(\rho_i \), and a tension, \(T_i \), which is assumed to be constant over the length, \(l_i \), of the segment. The effective attached mass (including added mass) is \(M_i \).
Equations of Motion

The equation of motion for the displacement y_i of the i^{th} cable segment, assuming no bending rigidity, is (see Figure 3)

$$\rho_i \frac{\partial^2 y_i}{\partial t^2} = T_i \frac{\partial^2 y_i}{\partial x^2} \quad i = 1, \ldots, n$$

(1)

The harmonic solution of this equation has the form

$$y_i(x,t) = Y_i(x) e^{i\omega t}$$

(2)

where $Y_i(x)$ gives the shape of the deformation, and ω is the frequency of oscillation. Substituting Equation 2 into Equation 1 gives
\[Y_i(x) = A_i \sin \alpha_i \omega x + B_i \cos \alpha_i \omega x \quad 0 \leq x \leq L_i \quad (3) \]

where \(\alpha_i = \sqrt{\rho_i / T_i} \quad (4) \)

Boundary Conditions

In addition to satisfying the equation of motion, the deflection of each cable segment must satisfy certain boundary conditions. These conditions result from the geometric conditions imposed on the ends of the cable assembly, the continuity of displacement at each attached mass and the balance of forces at each attached mass.

Continuity of Displacement. Displacement must be continuous at each attached mass. Therefore,

\[Y_{i+1}(0) = Y_i(L_i) \quad (5) \]

Substituting from Equation 3 yields

\[B_{i+1} = A_i \sin \alpha_i \omega L_i + B_i \cos \alpha_i \omega L_i \quad (6) \]

If \(A_i \) and \(B_i \) are known, Equation 6 can be used to find \(B_{i+1} \).

Force Balance. Figure 4 shows the forces acting at each attached mass. The balance of forces at each of these points gives

\[T_{i+1} \left. \frac{\partial Y_{i+1}}{\partial x} \right|_{x=0} - T_i \left. \frac{\partial Y_i}{\partial x} \right|_{x=L_i} = M_i \left. \frac{\partial^2 Y_{i+1}}{\partial t^2} \right|_{x=0} \quad (7) \]
Substituting from Equation 3 yields

\[T_{i+1} \alpha_{i+1} A_{i+1} - (\alpha_i A_i \cos \alpha_i \omega \ell_i - \alpha_i B_i \sin \alpha_i \omega \ell_i) T_i = -M_i \omega B_{i+1} \]

\[i = 1, \ldots, n \] (8)

Using Equation 6 and solving Equation 8 for \(A_{i+1} \) gives

\[A_{i+1} = \frac{1}{\alpha_{i+1} T_{i+1}} \left[(\alpha_i T_i \cos \alpha_i \omega \ell_i - M_i \omega \sin \alpha_i \omega \ell_i) A_i - (\alpha_i T_i \sin \alpha_i \omega \ell_i + M_i \omega \cos \alpha_i \omega \ell_i) B_i \right] \]

(9)

If \(A_i \) and \(B_i \) are known, Equation 9 can be used to find \(A_{i+1} \).

Geometric Boundary Conditions. At the left-hand end of the cable assembly, the displacement is assumed to be zero. Thus,

\[Y_1(0) = 0 \]

(10)

Substituting from Equation 3 thus implies that

\[B_1 = 0 \]

(11)
Since the scale of the deflected shape of the cable (mode shape) is, at this point, arbitrary, let

\[A_1 = 1 \] (12)

With Conditions 11 and 12 on \(A_1 \) and \(B_1 \) and Equations 6 and 9 for \(A_{i+1} \) and \(B_{i+1} \), all subsequent A's and B's can be determined provided \(w \) (the natural frequency) is known.

The system must satisfy one additional boundary condition at the right-hand end of the assembly, where the displacement is again assumed to be zero. This gives

\[Y_n(i) = 0 = Y_{n+1}(0) \] (13)

Equation 13 in turn implies that

\[B_{n+1} = 0 \] (14)

The values of \(w \) that give solutions satisfying Condition 14 are the natural frequencies of the problem.

Solution Algorithm for Mode Shapes and Frequencies

If \(w \) is varied from zero to some large value and the corresponding values of \(B_{n+1} \) are calculated, the result will be as shown in Figure 5. Each point for which \(B_{n+1} = 0 \) represents a valid solution of the free oscillation problem. The \(w_k \) so obtained are the natural frequencies of the system. There are an infinite number of such frequencies.

The mode shape associated with each natural frequency \(w_k \) will be denoted by \(Y_i^{(k)}(x) \). Then,

\[Y_i^{(k)}(x) = A_i^{(k)} \sin \alpha_i w_k x + B_i^{(k)} \cos \alpha_i w_k x \] (15)
Let ω_k be the k^{th} natural frequency. Then the deflected shape of the cable system will be such that the number of internal zero crossings (nodes) is equal to $k - 1$. The mode number of a particular mode shape can therefore be determined by counting the number of internal zeros associated with the function $y_i(k); i = 1, \ldots, n$.

Summary of Solution Procedure

The solution process for the mode shapes and frequencies is summarized as follows:

1. Assume a value for ω_k.
2. Let $B_1 = 0, A_1 = 1$.
3. Solve for $B_2, A_2; B_3, A_3; \ldots; B_n, A_n; B_{n+1}$ from Equations 6 and 9.
4. Check for $B_{n+1} = 0$. If $B_{n+1} \neq 0$, compare with previous value and estimate a new trial value for ω.
5. Go to step 2 and repeat until B_{n+1} is less than some prescribed value or the change in ω_k is less than some prescribed limit.
6. Determine the mode number by calculating the number of internal zeros of the mode shape $y_i^{(k)}(x); i = 1, \ldots, n$.
EXPERIMENTAL COMPARISON

In order to verify the accuracy of the algorithm, a simple, easily conducted experiment was designed. A taut piano wire was fixed at one end and excited sinusoidally at the other end by a shaker; natural frequencies were determined by varying the excitation frequency. The experimental configuration is shown in Figure 6; wire properties are given in the figure. Two cases of attached bodies were considered:

Case 1: Four equally spaced bodies, each with a mass of 18.3 x 10^{-5} slug

Case 2: Six unequally spaced bodies, each with a mass of 12.9 x 10^{-5} slug

The objective of the experiment was to find the first 8 to 10 natural frequencies and mode shapes for each case for comparison with calculations.

Tension was measured by shaking the unloaded wire (no attached masses) in the 5th mode (n = 5). Period T_5 (sec) was measured by a digital counter accurate to 0.01 ms. Tension T (lbf) was then calculated by the natural frequency formula for an ideal cable:

$$ T = \left(\frac{2 \pi \mu}{n T_n} \right)^2 $$

Split-shot lead weights (the type used in fishing) were attached at appropriate locations with a small amount of contact cement.* When ten samples of shot were weighed, the mass variation (standard deviation) for a given size of shot was found to be about ±1% of the mean value cited. The size of the masses was approximately 0.32 inch in the x-direction.

*The cement was necessary to prevent the masses from shaking loose during the tests; its weight is assumed negligible.
Case 1: Four masses, equally spaced; \(m = 18.3 \times 10^{-5} \) slug.
wt = 5.893 \(\times 10^{-3} \) lb ea.

Case 2: Six masses, unequally spaced; \(m = 12.9 \times 10^{-5} \) slug.
wt = 4.154 \(\times 10^{-3} \) lb ea.

NOTES:
- Cable parameter (same for both cases): Length, \(l = 172.5 \) in.
 Diameter, \(d = 0.033 \) in.
 Mass/ft, \(\mu = 8.71 \times 10^{-5} \) slug/ft
 Wt/ft = 2.805 \(\times 10^{-3} \) lb/ft
- Locations x measured from the right.
- \(A_0 \) is peak-to-peak shaker amplitude; excitation is perpendicular to wire.

Figure 6. Experimental test cases.
Except for some very high frequency noise caused by air rushing through the shaker's air bearing, excitation was harmonic, as measured by an accelerometer mounted directly on the shaker. For each experimental run, the shaker's displacement amplitude, A_0, was reckoned from

$$\text{Displacement Amplitude} = \frac{1}{(2\pi f)^2} [\text{Acceleration Amplitude}]$$

The antinode amplitudes recorded in the data have not been corrected for the shaker amplitude (the correction is usually negligible). However, if the correction is desired, the following formula should be used:

$$A_{\text{corrected}} = A_{\text{measured}} - A_0 \left(\frac{x_{\text{antinode}}}{f} \right)$$

The shaker frequency, f, was monitored by a digital counter capable of measuring the period to within ±0.01 ms. Experimentally, the shaker frequency, f, was decreased from some arbitrary frequency, f_a, lying well above f_n, to f_b, at which point a sudden, highly visible increase in amplitude occurred. The frequency, f_b, was then recorded as the "natural frequency."

The location of nodes was measured by eye or, in the rare case of very small amplitudes, with the help of a small strip of paper against the vibrating wire. Obviously, the uncertainty in measurement is least where the nodes are well defined; i.e., when the surrounding antinodes have large amplitude and/or are close together. Thus, depending on the mode shape, accuracy varied from about ±0.1 inch to about ±0.75 inch. In general, of all the quantities measured, node location was the most accurate.

The location of the antinode was also measured by eye. Judgment of antinode location by this method is very difficult, inasmuch as the antinodes are not sharply defined. Every effort was made to make the measurement as accurate as possible without resorting to sophisticated equipment. A rule was placed a short distance below the wire and observed from a fixed distance above the wire. A strobe light running slightly
slower or faster than the vibration frequency was used to illuminate the vibrating wire; this made the wire appear to oscillate slowly in its mode shape. In this way, the amplitude, A_{measured}, which is reported in the data tables, was read to an estimated accuracy of 0.01 inch.

Three runs of mode 5, Case 1 were made in succession. Two runs were as identical as possible, with four masses equally spaced. For the third, the mass at $x = 138.0$ inches was moved to $x = 138.1$ inches. On the basis of these runs, it was concluded that the repeatability of the antinode amplitude measurements was of the order of 5%, and could be as large as 10% under circumstances less controlled than those in the tests described. It was also observed that the amplitude ratios were fairly critically dependent upon the exact location of the masses.

To judge the bias in the measurements caused by the asymmetrical excitation (shaker at one end), several cases were rerun with the configuration of the masses mirrored about $x = L/2$. The predominant effect of asymmetrical excitation is a preference for certain modes over others. For example, in one run, mode 10 was easily excitable, but not excitable at all in the mirrored run. The reverse was true for mode 8.

EXPERIMENTAL VERSUS COMPUTER RESULTS

From Tables 1 and 2 it is observed that the agreement between the calculated and experimentally determined natural frequencies is well within the range of the expected experimental error. The node and antinode locations also show good agreement, especially for the lower mode numbers. Modes of order eight and higher were rather difficult to observe accurately with the experimental setup. However, the results for the higher modes still appear to verify the computer model.

Response amplitude was compared on a normalized basis. To compare on an absolute basis would have required that both internal and external damping be known and modeled and that the precise nature of the excitation be known. Since this information was not readily available, the normalized response was used for comparison. As shown in the tables, the normalized amplitudes of response compare favorably.
The nature of the mode shapes of the first 15 modes for the six mass cases is indicated in Figure 7. Modes 1 through 10 are those presented in Table 2. The additional modes shown illustrate that the non-uniformly distributed masses cause the mode shapes to become increasingly complex. It is interesting to note that the sinusoidal portions of the mode shapes, shown clearly in mode 15, but also evident in other modes, represent the free response of the wire unaffected by the attached masses. This figure was generated by the computer algorithm.

CONCLUSION

A new computer algorithm for computing the natural frequencies and mode shapes of cable systems has been presented. This algorithm is computationally efficient and shows excellent convergence, even for very high mode numbers. The algorithm is also quite flexible since it has the capacity for treating a wide range of different system configurations.

A comparison of the results of the computer model with the results of an experimental study of a vibrating cable system in air has shown that the model accurately predicts the natural frequencies, node and antinode locations, and relative response amplitudes for all modes obtainable experimentally. The extremely close agreement obtained for modes up to number 10 does not insure that higher mode shapes are correctly calculated, but it does give increased confidence that the solution technique can be validly extrapolated as required by the users needs.
Figure 7. First 15 mode shapes for Case 2.
Figure 7. Continued.
<table>
<thead>
<tr>
<th>Node No., n</th>
<th>Case</th>
<th>Tension, T (lbf)</th>
<th>f_n (Hz)</th>
<th>x_n (in.)</th>
<th>A_0 (in.)</th>
<th>Peak-to-Peak Amplitude, A (in.)</th>
<th>Peak-to-Peak Antinode Amplitude, A (in.)</th>
<th>Natural Frequency, f_n (Hz)</th>
<th>Comp. a</th>
<th>Exp.</th>
<th>Comp. a</th>
<th>Exp.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>1</td>
<td>5.95</td>
<td>0.060</td>
<td>5.95</td>
<td>0.078</td>
<td>0.005</td>
<td>0.020</td>
<td>0.060</td>
<td>5.95</td>
<td>1</td>
<td>5.95</td>
<td>1</td>
</tr>
<tr>
<td>1.2</td>
<td>1</td>
<td>5.95</td>
<td>0.020</td>
<td>13.4</td>
<td>0.078</td>
<td>0.005</td>
<td>0.020</td>
<td>0.083</td>
<td>5.95</td>
<td>1</td>
<td>5.95</td>
<td>1</td>
</tr>
<tr>
<td>1.3</td>
<td>3</td>
<td>5.95</td>
<td>0.020</td>
<td>6.9</td>
<td>0.078</td>
<td>0.005</td>
<td>0.020</td>
<td>0.083</td>
<td>5.95</td>
<td>1</td>
<td>5.95</td>
<td>1</td>
</tr>
<tr>
<td>1.4</td>
<td>4</td>
<td>5.95</td>
<td>0.020</td>
<td>6.9</td>
<td>0.078</td>
<td>0.005</td>
<td>0.020</td>
<td>0.083</td>
<td>5.95</td>
<td>1</td>
<td>5.95</td>
<td>1</td>
</tr>
<tr>
<td>1.5</td>
<td>5</td>
<td>5.95</td>
<td>0.020</td>
<td>6.9</td>
<td>0.078</td>
<td>0.005</td>
<td>0.020</td>
<td>0.083</td>
<td>5.95</td>
<td>1</td>
<td>5.95</td>
<td>1</td>
</tr>
<tr>
<td>1.6</td>
<td>6</td>
<td>5.95</td>
<td>0.020</td>
<td>6.9</td>
<td>0.078</td>
<td>0.005</td>
<td>0.020</td>
<td>0.083</td>
<td>5.95</td>
<td>1</td>
<td>5.95</td>
<td>1</td>
</tr>
<tr>
<td>Case</td>
<td>Mode No., n</td>
<td>Tension, T (lbf)</td>
<td>Peak-to-Peak Shaker Amplitude, A (in.)</td>
<td>Natural Frequency, f_n (Hz)</td>
<td>Node Locations, X_node (in.)</td>
<td>Antinode Locations, X_antinode (in.)</td>
<td>Peak-to-Peak Antinode Amplitudes, A (in.)</td>
<td>Exp.</td>
<td>Comp. a</td>
<td>Exp.</td>
<td>Comp. a</td>
<td>Exp.</td>
</tr>
<tr>
<td>------</td>
<td>-------------</td>
<td>------------------</td>
<td>--------------------------------------</td>
<td>-----------------------------</td>
<td>-------------------------------</td>
<td>-------------------------------------</td>
<td>--</td>
<td>------</td>
<td>---------</td>
<td>------</td>
<td>---------</td>
<td>------</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>1.7</td>
<td>7</td>
<td>5.95</td>
<td>0.018</td>
<td>52.4</td>
<td>52.0</td>
<td>10.7</td>
<td>10.7</td>
<td>0.35</td>
<td>1</td>
<td>0.14</td>
<td>0.40</td>
<td>0.14</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>1.8</td>
<td>8</td>
<td>5.95</td>
<td>0.016</td>
<td>59.0</td>
<td>56.7</td>
<td>13.7</td>
<td>13.7</td>
<td>0.28</td>
<td>0.74</td>
<td>0.18</td>
<td>0.47</td>
<td>0.38</td>
</tr>
</tbody>
</table>

* Computed values.

b Could not be determined accurately.
Table 2. Case 2: Six Masses, Unequally Spaced

<table>
<thead>
<tr>
<th>Case</th>
<th>Node No.</th>
<th>Tension, T (lbf)</th>
<th>Peak-to-Peak Shaker Amplitude, (A) (in.)</th>
<th>Natural Frequency, (f_n) (Hz)</th>
<th>Node Locations, (x_{\text{node}}) (in.)</th>
<th>Antinode Locations, (x_{\text{antinode}}) (in.)</th>
<th>Peak-to-Peak Antinode Amplitudes, (A)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Exp.</td>
<td>Comp.</td>
<td>Exp.</td>
<td>Comp.</td>
</tr>
<tr>
<td>2.1</td>
<td>1</td>
<td>5.52</td>
<td>0.062</td>
<td>6.0</td>
<td>6.0</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2.2</td>
<td>2</td>
<td>5.52</td>
<td>0.074</td>
<td>15.0</td>
<td>14.8</td>
<td>81.8</td>
<td>84.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.3</td>
<td>3</td>
<td>5.52</td>
<td>0.046</td>
<td>20.4</td>
<td>20.4</td>
<td>59.5</td>
<td>60.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>98.6</td>
<td>96.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.4</td>
<td>4</td>
<td>5.84</td>
<td>0.053</td>
<td>29.7</td>
<td>28.7</td>
<td>46.7</td>
<td>47.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>84.2</td>
<td>83.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>118.3</td>
<td>119.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.5</td>
<td>5</td>
<td>5.84</td>
<td>0.035</td>
<td>37.2</td>
<td>36.8</td>
<td>41.1</td>
<td>41.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>76.3</td>
<td>75.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>95.0</td>
<td>96.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>129.8</td>
<td>129.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.6</td>
<td>6</td>
<td>5.52</td>
<td>0.028</td>
<td>45.8</td>
<td>44.1</td>
<td>34.3</td>
<td>34.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>64.7</td>
<td>63.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>84.2</td>
<td>85.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>104.5</td>
<td>98.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>138.7</td>
<td>142.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Case</td>
<td>Mode No., n</td>
<td>Tension, T (lbf)</td>
<td>Peak-to-Peak Shaker Amplitude, (A_0) (in.)</td>
<td>Natural Frequency, (f_n) (Hz)</td>
<td>Node Locations, (\gamma_{\text{node}}) (in.)</td>
<td>Antinode Locations, (\gamma_{\text{antinode}}) (in.)</td>
<td>Peak-to-Peak Antinode Amplitudes, (A)</td>
</tr>
<tr>
<td>------</td>
<td>-------------</td>
<td>-----------------</td>
<td>---------------------------------</td>
<td>--------------------------</td>
<td>------------------------------------</td>
<td>------------------------------------</td>
<td>-----------------------------------</td>
</tr>
<tr>
<td>2.7</td>
<td>7</td>
<td>5.52</td>
<td>0.024</td>
<td>49.0</td>
<td>47.3</td>
<td></td>
<td>32.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>38.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>66.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>81.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>101.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>124.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>155.7</td>
</tr>
<tr>
<td>2.8c</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>11.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>31.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>51.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>69.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>79.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>89.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>101.3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>116.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>138.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>160.7</td>
</tr>
</tbody>
</table>

*aComputed values.
*bCould not be determined accurately.
*cNot excitable by experimental setup.
*dNot measured.
DISTRIBUTION LIST

AFB CESCH, Wright-Patterson
ARMY ARAADCOM, Dover, NJ
ARMY - CERL Library, Champaign IL
ARMY COASTAL ENGR RSCH CEN Fort Belvoir VA
ARMY COE Philadelphia Dist. (LIBRARY) Philadelphia, PA
ARMY ENG WATERWAYS EXP STA Library, Vicksburg MS
ARMY ENGR DIST. Library, Portland OR
ARMY MOBIL EQUIP R&D COM Fuel Hndlng Equip Br., Ft Belvoir, VA; Mr. Cevasco, Fort Belvoir MD
CNM MAT 06T245 (Spalding), Washington, DC
COMSUBDVEGRUONE Operations Offr, San Diego, CA
DOE Dr. Cohen
DTNSRDC Code 522 (Library), Annapolis MD; Pattison, Code 1706, Bethesda, MD; Rispin, Code 1706, Bethesda, MD
LIBRARY OF CONGRESS Washington, DC (Sciences & Tech Div)
NATL RESEARCH COUNCIL Naval Studies Board, Washington DC
NAVCOASTSYSTCTR Library Panama City, FL
NAVELEXSYSCOM Code PME-124-61, Washington DC; PME 124-30 (Henderson) Washington, DC
NAVFAECENGCOM Code 0453 (D. Potter) Alexandria, VA; PC-2 Alexandria, VA
NAVFAECENGCOM - CHES DIV. Code FPO-1E, Wash. DC
NAVOCEANO Code 1600 Bay St. Louis, MS
NAVOCEANSYSCEN Code 4473 Bayside Library, San Diego, CA; Code 5204 (J. Stachiw), San Diego, CA;
 Tech. Library, Code 447
NAVSCOLCEOFF C35 Port Huemen, CA
NAVSEASYSCOM Code SEA OOC Washington, DC
NAVSEC Code 6034 (Library), Washington DC
NAVSHIPOFFPAF Library, Guam
NAVSHIPYD Code 202.4, Long Beach CA; Code 202.5 (Library) Puget Sound, Bremerton WA; Library, Portsmouth NH; Tech Library, Vallejo, CA
NOAA Library Rockville, MD
NOAA DATA BUOY OFFICE Engrng Div (Riannie) Bay St. Louis, MS
NORDA CO, Bay St. Louis, MS; Code 350 (Swenson) Bay St. Louis, MS
NRL Code 2627, Washington DC; Code 8400 Washington, DC; Code 8441 (R.A. Skop), Washington DC
NAVELEXSYSCOM Code PME 131 New London, CT; Code S332, B-80 (J. Wilcox)
OCEANAV Mangmt Info Div., Arlington VA
ONR (Dr. E.A. Silva) Arlington, VA; Central Regional Office, Boston, MA
PMTC Code 4253-3, Point Mugu, CA
PWC Code 120, Oakland CA; Code 154, Great Lakes, IL
UCT TWO OIC, Norfolk, VA
U.S. MERCHANT MARINE ACADEMY Kings Point, NY (Reprint Custodian)
US NATIONAL MARINE FISHERIES SERVICE Highlands NY (Sandy Hook Lab-Library)
USCG (G-MP-3/USP/82) Washington Dc
USCG R&D CENTER CO Groton, CT; D. Motherway, Groton CT; D. Paskausky, Groton, CT; Tech. Dir.
 Groton, CT
USNA Ch. Mech. Engr. Dept Annapolis MD; Ocean Sys. Eng Dept (Dr. Monney) Annapolis, MD
AMERICAN CONCRETE INSTITUTE Detroit MI (Library)
CALIF. MARITIME ACADEMY Vallejo, CA (Library)
CALIFORNIA INSTITUTE OF TECHNOLOGY Pasadena CA (Keck Ref. Rm)
CANSOLIC UNIV. Mech Engr Dept, Prof. Niedzwecki, Wash., DC
CORNELL UNIVERSITY Ithaca NY (Serials Dept, Engr Lib.)
DAMES & MOORE LIBRARY LOS ANGELES, CA
DUKE UNIV MEDICAL CENTER B. Muga, Durham NC
FLORIDA ATLANTIC UNIVERSITY Boca Raton FL (W. Tessin)
LEHIGH UNIVERSITY Bethlehem PA (Linderman Lib. No.30, Flecksteiner)
MAINE MARITIME ACADEMY CASTINE, ME (LIBRARY)
MIT Cambridge MA; Cambridge MA (Rm 10-500, Tech. Reports, Engr. Lib.)
NATL ACADEMY OF ENG. ALEXANDRIA, VA (SEARLE, JR.)
OREGON STATE UNIVERSITY (CE Dept Grace) Corvallis, OR
PENN. INDIANA STATE UNIVERSITY State College PA (Applied Resch Lab)
PURDUE UNIVERSITY Lafayette, IN (CE Engr. Lib)
SOUTHWEST RSCH INST R. DeHart, San Antonio TX
STANFORD UNIVERSITY Engr Lib, Stanford CA
STATE UNIV. OF NEW YORK Buffalo, NY
UNIVERSITY OF HAWAII HONOLULU, HI (SCIENCE AND TECH. DIV.); Ocean Engrng Dept
UNIVERSITY OF ILLINOIS URBANA, IL (LIBRARY)
UNIVERSITY OF MASSACHUSETTS (Heronemus), Amherst MA CE Dept
UNIVERSITY OF NEW HAMPSHIRE (Corell) Durham, NH
UNIVERSITY OF NOTRE DAME Katona, Notre Dame, IN
UNIVERSITY OF RHODE ISLAND Narragansett RI (Pell Marine Sci. Lib.)
UNIVERSITY OF SO. CALIFORNIA Univ So. Calif
UNIVERSITY OF TEXAS Inst. Marine Sci (Library), Port Aransas TX
AMETEK Offshore Res. & Engr Div
COLUMBIA GULF TRANSMISSION CO. HOUSTON, TX (ENG. LIB.)
EG&G WASH ANALYTICAL SERV CTR, INC Rockville, MD
EXXON PRODUCTION RESEARCH CO Houston TX (A. Butler Jr)
GOULD INC. Shady Side MD (Ches. Inst. Div., W. Paul)
GRUMMAN AEROSPACE CORP. Bethpage NY (Tech. Info. Ctr)
HONEYWELL, INC. Minneapolis MN (Residential Engr Lib.)
MOBIL PIPE LINE CO. DALLAS, TX MGR OF ENGR (NOACK)
OCEAN ELECTRONICS APPLICATION, INC. (Softley) Key Biscayne, FL
SANDIA LABORATORIES Library Div., Livermore CA
TRW SYSTEMS CLEVELAND, OH (ENG. LIB.)
WESTINGHOUSE ELECTRIC CORP. Annapolis MD (Oceanic Div Lib, Bryan)
WESTINTRUCORP Egerton, Oxnard, CA
WM CLAPP LABS - BATTELLE DUXBURY, MA (LIBRARY)