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ABSTRACT

/

Experiments were conducted in the laboratory to determine the

-~

drift velocity (mass transport velocity) at the breaking point on a beach
with a slope of 1 to 15. Breaker types ranging from spilling to plunging

were tested.

PP

It was found that, irrespective of breaker types, the drift
velocity is onshore near the surface and close to the bottom; in the main
flow column, the drift velocity is always offshore. The vertical distri-
bution of the drift velocity in the main water column is more uniform than

that in the offshore region.

The influence of drift velocity on the sediment transport and

beach profile changes is discussed.
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I. INTRODUCTION

Drift-velocity in a wave field is the velocity of a mean current
resulting from open orbital motions of water particles. It plays an
important role in material transport in the nearshore zone and is also
known as the mass transport velocity. Stokes (1847) was the first one
who pointed out this property and treated the problem analytically for
a channel of infinite length and constant depth. His solution, based
upon classic second-order wave theory, results in a mean flow in the

direction of wave propagation.

Longuet-Higgins (1953) treated the problem in a finite-length
channel with due consideration of fluid viscosity in the surface and
bottom boundary layers. His solution indicated that the drift velocity

is in the direction of waves near the surface and the bottom but against

the wave in the middle section. Later on, Huang (1970), Wang and Liang

(1975), Mei, et al. (1972), and Dalrymple (1976), carried out further

e ——

analytical studies, all of them dealt with finite channel of horizontal
bottom. The dArift velocity distributions obtained by them, except

Dalrymple's, are all similar to that of Longuet-Higgins. Dalrymple's

-

Bt P B - e it s o —

formulation was based on Dean's (1965) stream function theory and his

solution was in the Eulerian sense as opposed to the Lagrangian drift

.- - -

velocity used by the other investigators.

d Experimentally, Russell and Osorio (1958) measured drift velocity

J distribution in a horizontal finite~length channel. Bijker et al. (1974)
investigated the influence of bottom slope on drift velocity. Most of

their measurements were made before wave breaking with emphasis on
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near-bottom flow. For the bottom drift velocity, they modified Longuet-
Higgins' solution by the incorporation of shoaling effect. The theoretical
values, however, are found to be considerably larger than those obtained

in the experiments.

The present wave tank study concentrates the measurement of the
drift velocity at the breaking point under different types of breaking
waves on a rigid, plane beach, and describes some implications to sediment

transport processes.

T™wo distinct types of breaking waves are usually seen on sloping
beaches: plunging and spilling breakers. The difference in breaker types
would probably influence the vertical drift-velocity profile at the
breaking point, which would in turn control the sediment transport
pattern across the surf zones. An attempt is made here to clarify the

drift velocity patterns under these breakers.

For the convenience of reference, we define (1) the breaking point
as a starting point of wave breaking, which is characterized by the
existence of maximum height of waves, usually showing the initiation of
bubble and foam formation; and (2) the plunging point as a point where
the shape of breaking waves completely disintegrates when their crest
impinges against water (see Fig. 1). The drift velocity distributions

are largely measured within these limits.
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II.

LABORATORY EXPERIMENT
II-1. Experimentation

A steel-made wave tank, with a glass-made observation window
on one side, was used; the tank, 20 m long, 0.6 m wide, and 1.3 m high,
was equipped with a Scotch Yoke type monochromatic wave generator. A §
1/15 plane beach, made of a plywood coated with black paint, was placed

with the tip located at a distance of 8 m from the wave paddle.

Seven runs of experiments were conducted with different breaker
types: three of them were plunging, two were spilling, and the remaining

two were transition-type breakers (Table 1). Input wave characteristics

were recorded by a capacitance type wave gauge installed at a place of

constant water depth. ]

In order to trace wave-induced water movement near the breaking
point, neutrally buoyant, polystyrene beads were used. They were yellow-
colored with a diameter of approximately 2 mm. Not all the beads had
exactly the same density as the water which actually resulted in a more

uniform vertical distribution of beads in the water column.

Figure 2 illustrates apparatus setup at a measuring section which
was covered with a wooden board having a slit (9 c¢m x 66 cm); the light
of three lamps (500 W each) over the board illuminated the measuring
section (through the slit). The neutrally buoyant artifici;l particles
were mixed with water in a tracer feeder made of a transparent plastic

tube with an outer diameter of 1 e¢m. One tapered end of the feeder was

placed on the bottom under the breaking point, while the other end was
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connected to a rubber ball by a rubber tube. BY squeezing the ball
during wave action, many tracers were ejected from the feeder tip into
water-in-motion; some tracers, slightly lighter than water, went up
slowly; so that almost uniform tracer-distribution around the breaking

point was attained in a few wave cycles after the ejection (Photo 1).

The movement of the tracers was filmed, over 10 coﬁsecutive
wave cycles for each run, by using a l6-mm movie camera (Bolex, H-16,
EBM Electric) operated at a speed of 25 frames/sec. Color films (Koda-
chrome 40) were used. A 100-mm telephoto lens was applied to reduce

the parallax.
II-2. Data Analysis

Trajectories of beads (Photos 2 and 3) were traced, as many as
practical, from the films with the aid of a film analyzer (L-W Inter-
national, Model 224 A). Examples of trajectory diagrams are shown in
Fig. 3. Greater turbulence caused by water-mass impinging at the

plunging point, particularly in the case of plunging breakers of larger

heights, affected the two-dimensionality of the flow field in the vicinity
of the breaking point; this'influenced the movement of the tracers. Conse-

quently, long-term trajectory tracing was difficult in the plunging breaker

cases (compare Figs. 3a and 3b).

Figure 4 shows a definition of mean drift velocity, U, at a

point, (5 y-):

2" 2




Photo 1

Uniformly Distributed
Tracers After a Few
Wave Cycles.

Photo 2

Trajectories of Beads
During Advancing
Wave Cycle.

Photo 3

Trajectories of Beads
During Receding
wave Cycle.
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a+b

2T

Tracer
Trajectory

(T:wave period)

Definition of mean drift velocity, U.
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where T is wave period, a and b are the displacements of a tracer,

measured with positive values in the offshore direction; and x and y
are horizontal and vertical dimensions of the trajectory under con-
sideration, respectively. Since the mean drift velocity, thus obtained
from the trajectory diagrams, showed considerable spatial scatter (cee
Fig. 5, as an example), local averaging was done by grouping the data
as demonstrated by dashed closures in Fig. 5; some ambiguity remained

in the selection of averaging areas.

II-3. Results

On the basis of the locally averaged values, isolines were
drawn to indicate drift-velocity distribution near the breaking point;
the result is shown in Fig. 6, in which offshore drift is chosen as

positive.

The lack of data points near the bottom was partially due to the
difficulty of differentiating the tracers crowded in the vicinity of the
bottom. The film analyses showed that there always exists a thin bottom
layer having onshore drift velocity, irrespective of breaker types; this
layer is about 1 cm or less in depth, although the exact determination
was not possible. The bottom layer in Fig. 6 was drawn with this

approximate depth.

A wide mid-layer shows offshore mass transport (Fig. 6). Since
continuity has to be satisfied, onshore mass transport must exist near
the water surface to balance the net offshore flow in the water column,

i.e., the mid-layer offshore discharge minus the bottom-layer onshore
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B.P.

Run |
T=1.89 sec
Hb=f6.5 cm

Plunging Breaker

e lief et ——

unit: cm/sec ’

I

. o S 10 cm
’ NO VERTICAL EXAGGERATIONS

Fig. 6a. Drift-velocity distribution around the breaking point.
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’ B.P
- Run 2 T

; T=1.65 sec

o Hp =16.5 cm
; Plunging Breaker

unit: cm/sec

SWL

o S ' 10 cm
NO VERTICAL EXAGGERATIONS

Fig. 6b. Drift-velocity distribution around the breaking point.
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B. P.

- —— ——

Run 3
; T=1.47 sec
i fib =14.5 cm

P i

Transitional

unit: cm/sec

L 1l S |
(o) 5 . 10 ¢cm
Y . NO VERTICAL EXAGGERATIONS

Fig. 6c. Drift-velocity distribution around the breaking point.




B.P

Run 4 ‘i.
T=1.33 sec

Hp=14.0 cm
Spilling Breaker

unit: cm/sec

n
o

Fig. 64.

(o)
X

-1L3 / — 2
= % 3

x 0.6
am—
X
2.7

X 2.4
X

' ————— ————————
o
X X
-2.5 - 1.6
L 1 )
) s ~ 10 cm

NO VERTICAL EXAGGERATIONS

Drift-velocity distribution around the breaking point.
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discharge. Adequate measurement of the upper-layer onshore mass move-
ment velocity was not practical by the tracer method because a large

quantity of air bubbles formed at the initial stage of wave breaking.

Figure 7 shows the vertical distributions of drift velocity at
the breaking point. The values were based on isolines intersecting with
a vertical plane at the breaking point. Again, quantitative determination
of the onshore velocity on the bottom could not be made because of the
inaccurate measurement. The offshore drift velocity in the interioxr
region, in general, shows a fairly uniform vertical distribution. There
seems to be little difference in the offshore drift velocity profile
between plunging and spilling breakers: the former might have a slight
bulge in the lower or middle part of the profile, while the latter has

none, as schematically drawn in Fig. 8.

DATA INTERPRETATIONS

Vertical distribution of drift velocity at the breaking point
as obtained in the present experiment is qualitatively similar to that
in the offshore zone on a uniformly sloping smooth bottom (Bijker et al.
1974) and, to an extent, similar on a horizontal bottom (Russel and
Osorio 1958) (Fig. 9). They all have onshore drift in the surface and
bottom layers and offshore flow in the interior layer. The shapes of
the vertical distribution are, however, different. Bijker's measurements,
for instance, showed rather uniform vertical distribution in the offshore
region but became progressively more non-uniform towards the shoreline.

The present results, on the other hand, yielded rather uniform distri-

butions at the breaking point.

A}
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Gﬂi 2__ ¢ dictates the mean
L . .2 h

sinh ZW(E
strength and f£f(L,h,z) is the shape function. If Eg. (1) is valid up

In the above equation, %

to the breaking point, we have

2
U 2
u,(2) = 3 ) S fa 2 (2)
Ly 2 ™y
sinh
Lb

The subscript "b" refers to breaking condition. Furthermore, in shallow

water the following approximations can be applied:

LN

Cp * vahy,
} (3)
sinh thb ] 21rhb
Iy L J

Substituting Eg. (3) into Eg. (2) leads to:
2
1
Ub(Z) = 5;2- ghb f(Lb'h.b'Z) (4)

The mean offshore drift velocity at the breaking point, E;; is defined

as

where h2 and h, are the upper and lower limits of the offshore flow,

1
respectively. Therefore, integrating Eq. (4) yields the following non-

dimensional drift velocity:




When a wave train proceeds on a sloping beach, it shoals as
well as feels the bottom. Prior to breaking, the shoaling effect causes
more mass transport in the wave propagation direction; this added onshore
transport probably concentrates in the surface layer as shown by Dalrymple
(1976). The bottom effect retards the return flow. Therefore, the
combined effects results in an offshore flow bulged in the interior
region. When a wave experiences breaking, a great amount of turbulence
is generated within a short distance which smoothes the vertical velocity
distribution much the same as the eddy viscosity effect on the longshore
current distribution. Thus, at the breaking point, the vertical distri-

bution of the drift velocity becomes much uniform.

To estimate the mean offshore drift velocity at the breaking
point, we begin here by considering Longuet-Higgins' solution for the

interior region in a channel of constant depth which is

£(L,h,z) (1)

where
,

2 cosh 4n(2 =5 + 3+ 2«(%)[3(%)2 +a(3) + 1] + sinh 2«%

+3[s“:(:;' @ -]

with U(z) is the mean drift velocity at depth z.

;

£(L,h,2)

(]
N

\

H is the wave height;
L is the wavelength, and

h is the water depth.

. e - o —— e e
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= Ak (5)

where K= Hﬁ/hb

and a R N Ihz £ 1Z}dz

5, - B )y Ty Py,
In the above derivation, the shoaling effects as well as the bottom
friction is ignored. If these effects are to be included in the coef-
ficient, no analytical expreasion is available at present; the value of
"A" has to be determined experimentally, The data of the depth-averaged
mean offshore drift is plotted against Kz in Fig, 10. The actual data
are summarized in Table 1. If the coefficient A is computed on the
basis of Longuet Higgins' sclution applied to the breaking depth, the
best fit should be A = 0.029, This line is plotted in the same figure

for comparison.
EFFECTS ON SEDIMENT TRANSPORT PROCESSES

As is shown in the previous sections, the vertical distribdbution
of drift velocity in the offshore zone has similar profiles up to the
breaking point, with onshore net flow near the bottom, and offshore

flow in the interior region.

If the bottom is made of movable material like sands, the
turbulence caused by breaking waves, especially near the plunging point,
sets the material in suspension. The finer the sediments are, the longer
and higher they remain in suspension. The once suspended sediments are

easlily transported offshore, if they are capturaed by the mid~layer

————— - _— e e
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offshore flow at the breaking point. The offshore transported material,
beyond the breaking point, is soon fallen down to the bottom due to

(1) the effect of gravity and (2) the abrupt decrease of turbulence,
which is the major mechanism of keeping the sediments in suspension.
Simultaneous to this offshore transport in the mid-layer, sands on the
bottom, both near the breaking point and in the offshore zone, are moving
onshore due to the bottom onshore flow. Once the sands, transported
offshore in the mode of suspension from the surf zone, touched the bottom,

they might be carried back onshore to the surf zone.

In this onshore/offshore sediment transport process, the resulting
bottom topography depends on the net sand discharge near the breaking
point. If the onshore discharge is larger than the offshore one, then
a beach is characterized by the surf-zone sand-accumulation, which forms
a bar under certain conditions (A in Fig. 1l) or a step under other
circumstances (B in Fig. 11l). One laboratory example of the former case
is illustrated in Pig. 12: plunging breakers were acted on an 1/10 initial
beach made of 0.7 mm sand; no sand ripples were formed on the bottom; the
great turbulence of water, caused near the plunging point, scoured the
bottom to form a trough giving rise to sediment suspehsion: sone of the
suspended sand was transported offshore, but was soon deposited on the
bottom; this newly arrived material, together with the initial material
in the offshore zone, is carried onshore as bed-load. These materials
transported onshore build a bar inside the breaking point. A possible

pattern of sediment transportation of this case is schematically shown

in Fig. 13.
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If the net offshore sand discharge at the breaking point is

larger than the onshore one, then the sand deposition takes place in the

offshore region (C in Fig. 11). 1In this case, there must be an offshore
sand-transport limit where the onshore and offshore transport rates become
equal, i.e., no further offshore sediment transportation occurs beyond

this point.

This offshore transport mechanism, however, gives no clue to the

elucidation of continual offshore sand-transportation which is usually
observed in a laboratory eroding beach experiment (see Fig. 14). For
this type of transportation, the mechanisms of keeping the sand in
suspension must exist in the offshore zone. Since the offshore sediment-
suspension is initiated by the occurrence of ripple marks, not only mass
transport phenomena but also sediment behavior, on and over wave-~induced
ripple marks, should be scrutinized for the solution of laboratory beach-

erosion problems.
CONCLUDING REMARKS

Laboratory experiments were conducted to determine the drift
velocity at the breaking point on the sloping beach. It was found that,
irrespective of breaker types, the drift velocity has onshore direction ’
near the surface and close to the bottom; in the main flow column, the
drift velocity is always offshore. The offshore drift velocity shows
a more uniform vertical distribution than that in the offshore region.

This is probably resulting from the increased momentum transfer due

to turdulence at the breaking point. This vertical distribution is

very similar whether the breaker is plunging or spilling.
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The vertically averaged offshore drift velocity is estimated
to be proportional to Kz with the constant of proportiocnality of the
order of 0,025-0.030 which is significantly smaller than that predicted

by the linear wave theory.

An attempt is made to relate the onshore/offshore sediment
transport process with the vertical distribution of mass transport
velocity at the breaking point. This relationship is by no means
quantitative. Further experiments are needed using movable beds so
that the relationship between the sediment movement and the mass trans-

port characteristics can be studied expiicitly.
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