Theoretical Investigation of Atomic Structure and Scattering Processes

Larry Spruch and Leonard Rosenberg

New York University
New York, New York 10003

Office of Naval Research
800 North Quincy St.
Arlington, VA 22217

Controlling Office Name and Address

Office of Naval Research
800 North Quincy St.
Arlington, VA 22217

Approved for public release; distribution unlimited

One area explored is the use of intense laser beams in interaction with atomic systems; the interaction of the projectile and target in a scattering problem with the laser beam is accounted for. We have further explored the applicability of variational methods in general scattering processes.
Summary

1. **Principal Investigators:** Larry Spruch and Leonard Rosenberg (New York University, Department of Physics, contract number N00014-76-C-0317).

2. **Contract Description.** We will continue to study electron-atom scattering processes in the presence of a laser field, for this can help to provide a better understanding of the interaction of a laser beam and matter. We will continue our attempts to develop and improve methods for the reliable evaluation of scattering parameters and bound state properties. We will attempt to utilize recent developments in Thomas-Fermi theory.

3. **Scientific Problem.**

 The use of intense laser beams in interaction with atomic systems motivates the development of a relatively new area of scattering theory, in which the interaction of the projectile and target with the laser beam is accounted for. Calculational methods must be developed to the point where reliable predictions can be made.

 It is almost always impossible to calculate the rates of atomic scattering processes exactly. It is therefore important to have available accurate approximation methods. We have attempted to develop calculational procedures which are simpler, more reliable and more effective than those presently available, and we shall continue to do so. In particular, while variational methods have been used for some time this approach has not been thoroughly explored and we shall attempt to both improve the efficiency of the variational approach for a given problem and to widen the class of problems to which it can be applied.

4. **Scientific and Technical Approach.**

 The theory of scattering in a laser field is being developed in close parallel to standard time-independent scattering theory, in which a quantum, rather than classical, description of the field is used. Gauge transformations and modified perturbation expansions are used in the analysis.

 We shall be concerned with variational methods of calculation; the merit of a variational calculation is that it enables one to arrive at a level of accuracy in the final result which greatly exceeds the accuracy of the trial function used as input to the calculation.

5. **Progress.**

 We have been examining the problem of electron-atom scattering in a low frequency radiation field, either externally imposed or spontaneously produced. Progress has been made in taking into account the interaction of the atomic target, as well as the incoming electron, with the field. This interaction will be particularly significant when the target energy levels are closely spaced. In the area of charge transfer, we used a relatively simple (physical) derivation of the double scattering contribution to the cross section at asymptotically high impact velocities to estimate the cross section for a rather similar process, e-atom capture from CH4. While the asymptotic domain is not reached for the usual charge transfer process, with an electron transferred,

 until the incident atom has an energy of many millions of electron volts, that domain is reached in atom-capture at only about 100
electron volts. The predictions of the theory are in much better agreement with the data than those of the semi-classical theory. In quantum electrodynamics, dealing with effects of vacuum fluctuations on long-range atomic interactions, we have calculated the radiative corrections to the energy levels of an electron bound to a wall. For an ideal wall the effects are some 10,000 times the radiative correction for the Lamb shift in a hydrogen atom; unfortunately, the effects for a real wall are comparable to the radiative correction for the Lamb shift in a hydrogen atom. We have also studied the generalised oscillator strength and have set up a simple approximation method valid for large values of the momentum transfer, and applied it to the helium atom.

6. Publications.

L. Spruch, On the radiative corrections to the energy levels of 'muriel', an electron bound by its image charge to a wall (with R. Shakeshaft), Phys. Rev. A22, 811 (1980).

L. Spruch, Electron-atom scattering - the state of the theory. Based on invited paper at the Second George Shuls Memorial Symposium, Yale University, Dec. 1979. To be published.

R. Shakeshaft, Comment on the inelastic scattering of relativistic charged particles. Submitted to Phys. Rev. A.
7. **Extenuating Circumstances.**

 None.

8. We do not expect to have any unspent funds remaining at the end of the contract period.

9. None.

10. **National Science Foundation.**
REPORTS DISTRIBUTION LIST FOR OUR PHYSICS PROGRAM OFFICE
SURFACE SCIENCE UNCATEGORIZED CONTRACTS

Director
Defense Advanced Research Projects Agency
Attn: Technical Library
1400 Wilson Blvd.
Arlington, Va 22209
3 copies

Office of Naval Research
Physics Program Office (Code 421)
800 North Quincy Street
Arlington, Va 22217
3 copies

Office of Naval Research
Assistant Chief for Technology (Code 200)
800 North Quincy Street
Arlington, Va 22217
1 copy

Office of Naval Research
Chemistry Program (Code 472)
800 North Quincy Street
Arlington, Va 22217
1 copy

Naval Research Laboratory
Attn: Technical Library
Washington, D.C. 20375
3 copies

Office of the Director of Defense
Research and Engineering
Information Office Library Branch
The Pentagon
Washington, D.C. 20334
3 copies

U. S. Army Research Office
700 Research Triangle Park
North Carolina 27709
2 copies

Defense Documentation Center
Cameron Station (TC)
Alexandria, Va. 22314
12 copies

Director, National Bureau of Standards
Attn: Technical Library
Washington, D.C. 20234
1 copy

Northwestern University
Attn: Dr. J. Bruce Wagner, Jr.
Evanston, Illinois 60201
1 copy

University of Texas
Dept. of Chemistry
Attn: Dr. J. W. White
Austin, Texas 78712
1 copy

U. S. Dept. of Commerce
National Bureau of Standards
Surface Chemistry Section
Attn: Dr. John T. Yates, Jr.
Washington, D.C. 20234
1 copy

International Business Machines Corp.
Thomas J. Watson Research Center
Attn: Dr. J. E. Demuth
P. O. Box 218
Yorktown Heights, N.Y. 10598
1 copy

University of California at San Diego
Department of Physics
Attn: Dr. W. Kohl
La Jolla, California 92037
1 copy

U. S. Department of Commerce
National Bureau of Standards
Surface Properties and Catalysis Section
Attn: Dr. T. E. Hadey
Washington, D.C. 20234
1 copy

University of Maryland
Director, Center for Materials Research
Attn: Dr. N. L. Park
College Park, Maryland 20742
1 copy

University of Minnesota
Electrical Engineering Department
Attn: Dr. W. T. Pearle
Minneapolis, Minnesota 55455
1 copy

City University of New York
Attn: Dr. Mark E. Tazear
Convent Ave. at 135th Street
New York, N.Y. 10031
1 copy

Northwestern University
Dept. of Physics
Attn: Dr. Chi-Wai Woon
Evanston, Illinois 60201
1 copy
<table>
<thead>
<tr>
<th>Institution</th>
<th>Department</th>
<th>Address</th>
<th>Copies</th>
</tr>
</thead>
<tbody>
<tr>
<td>James Franck Institute</td>
<td>Dept. of Chemistry</td>
<td>Attn: Dr. Leonard Wharton, 5840 Ellis Avenue, Chicago, Illinois 60637</td>
<td>1 copy</td>
</tr>
<tr>
<td>Massachusetts Institute of Technology</td>
<td>Department of Chemistry - Room 6-335</td>
<td>Attn: Dr. Mark S. Wrighton, Cambridge, Massachusetts 02139</td>
<td>1 copy</td>
</tr>
<tr>
<td>University of Wisconsin</td>
<td>Department of Metallurgical and Mining Engineering</td>
<td>Attn: Dr. N. C. Legally, Madison, Wisconsin 53706</td>
<td>1 copy</td>
</tr>
<tr>
<td>Yeshiva University</td>
<td>Physics Department</td>
<td>Attn: Dr. B. C. Mettis, Amsterdam Ave. & 195th St, New York, N.Y. 10033</td>
<td>1 copy</td>
</tr>
<tr>
<td>James Franck Institute</td>
<td>Department of Chemistry</td>
<td>Attn: Dr. Robert Gomer, 5840 Ellis Avenue, Chicago, Illinois 60637</td>
<td>1 copy</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3 copies</td>
</tr>
<tr>
<td>Director</td>
<td>Office of Naval Research Branch Office</td>
<td>530 South Clark Street, Chicago, Illinois 60605</td>
<td>3 copies</td>
</tr>
<tr>
<td></td>
<td>San Francisco Area Office</td>
<td></td>
<td>3 copies</td>
</tr>
<tr>
<td></td>
<td>Office of Naval Research</td>
<td>One Halfa Plaza, Suite 601</td>
<td>3 copies</td>
</tr>
<tr>
<td></td>
<td>San Francisco, California 94102</td>
<td></td>
<td>3 copies</td>
</tr>
<tr>
<td></td>
<td>Air Force Office of Scientific Research</td>
<td></td>
<td>1 copy</td>
</tr>
<tr>
<td></td>
<td>Department of the Air Force</td>
<td></td>
<td>1 copy</td>
</tr>
<tr>
<td></td>
<td>Bolling AFB, D.C. 20332</td>
<td></td>
<td>1 copy</td>
</tr>
<tr>
<td></td>
<td>Director</td>
<td></td>
<td>3 copies</td>
</tr>
<tr>
<td></td>
<td>Office of Naval Research Branch Office</td>
<td></td>
<td>3 copies</td>
</tr>
<tr>
<td></td>
<td>1030 East Green Street</td>
<td></td>
<td>3 copies</td>
</tr>
<tr>
<td></td>
<td>Pasadena, California 91101</td>
<td></td>
<td>3 copies</td>
</tr>
<tr>
<td></td>
<td>Director</td>
<td></td>
<td>3 copies</td>
</tr>
<tr>
<td></td>
<td>Office of Naval Research Branch Office</td>
<td></td>
<td>3 copies</td>
</tr>
<tr>
<td></td>
<td>666 Summer Street</td>
<td></td>
<td>3 copies</td>
</tr>
<tr>
<td></td>
<td>Boston, Massachusetts 02210</td>
<td></td>
<td>3 copies</td>
</tr>
<tr>
<td></td>
<td>Director</td>
<td></td>
<td>3 copies</td>
</tr>
<tr>
<td></td>
<td>U.S. Army Engineering Research and Development Laboratories</td>
<td></td>
<td>1 copy</td>
</tr>
<tr>
<td></td>
<td>Attn: Technical Documents Center</td>
<td></td>
<td>1 copy</td>
</tr>
<tr>
<td></td>
<td>Fort Belvoir, Virginia 22060</td>
<td></td>
<td>1 copy</td>
</tr>
<tr>
<td></td>
<td>OODRSE Advisory Group on Electron Devices</td>
<td></td>
<td>3 copies</td>
</tr>
<tr>
<td></td>
<td>201 Varick Street, New York, N.Y. 10014</td>
<td></td>
<td>3 copies</td>
</tr>
<tr>
<td></td>
<td>New York Area Office</td>
<td></td>
<td>1 copy</td>
</tr>
<tr>
<td></td>
<td>Office of Naval Research</td>
<td></td>
<td>1 copy</td>
</tr>
<tr>
<td></td>
<td>715 Broadway, 5th Floor</td>
<td></td>
<td>1 copy</td>
</tr>
<tr>
<td></td>
<td>New York, N.Y. 10003</td>
<td></td>
<td>1 copy</td>
</tr>
<tr>
<td></td>
<td>Air Force Weapons Laboratory</td>
<td></td>
<td>1 copy</td>
</tr>
<tr>
<td></td>
<td>Technical Library</td>
<td></td>
<td>1 copy</td>
</tr>
<tr>
<td></td>
<td>Kirtland Air Force Base</td>
<td></td>
<td>1 copy</td>
</tr>
<tr>
<td></td>
<td>Albuquerque, New Mexico 87118</td>
<td></td>
<td>1 copy</td>
</tr>
<tr>
<td></td>
<td>Air Force Avionics Laboratory</td>
<td></td>
<td>1 copy</td>
</tr>
<tr>
<td></td>
<td>Air Force Systems Command</td>
<td></td>
<td>1 copy</td>
</tr>
<tr>
<td></td>
<td>Technical Library</td>
<td></td>
<td>1 copy</td>
</tr>
<tr>
<td></td>
<td>Wright-Patterson Air Force Base</td>
<td></td>
<td>1 copy</td>
</tr>
<tr>
<td></td>
<td>Dayton, Ohio 45433</td>
<td></td>
<td>1 copy</td>
</tr>
</tbody>
</table>