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Chapter 1 INTRODUCTION

I. Motivation

Wave propagation in random media has been studied over
the last two decades. Heightened interest in this problem has
been mainly due to the large number of problems that arise in
radio physics, acoustice, plasma studies and certain other
branches of physics. From the physical viewpoint random wave
propagation can be analyzed at two levels: macroscopic, con-
cerned with propagation in continuous random media such as
turbulent fluids and microscopic, concerned with the scatter-
ing of waves by randomly distributed scatterors such as elec-
trons, molecules, rain, blood cells. Wave propagation in
continuous random media, applies to such problems as the
scattering of sound and ultrasound waves in sea water, light
scattering in the atmosphere, radio waves scattering in the
ionosphere and the tvinkling of stelliar images. Wave propa-
gation in discrete random media is of considerable interest
for such problems as molecular scattering of light, wave
scattered by the rain, and bioéngneers may use the fluctua-
tion and scattering characteristics of a sound wave as a

diagnoistic tool. The abundancé and variety of such problems '

has stimulated development and refinement of statistical
methods for calculating wave propagation in a random medium.
This paper is maiqu concerned with the wave propagation
through an ionospheric random layer.

wWhen a random wave from an extraterrestrial sources,
such as a radio star or an artificial satellite, passes
through the ionosphere, its wavefront and amplitude will be
distorted by the density fluctuation in the ionosphere plas-
ma. On propagating to the ground, the resulting phase varia-
tions cause interference to occur and a diffraction pattern
is set up across the ground. The resulting random variations
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of the electromagnetic field are termed scintillations. In
consequence, satellite based communications exhibit ‘serious
performande degradation, the degradation being most serious
for propagation paths which transit the auroral and equatorial
ionosphere. The importance of a through investigation of this
problem is obvious.

II. General Introduction and Review

Propagation models are required to provide satellite
communication system and radar system designers with a means
to translate the available ionospheric statistics into cons-
traints for the specific systems that are being designed.
Approximate models have been proposed that apply under res-
trictive conditions. Analyses of propagation effects general-
ly start with the scalar wave equation. If the dominant
scattering irregularities have dimensions much larger than a
wavelength, depolaization effect can be neglected (1, 2).

Let the wave field be represented by E = E exp (-iwt), where
w= 28f, £ is the carrier frequency, t is the time, E is the
electric field vector and u is a component of E. If the
@ielectric properties of the medium change slowly in time in
comparison with 1/f and slowly in space in comparison with
the wvavelength A , then with a monochromatic source, the
propagation of the wave through a random irregularity region
is governed by the scalar wave equation

v*d + RE O = 0
(1.1)

A. A
vl;nre k= ?%- , £ is the diﬁelectric constant and both U and
€ are random variables. £ enters as a coefficient of the
unknown wave function a . This is the root of all the mathe-
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matical difficulties of the theory, since we don't know how to
find an exact solution of such a wave equation. It is necessa-
ry to apply certain approximations that make use of the small
parameters such as the fluctuation of é » i.e. the deviation
from the mean value. It can also be the smallness of the wave-
length in comparison with the dimension of the inhomogeneities.
In practice, two types of problems arise; the direct problem,
in which one has to find the statistics of waves propagating

in the medium from the known statistics of the medium, and the
inverse problem wherein one draws conclusions about the proper-
ties of random inhomogeneities from the measured moments of the
field. Actually, these two problems are equivalént,.i.e. one
needs to find. the relation between the statistice of the medium
and the wave field'.

We shall assume for simplicity that the medium is on the
average homogeneous and stationary. Removing these two res-
trictions does not give rise to any difficulties in principile.
Under conditions usually encountered in ionospheric propaga-
tion, the energy is scattered into the forward direction and
(1.1) can be replaced by the parabolic equation:

A
.p 3V a A ax N =
(1.2)
2., A A
wvhere ko = k“CE> , us= q exp(i).:.z), z is the direction
of propagation, and V,‘ = 1‘;. + -5%1 » the transverse

Laplacian. Both the wave equation (l1.1) and the parabolic
equation (l1.2) are stochastic. The wave properties of
interest are the average, variance, and higher moment of U .,
b3 4 é’ and 0 were uncorrelated, these equations could be
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solved easily. However, § and 0 are generally correlated,
the approximations used to provide solutions to (1.l1) and (1.2)
are all directed towards modeling the statistical relationship
between £ and U . If £ is small enough, then we can
naturally resort to the method of perturbations, and expand

in a power series in £ , or more exactly in (G‘)’i

A pertubation series solution to (1.2) can be formed that
separates ‘s' and U where U describes the fluctuation in
i ’ U = (U) + U . The first term in the perturbation series
for U is the Born or snxgle-scattermg approx:.mat:.on, which
applies only when both € and U are small. When U is not
small, a large number of terms in the perturbation series must
be summed. The nth term of the series describes the n-fold
scattering and contains the n-fold product £ (rgd)ese £ (tn).
Thus, in calculating the average <6>, we have to know the ..
moments ¢ g(rg)... € (ra)d of € of all orders. The reno-
malization schemes of multiple-~scattering theory attempt to
solve this problem by a selective summation technique that
leads to readily evaluated expressions for the moment of i
of interest. \

The Born approximation is shown to be valid when k41 is
small, where 1 is the characteristic scale of the turbulent
medium. As ko 1 increases, we must either take into account ‘
the higher order terms in the perturbation series or go over
to other approximate methods which deal with multiple scatter-
ing to some extent. Rytov proposed that an equation for Q =
In O be used in place of (1.2). The equation for @ is
then given by

P N et T

»a,

y
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the equr.t:.on has _seperated '1? and F. so that the correlation
between ny and £ is not explicit. A perturbation series
expansion for ! » representing the fluctuatiom in 'f’ » Can
be formed to solve the nonlinear equation ( in v,@ ). The
zeroth order equation represents free space propagation. The
1st order equation for ¥ can be solved yielding the Rytov
approximation, which is also called the method of smooth per-
turbations. The Rytov approximation is a weak scintillation
approximation that hold for small <X>> s where X is the flu-
ctuation of the logarithm of the amplitude, it has a wider
range of validity than the Born approximation. ;

The generally accepted model for ionospheric propagation
thru a turbulent ionosphere has been the thin phase diffrac-~
tion screen model (3). The ionospheriq irreqularities perturb
the phase of the field at the layer and their effect upon the
wvave beyond the layer can be computed using diffraction theory.
Mercier (4) and Briggs and Parkin (5) introduced a Gaussian
correlation function to describe the phase fluctuation at the
screen and related all higher moments to the second moment.
Spectral analyses of observed phase and amplitude fluctuations
have shown that the electron-density irregularities have a
power spectrum that may be characterized by a power law shape.
Rufenach (6) extended tha phase-screen theory using a power
law spectral shape for the irregularities.

For the weak scintillation case, the Born, Rytov and the
' thin phase screen approximations are all applicable. For
strong scintillation and a thick layer, the effect of multiple
scattering on transionospheric signals has to be taken into
account.

Several techniques have been proposed to deal with the

B R s e




strong fluctuation problem. They are the diagram method
(DeWolf 1968, 1977; Tatarski 1971; Frisch 1968) (1, 7, 8) the
integral equation method (Brown 1971, 1972), (9,10), including
the Dyson and the Bethe-Salpeter equations, the extended
Huygens-Fresnel principle (Kon 1970; Clifford 1974) (11, 12),
and the parabolic equation method (Tatarski 1971; Furustsu
1972) (1, 13). In this paper, we shall apply the parabolic
equation method to the case of radio wave on propagation
through an ionospheric slab. First the statistical moments of
waves are obtained inside the random slab. Then the free space
propagation of resulting randomly modulated waves is analyzed
from the bottom of the slab to a ground receiver., The geometry
of this problem is shown in Fig. 1.
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Chapter 2 THEORETICAL ANALYSIS

f { I, Problem Description

Ionospheric scintillation has been observed at frequen- .
cies ranging from 10 MHz to 6 GHz. The irregularities in the
ionosphere which produce the fluctuations are believed to be
mainly in the F-region, the layer of strong irregularities is
often 100-500 km thick ranging from 200-700 Jam in altitude,
The electron density fluctuations are often of the order of a
few tens of per cent and can be as high as 70 per cent. The
F-region irregularities are usually regarded as a stochastic
process and characterized by three dimensional random func-
tions which are assumed spatially and temporally stationary
over the increments of interest. One defines the spatial
correlation function By(r") of the density function by

(N N(5)>
{N*H% \ (2.1)

B, (¥ =

vhere r = (x,y,z) is the position vector, " = Iy - I, is the
correlation lag vector, { N 3‘13 the rms density fluctuation,
and ¢ Y denotes the ensemble average. The relationship
between the three dimensional power spectrum of the density
fluctuation Q,‘()‘s) and the density correlation function is
given by the Fourier transform pair:

b s w——— -

-i&‘r "
QN'”.!) = f;‘n; jjj BN(” € dr (2.2)
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.B" ()= Z_I;T?‘,GI é"('&) < iﬁ'ld% (2.3)

the power spectrum is often characterized by a wide range of
wave numbers, and hence designated as a wide-band process,
vhereas a narrow range of wave numbers associated with a Gau-
ssian spectrum is designated narrow-band process., The wide-
band process is important since it is inferred from the in-
situ results. In the F-region, the wide range of wavenumbers
corresponds to dimensions ranging from a few meters to hun-
dreds of kilometers. If a Gaussian spectral shape is assumed,
it is characterized by one dominant scale approximately equal.
£o the Fresnel wave number. (about 2xm~l) (Brigg and Parkin
1963).

Refering to Fig. 1, let us consider a time harmonic
radio wave incident on a region of ionospheric irregularities
at z =2, . L is the thickness of the slab. Inside the
irregular region, the relative dielectric permittivity is
given by

En =z E.n[1+Ew]

(2.4) 4

vhere one models a collisionless ionospheric plasma by

2
Wee (3)
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g( ) o C N w (2.6)
) = - - 2.6
= 1~ Weefus No

Wpe! &) is the plisma frequency for the background electron
density profile, N(r)/No is the percentage fluctuations of
the electron density. 1In the following, we shall assume that
ik;) is a homogeneous, isotropic random field while N, is
taken as constant.

The wave first travels through the ionospheric slab of
length L, at z = 2; the modulated wave enters the free region,
and it is detected at 2z = Za . Therefore, there are two
regions: in the first region, the incident wave at Zo is deter-
ministic and the outgoing wave at z i becomes stochastic. 1In
the second region, the entering wave at z ¢ has a stochastic
modulation but the medium is deterministic,

Writing the scalar wave field as

A ike3 -
é = Uuln €

(2.7)

whoro the exp(-iw t) dependence is omitted, k’E.—' kg » and o
u(r) is the complex amplitude of the wave. Substituting (2.7) '
into the wvave equation (1.1), we obtain an equation for & (x)

P TI
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A A 2 Zz A'-‘
2“‘02; +v'u + R, E(NU =0 (2.8)

A 1P, YT ey N

2
where Vrz 2 vi- 3%'3'.' . If the complex amplitude U varies
markedly over distances of the order of the inhomogeneity scale
1, the second derivative a‘& / 33% is of the order of a/12. '
On the other hand, the term 2ik,d3U/33* in (2.8) is of the

order of G/Al. Therefore, for A << 1, the term aza/as"'is

small compared to the first term in (2.8). Thus, one can re-

place v24 in (2.8) by the transverse Laplacian V’z' 4 and

obtain the parabolic equation

(2.9)

This is the starting point of our analysis, in the later
sections, we shall examine the statistical properties of a 3
they are specified by the infinite set of correlation functions
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The problem is to manipulate equation (2.9) to obtain equations
for r mn in terms of the statistical properties of '&' ().

II. Theory of Multiple Scattering

The general theory of multiple scattering has been deve-
loped by many authors. (Bourret 1961, Apresyan 1973, Tatarski
1971, Marcuvitz 1974, DeWolf 1979). The Green's function me-
thod, which had previously been investigated in quantum field
theory, was applied to the problem of wave propagation in a
random medium. People have used the Dyson equation for the
average fleld, and the Bethe-Salpeter equation for the cova-
riance B =(u(r1) u(rg)) However, one cannot derive such ¢
closed equatlons by averaging the original differential equa- §
tions for the field because moments of different orders are '
coupled together. Bourret (14) was the first person to apply
the graph technique to scattering of waves in a continuous
fluctuating medium. He assumed that the parameters of the
medium fluctuate according to a normal law and are statistical-
1y independent of the sought field. This led to an approximate
expression for the effective average dlelectrlc constant pro-
portional to the correlation function{ £ (r,)E (r2) Y of the :
medium. A more detailed derivation of the equagigns for the
average and 2 point correiation assuming a normal law for a
fluctuating medium is due to Tatarski, and to Frisch who
admitted deviations from the normal law,

;
B T N T R L )

e = s

The utility of series representations is dependent on
the rapidity of convergence. Operator techniques employed in
: the spirit of the formal theory of scattering was shown by
'y Marcuvitz (1974), to provide alternative and formally exact
/ representations of turbulent field quantities and their n-
point ensemble averages. In appropriate parametric ranges
these formally exact expressions are expandable into rapidly
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In this section, we shall apply this

technique to the average equation and investigate its conver-
gence,

convergent series.

In abstract the wave equation (2.9) can be written as

(L-7)§ =

(2.11)

where, in a f , 2z space the unperturbed operator L, .

and
the perturbation v ,» whose average < v>=o0 » are represented
by C 1
2. .
.p 9 3_ .
l_° ————— jZA.&,;;} + aj:; ks
z o

equation (7) is a generic operator equation for the field, with
the initial condition acting as a impulsive source applied at

z =0, It is conmvenient to defime a stochastic Green's func-'
tion such that

(L.-V)G = 1
vhere in P , z space
é?’—é—»_f?cr,z;r',s')ge«é.z')ar'as’
L — §-1) 5 373 (201

(2.13)

'
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and § (x) is the Dirac delta function. For uniqueness, G will
be distinguished by the requirement

§(f,},r', 3') = o0 (3<3)

(2.15)

If we introduce G, as unperturbed operator inverse to the
operator L, , and defined by

« Lo:G'o‘ = l-' (2.16)

where the domain of L4 is such that

[R—.

(2.17)

G, —— $,(£.%3,£.3)=0

\

A
as is the case for G.

A
The ensemble average G of G is taken to satisfy

(Lo" \/c) G = l | (2.18)

and depends on the "smoothed" scattering operator V. defined
! below. Eq. (2.18) provides a nonlinear defining equation for
: G, the nonlinearity arising from the dependence of Vo on G. 4

i S




A stochastic operator T, , with zero ensemble average,
. is defined by

(2-19)

[}
K]
fop)
+
D
o K
DO
1 PO | PRI AR gl S

R T

which represents the multiple scattering in the smoothed back-
ground G. One can derive the expression for T, in terms of
G and a power series in V to 4th order in V (Appendix 2)

T =V + VGV -<VGV>+VGVGT ;
—KVGVGV> -<VGV>GV %
_VGCVGU) + VGUGVGV i |
VGVGVGV>-VGIVGV>GV %
+(VGLVGY> GV >-(TGVOGVGY (220 f
S VGVGVGU> T 2(VGVIGLVGVD E
S VGUGVSGV -VGKUGVRV > %

) ~ A N
and correspondingly the operator Vg = { VGT. Y is represented
as

Ve <va>+<vaqv>+<vaGva>




the expansions are in terms of the average operator G, which
in contrast to G, is nonsingular. They are more rapidly con-
vergent than the perturbative expansions in terms of Gge

As a simple example, used to study wave propagation in
a one dimensional random medium, let us consider a differen-
tial equation of the following type:

AP (3)
i = V3V () (2.22)

If V(z) = ¥, (1+ Vv (z)), vhere ¥{ is a real mean frequency
and \; (z) is a centered stationary and Gaussian random func-
tion of z, then it represents a randomly modulated oscillator
whose correlation function is

5(3-5').=<»3<3)Pt3')5

i (2.23)
The model will be used as a check for the approximate expan-
sion in equation (2.21).

The Generic stochastic Green's function for (2.22) is
defined by

:9G(33) _5(3)G3.3)=5(3-3)

d 3 (2.24)
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To find the average Green's function, we must calculate

3 . .,
- ’ A '
G(3.3')=-i < e 53 Ve Z>U(’_5)(2.25)

where U(u) is the step function to insure the uniqueness of G.
Here 5 ,\7(t)d'& s, being a linear functional of the centered
Gaussian random function qkz), is a centered random variable

¥ , hence

iy ~dL¢y?>
(e " D=¢e?

(2.26)

Since .
(9 =< (L omdr)D
= 53 J‘3 B(Z-Z')JZJZ' (2.27)
373

We obtain the final result

3 o , | '
o -4, ) Brndudt
G(3.3)=-+€ U(3-3')  (2.20)

e

y— - yrp TN *mnrmam;,-,v_r':«-‘;;.;! AR 8 Sl i doe 3 s A 4
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If we use the correlation function

| B(3-3)= A §(3-3')

(2.29)

the integration in Eq. (2.28) can.be performed exactiy to give

| -2¢3-3)
G(3.3)=-1¢€. U(3-3")

B e L0 NSO UR

Uc3-3)U3-34d3 (2.32)

(2.30)
?g If we approximate VG Ly taking the 1lst term in eq. (2.21).
; i.e. :
| X UGV
Ve G <. GV>G (2.31)
or
| VG= |BE-566.HGAE
| i .
¥

! Substitute eq. (2.30) into (2.32), one obtains

P~ ORI

VeG = B G (3.3) G(5.3)U3-3)

(2.33)

kg
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since

G-(3,3)=f"‘.- : (2.34)

therefore

VeG = -4 AG(3.3)UG-3)

(2.35)

the solution of eq. (2.24) can be easily obtained to give

- =433 . ‘
G(3.3)=-4 € U(3-3) (2.36)

which is identical with the exact solution (2.30). 1It is an
interesting result and leads to the conclusion that + If V
is a centered stationary and Gaussian random function, with
a correlation function defined by (2.29), the first term in
eq. (2.21) gives the exact expression for V.G . i.e., the
higher moments terms do not contribute to the expansion.
Furthermore, since

. VGV =KVGVD+<VG. VG, VG VD
+ v e 8 8 5 s

(2.37)

v et
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it can be shown that in this particular case

(VGV) = VGV (2.9

Let us consider a more complicate correlation functions

_13-31
T
B(3-3)= e’e (2.39)

the integration in egq. (2.28) can be evaluated exactly to give

jz-2'l
3 cd -
S}O‘S;'e T dzdzl
- 3-8 r
_ 2 T 3-3 ] (2.40)
=27 (e T.-1 +-7F

for short-range correlation,
-$§2§2 B~z drdv
e 3' 3' 1:1 )
- 3-3

e eTle T-1e 5]

‘;‘“’m‘-ﬁ"Jh"ﬁ"Lwaﬂh:Qv- s AL D -

_ézT (3_3') (2.41)
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Therefore

-e3T (3-3")
G(3.3)g -1 U(3-3)

(2.42)

One can examine the 1st approximation in eq. (2.31) by substi-
tuting (2.42) into the expression for V. G:

VCG J<V<3)\7(3)>_G(3,3)_G(‘3',é')
U(3-3)U(3-304d3 3.3
_erTe” T(3-3 .)[1 -e T J (2.43)

wvhile the exact solution for G gives rise to the expression

. dG .
V. G A.j—-z-- $(3-3")

s -e2T(3-3")
-e°T €

Compare (2.43) to (2.44), one observes that V.G 3'{66‘7)13 a
good approximation when the correlation range is small.

Thus, one concludes that for a centered Gaussian random
variable V with a delta correlated 2-point correlation func-
tion, V.G can be exactly expressed by the 1lst term of the
series expansion (2.21), i.e. VG = L VGV > G = { VGeV)G. For




’

small range correlation function, V<G ={VGV>G is a good
approximation. The representation (2.31) can also be applied
to the case of large scale correlation, but then the fluctua-
tion ¥ must be small. Otherwise, the higher moment terms
have to be summed to get a good expansion.

III. Markov Approximation

In order to proceed further, additional approximations
for the random medium statistics must be considered. A very
useful approximation is the Markov approximation which gives
correct results in cases of interest even in the limit of
‘'strong scintillations. The mathematical representation and
physical interpretation of the Markov approximation is based
on the following observation:the correlation of the dielectric
constant in the transverse direction £ has a direct bearing
on the transverse correlation of the field but the correlation
of the dielectric constant in the direction of the wave pro-
pagation has little effect on the fluctuatxon characteristic
of the wave., Hence, one can assume that E (r) is delta corre-
lated in the direction of propagation, '

(EGpEGDNY=53-3)ALs-§

(2.45)

"i.e. one can treat wave propagation in a random medium as a
Markov random process. It is equivalent to assume that the
turbulent eddies are like flat disks oriented normally to the
prdpagation path. Tatarski (1971) gives a derivation of this
approximation which provides the 1limits of applicability of
the Markov approximation. For typical ionospheric parameters,




these conditions are generally satisfied for an incident wave
with frequency about twice the maximum plasma frequency or
highet .

The relationship between the function A(Pf - :') and the
power spectrum Q (k) is given by the following:

 ike(p-£')
A(g-g')-—-znj@(ﬁ)e T T dk

v (2.46)

If the turbulence is isotropic, i.e. é (k) = é (k), then we
get '

A(g-g')_-.(zn)‘j T, (& (-¢") Q(R) kd&

(2.47)

A(z) is also related to the correlation function B( z, Z )
through

Acp-£) f B(3.£-¢') 43

(2.48)

The limit of application of the Markov approximation was inves-
tigated by Tatarski (1971) via variational techniques. We
derived identical results using the operator method as present
in Appendix 3. '




IV. Equation for the Mean Field

In summary, our analysis of strong scintillations will
based on the following assumptions: '

(1) The parabolic approximation. (limits of applicability of
the parabolic approximations will be derive in Appendix 4).
(z; & (r) is delta correlated in the direction of propagation.

Let us take the ensemble avérage of parabolic equation
(2.9)

A

L, a<Y> 2 , A 2 , 20N =
2&,33; + B AY>+ Rk (EVD=0

(2.49)

The last term in (2.49) will be expressed as follows:

CEm$an) = Ve (r)<45(x)>

wvhich is valid if the incident field at z = 0 is deterministic.
One notes that £ (r) = 2n(r) is the fluctuation of the refrac-
tive index. To get a differential equation for (‘P(g)}. under

the assumptions (1) - (2), one obtains the following expre-
ssion for Vi

Ve = VG V> =LVGEV>

\

1
‘
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If the fluctuation § (r) is a centered Gaussian random field
and characterized completely by the correlation function
C&(r) €E(p))> , then (2.50) is exact.

To ascertain V., the unperturbed operator G,must be found.
Therefore, we have to find the Green's function for the homo-
geneous equation

A 2 A
. Y 1 aY _
a3 i 2k, 3 f? =9 (2.51)
Setting
A too ‘*%'f { '
‘V (2‘3) = J L'J (%’5’) € J- (2.52)

One can write equation (2.51) as

aP (£.3) & & _
33 T-;W(%'z)— 9 (2.53)

From (2.51), we define G, by : H

; 2G, 1 3 G, = 5 ,

AR e b WD ekl PRGN A NS AR I T Dok et T e
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where
G,(5.3.8.3) = © 3<3

(2.56)

From (2.55)’ Ve Obtain

1 ,' p?2 ' ,
3 A.é__!- - ...%'_— g& = é (5'5) (2.57)

o TR ey A A e e A N SRR

?&(3’3').: o) 3<3 (2.58) | !
For z>z', we note that f

L .
-A._R;" (3-3)

¥ (2.59)

Using (2.57) and (2.58), one sees that

5 \Bhe K S 2k vty AR 2 L
%

/

gk(3,3')= - A as 33— 3 (2.60)
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One then observes from (2.59) and (2.60) that A = -i and

= (3-3).
Je(33)=-i¢€ 7k

From (2.54), one sees that for Z.= z'

G.(£,3,8,3)% -2 (8-8)

the above is also a good approximation provided Ezlz-z'l/2k°<<1.

Therefore, by using (2.50), we obtain

Ve = - i &2 J.jlj:j’( N3N (£.3)>8(5-8)dgp'd3’

= ikl jé CR(1,3)7(8,3)>d3’

vhere T = 5/2. Setting z - z' = | , we obtain

Ve s -k [ (AL R08,3-1) 4N

Applying the Markov approximation, one obtains

(2.61)

(2.62)

(2.64)
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\A:‘L‘E’azj-wé(q)A(s’o)A‘I' (2.65)

Therefore, the average equation (2.49) becomes

A - p 2 A
‘a} +2k 3?2 2 (2.66)

V. Parabolic Equation for the Mutual Coherence Function

The parabolic equation (2.9) and its conjugate can e
written as:

[‘aag ziﬁ a?’ + kU )]W‘; f)=o

(2.67)

[L"T—-E—?-‘P%'n(ri]w(g P)""‘ (2.68)

Multiplying (2.67) byq) (z,f ) and (2.68) by G}J(z,f ) and sub-
tracting the second equatlon from the first, we obtain:

\ [A% + A (G- + R (R G.5)-7 (5.7

2k, (2.69)
*

A
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The mutual coherence function, ¢ \P (z, 9 ) \P (z, f ) > is
deflned as the cross-correlation function of the fields W and
gp 1n a direction transverse to the dlrectlon of propagation.

)

Us:.ng the operator notation described in section II s we
revrite M = \P"P* in the form:

V)&

o - My e

of TRIRY TR TR

DreT o

L,——————)A,aa —'z'(v? Vya)
G — -k [ (3.0)- n(35)]

T e PP TR -

& ——s 53,0 § 8

\

An unperturbed Greer's function may be defined as

o e g e 047 1 P M T

i + 5% (%= %] G,(5,5.5:1.5.3)

= §C5-7)8(8-7)5(3-3)

-~ ~




Applying the same analysis as described in section IV, one
finds approximately that

G, (8,9, 35F,f',3) = -4 sz‘f)g(f" f') (2.73)

The smoothed scattering operator for the ensemble averaged
Green's function, defined as in (2.38) can be expressed by

Ve =<VGV>=<VGV>

(2.74)

and written ass
ws g !/ -
Ve -ik JJ]_<UR@3-R(g13)] §(5-F)
S (-7 (F.3)-7 (5,3)]>d3dfd3

3 - (2.75)
_ _*.&OZJ 2 kA L3RI - <AEDAE )
. ‘”dg

Setting z - z = 1 » one obtains

(2.76)

V. = _;&ozft[s(q)A (3.0)—5(7)14(3,?-1’)3"7
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Applying the Markov approximation, one obtains

V. - - ‘3_2&; [A(j;o)-A (3,2-2')]

(2.77)
Equation (2.70) then becomes
2 (- % ')+ e [aG0-A (3.2 T M
LQ} 2& f 2.78)
= O
where
! A A*. ’
M, (3.9,8') = {Y(3.0)Pu3.20D

(2.79)

VI. The Equation for Fourth Order Moment

on cons:.der:.ng the parabolic equation for \P(z. ?,) :

(z, fg) (P (2, f;). ty *(z, ?4 respectively, we can obtain an
equation for

A A A%
K, = §(3.9)§ (3.0) P (3.5)¥15.5)

(2.80)

7
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as in the form

[L,—\?]ph»:o

(2.81)

where

. 1 | 2 2
Lo — i+ [t %% ]

v — -k [N (3,5)+ﬁ(s.gq-ﬁ(s,s;)-ﬁaf.)(z,ez,

. as before one defines an unperturbked Green's function defined

(i35 "% (% 1%~ T "B G (B 0553
FRREE) = SRS (B-P) $(5-%)
$(£u-32) §(3-3)

(2.83)

Applying the same analysis as described in section IV, one

.sees that G, can be approximated as:

G° F-L9 (&"z;) $ (zz‘f}) é<§’}é)é(f£-g) (2.84)

[ o LoDt o AN
« A TR N aCE T IR RPN LY Sy AL
. S £ - ki LSO

: RPN, W ANIIIY ¥ PN



Therefore, the operator V., for this case can be approximated
as

Ve §LV G V>
ik < [R5 73S 5)-T (3.59-T(3.8)]
5(5-5)55-5)8 #-5) § (%~ %)
[7(3.3)+ 7 (3.5)- R (3.}p-TiBg) e
35 45,545 43

Upon application of the Markov approximation, one obtains

Ve z-iRZ[2A(3,0-AB,5-F)-A(3,5-f2)
A G- AR BfD AR e

By (2. 28), .one then obta:l.ns the equatxon for the fourth moment
Mg = Pz, f) ‘P(Z-?a NP (z, 7;)lP (z,£5) asi

{35 T[vf*vl"z st Vf’]**&f}M

(2.87)
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where

FomFesn.0.9.0)
=2A(3.0)-A(3.5-5)-A(3,80)
~A (3. 55a) = A (3. Fa-5) + A3 8) >
+A(3. 5-0)

and

. , e i&g'ég
A(3.22)= 2f£f é‘g:%x)e i d Re

© (2.89)
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Chapter 3 SOLUTIONS FOR THE MUTUAL COHERENCE
FUNCTION

I. "Slow” and "Fast"

Equation (2.78) is a single mode type of wave problem
dependent on the statistics of the random medium. In order to
obtain the solutions for the mutual coherence function, we
shall define the following Fourier transform with respect to
the “fast" variable & = x4 - x4 , and the "slow" variable
X = Xgq+ Xg/2. They>are so called "quasiparticle distribution
function" or "Wigner distribution function" described independ-
ently by Marcuvitz (774) and Bremmer (34). One introduces the
double Fourier representation.

A A A A L (R Xy ~keXa)
<\P"~Pz.>= J <¢s¢zﬁ>e b d& d&,

(2)2 -V

i
A

A A
where ¢‘= 4’ (kg , 2) and ¢§ ¢ (kg , z) are, respective-
1y, the Fourier amplitudes of Y= IP (xq » 2z) and lP, =lP(xz » 2Z)e
Defining the "slow” ( x or k ) and "fast” ( € or k ) spatial
and wave number variables via

x = Ztt % K= & -8R,
2 >

and ) (3.2)

§
{

e
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whence

kX, ~ kX, = £t + kx

e (3.3)

db,df, = dR dK

One rewrites equation (3.1) as

v Y
Chdty= [Fhze” db

(3.4)

where

" A‘. AKX c“(
F (&’xlé) il J<¢‘¢z >e 2n (3.5)

\

is called the "fast" quasiparticle distribution function.
Alternatively, one writes equation (3.1) as
LKX
d K

27T (3.6)

(H 9S> = _SS (K.E,3) €

where

4 A ke
Sx.&3) =j<¢,¢;"> e dk

i (3.7)




L

and termed the "slow" quasiparticle distribution function
also called the ambiguity function.

The reality property F(k,x,z) = F*(k,x,z) of the fast
quasiparticle d.f. follows readily from eq.(3.5); however,
positive definiteneﬁss is not in general assured. S(K,f .,3)
is only real when Y (X ) is an even function which can be
proved using eq. (3.6). S(K,E ,3), just as F(k,x,z), can be
negative for some value of K and & ., However, it should be
r.mticed that J:.ni.:ergrals of J‘ F(&,x,s)éz%_ ’ JS(&E,Q)%%
1s always positive,

It is interesting to observe the following properties of
F(k,x,z) and S(K ’E ’ 5 )s
(a) one notes that from eq.(3.4) and (3.6)

iRE~-4iKX
SxE = |Fth=x3)€ dkdx
2t (3.8)

\

which suggests that S(K ,E ,3 ) can be treated as a charac-
teristic function of F(k,x,z), in k,x space, and vice
versa. The use of S(K, 8,3 ) or F(k,x,z) mainly dependent
on the nature of the problem to be solved.

(b) for € = 0 and X =0 equations (3.4) and (3.5) yield

P PE>= jF (&%, 3)—‘1—%—

(3.9a)

)3
.
]
,
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<\$<i.é)l’> = JF (%.% 3) dx

(3.9b)

whence on infers that

A
ju'f-\ (x,3)|*>dx =j<"?""5”z> %“i’
:JF(&,xas)-A—g%-x—

(3.10)
which suggests the identification of F(k,x,z) as a number
density of "fast" quasiparticles ir}\ k,Xx phase space.

(c) Similary, for x = 0 and k = 0 and ¥ (x) is even, equations
(3.6),and (3.7), give

<|@(,§.’3)|’> =JS(R.£,3) %%-

(3.11a)

e s =j5 (k.5 3)dE

(3.11b)

¥hich also suggests the identification of S(K,§,3) as a
number density of "slow" quasiparticle in K , £ space.
also,
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- dkdE

(3.12)

(d) One notes that

JF(ﬁ,z,é)é%%?- = S (o.0.3) E—’,']N:;(S)

(3.13a)

‘SS(K £.3) JRJE = F (0.0,3) = N3(3) G.aam

where Ng(z) and Ng(z) denote the total number of "fast" and
"slow" quasiparticles respectively., Both Ng(z) and Ng(z)

, can be ortained from information about F or S,

E (e) A coarser description of the dynamics of a quasiparticle

| system views the overall system as a single Macro-particle,
It is of interest to find the average position, momentum,
size, etc., of the overall system. The average coordinat-
es of quasiparticles are defined, in terms of the distribu-
tion functions F in K,x space, by

)?(3)"_?3) j x [ (&% 3)5&#

(3.14a)
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- 1 dkdx
= e— {)113)—___—
£(3) NiG ﬁﬁ F( Y

(3.14b)
and in terms of S function in K , & space
6(3)-— XJES(Kzs)dk :
Ns(é) (3.15a)
- dKdE
K(3) = HK S (k. &,3)
Ns (3) 2R (3.15b)
Similarly, the higher moment averages
—_—r—, _ 1 x. 3)dkdx
g x™ “'@3) jJ F(-& ST 21 (3.16a)
KME“': 1 JK 3 S(kes)d’ut
Ns(3) (3.16b)
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It can be easily proved that

m+

— o
x" = (x.k, é)
b 9 (iE)"I-ix) S (3.17a)

v{’ k=%=0

m+n

—_— o
man = (&’x,é)
K"e a(-,;x)"‘aua)"]:

JERTIR ST Ly e

.

Therefore, a macro-description of the overall system can
be found if either F or S is known.

r II. Exact Solution of Mutual Coherence Function for the Case
H(Z) = a §* ( cf. Furutsu, 13)

The defining equation for the Mutual coherence function
has been derived in section (2.V). Introducing the "fast" and
"slow" coordinates

£+ &
2 »

e B T ST T 5 T PR RTINA T M . TR

X =
~

¢ €y
"

-5

‘-

one obtains

4

(3.18)
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A AR !
where My(2,§,3) = <Y (%.3) Y (ﬁz,SJ>.

We now consider the Fourier transform with respect to X, which
is exactly the "slow” quasiparticle d.f. defined in section I.
The resulting differential equation for S(K, &, 3 )} becomes

J3S

———-‘-

)

35S =
ot t H(E)S 0 (3.19)

~

‘\bax

where

2
Mgy = R [ Ae)- AL®)]

4 (3.20) 4

Equation (3.19) has the form of a collisional "Kinetic"
equation indicative of a distribution of "slow quasiparticle"”
in K , ¥ space at a plane z. The "Characteristic" trajectory
along which the "particles" move is defined by

dt . K d K

—— 2 =o

‘, d 3 ko ’ d3 (3.21)
On a quasiparticle trajectory, one observes that
i dS(xE3) _

T T g A R h T e
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S(k,t3,3) =S (K t@,0)e

(3.23)

This implies that the number density of such "slow particles”
per unit volume of the phase space K , £ decays along the
trajectory defined by equation (3.23).

For waves propagation in free space, the defining equa-
tion for S becomes

Sk, §),3)= S (K@, 0, 0)

which provides the constancy of S on a quasiparticle trajectory.
\

To illustrate the applicability of the slow q,p View we
shall consider wave propagation through a random medium charac-
terized by H( ) = a§?. As an initial condition, we choose
for analytical purposes a planar beam of the simple form

- X
2b2

ql(ix) o) = e

(3.2?)

The slow quasiparticle distribution function at z = O follows
from the transform relation (3.6) as

TR e
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( x: + xzz) -1 KX

S(Kk.2,0)= JC %z (o dx

jé’ & (e §)-ivs

dx

K b? (3.26)
4

(3

2
Ta3br
e

:ﬁbe

At a subsequent distance z the S function follows from (3.21)

and (3.23) as 3 |
—af2 82343

S(xt3)=S(k.E®,0)€
é K343
- S(K E(O) o)e-afaff@)f

=S (k, §-K3.0) e“‘ﬁfﬁ-"w-svl‘as’

D) L KE
={TbeE 26 o T4 x
~fa[383-38x + K3 ]

~K (—é— +— + 30-53)
={nbé .
- (—;;;+45)+2£K(i,+‘5.i-)
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For the beam wave case, the wave at the aperture z=0 can
be assumed to have a Gaussian amplitude distribution with the

beam size Wy and radius of curvature R, for the wave front.
Thus, at z=0 the wave is given by

- Ay T

Y(x,0) = e-%ﬁo(“r*id‘)xz

(3.28)
where
A 1
oy = —— i =- (3.29)
TLWO J RO y
Introducing the normalized coordinates
- X n 2 - = 1
*=Tn ""(W.)Z , A (Ro
T &0
one rewrites (3,28) as
- .7 2
--;-(al,.‘l't-di)z
‘.P(z,o) = (3.30) )

Substituting into (3.6), one obtains (for simplicity, we will
drop the bars)




e+ - I M T e e

- '%"(r (xlz"' X' ‘é’ iol; (z‘z__ zzz)

S(x,e,o)=je
e-LKZJx

o 2x‘+§: il X ~aKx

:je 2 ( z) dx

(3.31)

2
Lol 52 - (K+oliE)

o o=

:e"’ e 4dr \F:(L,-

Using equation (3.23), one finds

2
. - ol,-(E-Né)z _Ekfdis(fr-xs_)l
SkE3)= J——E{; € * e

e_a(zgg_zl‘;z_ré_xz;s) (3.32)

note that (3.32) can be reduced to (3.27) by setting elp= —E—z
and &L= 0,

The Mutual coherence function at z can be calculated via

(3.6)
ik gy
= K. E,

M, (x.E 3) jSC £.3) € o
j ~AK~-BEitCcEK+ikX

=€ l 1.4 (3.33)
r 27
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where

A=—=5— + L (132 §)+ 303>

4dr
SR W
b= gstrt -2+ @9 (5,30

whence on integration of (3.33), one obtains

B 2B (ix+kc)
Mz(z;2.3)= —2- ﬂ e e zz

(3.35)

where A,B and C are defined by (3.34).

Equation (3.35) is the exact solution for the Mutual
coherence function at a distance z. It is of interest to con-
sider as a function of 2 the beam size ratio, axial intensity
ratio, and the normalized MCF at x = 0 for the following casesi

(case a) For collimated beams (o= 0) propagating in free
space, one obtains from equation (3.34)
A = d" 3’. + 1
% 4oy .
- 1 = e
B = < %r , C 2 3%r (3.36)




Then the beam size ratio (& =0) is defined by

Wo'(3) _ 44
Wo(o) 1A,

=1+ szr

L o IR ¢ K D 2

increases with z.

The axial intensity ratio, defined as the intensity
of the wave at x = E = 0, becomes

I (0,3) - m0;0:3)= 1
I (OI 0) Mz (0,0,0) (1+éz l‘z)Js

(3.38)

and decreases with z.

The normalized Mutual Coherence function (NMCF) is an
important function for the measutrement of coherence.
The integral of NMCF, j My(e.2.3) dE , gives the

°l°l ,
value of correlation scale.® At x = 0, it is give by:

_ %Ay Ez ( ‘
Mz(OI E, 5) = e 4- 1+t 33drl)
M; (0,0.3)

(3.39)

(case b) For a focused beam (e;>0 ) and a divergent beam
(di € 0 ) propagating in free space, one has




1
4
(3.40)

'? r o LA g o
C=-5= -5 = (1-dd)

The beam size ratio is then

, . (2o .
We(®) ot~ e 2de 3 + (1-0k3) ;
w:.(o) _;12-__ (3.41)
r i

Whence for the focused beam, a minimum beam size
occurs at a distance z = z' such that

d | W)

a3 W: (0) ' = (3.42)
323

Applying equation (3.41), one obtains

3 e ol
oly' + o2 (3.43)

and thus



Using equation (3.33) and (3.38), we have for the
axial intensity ratio

IG) _ 1 !___ _ ( i %4
I(O) 2 A o(rzg‘.f(i_d‘;;)l (3.45)

and the normalized MCF (x = 0) is then

Cz
MﬁL(O,E,” - e- EZ(B- 42)
Mz (0,0.3)

_ ol b} i
[.(,.5-:-(1 a:3)t (3:46)

=€

We note that the correlation width [ (-(réf(i"‘.”z)]

is minimum when z = z' = 7 *'d“. , "which implies

; that the correlation length of a focussed beam reduces
to a minimum at the focal point and retains its co-
herence beyond the focal distance.

(case c) In the presence of turbulent medium, a> 0, the beam

size ratio becomes

o e v 0 AR E L W @ 8
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3 —_— = g 1-d:

3 woz(o) r§ 'f'( 3) -,
+-§-a.ol.—33

(3.47)

where "a" measures the strength of turbulence. For
the collimated beam, ol = 0, the beam size ratio
reduces to 1 + . 3%+ -%- ad,.33 » which im-
plies a broadening of beam size with increasing
distance. Ifd;»0, indicative of focused beams, the
minimum values of (3.47) will occur at

[}
(e di2)t [ rdd) + Baded,: | %
4 aclr (3.48)

3=

{
If ol;(O, the beam focuses at negative values of z,
i.,e. it diverges with increasing z. The axial inten-
sity ratio is

I _ 11
I (o) 2 \drA R

; 2 "2 (3.40)
: =[ap 3"+ (4-di3) + 3 ad.-ﬁ’]

For a divergent beam, ;<0 , the axial intensity ratio
decays with increasing turbulent strength or increasing
z. For a focused beam, ol > 0 , I(z)/1I(0) will reach a
minimum value at z = z' given by equation (3.48).

cne
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The normalized MCF given by at x = 0 is equal to

nd
M, (0.8,3) _ e - (8- =7)
™M, (0.,03) B

.
[«,3- ;i(l-dzé)nafl
- oy
=e *-‘ 4 [(11- -Ht 3)- 4233 (l-dLfo§“r53 (3.50)

We observe that for collimated beams propagating in a random
medium, wherein & = 0 and a»0, the wave will loss its cohe-
rence (the correlation length reduces) with increasing z.
For &; >0, the focused beam will reduce its correlation length
before the focal point. After passing the focal distance, it
broadens until turbulent effects dominate at which point the
beam again loses its coherence. For the divergent beam case,
the wave will increase its correlation length and then lose
its coherence when the turbulent effect dominates.

\

To illustrate the evolution of Mutual Coherence Function,
plots of M(x , & ,3 ) in the x , £ space, for the cased,= ;= 1,
a = 0 representation of a focused beam propagating in free
space, are shown in Fig. 3.la-3.1b at distance z = 0.5, 1, 1.5,
2, For a initial MCF depicted in Fig. 1, the focusing effect
at z = 0,5 is apparent.

Figs. 2a-2b display the Mutual Coherence Function for a
focused beam in a random medium with a = kg = 1, oy == 1, the
beam assumes a minimum width in x at z' according to equation
(3.48) and then spreads in the x direction. Because of the
turbulent effect, the MCF decorrelates as the wave is propaga-
ted and the width in @ space is reduced. The amplitude of
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the MCF decays with increasing z. Normalized MCFs calculated
by use of equations (3.38) (3.45)-(3.50) are depicted in Figs.
3-9, For the case of a collimated beam in free space, the

normalized MCF is broadened with increasing z (Fig.3). For
the focused beam, the correlation length reduces to a minimum
value at z = 0.5. Beyond the focal point, the beam starts to
spread and increases its correlation length (Fig.4). Fig. 5
displays the normalized MCF for a collimated beam in a medium
with the turbulent strength a = 13 the correlation length
decreases as z increases. The same case for a focused beam

is depicted in Fig. 6. Due to focusing, the width of norma-
lized MCF becomes narrower for small z, it then broadens for
some distance because of the diffraction effect, finally,
turbulent effects reduces its coherence length. Fig. 7 and 8
shows the MCF different values of "a" for a collimated beam and
a focused beam respectively. In both cases, the MCF become
more decorrelated as the turbulence becomes stronger. The
effects of turbulence for different initial beam sizes are
shown in Fig. 9a-9b for collimated beam and focused beam. The
correlation length is larger for a wider beam size , as one
expects. {

III. Numerical Evaluation of MCF for a Complicated Power
Spectrum

To obtain MCF for an arbitrary power spectrum, one can
apply the same procedure as described in section II. However,
because of the complicate integration involved in evaluating
the function H(), it is not realistic to solve the problem
analytically. A numerical procedure via the quasiparticle
distribution function approach will be used to find the disire
information.

It is necessary to develope a numerical scheme which cal-
culates the slow quasiparticle distribution function S(K ,& ,3)

TR
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of beam width b; a collimated beam propagating in
a random medium with H(&) = a g*. a = 1,
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of beam width b; a focused beam propagating in a
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for a given S(K, 8,0 ). The corresponding results for inten-
sity, beam size ratio and normalized MCF can then be obtained
via equations (3.6) and (3.11). We shall first examine the
case of a collimated beam propagating in free space to check
the accuracy of the algorithm being used. The z = 0 quasipar-
ticle distribution function which follows from equation (3.31),

l.e.

_ (Kr i)

~iap?
S (“'S'O)"’J—{’t_r e 4“r£ e 440‘

(3.51)

is depicted in Fig. 10 for the case &,= 1, d:=0. The quasi-
particles are evenly distributed in the intervals -7< E< +7,
~7<K< +7, At a subsequent distance z the distribution func-
tion follows from (3.24) and (3.21) as

S, t,3)= Sk, 5-k3, o)

(3.52)

i.e. the quasiparticle density is redistributed when evolutes
in 3' , as the quasiparticle spread in £ the probability dis-
tribution function (d.f.) with coordinates S( K, ¢ -Ké". 0), at
z = 0 "moves" to the new location S(K,E ,3'') at z = z*, The
redistribution phenomena enable us to interpolate every point
in K , & space from the initial d.f. to the final d.f. at z=z'
numerically. Figs.11-12 display the S function at z = 0,75,
1.5 respectively. The quasiparticles with higher K "move"
faster than those with smaller K . The resulting d.f. thus
spreads along & directions. The MCF at x = 0 as a function of
€ for distances z corresponding to the associated S(k,&,3 )
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Fig. 10. Initial slow quasiparticle distribation
function for collimated beam with oy = 1; z = O,
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Fig. 11. S function in K , & space; z = 0.75.
a collimated beam propagating in free space.
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Fig., 13. MCF vs, & at x = 03 a collimated beam
propagating in free space.
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a focused beam propagating in free space.
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Fig. 16. S function in K , & space; z = 1.5,
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are displayed in Fig. 13. The spreading effect increases the
coherence length as z increases. Fig. 14 depicts the initial
condition described by equation (3.51) witholp=9oli= 1, a = 0
i.e, focused beam in free space at z< 0.5, the field reduce
its coherence length because of the focusing effect, it then
spreads as z = 0.5, as described in section II. The S func-~
tion at z = 0.75, 1.5 are shown in Fig. 15, 16. Fig. 17 dis-
plays the MCF as a function of £ and z. The above exact re-
sults have been used to check the accuracy of the algorithm
and found to be very good.

The Fourier transform of S(K , £ , ») gives the MCF
M(x,t,%). Setting € = 0, one obtains the intensity,
I(x,3) =M(X, 0,%) as a function of x and z. Figs. 18
and 19 depict the intensity function for collimated and focused
beams propagating in free space. 1In the first case the inten-
sities spreads in the X direction as z evolves. The focusing
effect is observed in the second case and is shown in Fig.l19.

For a wave propagating thru a random medium, characteriz-
ed by a power spectrum é (R ), the evolution of the S function
can be obtained from the relation:

—jsH(E(mKS')J}’
S(x.E.3) = S (k. E,0) €

(3.53)

vhere, for the one dimensjonal case, H(£ ) can be represented
as

H(e)= |2m(1-cos £8) @ () d&

-0 (3.54)
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Along the quasiparticle trajectory, one can rewrite (3.53) as

—SEH (-x(3-30]d3°
S (xt3)= Sk, E-K3.0)€

(3.55)

From knowledge of the power spectrum and the initial
distribution function, one can interpolate the S function
along the trajectory in accordance with (3.55). That is, the
S function spreads in £ space and decays along the trajec-
tory with a structure function H( & ) dependence.

One finds equation (3.55) is different from eq. (3.52)
by a collisional (decaying) term exp -j?H[a—K(é-é')Jdé' .
It is thus important to observe the behavior of the H func-
tion for an arbitrary power spectrum. We shall choose three
different kinds of power spectrum and study the resulting
behavior of the H functions

(a) Gaussian spectrum ,
 (R-%)

$w=Age 27

(3.56)

where & is the center of the Gaussian spectrum and b is
the width
(b) Power law spectrum with spectral index P

& (7%
é('&) = AP (1 + _&L,Z ) (3.57)
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where ﬁ,_,= 1/, 1is the wavenumber associate with the
outer scale L, and P is the spectral index.,
(c) Compound spectrum

(%R

1 Zbt
= < + Q€
Q(k) AC[(l-l-%—z)P/z | (3.58)

Lo

is the superposition of spectrum (a) and (b).

The power spectrum and associated H function are shown
in Figs. 20a and 20b. Curve 1 in Figs. 20a, b represents é (%)
and H(E ) for spectrum type (b). The Gaussian bump power spec-
trum and corresponding H function are depicted in curves 2,3,4
with &' equal to 1,2,3 respectively, and with a = 0.3, b = 0.2,
One observes that the additive Gaussian bump contributes an
oscilltory structure to the power spectrum. For instance, &' =3
imposes an oscilltory structure with three peaks located at
E="1N/3,T, sn/3,

The oscillatory behavior implies a higher randomness in
the medium. As a result, the wave is more decorrelated by the
random field and a stronger scattering effect is encountered.
Fig. 2la displays the Amplitude dependence of the Gaussian
bump for a = 0.3, 0.5 and 0,7 from lower curve to higher curve.
The superposed behavior of spectrum (a) and (b) is shown in Fig.
21b for the case &#=1, a = 0.3, b = 0,2.

It is of interest to evaluate numerically the S function
at a distance 3 using equation (3.55). Once the S function
is obtained, one can easily find the intensity function I(x,z)
and correlation function M(0, & ,3) at x = 0 from

e

e T
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curves 2,3,4. for spectrum (c¢) with k' = 1,2,3 respect-
ively; p = 4, a = 0.3, b = 0.2,
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I(x,3)=M<(x.0.3)

KX gk
j S (x.0.3)€ = 3509

T e A SR

M (0.8,3) = JS (k. &, 3> 2K

2 (3.60)

The correlation scale f of the field is defined by

2 = M (oli,}) OLE
M (0,0,3) (3.61)

e o e S 1 A g o A YR = MO, + <~ 7 ot TYRRGN TSR [T 2 ? W

* and hence the knowledge of M (0, £, z) permits ore to eva-~
luate the correlation scale 1. We shall first present some :
numerical evaluations of the S function by means of eq. (3.55).
The significance of intensity and correlation length for both
focused and collimated beams will be discussed later.

In the following numerical evaluations, we have used the
normalized quantities: z =» z/XKels , X = X/Le , T =$4kf L." A(0).
where ks is the wavenumber of the incident field and Le is
the outer scale of the random field. Figs. 22a and 22b depict
the S function at the boundary z = 0 for the collimated beam

P I

;2

and focused beam, respectively. Figs. 23a-d depict the S func-
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tion at z = 0,4375, 0.875, 1.3125, 1.75 for focused beam pro-
pagating thru a random medium with power law spectrum defined
by the spectral index p = 4, = 10,dv = 1. One observes that
the quasiparticle d.f. spreads in the & direction and decays
according to the H function as it redistributes. If a Gaussian
bump is imposed with its center located at k' = 3(GCTR), width
b = 0,2(GWID), amplitude a = 0.3 (GAMP), the S function is dis-
torted and sharpened compared to the case of the simple power
law spectrum. These effects are displayed in Figs., 24a-24d.

As discussed earlier, the location of the Gaussian bump deter-
mines the number of peaks in the H function. In order to illu-
strate the effect of these peaks on the S function, we shall
examine the case of a collimated beam propagating thru a random
medium with the composite spectrum (c). The center of the

bump is chosen to be located at k' =1, 3,4, respectively. For
% =10, GWID = 0.2, GAMP = 0.3, p = 4, one displays the nume-
rical solutions in Figs. 25a-25d, figs. 26a-26d and figs. 27a-
27d. At z = 0.4375, the S function is less distorted for k'=1
than it is for k' = 3 and 4. At z = 1.75, the S function for
k' = 3 and 4 clearly shows the effects of the H function peaks.
One observes that the presence of these peaks in the H function
greatly reduces the correlation length in the & direction.

It is easier and clearer to discuss the independent
effects of different spectrum structure by means of the inten-~
sity function and correlation length associated with the propa-
gating waves., Substituting the numerically evaluated S func-
tion into equations (3.59)-(3.60), one obtains the desired
information for I(x,z) and & . Fig. 28a depicts collimated
beams propagating thru a random medium with H(E )= Pg?,

Curve 1 represents the axial intensity and correlation length

for the case of wave propagation in free space. Turbulent
effects for U= 0.5 and 1 are depicted in curves 2 and 3., (In
Figs. 28-31 we use the same curve index for different values of
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' ). One observes that the axial intensity I(0,z) decays as
the wave propagates while the correlation length decreases due
to turbulent effects until about z = 0.,3; diffraction effects
then become important and coherence is partially restored.
After further propagating turbulent effects again dominate and
the wave is decorrelated. For a focused beam propagating in
free space withdpr= 1, &i=1, the intensity at z = 0.5 will
reach a maXximum and its correlation length a minimum as shown
in the curve 1 of Fig. 28b, If a turbulent medium is present,
the focal distance is reduced due to the scattering effect im-
posed by the turbulent medium. Curves 2,3 of Fig. 28b display
the decorrelation process contributed by both focusing and
turbulent phenomena from z = 0 to 2 ¥ 0.4. At z ;'1.2, the
turbulent effect dominates and reduces the correlation length
as z increases. Figs. 29a,b display the same effect for the
Gaussian spectrum. Comparing these curves with the square law
spectrum, one observes that the Gaussian spectrum has a small-
er effect on the wave statistics than the square law spectrum.
It is of interest to consider a power law spectrum for the
ionospheric random medium. We shall choose the spectrum type
(b) with p = 4 and make use of numerical calculations of the

S function to evaluate the axial intensity function I(o,z) and
correlation length 1. The results are depicted in Figs. 30a,b.
Fig. 30a displays the case of collimated beam for ¥ = 0.5 and 1.
The turbulent effect slightly reduces the intensities (Note that
this is a weak turbulence case), and the correlation length de-
creases compared to the case of free space (curve l). For the
case of focused beams, depicted in Fig. 30b, one finds that
scattering effects decrease the focal length; the wave is also
diffracted and decorrelated as in the previous case. The spec-

trum of a real random medium is not a smooth function in general.
Experimental results show that the power spectrum could posses

a number of "bumps" in various frequency ranges. We shall illus-
trate the effect of such bumps by simply adding a typical

WL OB AT

PRGERNNNITY Y S “wir A s

—




- 86 -

QI37= 2 13231 WIOTH= 1.020869 Rl=x 9,.0' GANNAs 8.0

GCTR= 06 9 GWIDs 1.9@aQ3 Gaﬂ.Pﬁ'.l.OOBOO INOEX= 2.00090
2.00 - -
1.8 L
I)m :
1.00
5.80E-01
k 0.8 } 1 i ]
‘ 0.0 5.335-0!’ 1.7 1.68 2.13
Fig. 28a. {it 1 vs. z dotted line; I(0,z) vs. z
solid line; curve l: free space; curve 2: = 0,5;
curve 3: o s l; collimated beam with oy = 1,
H(E) =TE" .
0IST= 2 13281 WIDTH= | 00000 Al= 1 30800 cmina- 5.00000€-01
GCTR= 2.9 GUID= 1.93209 GAMP= 100060 INDEX= 2.00000
2000 . |
VL ;
1.50 :
i
I, &
|
1.00 i
i
f
k
5. 08E-01 ‘
0.0 L 1 ol ! :
0.0 5.33E-01 ” 1.7 1.60 2.13 :

- Fig. 28b. focused beam case; elp=ol;= 1,

T e S NN T AR S I TN T o s




R it T g

-~ 87 -
DIST= 2.13281 NIDTH= 1.00000 Al= 0,0. GAMMA= 0.0

GCTR= 0.9 GNID= 1.00000 GANP= 1.00000 INDEX= 2.00000
GAUSSIAN SPECTRUM :

2.09
1.50
1, 6%

1.00

5.00€E-01

9.8 1 | 1 ]
8.8 5.335-012 1.7 1.60 2.13 ¢

Fig. 29@.12-"& 1 vs. z dotted line; I(0,z) vs. z
solid lines (1) free space; (2) *r= 0.5; (3)°r =1

Gaussian spectrum, k' = 0, A =1, b =1, S
018T= 2.13281 NIDTH= 1.00000 Al= 1 00800 GAMNA= | .80000
GCTR= 6.0 GN10= 1.00000 GANP= 1 :00000 INDEX= 2.00000

GAUSSIAN SPECTRUM

2.00 - 1 S

8.0 1
0.6 5.335'01, 1.07

Fig. 29b. focused beam case; olv = ;= 1,

PR N, OPTT T

—

|




0tsT= 2.13281
GCTR= @.9

PONER LAN SPECTRUM
?

- 88 -

HIDTH= 1.80000
GKHI0= 1.00000

Al 8,6
GANPS 1 .00000

5.33e-01 2 1.7

GanNA= {. 09800
INDEX= 2.00000

2.“ - 1‘0. ....o‘
‘-“ peo . ot ) T ' yeeseeett®t essevoces soeecscece
- Bileeeess e
I,m “Cdenqonnnect?

1.00

5.00E-01 |- l
2
3

9.9 1 1 L J

e.e 1.60 2.13

Fig. 30a. 3R 1 vs. z dotted line; I(0,z) vs. z

solid line;

(1) free space;

Power law spectrum with-p = 4,

DIST= 2.13281
GCTR= 0.9

POHER LAW SPECTRUNM
)

WIDTH= 1.89000
GWID= 1.00000

Al= 1 00ge0
GANP= 1 000008

(2) o = 0.5; (3) o = 1;

GANMA= 8.0
INDEX= 2.00000

2.00
1.50
I,
1.00
S.08E-01
0.0 i L 1 q
0.0 $.336-01 , 1.87 1.68 2.13
Fig. 30b. focused beam case; Ay=d; =1,

B LRV MRS

P




- 89 -

Gaussian bump on the power law spectrum, i.e. a compound spec-
trum as described in eq. (3.58). Fig. 3la, 31b depict the
effect of a Gaussian bump on the axial intensity function and
the correlation length for collimated and focused beams res-
pectively. The parameters are chosen as 3 r= 0.5 and 1.

GCTR = 1, GWID = 0.2, GAMP = 0.3 and p = 4. The results show
that the addition of this Gaussian bump causes strong scatter-
ing phenomena. We have presented, for the weak fluctuation
cases o = 0,5, 1, the effects of turbulence in the medium .
As a comparison, we shall now display in Figs. 32-33 some re-
sults for the strong turbulence case, = 5 and 10. A colli-
mated beam propagates thru a random medium with a composite
spectrum formed by a Gaussian bump located at GCTR = 1, GWID =
0.2 GAMP = 0.3, for the cases = 5 and 10, Curves 2,3 in Fig.
32a represent the intensity and correlation length for r =5
and 10; they shows that for strong turbulence case the corre-
lation length decreases rapidly and a long tail appears at
large 2. The axial intensity drop appreciably and approachs

a small constant value. For the focused beam case, the focal
length is greatly reduced for large values of “r . We shall
expect, as the turbulent strength is very strong, that the
focusing effect will not be present and the wave will decay

as z increases. These results are depicted in Fig. 32b., If

a Gaussian bump is located at k' = 3, the scattering effect is
stronger than for the previous case. Figs. 33a and 33b dis-
play data for a collimated beam and focused beam propagating
thru a random medium described by a composite spectrum with

k' = 3, One observes that decay is much greater for the in-
tensity and that decorrelation phenomena are more evident

than for the case k'=1 ,
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IV, Conclusion and Discussion

A wavepacket or beam can be viewed as a finitely extend-
ed moving and deforming system of "Quasiparticles”. The Four-
ier transform of the Mutual Coherence Function w.r.t. either
the "fast" or "slow" coordinate is defined respectively as the
"fast"” or "slow" quasiparticle distribution function F or S.
For wave propagation in a random medium, it is usually more
convenient to utilize the "slow quasiparticle” distribution
function S. The knowledge of the S function provides the de-
sired information for two point statistics of a stochastic
wave, For example, the correlation length 1.at any value z,
defined in equation (3.61), can be interpreted as the total

@ numer of q.p. Ng(z) divided by the g.p. density at & = 0.
Also, the axial intensity I(0,z) may be represented by the
slow q.p. density at € = 0. To obtain the 2 point statisti-
cs at any distance z, one has only to observe the g.p. flow
in K , & space as z increases. For the case of a collimated
beam propagating in free space, one considers, at z = 0, a
system of quasiparticles evenly distributed between -7< & ,
K < +7. Qualitatively, we shall use the "area" of a circular
"point" to represent the number density of slow g.p.; thus at
z = 0 the q.p. are distributed in K , & space as shown in
Fig. 34. As z increases, those q.p. with higher K "move"
faster than those with smaller K . As a result, the q.p.
density at & = 0 decreases as z increases and hence the axial
intensity I1(0,z) decreases. Since the total number of g.p is
conserved in free space propagation , i.e. Ng(z) is constant,
the correlation length increases as gq.p. move along the trajec-
tory.

For a focused beam propagating in free space, the g.p.
at z = 0 are distributed in K , £ space with a maximum along

an axis deviating from the & = 0 axis as shown in Fig. 35.
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Fig. 34, Quanlitative representation of slow q.p.
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in free space. Fig. 35. focused beam in free space,




One observes that the q.p. density reaches a maximum at a {
plane z = z¢, when those q.p. with larger density reach the ;

center line € = 0. i.e. the axial intensity is maximum at 2
the focal distance zf., The conservation of the total num-
ber of q.p. in free space then implies a reduction of the

correlation length from 2z = 0 to z = 2¢., As the q.p. flow
moves beyond the focal point, those g.p. with lower density
move to the center and the axial intensity decreases as z
increases; Correspondingly, this implies an increase in the
correlation length.

R LA IR R

For a wave propagating in a random medium characteri-
zed by the structure function H( 8 ), one just simply leads
to a decay of the wave field in the K , £ space as depicted
in Fig. 36, The structure function acts as an "absorber"
which absorbs part of the q.p. according to its strength.
For z»0, Fig. 37 depicts for a collimated beam at z = O,
how the q.p. move in a random medium characterized by H(E ).
As z increases those q.p. with smaller density move toward
the center while some of them are absorbed by the structure
function. The resluting q.p. density at E= 0 is decreased
and is smaller than in the case of free space. One notes
that the total number of g.p. is not conserved in this case.
The ratio of Ng(z) and I(0,z), which determines the correla-

tion length 1, will decrease as z increases for the strong
turbulent case; however, in the weak turbulence case, it will
first decrease and then increase as 2z increases at least for
a short distance (Note that the q.p. at K = 0 will never
move), For the case of a focused beam propagating in a ran-
dom medium, one depicts the g.p. flow thru a random medium
characterized by H(& ) as in Fig. 38.

E——

Because of turbulence in the medium, the gq.p. with
larger density are absorbed before reaching the center € = 0.
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As a result, the gq.p. density at & = 0 creates a maximum as a
result of gq.p. which initially have less density. Thus, the
focal length (zf) is smaller compared to the free space case.
The correlation length in this case is reduced from z = 0 to
z = z¢g. Beyond the focal point, the g.p. density, at & = O,
is reduced and the ratio of Ng(z) and 1(0,z), which yields 1,
will again decrease for the strong turbulent case or decrease
and then increase, as z increases at least for a short dis-
tance, for the weak turbulent case.

The qualitative discussion presented above is suitable
for an arbitrary random field. The form of the structure
function H( £ ) will determine the q.p. density profile. To
illustrate this effect, we will present some numerical re-
sults for a wave propagating in a random medium characterized
by the spectrum (C). Fig. 39a depicts the g.p. density func-
tion at x = 0 in E -space, i.e. M(0,& , z), for the case of
collimated beams propagating in a turbulent medium with spec-
trum (C)., We choose the parameters GCTR = 3, GWID = 0.2,
GAMP = 0.3 and p = 4. One notes that the axial intensity
decreases as z increases and the deformation of M(0, &, z)
reflects the behavior of the decay field. The normalized
correlation function, %{8‘§b*§% is shown as a function of z
in Fig. 39b. The area unéer’each curve represents the corres-
ponding correlation length 1. For ' = 10, which represents
a strong turbulent case, one sees that the correlation width
decreases as z increases,

The corresponding phenomena for the focused beam case
is displayed in Fig. 40a and 40b. One notes the focusing and
defocusing effects in Fig. 40a and the associated curves for
the normalized MCF in Fig. 40b.

The choice of an symmetric function for the input field
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Fig. 40b. Normalized %.p. density function,M(o,E)/Mw,O)
vs. 23 the area under each curve gives 1,
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leads to a real S function. It provides a simpler approach to
obtaining 2 point statistics especially for numerical evalua-
tions. The exact solution of the Mutual Coherence Function
for the case H(&) = a 52 is solved and presented in section
II. For an arbitrary spectrum, a numerical scheme has been

used to evaluate the S function as shown previously in section
III.

For simplicity the above analysis has been limited to
the two (z,x) dimensional case. The extension to three dimen-
sions is straightforward but requires more computation. For

a random medium which is inhomogeneous in z, one simply adds
a z dependence to the H function in equation (3.55) and all
of the calculational procedures will then be ganchanged.
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Chapter 4 THE FOURTH ORDER MOMENT AND INTENSITY
FUNCT ION

I. Formulation of the Fourth Moment Equation:

The parabolic equation for the 4th moment

A A A¥ , AR ]
M, (£, 0.8, 0) =¥ EYE) Y659 G.5)D>

(4.1)

may be derived for the case of statistically homogeneous fluc-
tuation as follows: (cf. Tatarskii, 1; Ishimaru, 25)

{‘59‘5 76 (Vr.*'vf. V'-Vf)* f}M

(4.2)

where

5 — ; (fa,fa,tc',f;',é)
-8y + H (3, fa" P+ HG A )

=H(3,91 -
s H G- = H BT f) = H (3.5-5)
and
H3,p) = A(3.0) - AGS)

mjé ) [1-ca ke f] 2R

ORI W
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Introducing the new variables:

#+ B f} * fl V
%} = -"Eah" R = 5 vi
{33'%':‘—' f..: E;+Ez "
g = 1t D oxo% s
3 ! Es - ) 1
2= fi-fa ; T E -

2 2 2 2z
then Vp + Vo, -V -Vt = 2(% % +%, V) and equation (4.2)
takes the form N - i}

. 2
{_2. - .1-&_ (7% + VeVn)+ —f—f (5.5.5.2)}M4 =0
]

29

(4.6)

where the function f, expressed in terms of the new variables,
is independent of the center coordinate R and

-

fGorm )= HG,nrEp) + H N-3F)

sHG, mr3ip)+H B n-%f)

~r -~

~H (3, n*tn)-HG.53) @

s P Pt R e,
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Equation (4.6) and (4.7) together with the boundary conditions

on Mg at z = 0 determine the corresponding fourth order statis-
tics of the field in the random medium. To date, no analytical
solutions have been derived for equation (4.6), except for the
special case H( &) = a &2, which has been solved by Furutsu(i3)
using functional techniques.

e e e
PR3 B o

oY en T

In section 2, we shall extend the "quasiparticle distri-
bution function" concepts to a 4-point correlation spectrum,

i.,e. the Fourier transform of 4-point correlation function, to

i

obtain an analytical result for the case H(E) = a& 2. An

approximate solution for arbitrary power spectrum using 4-point.
Slow spectrum will be derived in section 3. 1In the last section ;
of this chapter, we will present a numerical scheme to solve the
fourth moment equation (4.6) for an arbitrary power spectrum.

II. The Exact Solution for the Case H(®) = al?

We shall define the F and S functions corresponding to the ‘1
fourth moment M4, viz: 1
—i(Ryf +for 1)
F (R, &y, %, %y, 3) = M4c5,g;g.§.5)e dgdn
- (4.8a)
- (Ra'RTR5 T ) f

S (ﬁn,f,&n,”i,5)’jMQC§'Z;E'5'3)e drdM !

(4.8b) i
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where R and rl are denoted as the "slow variables"”, and 9 and
r, as "fast varlables". One observes that F and S form a 4-

fold Fourier transform pair with respect to R, r, and kf , k,-' .
~ -~ -~ -

S(&a ~vﬂ 3) JF(Elﬁf,r‘;“rx;s)
-L(&. R+ﬁr.°"‘a ‘31 9 ﬁ" r')

(4.9)
dend%rdaﬁ

(ar)*®

Furthermore, the "macroparticle coordinates" can be obtained

by the following relation:

n."n:fns'f 7‘4

Col '0»0'3) n
5 ° =E ,~nz‘&f -kr,

3 (~iBe) 3 Cik) 3 (i§) 2 (nf* (4.10)

For the special case , H( &) = aEz, one obtains
a0)? -1¢)?
Jcc,;,qu,;):a.[(pﬁbaf)-r({? )
+(r+EP)+(nn-%5) (4.11)
- (ram)’- (5-1)%]

a?’

N L AP e WA W e e - W
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— e e o s

Substituting (4.11) into (4.6) and using (4.8b), we .can derive i
the defining equation for S as:

P e 3 ﬁﬂ_._;_+a; (ke ,§ . Re 1y =0
20434 $°1S (ka2 #e 5, 3)

on
i The characteristic trajectory equations corresponding to equa- 3
: tion (4.12) are §
i
df fe d % £n
H - , ——— - -~
5’ 3 %, t3 %
i (4.13)
; Aﬁﬁl ol fer.
! 2 = 0 s . = 0

o
an~

43

Equation (4.12) can be described as the slow quasiparticle

distribution function in a two-dimensional phase space spanned

by ke » k3> § » r, . “long the trajectories, the S function
- -~ ~ ~
obeys

S (& ,f ,%rn,m,3)= S (ﬁ.,ffc'), g,,,g(o))o) v

- §Eagics)d3’
e - (4.14)

e

which is essentially the same expression as described in the

2-point correlation case except that 6-fold spatial directions i
are involved. For simplicity, we shall consider only the two
dimensional case which can be extended to the 6~dimensional

BAKPAT x0T

Y

=
O o Rt
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case without great difficulty.

For incident wave at z = 0 of the form

-% (oLt idts) 2t

LP(X,O): e

the four point correlation function can be calculated as

! ! * ,
M, (z,%,%,%5,0) = { )P )P H Y izH)>
12 !
- 'é"’lr (x*+ x/ %+ %'+ %) ‘fi"‘i (z'z_'_xzz_x’ -X2 2)

e

1,2 2 N R (4.15)
-z o (4R 7'+ z £ +05°) - Lo (i1 FRY)

e

Using (4.8b), one obtains

2 2
i "é'drf

I
5 (&ﬁ,f' &"nr) 'O) = OL'- e ) 3
(Rt %:8)°_ (R tils) (4.16)
6?- Folr 2y

where kg and ky, are normalized by kg . Substituting (4.16)
into (4.14) and appling the trajectory equations defined by
(4.13), we get

i
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S (%3,9; ﬁn,rz, 3) = ";[TI;' 2axp ["Jz'dr (Y'z'&".s)z

— ddr (£-Re3)

2
- [ﬁn‘fo‘LU"&ng}J
Foly (4.17)
[&ri+ote(r- &e3)]°
2

—a (93 - Raf3’+5 g;;S)]

The fourth moment defined by (4i5) can be derived by substitu-~
ting (4.17) into (4.8b). For example, let us consider a

special case when r, = f = r, = 0, then
1 2

T -‘A‘l%r,z"Bgﬂz
5('§g'0, &rl)o; é) =:[—; e

(4.18)

where

t(r (l-ot,:é)z

1 2
Az_j_"’(ré'r 2

B = geird + —(t-i3)r Fad’

Sdr
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\s.,
H
\ y
and .
T ~A ﬁ:-Bﬁ:fignR !
3 M4(R,O,O,°/é)= =< e dﬁnol&r, L
(Zn)z i
, o8
= h 1 e‘ Z‘B“ (4.19)
f' 4°LrJ AB

For the ionospheric propagation case described by Fig.l.l,
the S function obtained in equation (4.17) will be used to ob-

o MRS O PR

tain the distribution function at the bottom of the random slab

at z = z;. The quasiparticles will redistribute while propaga-

ting in free space and obey the following equation:

2 2 3 ] o
{ag * & 37 + r, Y }S(ap,f,ﬁ,,r,,g)

(4.20)

The trajectory equations becomes ;
(3= P(3)+ Ra(3:731) |

(4.21) i
Y, (3= V2 (3)+ Ry (3:731)

where zZ4

is the location of the receiver on the ground.
notes that

One
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A PR

| S (ka,8(32, R0, % (3),3:) = S (8,80, 80,130, 3)

(4.22)

using (4.17), (4.22) and (4.21), one obtains
] S (ke,£(32), #n, ¥a(32), 33)
‘ 2 ) 2
= L o [ (o3 - o[- Red]
[Re+ ki (P~ 5352)]2 o

8 olr \
[ &y + oli (ra-Re32)]" (4.23)
- 2y
— a[(f-Rea3)3, " (9-#ea3) Re3,’

t 5 #3271}

where 4z = z, - 2, is the distance from the bottom of the slab
to the ground. For the special case f = r, = r; = 0 the S func-
tion can be calculated from (4.23) as:

S (ke, 0. &r, 0, 32) .
2
= .g-ruf {(—-;’-o{rﬁr,z" %dr'ﬁkz) 332 - 8:%!; (1-‘**.33)

- %a{: (1 ‘*i;:)z" a"&ﬂz (3:251-52511

(4.24)

PR

L
MO SN A T !.mj
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and

ifeR
M, (R,0.0,0,3,) = JS (ke,0, R, ,0,3,)€ d Redhy,

R2 (2r)
1 1 T 4B (4.25)
a4 | A8 C
where
2
A = -12-d,§,‘+ ?ia: (1-e:32)
B = %o‘ré:*l- -éél_ (1-01,;3;)24-&(3.5:1‘ 3,82 (4.26)
t53°)

One thus concludes that if the 4-point statistics of the wave
field is given at z = 0, the corresponding 4th order statistics
at the ground can be obtained from the z evolution of the qua-
siparticle distribution function from equation (4.14) and (4.22),

III. Approximate Solution for 4th Moment

The defining equation for the 4th moment can be rewritten

as \\
).

2% (%% %) A et rH -E0] [ M,

- - %-_’ [Her e g9 tH(r-$8)=H P = AR (4 20)

R
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Inserting (4.8b) in (4.27), one obtains
. z
- Re L L)+ H(G-4 }
R W R Rl 3 GL LI RAT RS

% ~4 (R R+ ke 1)
= - .ZE-JIEJ-(YZ,Yi,t) P’tq e

& dfdﬁ

(4.28)

where

Jrn.p)= Hog+52)+H-1p) - H(G+%3)

- H (5~
since

- ik-$
H(g)= zltj'é(f)[i—e ]d'%

(4.29)

one derives from (4.28) after some manipulation

or. - cos ®$
J'(n,n,s’)=4jéfé>[°‘@ n-esZi]
et g

and

- i (Re-
Jremm oM, e TFT T " gear
= &.‘j@tébfcos s -
K-k, 1,3) 4

(4.31)

S Q
iy
[ 8\
—
(7))
b3
:l
0
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From (4.28) and (4.31) we readily derive the integral
equation for S as:

o £ . ﬁi.v
{a_é"r &o v!'+ &O :‘

1D+ HG4LS

=- 47 @(g’)[wg'-g—w%£J5(*n g, & Ar,

v (4.32)

%,3) d&’

Equation (4.32) contains an extinction term H(r + L f)+H(r -/P)

which will reduce the quasiparticle distribution functlon whlle

redistributing it in kR R f ,kr. ’ rz space. The "scattering

term" on the right hand s:.de of the equatlon describes the con-
tribution to the total S function at the "momentum coordinates"
k,l R k‘-, from a "momentum coordinates” kg , k' - k,-' . The
compllcated form of equation (4.32) makes it lmposs:Lble to ob-
tain a solution in analytical form. We shall consider first
the simplest case of a plane wave, for which obviously Va Mg =0.
V, M4 can also eliminated from the equation, ( ? is only' a
parameter) by setting it to zero because in this case, f = 0,

the points f, » 9, ’ ?, R f‘ lie in the plane 2z at the vertices
of a parallelgram centered at the point R and with 51des? f: =

?a.' _?;__ rz, 9‘ -Z! -Zz_ L. Therefore equation (4. 27)
takes the form

. &oz )
{Eﬁg - —%;‘VE. c?: + -TZ_ }:(ﬁ 'gi;s)j'hqu =0

(4.33)

;
i
|
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where |

e

:‘:(ﬁ,rx,é)= 2H('::)+2H(E)-H(E+§)‘H(E—§') |

(4.34)
one notes from equation (4.5) that
| , j
! ! :
| n= g Len-f+ - 50]
f ! ;
Y',.—._l_[(si.-fz)—(&—[;)] (4.35) |

which suggests that r, and rz can be treated as "slow" and
"*fast" variables respectlvely. In this case, one encounters
the same degree of difficulty using either the "slow spectrum
S" or the "fast spectrum F" to solve equation (4.33). 1In
order to maintain the consistency, we shall adopt the "slow
spectrum procedure" as described previously.

Following the same steps as in (4.27)-(4.32), one obtains
the defining equation for S function for the plane wave case as!

2 Aov + A G ]S (Ren )

&:j@ () (1= cou 85 ]S (440,535

d &'

e

(4.36)

e p—— - v ———— ) —o
.- BTN e <a,

P L.
RPN
RS ST 427 S
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On the trajectory defined by
:rz = ir‘, dé?‘ = O
a
5 e J (4.37)

equation (4.36) becomes

2
dsj?'gm’ 2 ﬁ’ H(ra) S (#n,%03),3)

(4.38)

= J (&, n(3, 3)
® ~ «

where

T (ke , 1308, 3) = ‘&oj§ (&) [1 ~cos R Ecs)]
S(&y-k,n03),3)d4’

~ (4.39)

The solution of (4.38) has the form 3
2 DYEL
-3 .H (n(3)d3

S(kn, %5(3),3)= Sk, u(,0)Q

3 -
. 3 _ _*i:zj H(r:(3)d3
1, - , ' .
j e ’ J-(&"),Gté'):g ) d; (4497
0 L

‘ ‘
" , 1

i e ——
- e X e haia

I R

e ——
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Substituting (4.37) into (4.40), one obtains
4 b
S(&rlpnlé)— S(&V,,~ Té‘ o)”r [____

H(g--g“(é -3))43 +j “’FE" zojs'
H - 363043 T (he, p-Yp 650,30 45

0

(4.41)

Equation (4.41) together with the z = 0 boundary condition,
S(o, La kr ) = (kr,), gives the solution for the S func-
tion at distance z. The first approximate solution can be
obtained by substituting the z = 0 value of the S function
into equation (4.39), whence one obtains

T (ke n-52G-30.3) = K18 (he) =

[1-cos k(13- %(3-32}‘4'42’

and from equation (4.41)

&2
- 22HMW 3
Sthen 3= ke ° +

&,
3 H(rp- 3 (3- -3))d3
j e S < x #o D (hn)

(4.43)

(1-cos k(- 32 (3-30)] 43’




One notes that the Fourier transform of equation (4,43), which
gives the approximate solution of M4, is not a symmetric func-
tion of r, , rp . This violates the symmetry property of Mg,
Thereforg, it~is logical to consider the Fourier transforma-
tion with respect to Iy s i,e, via the fast spectrum procedure.

Let us define

~-ikn

F(n, %n,3)= Ma(3,%.B)€ ~ dn

One obtains a solution for F similar to that described in (4.43),
except for the interchange I;e» r, and kpeskr, - The approxi-
mate solution of Mg can then be written as

‘N

NS
M"(n’r"é):‘;’{fS(*""'”e dr *t |
Er y (4.45) z.
jF(""%m?)e* ’~‘¢m} ]

which maintains the symmetry character of Mg with respect to

ry, , r; . (cf. Tatarskii, 1)
~r -

IV. The Boundary Conditions and Steady State Solution for Plane
Wave Case

We note that when the pairs of point (f, , f,_ ) and (f, fz i
move an infinite distance apart. It is obv1ous that the flelds
corresponding to these pairs of points become statistically in-
dependent, thus one has

- i
R e TR T AT
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at In3|——> oo
L. 4

A A ¥ p A A g ,
My (5,1, 3) = LB (3,00 W (3.500PG.0)P 6,5 f

= M,(3,5) M, (3,n)

|
l ™M, (3,‘G)lz (4.46) j
f

similary, we have

at || — oo

| Ma(n,5,3) = le(S,Yi)lz

(4.47)

we now consider the properties of the function f(r, ,ry , 2z) in
-~ A

equation (4.34). One observes that f(r, ,r, z) is positive
everywhere except at ry = 0 or r, = 0, f(r, , rz) = 0, We
L L4 A~

therefore consider the term k.z/z flry +La .,2) as a decaying
term which tends to make the function M4 decay, while the 2nd
term in equation (4.33) is a diffraction term which will diff-
use the value of M4 among the transverse coordinates. With

the diffraction term only, equation (4.33) can be written as

oM,y _ A_@____?_. M, =0 (4.48)

|
.
)
!
¢
b
!
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the solution of (4.48) can be written as

A._.A_______,..___,,.__.__“

. —i (n-r)r-1z)
My (r%.3)= —— |M, (v 5,00 ¢
~ ~ (2n;3) ~ o~ (4.49)
dv'dn’

e

Thus at z>0 the value of M4 will be redistributed as descri-
ed by the above equation,

One also observes that due to the decay term, Mg will

decay to zero when =z >> 1 for all ry and r, except near

r, =0, ry = 0., However, because of the diffraction term the {
value of Mg near r, = 0 or ry= 0 will be redistributed to all
other points (r, » L3 ) where f(r. » 2 ) = 0. Therefore one

observes that M4 w111 decay to zero for large distance z unless
|
M4 is of the form (cf. Lee and Jokipii, 68,69.) |

M,,,(r.,rz,s)-—-m,(3,§)+‘mz(s,§)+m3(g) '

(4.50)

For this range the diffraction term is zero and M4 will reach a

asymptotic solution. In order to satisfy the boundary condi- _
tions in equation (4.47), we must have ‘E

g at |r.|-—.oo

|MZ(G,S)]Z-‘-'M,(S,w)+?nz(5,rz)+m3(3) .

(4.51)
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therefore

2
M, = M, (3, + | My (3] - M (5 es)
- M3 (3 + m; (3)

(4.52)
2
=m,(3.v)+ | M, (3.0 =i (3,
at ! r;l — OO
M, = | Ms (3,1 = (3.0 + 72 (5,20
+ M3 (3) (4.53)

therefore

2
m, (3.0) = | Ma (310 = M2 (3,2 =M3(3)

m, (3,0 = | My (3,2 = M3 (3,00~ M3 (3)

(4.54)
Substituting (4.54) into (4.52), one obtains
2 2
M, (3>>1) = ™M, (3.%)] +fM2 (3,%)]
2 (4.55)
~| M, (25.¢’>)’
. K Lol -

pr—

T T
I ART, 0 gL VY97 SN,



For the plane wave case, we obtain the following expression

‘; - R -%[Hos)3 ()
M, (37,50 = @ re

(4.56)

- £34 () ;

c

] After the wave leaves the random slab with thickness z4 and

propagates in the free space region, we have the differential
equation:

9|V14 - = ‘7%’ ‘z- P“L* =0 [.
33 ke -~

(4.57)

the boundary conditions for M4 are given by equations (4.46). |
However, Mj appearing in equation (4.46) now takes the form g

- 23 (A0 - Aw]

Mz(sir) = MZ (3|)r) e

(4.58)

since in free space My(z,r) is unchanged.

The solution of (4.57) can be written immediately in 3
terms of the value of Myg(z, ry , ry ) 'y

1
-~
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2 ’
M4(‘f',’r3’§)= (-%)JMAt(ﬁ" 5,3) x
_;%z(‘i-ﬁ')“@’ti')

- dn'dr

L4 ~r

! (4.59)

for z>0 , the value of M4 is redistributed among the trans- f
verse coordinates until it reaches a steady state, if such :
exists. One finds that at steady state, M4 obeys H

2 2 |
M4 =|Mz(31,5)|+,M2(5,,?})) t
- | ™M, (3.,00)12 (4.60) |

V. Numerical Solution for Mg in Plane Wave Case

The general solution of My is too complicated for compu-
tation. In order to simplify the problem and still keep the
amin features of the solution, we shall take the four points
$i»5:, £'» §' on the z = constant plane along a straight line
such that rT and r, 1in equation (4.33) become scalar. Intro- ]
ducing the~aimenszanless variables

3

-ha A0 LLA " o0 i 52 G5
e i e e o A0S e S
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-

where L is a parameter related to the scale size of the irre-
gularities. When written in terms of these variables, eq.(4.33)

t

becomes ;

R S MICES DAL

33 oM 9Ny (4.62)

where

£

=1

R R = (%) -A(hith)
)= A(o)[zA(r.)HA )-A ,

(4.63)

—A(v‘;-féi[

2 . . . .
one observes that 9y = % kE,Q A(0) is a dimensionless quantity.
For convenience, we shall drop all the "bars" and rewrite (4.62) ¥

i

as

3 _; 9 9 , rv,3)=0 ,
{35 Larn o ’Y.JC(Y'YE)}M‘}( ‘5(2.64) '

It T

Since M4 is a complex field, it is convenient to divide it into ;

real and imaginary components by writing M4 = MR 1'1ML . One

e

obtains two coupled partially differential equations

g .. 3
g . e A
TR N

R T T TS, T
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s

.
HEPIOP PP W N

aM;’.—. 2_ 9 MR—‘Y'QCM,; (4.65) )

To obtain a unique solution of eq. (4.65), one must specify the

boundary condition at z = 0 and the boundary conditions given
by equation (4.46), (4.47). 1In practice, we cannot apply the
boundary conditions at ry , r; — ©© because this would re- 3
quire an infinite number of mesh points. One can simply trun- L

cate at appropriately large values of ry , r, . The numerical
scheme used will be presented in Appendix (vI). E

The solution of eq. (4.65) is dependent on the choice of
power spectrum f (k). A simple and very commonly used form is
the Gaussian

ﬁz &2

<£? T gz x

diy=535e M oge b
8 (4.66)

then ) _ &zgz
A=A = 2B [1- 4 J
(4.67)
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and

-' ~2
A(o)z 2J7T ‘%2 <ETD (4.68)

however, in situ measurements indicate a more realistic form
is given by the modified power law spectrum defined through

&2

e
3; -3 P :
T[/r’('l’z) (1 T; 4 . (4.69)
Lo

with kp,<< Kn. This spectrum is flat for k< kr, » is a
power law with index -p for klb<k'< kpm » and is exponenti-

cally decay for kX>km. Lo = 1l/kr, is the outer scale and 1,=
1/ky is the inner scale of the irregularities. In the iono-

sphere case, usually 2<p<4 and p = 11/3 corresponds to the
modified Kolmogorov spectrum (Von-Karmann Spectrum).

For the Kolmogorov spectrum, the power spectrum can be

written as

@ (&) = 0-033 C,th,'s (1+4°L2) /e

(4.70)

with

= 198> L]

v, m i SIMAN ,’;
o s b ?, ‘\'E."b ol
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if L,>>1o one obtains

H(s) = A(o)— A(p)

*%
0-395 <€3> L, [1 _%j; K (9 )
2700 I

e

A(o) ¥ 0-395<€2> L,
(4.72)

where K;z denotes a modified Bessel function of the second
kind.

If we choose,Le = 1 = 300m, and {E>>= (%L)Q(.'i,‘;)’):”(-%ﬁo,i),
the value of F: &3]_3(&”) ranges from about 8.5 for f/fp = 100
to sbout 86.5 for f/fp = 10. The value of "" in eq. (4.65) is
equal to 0.0987 P for the Von Karmann spectrum, 0.16 B for the
power law spectrum with p = 4, and 0.2821 P for the Gaussian
spectrum.

We shall adopt the power spectrum given by equation (4.69)
with p = 4 and present a numerical solution for the fourth mo-
ment. The value of U= %K:!.’A(O) has been chosen to be 3.5.
Fig.41 depicts the normalized function f(r, , rp ), defined by
equation (4.63), as a function of r, , rg . One recalls that
£(r, ,r, ) represents a decaying factor which is positive every-
where and equal to zero when r, and/or r, = 0. The initial

" field M4(r, , ry ,0)=1 is not shown in the figures. The evolu-

tion of the 4th moment at z = 00,1125, 0.1725 and 0.24 is shown
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in Fig.42 - Fig.44. One observes that the field decays every-
wvhere except near the neighborhood of ry and/or rpa= 0. The
redistribution phenomena, caused by the 2nd term (diffraction
term) in equation (4.64), forces the points near r4 and/or

ry = 0 "move" to the decaying region. Therefore, if the evo-
lution continuous to a large distance, the final field will
tend to reach a steady state as shown by equation (4,55).
However, we are not interested very large distance propaga-
tion in this paper. The extend of the normalized in random
slab will be choosen such that L = 0.24 and take the solution
will be evoluated at z = z', whence the wave will continue to
propdgate from the bottom of the slab to the ground. Fig.45
48 depict the free space propagation at z = 0.4275, 0.6525,
0.8775 and 1.1025. The diffraction effect, resulting from
the interference of the distorted wave front, tends to focus
and defocus the field. This focusing and defocusing phenome-
na will only occur for strong turbulence case, which will be

shown clearer in next chapter.

VI. Discussion and Conclusion

The 4 point slow quasiparticle distribution function,
defined as the 6 dimensional Fourier transform of the 4 point
correlation function w.r.t. the slow coordinates R and g, is
used to obtain the 4 point wave statistice. Pictures of the
slow g.p. flow are essentially the same as those in the 2
point correlation case except we are now dealing with a four
dimensional phase space kg , R, Ky, » r, « An individual slow
qd.p. moves along the trajectory defined by eg. (4.13) with
"momentum” kg in the P direction and ky; in the r; direc-
tion. The structure function is, in general, dependent not
noly on the "coordinates"” f and r; but also dependent on the

AR L WX .




- 129 -

2= 4.27300E-01 GANMA= 0.0 : )
4
s
} 4.08 ¥
2.59 — V?
; 1
R2 S — :
1.88 L —_— :
s
" - b
0.8
.25 L -
! 7 —
| yA
7 ya I 4
| £ =
| 6.25e-01 |- A -
. y S
- £
E 1 L.
;7 y S
, Y e—
: 8.0 I 1 -
-4.08 -2.00 8.9 2.68 4.080
RS -
Fig. 45, Mg ( ry, rz2,z) vs. ry and r; at a distance
2z = 0,4275 from the kotium of the slaby L = 0.24,

¥ |
2= 6.52500E-@1 GANMA= 0.0 §
4.00 j
2.50 -
3
R2
: 1.88 »
|
8.8
1.2 ' |-
AE——— !
1
‘' ‘.255‘01 b Il:i' - |
a |
y AR
I 4
4 ;
8.0 o 1 ——— T !
) -4.00 ~2.00 9.6 2.00 4.00 i
Re g
Fig. 46, Mg vs. ry and r; at a distance z = 0.6525
from the bottom of the slab.,




- 130 -
2= 8.77300E-01 GAMMA= 0.0 3
400
2.50 - \
e
[ — ;
. ———— s’ aareaarma—
_ R2 f— |
1088 p : ¥
n .. .;
8.0
1.2 | ?
6.25€-01 |- # |
[I
=
[ ? -
-4.90 -2.00 0.0 2 ee 4.09
R : -~ c
Fig., 47. Mg vs. ry and r, at z = 0.8775 from the
bottom of the slab.

) 4
2= 1.10239 GAMMA= 8.0 z . |
i
|
|
© 4.00 ,
2.350 - \ .
o e d 3
R2 s i
1.88 - mm—
s
" )
0.0
1.25 - g
’ !
6.25€-01 | ——_’ |‘.
_d :
[— :
fe ¢
——— I_____/ 1 — T :
-4.08 -2.00 Q!O.B 2.60 4.00

'Fig. 48, My vs, ry; and r, at a distance z = 1.1025
from the bottom of the slab.

| t




SR e

- 131 -

"coordinate” r; associate with the "momentum" ky, . For the
special case, H(&) = a Ez, one finds that the structure func-
tion is dependent only on § , and of the form f(ry , r, , §) =

afﬂ

Knowledge of the S function will provide all of the 4
point field statistics. For example, the second moment of the
field intensity can be obtained as follows:

(3> = Ma(0.0,0,0.3) = | S (4,0, %00, 3)4(&:;&r
' (4.73)

Therefore, the second moment of the intensity can be viewed as
the total number of slow q.p.'s located at R = r, = r, = § = 0.

The 2 point correlation function of the intensity at R
= 0 can be obtained as follows:

(i(x.)i(x.)): M, (0,0.%,0.3)

< ke,
= S(ﬁﬂ,oiﬁn,o'é) e
(4.74)

d ke d ke,
(2m)*

One notes that when f = r, =R = 0, then ri= x1- X2 X3- X'

xl' - xzn

The Scintillation Index S4, defined as the normalized

i i i s i o ?,mﬂ
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variance of intensity, i.e. Sg4 =(£z>‘<£)zAf)z, can then be
obtained from the S function using eqs. (4.73) and (4.74). As
an illustration, we shall calculate the 1lst and 2nd moments of
intensity and the associated S4 for the case H(E ) = a Ez, using |
the S function. Fig. 49 and 50 depict(f),(f{)and the corres- t
ponding S4 for a collimated beam propagating in a random medium 3
characterized by H( () = at®with a = 1 and a = 5 respectively. 4
(In the following figures, curve 1 stands for <i>, curve 2 for 3
<f’> and curve 3 for S4.) One observes that both ¢1> and (ff)
decrease as z increases, while the scintillation index increa-
ses monotonically with z. The case of a focused beam propagat-

ing in a random medium is represented in Figs. 51, 52 with de= [f
di= 1, a = 1 and 5 respectively. Focusing and defocusing ’f
effects in (f)and'<f$are clearly revealed in these figures.

The scintillation index is greater in the case of collimated

beams in the range z< 2, approximately; for z 22, focused beams 1§
display a smaller scintillation index than the collimated beams. | 4
One thus concludes that for short distance propagation, a colli-
mated beam is to be perferred while a focused beam is perfer-
able for long distance wave propagation in a random medium.

In ionospheric propagation, we are interested in finding
the received signal intensity and its associated S4 at ground
level. A deterministic wave signal is randomly modified by the
ionosphere and when the resulting modulated wave front enters
the free space, between a random ionospheric slab and the gr-
ound, diffraction modifies the wave statistics. 1In order to
show this effect we present results for (?Z) » £ iz> and Sg.
Figs. 53 and 54 depict the case oy = 1, a =5 with the thick-
ness of the random slab being L = 0.25 for collimated beams
and focused beams respectively, One observes that the focused

Ay

beam displays saturation at z = 0.75, where z measures the dis-
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tance from the bottom of the random slab to the receiver. For
z smaller than approximately 1.8, the collimated beam yields a
greater S4 than the focused beam. However, as z 1.75 the fo-
cused beam displays a smaller S4. Figs. 55 and 56 for a = 10
display the same effects. One obtains a higher scintillation
index and observes a saturation at z = 0.75 for the focused
beam case. It is of interest to plot Sq vs. z for different
turbulent levels in the ionospheric slab. Figs. 57 and 58 de-
pict 34 vs z for a = 2 to 16, in steps of 2, for the collimated
beam and the focused beam, respectively. One observes that,

for the focused beam, S, always saturates at z 4 0.75. At z ¥

1.75 the focused beam start to display a higher scintillation
index than the collimated beam.

When the slab thickness increases to 0.5, the random wave
fields emerging from the bottom of the ionosphere are increas-
ingly more turbulent. The corresponding S4 in this case is high-
er than for the case L = 0.25. Figs. 59-62 depict .{f) ,(f{)
and Sq vs., z for a = 5 and 10 respectively ; one observes that

the focused beam saturates at z ¥ 0.6 approximately. The focu-
sed beam has a smaller S4 than the collimated beam in the range
z greater than 1.5. The influence of the turbulent strength a
on the scintillation index is shown in Fig. 63 and Fig. 64 for
a collimated beam and a focused beam , respectively. The value
of a ranges from 2 to 16 in steps of 2; one notes that at z z

0.6 the scintillation index of a focused beam saturates for all

values of a. At a distance z ¥ 1.5 the focused beam starts
to have a smaller S4 for all values of a.

The wave front of the wave emerging from the bottom of
the random slab is greatly dependent on slab thickness. As a
comparison, we present calculations of Sg4 vs. z for different
values of thickness ranging from L = 0,125 to 1 with increments
of 0.125 as depicted in Fig. 65 and Fig. 66. One observes that
for the focused beam case the saturation distance decreases as

B o
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L increases. The distance at which the focused beam displays

a greater S4 than the collimated beam decreases as L increases.

The approximate solution for the 4th moment M4 is pre-
sented in Section III. 1In (4.43), we have replaced the true
slow q.p. distribution function S( z, Ly K- K') on the

; right in (4.41) by the initial unattenuated q.p. distribution
function S( O, Ly kﬁ- k'). It is expected that the solution
so obtained will give an exaggerated result for the intensity
fluctuation. To illustrate this fact, we shall calculate the
scintillation index for the plane wave case and compare it

with the exact solution obtained numerically. The random slab ]
will be characterized by a power law spectrum with p = 4. Fig. i
67 depicts the scintillation index calculated from the approxi- A
mate solution (4.43) for the cases L = 0.06, 0.12, 0.24. The E
general behavior of scintillation index agrees with its well i-

known feature. Fig. 68 shows the comparison of the approxima-
te solution (solid line) with the exact solution (dash 1line).

As expected, one observes an overestimated intensity fluctua- 5
tion in the approximate solution,

I
Boundary conditions and the steady state solution are ‘ l
discussed in Section 4. We have applied these boundary con-

ditions in the numerical evaluation of the 4th moment as pre-
sented in Section 5., The general solution of S4 is too compli-

cated for computation. In section 5, we computed the solution

of Mgq for a special case wherein the 4 points x; , X4°', X, , X,'
lie along a straight line on the z = constant plane. The nu- ,
merical evaluation of M4, for a plane wave propagating thru i
a random slab with L = 0.24 and characterized by a power law

spectrum with p = 4, is presented in Section 5 for z = 0,4275,
0.6525, 0.8775 and 1,1025(Fig. 45-48)., One observes that as
the field evolution is continuous by extrapolated to a large
distance, the final field will tend to reach a steady state as
shown by eq. (4.55).
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Chapter 5 THE INTENSITY FLUCTUATION AND SCINTILLATION
INDEX

I. Definition of Intensity Correlation Function and Scinti-

llation Index

If the new variables (4~5) are introduces, the function

Mg(ry » Lo z) is expressed in terms of the wave fields by

the formula (for g =0 )
Ma (5, %,3) = (b (rs 122 3)4’02-”” 3)
PR+ IE 3)‘{’ (-3 3)>

(5.1)

'
where in this case, Y',-?, 7,-?1 "?z R Y' ? f, f,-fz
The 2nd moment 1nten31ty functlon is deflned by

LI, 9,)]:(5 %) > = (tP(S 5’.)9’(5 S’.)lP(é fz)tP %3 5D

(5.2)

' /
which is identical to the fourth moment M4 when 9, =%, f;‘ ?z '
~ b d ~r A

or Y = 0,
~

One also recalls that

A S
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&

My (3% 8) = <P 3, x40 13 x-40)>

(5.3)

M, (3,%,00 = <TI(3 2>

(5.4)

’
where §=_L;’L—, §= &"i'

correlation function as

One defines an intensity

Br (3.5.8) =< I3.0I13.50> - (T (3.5)><2(,9D

(5.5)

4

1

and one observes from equations (4.5) that r, =0, f=R+-2

?zs R- L » and X = R, Therefore
A -~ 2 ~ -~

’

]

pn

: A
By (3.7..6)=<T(3,R+=)I (3,R-2)>
A 1 4 -5
-<I(3/R+x)>CI(3. R 5)>

= M, (3,%,0)- M (3.R+Z 0)M; (3,8-L o)

.
T e e e g e e
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For the plane wave case, one takes into account that M2 is
independent of the slow coordinate and write

Bz (3.5,.5)= M, (3.7,0) =~ M (3,0,0)

A2
Mg (3,%,00 - <ID

(5.7)

Thus, My4(z, fy» 0) enables one to determine the correlation
function B1(z, ?,f.) = B(z, r,).

~ ~/ ~
The scintillation index S4 is defined as

S, = {(I-<I)D _ My(3,00)- (T)?
* (IS? (I (5.8)

which plays an important role in the scintillation problem
and is used as a measure of fluctuation level. For the case
H(E) = a Ez, one obtains from (5.8) and (4.25)

RY
M, (R,0.0,0,3:) = 4= |Gz € 8
zl

1 " Zp
€

My (%,0,3;) =

(5.9)

2 ﬁrD
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where

2
A= o3+ op (1-eli3s)

3
"

2 3
L3t (1-id) 4 a (33535
3 8 elr (5.10)

2 1 ) 2 2 2 5’5
D= 4o, 3+ o (1-kd)ta (3.8:-3:3+5

y

the scintillation index can be calculate from (5.8) as
5, = I - <3
{I>F
M, (0,0.0,0,3,) - Mzz(D,O,sz) (-11)
M (0. 0. 3.)
p* I
AB

]

II. Numerical Solution of Scintillation Index for Arbitrary
Power Spectrum

In our computation, we shall first choose a Gaussian
power spectrum. The corresponding correlation function is
also Gaussian. The main reason for choosing such a spectrum
is to check with the results obtained from the thin phase
screen approximation (4 ), For the Gaussian spectrum, the
E(ri ,rz) in equation (4.63) is given by
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v
= - 2
fromy=2-2[€ *+ e
(r;+ ) - vi-13)°

L s z 2J(5.12)
2e —le

Using (5.12) in the numerical calculation to obtain the scin-

tillation index, we shall present some computational results,
Fig.69 depicts the behavior of the scintillation index as a
function of z (from the bottom of slab to the receiver) for
the case %"= 10, Curves 1,2,3 correspond to slab thickness
L = 0.0§ 0.12, 0.24 respectively. For L = 0.06, corresponds
to a thin phase screen, we observe that S4 increases monoto-
nically with z, and finally reaches a constant value. The
results agree very well with the thin phase screen theory.
As L increases, corresponding to a thick random slab, the
scintillation index grows. One notes that a focusing pheno-
menon occurs when L = 0.24, the scintillation index reaches
a maximum before it settles to some saturation level.

It has been indicated that, in the thin phase screen th-
eory, focusing occurs only in the strong turbulence case(rms
phase fluctuation %z= 7L in our case). Qur results shows the
same behavior and should be better, since we take into ac-
count the thickness of the slab.

Scintillation index curves as a function of z for the
case L = 0,06 with different values of %r , equal to 5, 10,
30 are shown in Fig.70. The curve on the top indicates that
a focusing behavior appears for strong turbulence case even
though the random slab is very thin.




GAUSSIAN SPECTRUNM
GRiMA=10

- 150 -

e e g

© - —

1.20 —

(3)

9.080E-01

S4

6.00E-01

2.00E-61

8.8 == ! i ! !
0.0 3.60E-01  6.00E-01 9. @0E-81 1.20

2 . .
Fig. 69. S4 vs. z; Gaussian spectrum with % = 10;
(1) L = 0,065 (2) L = 0,12; (3) L = 0.24.

mnusaian Spaztrum
LoD 08 .

S

(3)

9.000-01 |

&4

3 Qve-01 |

0.9 - ’ 1 1 1 ]

2.9 3.00e01 6.00a-1 9.00a~01 1 &
]

Fig. 70. S4‘vs. z3 Gaussian spectrum, L = 0.063
(1) Y = 53 (2) ¥ =10; (3)7 = 30,

- N

.
Ve SO




T

The following types of power spectrum will also be con-

sidered

(a) Power law spectrum with power index p = 4

é“’*ﬂ T2y ¢ & L.
A (14 &L3)* (5.13)

(b) Von-Karmann spectrum p = 11/3

B (k) = LLDLE> L,

% T4 (1+ kAL (5.14)

{(c) Von-Karmann spectrum with a Gaussian bump
B (k) = C($)<E>L 1
3 1
4 % V(%) (1+ ‘&:Loz)y" (5.15)

-_L&)-?_ﬁi}

tae

the calculated function ;(r, » Iz) for cases (a)and lb) are shown
in Figs.71 and 72. Figs.73, 74 depict the function ;kri »T g )
of case (c) for Kk = 2, Kz= 0.5, a = 0.5 and % = 3, K": 0.5,

a = 0.5 respectively. The scintillation index vs. z for case
(a) is displayed by the dashed curve in Fig.75 for = lthE :
the higher curve corresponds to L = 0,24 and the lower curve
to L = 0.06. As a comparison, we also show the corresponding
values for the Gaussian power spectrum which are displayed by

solid curve in Fig.75. One notes that the scintillation index

associated with the power law spectrum is larger immediately

O T | SRE
hoadl g —
. PN RIS - Sl -
>
P4 .t TR T
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below the slabe and become smaller at large distance. Fig. 76

shows the scintillation index vs. for case (b) with L = 0,12

4 and ¢ = 5 (lower curve), ¢ = 15 (higher curve). The distinc-
tion between strong and weak turbulence is obviously related
by the focusing phenomenon. The Von-Karmann spectrum with an
addition Gaussian bump greatly changes the behavior of scin-

] tillation index and is shown in Fig.77. Curve 1 depicts the

case K = 3,o= 5, L = 0.12 and curve 2 displays the case k = 2,

9 =5, L = 0,12, One concludes that the location of the Gau-

ssian bump has a significant effect on the scintillation index.

The focusing behavior occurs more than once in both curves,

which indicates the additive bump increases the distortion of
the wavefront emerging from the bottom of the slab. Fig.78

cogpares the different behavior of the scintillation index
for the case (b) and case (c) and for the parameters ¢ = 15,

{
% = 2, L = 0,12. Focusing occurs in both curves. At Fg-seeo ,
spectrum (c) has a larger S4 than spectrum (b). Fig.79 de- |
picts the behavior of S4 for case (c) with X = 2 and r= 5, 15 '
respectively. One notes that even for 9= 5, the scintilla- |
tion index vs. z shows a focusing phenomenon which is not 13
observed in case (b) with "= 5. This apparently indicatesw y
that the additive Gaussian bump causes a strong scattering i
effect. In order to show the effect of the power index P, we |
observe, for the case L = 0,24, k: L?<{$= 35,44, the scintilla-
tion index vs., z for p = 4 and p = 11/3 as displayed in Fig. 80,
the solid line being for p = 4 and the dash line for p = 11/3.
One finds that the scintillation index vs. z has the same cha-

racter in both cases but increases with the larger power index.
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III. Application and Discussions

A power spectrum, obtained from the Atmospheric Explorer
- E (AE-E) satellite in situ measurements (70), is used to
calculate the corresponding S4 for the night time equatorial
scintillation. The variance of N/N is estimated to be 0,207,
We have normalized the power spectrum such that the integral
of the fluctuation power_fé(k) dk over the observed frequency
range is equal to ((ﬁ?ﬁ)2>u For computational purposes, we
assume a flat spectrum for irregularity wavelength greater
than 5 km and truncate the high frequency tail for irregularity
scales smaller than 0.4 km. The resulting power spectrum is
depicted in Fig. 8l. In order to compare the theoretical model
with the experimental results, we have chosen an incident wave
frequency 137 MHz, £

go = 9 MHz and 1 = 600 m such that the
parameter 9= 1/4 Ko

12A(0) in equation (4.65) is equal to
52.73. The propagation distance z is normalized to ~1o3 km ;

i.e. measures distance in 103 xm .

Radar observations suggest that the ionosphere can be
replaced by a random slab with an effective thickness ~200 km,
The distance from the bottom of the random slab to the ground
is taken to be about 300 km. Applying these parameters to the
defining equation for the fourth moment and using the numerical
scheme described in Appendix 6, one obtains a plot of the scin-
tillation index vs. z as shown in Fig. 82. A scintillation
index as high as 0.35 is predicted at the bottom of the random
slab, As the wave leaves the random slab and propagates in
free space, diffraction phenomena develop. The scintillation

index increases, passing through a maximum value at a distance
~250 km from the bottom of the slab, and then saturates, At
ground ( z = 300 km from the bottom of the slab), one obtains
a scintillation index of 1,14, which corresponds to a peak to
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peak fluctuations of approximately 32 dB.

Experimental results obtained by S. Basu et al. indicate
a scintillation index of 0.6 at 137 MHz, which is lower than
our analytical results. For a density fluctuation of 20% in

e

the equatorial region, the experimental value, S4 = 0.6, seems
a little lower than expected. In private communication from K
Dr. Basu, he has informed us that his experimental result may
be too low because of instrument saturation.

R TN

Possible explanations of this discrepancy might be:

i o L At

(1) The dynamic range of VHF receivers are limited to about
16 dB - 25 dB. A scintillation index as high as 1.14,
corresponding to peak to peak fluctuations of 32 dB, is
beyond the capacity of such receivers.

(2) The in situ power spectrum was obtained at an altitude of @
250 km. By extrapolation to magnetic field conditions at ’
the scintillation measurement site, Basu et al. suggest
an ionospheric structure ~200 km in extent about 300 km
above the earth. The accuracy of this model assumption

is not evident.

(3) In our theoretical work, we have assumed a flat spectrum ]
for Ag >.5 km and have truncated the tail of the power
spectrum for Ag< 0.4 km. This assumed power spectrum is
also a possible source for -he above discrepancy.

(4) From the investigation in section II, one concludes that
S4 increases as the thickness of the random slab increases.
In the numerical evaluation, we have assumed the thickness
of the random slab to be ~200 km which may be larger than é

S ARy &8 Al
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the real effective thickness of the ionospheric slab.

In spite of the above discrepancy, one notes that the
numerical results for the case of a Gaussian power spectrum
are in good agreement with the results obtained by Mercier
(4). For the case that L = 0.06 which corresponds to the
thin phase screen case, one obtains a saturated S4 which
agrees with the value, Sgq = 1 - exp(-2 Q:W, obtained by Mer-
cier (4)., Our numerical scheme provides better agreement
with thin phase screen theory than the scheme proposed by
Liu et al. (60). Therefore, the proposed propagation model
and numerical scheme should also provide satisfactory results
for the case of an arbitrary power spectrum, The only real
difficulties are proper location of the random slab and es-~
timation of its effective thickness.

For further study, we shall apply the theory and numeri-
cal scheme presented herein to the multiple frequency, multi-
dimensional, inhomogeneous, etc. cases. Consideration of an
anisotropic power spectrum and of regime represent nonlinear

effects in the strong scattering areas for future investiga-

tion and may provide further insights for the theory of iono-
spheric scintillations.
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APPENDIX 1

A
Solution of ( Lg- V)f=0 wvhere Lo is the an unperturbed
operator and V is a random perturbation operator with < vV > =0.

To solve this equation, it is convenient to define a stochastic
Green's function:

(Lo-V)G=1

(A1.1)

For example, in r, t space
A0 a ' [ A ! ) | t
Gf —— | Fr.t,r,t) Farthdridt

1 —— $(r-x) §(2-1")

A
For uniqueness, the domain of G will be defined by the require-
ments:

g(r.t,'r".t')z o] for t <t

It is convenient to introduce the coherent unperturbed operator,
G, » defined by

L. G, = ‘iv (a1.2)

P
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The perturbation operator in equation (Al.l) can then be treat-
ed as the scattering part of the propagation.

. s t ot
By equation (Al.l), we have adjoint operators, L, , V , )

A .
G* , which are defined by "

(LY-v) 6" = G (Lo-V)

(A1.3)
Therefore,
A A ~
(Lo-V)G = G (L-V) =1 :
(a1.4) f
Similarly, we have i
LoG'°=G'oL°= !‘, '
(A1,5) 1
¥
}
Multiplying (Al.4) by G and using (Al.5), we obtain %
~ A
G} ( Le - V ) C} = C}a

3 Since G4Lg = 1, we have

?
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L
u
o
—+
o
<t
(R PY
i
O
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éh
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R

(Al1.6)

where we have defined
~ A A
vG = TG, (Al.6a)

A

The operator T represents multiple scattering by the stochas- >
" tic perturbation V in the background G, . By using (Al.6),

we obtain:

G (I-GV)= G,

(a1.7)

Substituting (Al1.7), into (Al.,6a), we obtain

A ~ A - ~ ~ =
T=VG46G =V1-6G,V)

(A1.8)

or

(a1.9)




i e S el

Note that the inverse operator can be expanded in a Neumann
series:

(1"' GoV)-,-': 1+ G°\7 + Qoveog g oaeeens

(a1.10)

but it displays secular divergence that limits its range of
applicability.

By using (Al1.6), (Al.8) and (Al.9), we obtain ensemble
average relations as follows:

G=2G +GV.G =G + GTG, (A1.11)

where

<G>

G
T = <'?'> (31.12)
ch' = TG'o

where Vc is a smoothed scattering operator in a background G.

On using (Al.11), (Al.12), one obtains:

e
. pleazian
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T= VGG = Ve(1-GV) 66"

-) (Al.13)

= b&: ( 1"' G}o‘/k,) !f

or

T=V.(1+GT)GoGs'
- Vc (1 + G‘Vc)

VC + VCG Vc

(Al1.14)

Multiply (Al.11l) by L, and make use of (Al.5), we obtain

LeG -VeG = (Le =Ve) G
= CT(Lo-Vc> (Al.15)
= 1

Equation (Al.15) provides a nonlinear defining equation for G,
the nonlinearity arising from the nonlinear dependence of Vc
on G, Using (Al.6) and (Al,l1l), we obtain

G

X =

G+ G TG, (A1.16) :

where

T-T
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From (Al.9), we obtain

X e V+VEV-LVGV>

(a1.17)
Using (Al.11) and (Al.12), we have
)
G-°=G-(i+ Ve &)
-]
=(1+GVw) & (31.18)
Therefore, we can express (Al.,16) as follows
A - -]
G =G+ G(1+Ve&) TUHTGEV) G
(A1.19)
A ~
G=G+GTG (A1.20)

A
where Tc, the multiple scattering in the smooth background G,

is defined by

F o= (1+veG) T(2+6GV.)

(A1.21)




T T T s g W 3 Ty - T - ey = — i,

- 167 -

£ On averaging (Al.4), we obtain

[ 4
I

le-V)G > = 1

~A -~ (Al.22)
= G (Le=-V)D>
Comparing with (Al.15), one infers
~ A
VeG = <V G>
(A1.23)

® From (Al1.20), we have

/

]

VG> G
VG+VGETeG>G

A (Al.24)

VG Te >

Ve

We would like to observe the physical meaning o (Al1l.20) as
N
follows from (Al.4), we can write G in the renormalization

from as

(Lo“vC"\A/')a’ = i

(Al.25)

Therefore, the scattering is now caused by a stochastic per-
A ~
turbation Vy, = V - Vc of the coherent renormalized back-
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ground operator ( Lo - Vc ), Multiplying (Al.25) by G, one
obtains

| 6=G+G6ué =G+G6TG

(Al.26) ;
where we have defined ﬁ
A A ~ &
= ‘Tk C}
! G = (Al.27)

On using (Al.26), one obtains
~ A A ",
T.= VGG
A A -1
Vi(G+GVG&)G (AL.28)
A A A A
Vi +viGV,

or

A~ A A -/
TC \/l(i—G'\/l)

From (Al.24), one finds that

Ve = £ \3. G i > (Al.29)

By using (Al1.27), one obtains




A A A A
Vi +vi@V
% A A

A
Vit GV oo (A1.30)

&
I

\/C=<\'>IG'O|>+~--..,

‘ (A1.31)
i Since “
::; Vl = V—Vc
Therefore

| T =V+vaU-<VaV>

VG LVGV>+ (A1.32)

Ve 2 AVGVS+LVGVOGLVGVD
+ ........ (Al.33)

On expanding (Al.21) and making use of (Al1.20) in (Al.17), we
obtain

! Te= (1-VeG+VeGVeG+--) T
(1-GVe +GV.GVe =+ ) (A1.34)
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! (a1,35)

Substituting (A1.24) in (Al.34) and making use of (Al.35), we

obtain
£ 2V +VGV -KVGV>+VGVGV 4+
(A1.36)
°

Ve =<VGV>+ <VGVEV > + -~




APPENDIX 2

In order to find a rapidly convergent series for V. G,
one considers the following possible expansions;

(1) Expansion ai

VeG = {VGVD>G + <VGVGV>G
(VGVGVGVD>G —(VGLVGV>GV>G (a2.1)
—KVGV>GLVGV>G + - "

as described in Appendix 1.
(2) Expansion bs
since

V& = ‘< g;c}'fé :>

(a2.2)

and

|

~r

2 (1+V%G) T (1+GW)

(A2.3)

one obtains

Ve = (14 VeG) <VGT>(1+G W)

(A2.4)
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T =V+VGV -(VGV> +VGT GV
- <\7G‘:GV> (A2.5)

One multiplies eq. (A2,5) by VG and takes the ensemble average

of this equation. Using equation (A2.3), one then obtains
~inerl

(assume ¢ v >=0)

~ ~ ~ ~] ~ ~ ~ A~
(VGTO>=LVGV>+ (L+VeG)KVGVGT GV (az.6)
(1+GVve)”'

From equations (A2.5) and (A2.3), one observes that
g Ar ~ -~ ~r A =)
CVGVGTGVO>=<KVGVGEGVGV> + (11\VG)
~r A ~r -~ -1
<VGVGVGT GVGEVD>(1tGY,) A2

Therefore, one finally obtains the expansion
Ve = (1+ G <TGV > (1+6Ve)” +
(AHVeGY4VE VG VG V> (1+GVe) 2+ (z.8)
(L+V.G) XVGVGVEVGVG V> (1+GVve) 3

(3) Expansion Ci
From equation (A2.,3) and (A2.5), one obtains

Te = (1+v¢G)"(\7+\7G\7-<\7c1\7> FVGTGY
~KVGTGV>) (1+Gv¢)"’ (A2.9)
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Therefore, from equation (A2.2) and (A2.9), one has:

Ve = <VGTe> = (1+vG) $<VGVv> +
KVGVGVD>-LKVGIVG VD> + (42.10)
VGVGTeG V> - LVa<VGT: V> (1+6GVe)”

One rewrites equation (A2.10) as
Ves <VGT> = (1416) (<VG V> 1+<VGVEVS}
(1+EVe) + (11Ve@) v aVaTea V> p2a)
(1+ GVe) '« VGTS < VG Te > ;
= (1+ V.G )h'{<\7&\7'>+<\7&\76’\7>}'(HGV¢:)
vhere [1-Po]”'

P. = (1+V,G) <VGVETe GV > 1+6Ve)”  aaa)
AVGT>™!
The term <?r'c;\7c;§cx7> in eq. (A2.12) can be written as:
CVGVGTGV> = (Lt VeG) ' {KVGVEGVGV>
FVEVG VEVGV > —<VG VG LVEV>EaW)na.13)
(1+&Vc)-' [1-P; ] -

where

P=(1+Ve&) {<VaVavaTeGVav>
—(VGVGLVETGV>GV>T
(1+GVe)'<va vGTegv>T
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In order to reduce the complexity, we shall examine
the convergence of VG for the equation of the form

A
- VY ~ A -
L= +tny © (a2.15)

23

One also assumes that n is a pure stochastic variable indep.
of r and z. The defining equation for the average Green's

function is

a A
25 . <nGg> = Z, (A2.16a)

or

L jifi. = ‘1
A 2925. + Ve & =

(A2.16b)

Taking the Fourier transform of (A2,16b), one obtains the
algebraic equation:

(b+ié-Vc)3 = 1 (a2.17)

or

3 - b+ i€ - V, (a2.18)

S A PGS R S




In order to evaluate g, one requires information about /0
The most appropriate expansion for Ve g will be determined via
numerical investigation.

(1) For expansion a, we define the following approximations:

1st approx. Ve § 32< Vi>

o ~y 2
2nd approx.: V‘;g = gz<\7 >+ 34€<V‘> -2<Vz>}
{ond approx3 +9°{ O F

{3?& a.pprox.} + g’{o }

For the case that nz.v is uniformly distributed between -a
and a, one finds that Ve g tends to converge as shown by the
solid line of Fig. 1. Note that:

3rd approx.: Ve g

4th approx.: Vc g

lst approximation is valid when Qv 3 =
2.~
2nd approximation is valid when g <vz> 0.6
. . . . i)
3rd approximation is valid when 32< v:> £ 0.3

(2) We define the following approximations for expansion b:

2,2 _ ~2
1st approx. V¢J = (1+Vc9) 9<cv >
-4 -~
2nd approx. Vo9 = Jist approw.f+ (1¢Vcd) 34<V4)
-6 o
3rd approx. Vca = fsz ApP\'w(.} + (1+ve9) 36<'v‘>

-8
4th approx. ch = fjrd aPProx.} +(1+ Vcﬁ) g9< \78>

¥
4
i
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as shown by the dotted curves of Fig. 1, one observes that
for the case of a uniform distribution, expansion b tends to
converge; however, not as fast as expansion a converges.

(3) Approximations for expansion C are:

lst approx. Vc_ g = (14 Ve 3 )—292< \72>

Ve = Lit ved) 9°<V*>
g - L1+Ved) 2PV

~2
3rd approx.* <?V >

2nd approx.

%
4th approx.

For the case of a uniform distribution, this expansion shows
fast convergence. The 3rd approximation falls right between
the 3rd and 4th approx. of expansion a, wherein is located
the exact solution (Fig.2).

g (1tved) 97<v™>
Ve g = = e
{ - (21+Ved) <iv“>r _ (14ved) <F v
<3v*> <3V
(1+Vc35-2<35\7‘>
- 354
S <gvt>

LA

Ved = <1+vca>”'<a‘v”>

-z -
[~ (tved) £2v (. U1V <gV*>
3({7‘-} <3V P

1- (1+v¢:)<3’v‘> C1+vd)"'<3’\7‘>
< PI*>

~

:l
]
‘m%g.sy’e-o., FEEREAN
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2.00 l__ 1 teawm,
3 trene

1.59 =

1

i
ch
1.00 =
S . 0%e-01 |_
0.0 J | 1 J

2.0 5.00e~-01 1.00 1.50 2.09

gV, o . *
Fig. A2.1., V_g vs, g?4(> ;~solid line: expansion aj

~ dotted line: éxpansion b.

1.54 _ (4) .
.1 (3)
1.18 % . :-1 - *(2)
Ve 3 :
7.6(e=01 |
' (1)
. {
3.85e-01 | .
-4.23e-09 |__ I ! : ]
0.0 S.000-01 1.00 1.50 2.00
g2 T3>

Fig. A2.2. V.g vs. g3(¥*>; expansion c:
(1) 1st approx.; (2) 2nd approx.; (3) 3rd approx.;
(4) 4th approx.; -
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If H'obeys a Gaussian statistics with a distribution func-
tion of the forms: ( n )z
- \"p

fimy= A€

one finds that all expansions described above lead to poor
convergence. As an example, we calculate the lst, 2nd and
3rd approximations for expansion ¢ and depict it in (Fig.3).
Let us observe the exact solution of G for equation (A2.15),
when n is Gaussian, we have

G‘-'- —A..Q-\’—P{—

As a power series expansion, one writes

G = _;[1_ <r’i‘>§3-3')‘+_______]

If the series is truncated after a finite number of terms,

<n‘>(5 -3") }

we have

G — oo as 3-3 —» =

The "secular"” behavior of G in this case explains somewhat
why "moment' expansions for Gaussian statistics are not
suitable.

Consider a Gaussion statistics truncated at t)a] namely:
n =
fy= A e 18 ~a<n<a

The results of numerical calculations of V¢ are shown in

Fig. 4 - Fig. 6. One observes that the convergence of the
series expansion is dependent on the ratio a e Ar>

where < Tn>> denotes the variance of n. For Fig. 4 to Fig. 6,
we use “-3/4,“{') =4,59796, 3,62336, 3,05054 respectively, and
find that a smaller ratio %ZJ‘; gives a better convergence.

A AL g W T - e N e A S S o > 1 M A el . ek B ot

crsmin . s A

T aaao s
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3.s0 _ .
" (3)
2.62 -
ch
1.78 .
i . (2)
g.74e-02 L. . -
....... (1)
2.83e-07 |*_ 1 1 { )
0.9 7.500~01 1.50 2.28 3.00
g v

Fig. A2.3. Vg Vs, g¥3¢¥3; A is Gaussian.
Expansion c: (1) 1lst approx.;(2) 2nd approx.;
/ (3) 3rd approx.; :

3.00

-
.13

2.28 » . ()_
Vg @)

1.50 .

{

7.49e-01 L ) (l)

-5.110-08 1 1 1 J

e.0 1.00 2.00 3.00 4.00

g"L\?'). N
Fig. A2.4 Vog vs. g%¥%; 1 obeys a Gaussian statistics
truncated at & [a] 3§ a' /<= 4.598, (expansion c)

RCERCALT ekt o
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2.59

B .

(3)

1.98 L *
1.30 -
6.480-01 | D LT ()
-5 . 47e—08 i L 1 i 1

e.0 1.00 ~2 3.00 3.00 4.00

ga<V)
L3 1] ~‘
Fig. A2.5. same as Fig. A2.4 except a1/4n>= 3.623,

/

2.46 -
3
1.88 L ¢ ). . .
vV g . -
c (2)
1.83 =
! |
6.16e-01 |
' -5.31e-08 L L 1 J
0.0 1.60 , .,2.00 3.00 4.00 -

gV
Fig. A2.6. same as Fig. A2.4. except a® / <'r'1':'~ = 3,05,




P

PR

- 181 -

i

#
L
%
#
K
&

APPENDIX 3

R e e e e b

The limit of application of the Markov approximation

Let us consider corrections to the Markov approximation
when a finite radius of correlation in the propagating direct-
tion is taken into account. Let E'(S,Z) be a sharp peaked
function of the argument 3-3' and (E(L!)E(S'af)) = B(S‘f.!_—f).

A
The parabolic equation for the random field bl(&éo is
written as:

YT TR RS T TR SRR TR

g 20039 +RIEGHUGH=0
2ik, 33 +V,u(3r) %85) _) A3.1)

Taking the Fourier transform of eq. (A3.1) with respect to
and averaging, one obtains

3(!#) '&z A _LQ u 9)
53 ?zr:m(a,{z,)) <e;f;:f3 >

(A3.2)

Applying the renormalized series expansion described in
i Appendix 1, we have

** b Fipida, 9>>=-— EG.0G B3 EGE)
+----}edsy’ >A;4y“‘3 -

If the correlation length in the z direction is very small
such that the 1st term in the series expansion of eq. (A2.1)
dominates, we can approximate (A3.3) as following:




B -3, 83D

L

G (3.5, 5',2') <ﬁ.(;iz')>35'gz' (23.4)

One rewrites (A3,2) as

!

{35 “ <u(3, &g))‘t—jB(%S $-$) -

iy
G <5,g,s,g)<u (380> e~ ~4;dr'45’-0

-~ -~

(a3.5)

assuming the field & (3,9) is statistically homogeneous,
so that its two dimensional spectral density satisfies the
relations

CE3. A2 (3 Rpa> = S (Ret R)F (330R0) o,

Applying (A3.6) one rewrites (A3.5) after some manipulations,
as follows:

23
] »f—-é-“"z u G &)>+-*”-' F (3-3', fe,)
{v‘s‘g 2 0} '.y 4 "'h
(A3.7)

G (3, “f ‘y” 5 Rf af )(M(3 fif,))d‘,dgﬁd;'

Since the function F(z-z',k,‘ ) is a peaked function of the
argument z-z', one infers that the main contribution to the
integral over z' lies in the neighborhood of z T z', We
shall expand the functions G and ¢ G) in powers of z-z', viz:

T A R e s e~
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G(3.0.3.8)=G(3.P.3.9) - (3- 3’3?
(3-3 Fa|
NFFIS PP

A 1N X (5: )
{AF, Rp)>= < (3 ke - <5-3)?——;—‘F‘2—’L a3.¢)

(3-3') %< (3 &y,»l
5 54-. PR

+ p) 332

Substituting (A3.8) into (A3.7), one obtains after some te-
dious calculations

{33 r L= ke ,,(3)}<u.<3 Re)>

=% {— A. (3 +—L Aua(3)+ A“‘“’

+ -- - (A3.9)

P a3 k>

In the coordinate representation, this equation takes the

{____v, _ﬁz_A,,QJ}(u(S £3>

. A:.2(3) Az.4(3)
= %{LA.,;( —er =%t asa0)

ARt E

where

N M T o A B

ARy

Y

ARt SRRSO T AL TFx
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"

» A, (3.0 2J5F(3-5',f>(5-5')°‘45'

(A3.11)

Aup (3) JFJ. Ax (3.PD | EIPAE

(A3.12)

e e i

To use the Markov approximation, the terms on the right side
in eq. (A3.10) have to be small compared to the corresponding
terms on the left in this equation., Thus, one can write

thes conditions as follows:

W % Aoo > Aza

@ Ak, << 1 (A3.13)

A similar analysis can be performed for the higher moment
case,

- v o R L . R =10, R~ gy
. i e o o o e gt M ‘ -

St i AT T
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APPENDIX 4

In Appendix 2, we examined several expansions for VcG
and used numerical methods to test their convergence. We
assumed that the imaginary part of G was very small compared
to its real part, i.e. G is approximately real. This is not
generally true. Hence all of the results in Appendix 2 only
apply to ranges wherein G is real.

Behavior of G w.r.t, K3(=B+i€ ):
We are dealing with the simple case defined by the equa-

tion:

2G6-VG =1

i
33 (34.1)

~
where V is a random number. Taking the Fourier transform of
(A4.1), one obtains the algebraic equation:

A
(B+ie~-V)9e = 1

(A4.2)
A 1
9& Brie-v (34.3)
Therefore
Real part of 9& = (B_V)z + & % 3‘, (Ad.4a)

R

TR g

e




s - A
Img. part of Jp = (B-V)r+ et = gﬁ;

(A4.4b)

~
If the probability distribution function F(v) of V is given,
we can evaluate the average Green's function exactlys

0 A
<é‘* S = j Do (V) Fvy dm

A o A .
{ 9ni> -"j Ja (v FO dv
-0

On the other hand, we can expand Vc}* in the following way:
-~ 2 ~l - ~Q 2 4‘
Vedu = <7 Ja+ <9 - 2¢7> 8 &

+ {<\7‘> + T< iy - 6<7‘><\7‘>} g,f (34.6)

The first approximation for (91{) is defined by the follow-
ing equation:

(Bt i€ -<V'>8) = 1
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The 2nd approximation is defined by:

[B+ie- <V 30 ((\74>"2—<Vz>z) @Z] 3&‘1 1

(24.8)

etc.

We shall examine the approximate solutions of (A4.7) and
(A4.8) and compare these solutions with the exact solution
(A4.5) by numerical methods.

(a) For the case that V is uniformly distributed over a range

from -a to +a, one obtains for the 2nd moment of V

az

~2
VD= 3

and for the 4th moment of v :
4

<= S
Substituting these moments into eq. (A4.7) and (A4.8) and
using contour integral techniques, we evaluate 9}{ as a
function of B and depicted in Fig.({(A4.1) to Fig.(A4.6).
Explanations of Figures:i
Fig Ad4,1:
variance = 0.333
dotted line = 1lst approx. of 31(:
solid line = 2nd approx. of gkr

Fign A4023 2
The exact solution of gkr for {V)> = 0.333

Fig. A4.3

variance = 2,083

dotted line = lst approx. of g kx
solid line = 2nd approx,of g kr

Fig. A4,4: .
~
The exact solution of gkr for LV > = 2,083

v
E
i S i ki T ulJ

O TRy

A TP
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vare 3 333529e-01

3 Sv

-3 S0 ——— ] - . H 1 b}

-10 2 -5 22 0.2 S.20 102
B

Fig. Ad.1l. gk,vs. B; ¥ is_uniformly distributed
over a range (~a, +a ); <Vv> = 0,333; 1lst approx.
dotted line; 2nd approx. solid line.

‘giev P’uvars’.Xo
var= 3 33329e~01

Sy

'

|

~2.38e-07

-1. 75

-3 5o - I ORI .
-10 2 -5 %0 .0 S 09 10 9

Fig. A4.2. The exact solution of gxr 3 LV§‘= 0.333.
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. vare 2. 08328

~3. 08e-01 S R 1 1 !
~10.2 -5 22 e.0 5.0 10 @
° B
Fig. A4.3. gy, VS. B; V_is uniformly distributed

_over a range (-a, +a); (V> = 2.083; lst approx.
dotted line; 2nd approx. solid line. -

Figs A4.4. The exact solution of g, for (¥>= 2.083.

e 1300

. " wer~ 2.08328
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J ..
vars 8 332312
f
} S
2 90e-91 _ . <Y

4 Oe-~01 __
Ixr
2.9
-4 COe-01
-3.20e-02 L ... _.... . _. .1 1 i o ;
-10.3 -5 22 0.0 5.00 109 3
B .
Fig. A4.5. gy, VS. B; Vv iLg uniformly distributed :
‘ over a range (-a, +a); <v » = 8.,333; 1lst approx. :
/‘ dotted line; 2nd approx. solid line, S :
vare 8 33MN2 . i
. - ‘ \
| ]
‘ A
}
3 Ne~01 i . ! $
'1
-geee-01 L ... ... . 1 L - :
-10 2 S0 o 00 s 02 10 2 :
Fig. A4.6. The exact solution of gxr for <V3> = 8,333, f
: 4
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R

Figo A4t53
variance = 8.333

dotted line = lst approx,of g Kr
solid line = 2nd approx. of gkr

F.g- A4-6| 2
Ao
The exact solution of gkr for {V>= 8,333

Conclusions
For a r.v.Vv with a uniform distribution the approxima-
tion procedure displays quite good convergence.
(b) For the case that v obeys a Gaussian statistics, one ob-
tains for the even moments of Vi

~ "
(V9=135... (2n-1) &

éubstituting these moments into (A4.7), (A4.8) and apply-
ing the same technique as in (a), we can evaluate gk as
a function of B. The results are shown in Fig. (A4.7).
Explanation of Fig. (24.7):

variance = 1

dotted line = 1lst approx of 9kr

crossed line (x) = 2nd approx of g kr

solid line = 3rd approx of Kr

thin line = exact solution of gkr

conclusions

We observe that these approx. procedures do not show
convergence. However, we shall consider some other obser-
vation before making any definite conclusions.

Since Vc can be evaluated exactly from the following inte-
grals

Vc‘ gk’ < \734? =

od

v g.*(v) Fcvody
-0 (24.9)

41‘
L
1
H
1

I
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We shall compare the real and img. parts of VoG for the lst,
2nd and 3rd approximations, respectively, with the exact re-
sult.

For the case that 9'obeys a Gaussian statistics, we'display

a few plots of these results: ( write gy is G !

Fig.A4,8: (exact result)

variance = 1

curve(l) = real part of VcG
curve(2) = img part of VcG
curve(3) = absolute value of VcG
Fig. A4.9:

variance = 1

curve (1) = real part of VcG
curve (2) = img part of VcG

curve (3) = absolute value of VcG

Fig. A4.10:
variance = 1

curve (1) = real part of VcG
curve(2) = img part of VcG
curve (3) = absolute value of VcG

Fig. A4.11:
For variance = 0,25

real part of VcG
curve (2) = img part of VcG :
curve(3) = absolute value of VcG 3
Fig., A4,12: §
For {V') % 0,25

curve ( 1) = real part of VcG
curve (2) = img. part of VcG
curve (3) = absolute value of VcG
Fig, A4,13: ]
gor {V'» = 0.25 4
curve (1) = real part of VcG l
curve (2) = img. part of VcG

curve (1)

llenanduid
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curve (3) = absolute value of VcG

The above observations show that one can not get a good
approx. for VcG by taking a finite number of terms in eq.
(A4.6) for a Gaussian statistics. We conclude that the
"moment"” expansion for VcG is not suitable for a Gaussian
statistics.

For the case that v is uniformly distributed over the range
from -0.5 to +0.5, we plot VcG both exactly and for several
approximations, viz:

Fig. A4.14: (exact result)

variance = 8.333 x 1072

curve (1) real part of VcG

curve (2) img part of VcG

absolute value of VcG

curve (3)

Fig.A4.15: (lst approx.)
variance = 8.333 x 10~2

curve (1) = real part of VcG
curve (2) = img part of VcG
curve (3) = absolute value of VcG

Fig. A4.16 1 (2nd approx)
variance = 8,333 x 10 ~2

curve (1) = real part of VcG
curve (2) = img part of VcG
curve (3) = absolute value of VcG

We observe that eq. (A4.6) provides a rapidly convergent
series expansion for VcG when v obeys a uniform statistics,
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: -3.00 -1.50 o.0 . 1.58 . 3.00
B .

. ", . a3
Fig. A4.7. gy, VS. B;y Vv is Gausslan; ¢vV)> = 1,

(1) ... 1st approx.; (2) xxx 2nd approx.s .
(3) 3rd approx.; (4) thin line: exact solution.

vare 9. 9993S5e~01
‘S *l vy -Llev

1.58 -

=?.75e~01

-1.63 ' 1 s | B J.
. -3.¢3 -1.50 . - 0.0 ‘150 . . 3.00
. B -~
" Fig. A4.8. ¥ is Gaussiang <v3; = 13 (1) real part
of V.gs (2) Img. part of V. g3 (3) absolute value

of V, g.
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1.58
?.750-02
v.ga

«?7.75¢-02

. «1.66 : 1 SR | 1
: ~3.00 -1.50 T e.0 ‘1.56 3.0
Fig. A4.9. 1st approx. of Fig. A4.8.

Plvare’Ko" 08P vare’ KXo
vare 9. 99¢860-01
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7. 75e~01
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Fig. A4.10. 2nd approx. of Fig. A4.8.
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vere £.500000-01

1.66

?.75e02

-7.750-01

-3.58 i -1 1
o308 - - -1.50 e.0 . 1.50 3.00

. B .
Fig. A4.11. v is Gaussian;: : (1) real part
of Vogs (2) ,Img. part of Veds (3) absolute value
of ch. ¢V = 0. 25

var— 2.500000-01

1.88 e

. e

-1.58 1 1 I

-3.00 -1.50 B e.0 1.6 3.00

Fig., A4,12, 1st approx. of Fig. A4.11,
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vare 2,50020a0-01

=7.760-04

1 P |

-3¢0 - -1 0.0 3.59 2.0
.Fig. A4.13. 2nd approx. of Fig. A4.11.
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T =y .88 L. l,' 1 1
-1.00 -s&o-*uB 0.0 ‘'5,.000~01 1.00

Fig. A4.14. V.g vs. B; ¥ is uni‘formly. distributed
over a range (-0.5, +0.5); (1) real part of V.g;
(2) Img. part of Vog; (3) absolute value of V.g.

vare 8, 33333002 -2

1.68

-8.40a~01 |,

-1.63 1 1 : : !
“1.63  -5.09001 o.0 G.00001 1.00

Fig. A4.15. 1st apprBx. of Fig. A4.14.
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v e e i + o < s &

vare 8, 392330-62 . . . .

1.68

‘-8.480~01

-1.68
: -1.¢3 -5.00¢c-02 2,0 . S.020-01 1.C0

Fig. A4,16. 2nd approx. of Fig., A4.14.
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APPENDIX 5

Limits of Application of The Parabolic Equation

The parabolic equation differs from the complete scalar wave
equation by a term 3?4/ 2332 . If one treats 3’0/ 932 as a

small perturbation term and writes

y A 2~ A Qz'Ci
2‘-‘&03; +Vr2u 1"&,5“: -

@
QN
»

then one expands

(A5.1)

l:((3,f) = l:(. (S-Z) + &2(3»2)‘* STt (as.2)

A
and supposes that u, is of the same order of smallness as

3k, /532 .

Substituting (AS5.2) into (A5.1) and equating groups of

terms of the same order, one obtains

(AS5.3)

~ A ~ A
2Lﬁ.95l;-'- + V,,‘u. + RIEW = O
- S A
A A 2~ AN - 3 ul
2;“033'4-: .,,Vf"uz-!-'&of—u-z—" 33:.

~
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with the boundary conditions

Gy (0.9) = Up(F) and Qy(o.f)=0

one finds on taking the ensemble average of (A5.3)

f2ibF + % fed> + REd>=0

(AS,4a)
. 9 2 A 2 A
{u&ob—g *Y }<uz>+-&,<e us >
_ 324 a'> (A5.4Db)
23*

Using the renormalization procedure described in Appendix 1,
one writes equation (A5.4a) as

on using of the approximation

VoUW S | (VI3.8)G(3.5.5,8DV(3.8)>
ucsl'zl) As’dz'
and the assumption that

{E3.9€3.8)>= 5(3-3)A(8-8") 5.6

(A5.5)
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One obtains, after some manipulation,

ik Alo)
V. U = A u(3.9) 7

L R 2 (A5.7)
= - 2R A(o> L L3.5)
8 -
Therefore, we can rewrite eq. (A5.4a) as follows:
w &,
2.k 2% V *u, + : Alo) W, = (a5.8)

Oaé

Similarly, eq. (A5.4b) can be rewritten as

ou 2 A.& u gzu'
. 2 o = —_—
2‘,&0———3; + Vf Uz + A(D) 2 éz (5. 9)

Let us consider the case of a plane wave incident upon a ran-
dom medium such that

uo(g):': ansfanf = We

One obtains, from equation (AS.4a), that

ko A() 3

u, 3) = U, € § (A5.10)
- -l
= W, € 2&5

where

1A ()
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equation (A5.4b) then takes form

du £, Alo) U 2y o 192
0 ' |
1 éz + S U, =- '9_33 = u"(Td)e (A5.11)

The solution of eq. (A5.11) corresponding to the boundary con-
dition wu,(0) = 0 can be calculated as follows:

set é.
- J g
! 2
U, = U, € (A5.12)

One obtains from eq. (AS5.5)

L&A () W
[ 28‘ 5‘ (A5.13)

Uy (3)= U,

Therefore

-J.otg «p3 .2

_ 2 L&, A(0)

L42¢:3,) = U, & Y é;
&2 AN

- (23 5

(A5.15)

U,

In this case

K(3)= u, (3)+ Ual3)# - ---

2
= U, e Elae [1-}» ""ég 4..--] (A5.16)
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The field u,should be considered only in the region
where it is marking different from zero, i.e. for o 3: 1, thus,
we obtain the condition for a small correction term,

o? i. << 1

TR

i.e.

od << %o ovr Ad << 1 (A5.17)

If condition (A5.17) is valid then the correction term in eq.
(A5.16) will be small compared to its first term. For the
higher moment case, the calculation is quite complicate. For

example, in the 2nd moment case, one considers the corrections

to Ma( z, 9,, ?3 ) = ( z, £,) A ¢ z, )y, 1£ 4 = 314- Wt ver

2
one has

MZ (3'&;%)2 (a,(§,21) ar(5)£z)> +
<O, (3.3 U (3, 8)> +
CU2(3,8) W (3.800+ -+ -

u) (a5,18)

- () o
=M, + M, + M +.---.

Applying the Markov approx. and some Very tedious calculations,
one can obtain equation for M2 , M2 , M2 .., as follows:

(A5.19)

< p 3
Jaig, -393- + (V' -%)+ izﬁ? [A@>- A(f.-m}}

)

M, =0
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.p 2y, ik, -
f2i 35 1 (%- v,,,)»r_z.-[A(o)-A(s’. 9:)]}

(2) AR AL (o)
M, = 4ﬁ:vy %og V 64

(A5.20)
ke )
[2ik + (G- %) ihe 14 (0)-A s mJ}

*
ot kAL o2 RN P
- =g %t M

(z) *

e,

(AS.21)

If the parabolic approximation is used, the correction terms
(a 2 o)
Mz) and Ml) have to be small compared to the lst term Mz .

One obta:.ns from eq. (A5.20) and (AS5.21), let Mz) + Mz(”‘= M!f”

H ]
()7
the following equation for M2 1

e

- {4&2 (Vy fz )_r L‘& A(O)(%' V 2} (As 22)

Let us now consider the case of a plane incident wave, one
obtains

e - y
L e R w .
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")

PV12 = ,L*ozl e

In this case

' /
M7 (3.9,9) = MP (3, 9-F:)

Moreover

/
2 ®
(%, - %M =0

uy
(%= B Mo =0
(V,f-er:) Mz = QV)’. M.

Equation (A5.22) thus takes the form
"’"’31-!(9 M"’cs )
2&&035 )

= A.&oA(oz V,:ZM:)

4

from (AS5.23), one finds

- _%:[A (6)=A (&'&z)_];

(A5.23)

(A5,24)

(A5.25)

(AS5.26)
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Mn”‘-' M(l) A (o) { ’ﬁ:ég[—H'(f)]z
5

2 2
4%
_ ‘ﬁ:észzH(f) } (A5.27)
5
Therefore
" Alo) [ R3°[He]”
Ma(3.8) = M3 e3.9) {1+ 25 [& il
- ‘&0352%2;.'(5’) . ] } (A5.28)
g
this leads to the condition:
) A“”fﬁfé;fH'(fﬂz R3* - e
then
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Appendix 6

The equations to be solved are:

2 Mg ) 9
- om—  Som— . - q- M
az 3 on oh M‘. f " (Aa6.1)

33 In IN (A6.2)

One writes

Mg(}+A§) M“[- T ” 2_M;-TfM ],,5
r (- ar. o (%a;r Me-r1fM;)-rf
(- 22 M, —'ran)] (Ag)‘,

a7, INn

(A6.3)

and

M (3+43) =M, "'[ar ar,MR ~rfM;] a3
ar,M —rfM)-7f

(A6.4)

t [ar. on (- In

2 2 M, "rfM,;)J-(f-gr-r ------

aN Ns




The difference equations, to the 2nd order accurracy in z,
are:

‘d
Ma (3+23) = Mg - [ 25 *’ =M+ rf Me] 2§

Tav,av;

+[- daldnt [ didn M- EML] —

AV AV AY, AY (A6.5)
of [- Bodn_p, - ~f Mn”.ﬁzi

4 AY‘AY‘;

and

M (3+43) = [(m,)dr."aa'Mg- (rf23)M.]

rid[- (£2,) d'dr) [[825 ) drdr' M

+ﬁff43‘)Mg] 6”{‘» 4-4;1;4:&0( In -

ere3)ms]

where
drt= forward difference operator w.r.t. e .

r

dy = backward difference operator w.r.t. ry .
L)

d, = center difference operator w.r.t. rze
&

(A6.6)

The boundary conditions for M4 are described in equations
(4.46) and (4.47).
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2. E.
3. H.
4. R.
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6. C.
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