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INTRODUCTION

The'relationship between free-air gravity anomalies and
sea-floor bathymetry is one of the ro>st important problems in
marine gravity. For purely practical reasons, deciphering
the nature of such a relationship is vital to predicting
quantitatively the gravity field in oceanic areas in which
only bathymetry is known. Closely related to this practical
problem is the question of the physical basis for any observed
or proposed dependence of gravity upon topography. Such a
question bears on the mechanisms for creation and evolution
of oceanic crust and lithosphere and on the posssible inter-
action of the lithosphere with motions in the asthenosphere.

Marine gravity and sea-floor topography cannot be related
by a simple mathematical expression (e.g., a linear relation-
ship) that has validity in all oceanic environments. A
synthesis of submarine gravity data and bathymetry by Woolard
and Daugherty (1970) demonstrated the necessity to divide
oceanic regions by tectonic types and the difficulty in
simply relating free-air anomaly and depth even within groups
of tectonically similar environments. Degree averages of
marine gravity anomalies and depths within selected regions
were also correlated with varying degrees of success by
Watts and Talwani (1974), Sclater et al. (1975), and Watts
(1976) .

A necessary step in improving what heretofore have
generally been strictly empirical attempts to derive a rule
relating gravity and bathymetry over a selected region is
to take into proper account the findings of plate tectonic
studies of the oceans. At mid-ocean ridges, the lithosphere
is thin, perhaps no thicker than the crust (Francis and
Porter, 1973; Solomon and Julian, 1974; Orcutt et al., 1975;
Rosendahl et al., 1976), and sea-floor topography except
at the shortest wavelengths is isostatically compensated
with a shallow compensation depth (Dorman, 1975; McKenzie

and Bowin, 1976; Cochran, 1979; McNutt, 1979). Sea-floor
topography created by mid-plate volcanic activity is com-
3
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pensated much deeper because of the substantially thicker
lithosphere, and the compensation is regional (Vening
Meinesz, 1941), involving flexure of the oceanic plate
(Walcott, 1970; Watts and Cochran, 1974; Watts et al.,
i 1975, 1980; Watts, 1978b; Detrick and Watts, 1979), the ﬁ
. effective elastic thickness of which increases with sea-
floor age (Caldwell and Turcotte, 1979). At trench systems,

TV

topography is not isostatically compensated owing to the
large dynamic forces associated with lithosphere subduction
(e.g., Vening Meinesz, 1954). Still controversial are ﬁ
7 explanations for frequent correlations in very long wave-

length gravity and topographic anomalies in the oceans
(Menard, 1973; Anderson et al., 1973; Weissel and Hayes,
1974; Sclater et al., 1975; Marsh and Marsh, 1976; Cochran
and Talwani, 1977; Watts, 1978a), with asthenospheric flow
the most exciting but still unproven hypothesis.

This report gives the mathematical framework for a
simple relation between topography and gravity in two
dimensions for stable ocean basins. The conceptual basis
for the relation is flexure theory for thin elastic plates
loaded from above. The evolution with sea~floor age of
lithospheric temeprature and rheology is abstracted to an
effective elastic layer thickness which grows with plate

age. In order to derive gravity from topography using
this relation, both the lithospheric age and the age of
any more recently superposed volcanic constructs (islands,

seamounts, aseismic ridges) must be known. Guidelines are

given for estimating these ages. The bathymetry-gravity
relation is tested using data from the central Pacific basin.

The test is not successful, for reasons which are described.
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A number of suggestions are given for future work.
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THEORY

We seek a relation between bathymetry and gravity in
stable ocean basins. We shall work explicitly in spatial
dimensions, rather than use one- or two-dimensional wave-
number representations, so as to permit consideration of
regions of arbitrary geometry and spatial extent.

We shall assume that the sea~floor topography is com-
posed of three parts: (1) the long-wavelength deepening
of the sea floor with age due to thermal contraction of
the lithosphere (Sclater et al., 1971); (2) the volcanic
topography emplaced as a load on top of the lithosphere;
and (3) the lithospheric response to that locad. We assume
that the effect of (1) on the bathymetry may be removed with
a suitable age-depth relation (Sclater et al., 1975; Parsons
and Sclater, 1977; Cochran and Talwani, 1977); its effect
on gravity is negligible far from ridges (Lambeck, 1972).

We discuss the validity of these assumptions further at the
end of this report.

Let the lithosphere be modeled as a thin, spherical,
elastic shell of thickness T, Young's modulus E, and
Poisson's ratio v, overlying a fluid interior of density

o Let R be the radius to the midplane of the shall,

let g be the gravitational acceleration at radius r = R - T/2,

and let D be the flexural rigidity of the shell

3
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Consider a uniform vertical load q (force per unit area)
applied to a circular unit area on the surface of the shell.
The vertical deflection (positive if downward) of the litho-
sphere is given by

w = ~L kei ¢ (2)
2n (ET/R° + Ap g)

(Brotchie and Sylvester, 1969; Brotchie, 1971), where ¢ is
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the distance from the load center, normalized by the radius

of relative stiffness

=
i

'
D -
ET/R?> + Ap g ) (3)

kei is a Bessel-Kelvin function of order zero (Abramowitz
and Stegun, 1964); and Ap= Pm = Pw where Pu is the density
of seawater if the load is applied at the sea bottom and
zero if the load is applied on land. Note that (2) is
equivalent to the expression (Brotchie and Sylvester, 1969)
for the response to a point force p since p > qund?%? where
£ = d is the radius of the circular unit area. Equations
(2) and (3) may be simplified because for oceanic litho-
sphere ET/R?> ~ 10! and Ap g * 2 x 10° in c.g.s. units,

so Ap g >> ET/R? and

= ﬁg kei £. (4)

We may generalize (4) to a distributed load. Let
g(x,y) be the force per unit area exerted on the litho-

sphere by topography. Then the deflection w is given by

wix,y) = 7;3%—6 J:[q(x',y‘) kei (r'/L) dx'dy’ (5)

where r' = [(x' - x)2 + (y' - y)2}% . Equation (5) may
be thought of as the double convolution of g with the
flexural response function

5
kei [.‘3‘,2__+_Y_2)_ ] (6)

I T
¢(x,y) = 2tAp g e

which in turn is a function of the local flexural rigidity
D, or equivalently the effective elastic lithospheric

thickness T, through
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A single convolution of (two-dimensional) load with response
function was also used by Roufosse and Parsons (1977) in
their study of the Hawaiian ridge. If the load is emplaced
in a time short compared to the lithospheric age and if
viscous relaxation of stress subsequent to initial litho-
spheric flexure has been minimal, then £ is simply a function
of the time difference between plate age and load emplacement
age,

Unfortunately, the load g(x,y) is not known a priori
but rather the ocean floor elevation h(x,y) with respect to
some arbitrary datum is known. As noted above, h contains
contributions from both the topographic load and the litho-
spheric response. We may resolve this difficulty, however,
by iteration. Assume initially that g(x,y) = Ap'gh(x,y)

where Ap' = - p,. and Py is the density of the major units

Y
constituting the tgpographic variations. Then use (5) to
calculate w(x,y). Now set g(x,y) = Ap'g(h + w). Recalculate
w from (5), and repeat the last two steps until q and w
converge to a steady solution.

Once a self-consistent decomposition of h into load
topography q/Ap'g plus plate deflection w is achieved,
the calculation of gravity is straightforward. Two terms
contribute to the gravity: (i) the attraction of the topog-
raphy and (ii) the deflection of the Moho and of any other
density contrast interfaces within the lithosphere. Any
density contrast between the base of the lithosphere and
the asthenosphere would also contribute to (ii), but this
contribution is probably negligible. For both (i) and (ii)
the gravity anomaly may be written in the form of that due

to a surface mass distribution o(x,y)

g(x,y,Z) = GZJS = O(X'yY') dxldyl
%!

- x)2 4 (y' - y) i+ 22]7 /e
(7)

where G is the gravitational constant and z > 0 is the ver-

tical distance between the observation point (x,y,z) and the

7




contribution, o = Ap' h on the plane of the topographic datum

horizontal plane on which ¢ is evaluated. For the topographic i
i

(h = 0). For the plate deflection contribution, 0 = Ap w

on the plane corresponding to mean Moho depth. . P

'S R

R VU MR Tl 3 S

e e e o

T VY

i




i
1
1
!

IMPLEMENTATION

The theoretical relationship between topography and
gravity outlined above can be applied to any finite area
over which bathymetry and age are specified as functions
of position. We have applied these concepts to a region,
described in the next section, in which degree averages
of ocean floor depth (corrected for mean age) and free air
gravity are known. Implementation of the theory as a usable
algorithm requires estimates of volcanic load ages and of
the evolution of the flexural response function with age,
and calculational schemes for evaluating the convolution
integrals in (5) and (7).

Some care must be exercised in deciding the age of a
volcanic construct relative to the age of the surrounding
seafloor. For islands this is not a serious problem as
the exposed or cored (if a coralline island) bedrocks can
be dated. For seamounts some simple rules will be helpful.
One such rule is that an inactive topographic feature will
sink with respect to sea level at the rate of its surrounding
abyssal sea floor, a rate which is associated with thermal
contraction of the lithosphere and which is a well known
function of ocean-floor age (Sclater et al., 1971). On
this basis, for instance, the Ninetyeast ridge can be
shown to have been generated at the southeast Indian ridge
(Sclater and Fisher, 1974). Much of the ocean floor topog-
raphy, in fact, was apparently generated at or near ridge
crests on very young oceanic lithosphere (McKenzie and Bowin,
1976).

The flexural rigidity D and the effective elastic
range thickness T are known to vary from values in the
range 3 x 1027 - 2 x 1029
near mid-ocean ridges (Cochran, 1979; Detrick and Watts, 1979;

McNutt, 1979) to values in the range 3 x 1029 to 1030 dyne-cm

dyne-cm and 3 ~ 13 km, respectively,

and 15 - 30 km, respectively, for older lithosphere (Walcott,
1970; wWatts and Cochran, 1974; Watts et al., 1975, 1976;
Caldwell et al., 1976; Watts, 1978b; Suyenaga, 1979). The

9
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assumption that T scales as an isotherm depth is consistent

with the data (Caldwell and Turcotte, 1979), so that a
standard oceanic plate thermal model (Parsons and Sclater,
1977) and a few good measures of D and T are sufficient to
define T as a function of lithosphere age minus load age.
Evaluation of the necessary convolution integrals
has been conducted as follows. For each degree square we
first subtract the mean bathymetric depth from the depth
predicted from a spreading plate model for the appropriate
region. This residual depth is then treated as a combin-
ation of lithosphere load and response to that load. For
the Green's function for the loading problem we use the
response of the lithosphere to a circular load of radius

a such that ra? eéuals the area of the degree square:

(—3— (o ker' ¢ ber ¢ - o kei' o bei ¢ + 1)
Apg
for £ < a = %
w =ﬁ - (8)
Ang (ber' o ker £ - bei' o kei £)
L for £ > a = %

(Brotchie, 1971), where ker, ber and bei are additional

Bessel-Kelvin functions of zero order and the prime denotes

first derivative (Abramowitz and Stegun, 1964). The
flexural length 2 (or flexural rigidity D) can be taken
appropriate to the lithosphere at the time of application
of the load on the degree square in question. The convo-
lution integral (5) is converted to a sum. Let W be the
subsidence at the center of the ith degree square, let qj
be the locad on the jth degree square and let wij be the

contribution to W from q;- Then each w.. may be estimated

1]
from (8) after setting §{ to the appropriate (normalized)

distance between the centers of the ith and jth square, and

10
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w, = Jz wij (9)
As noted above, iteration is necessary to determine a

self-consistent set of values for qj and W, from a given

set of observed residual depths. In practice, about five

iterations are required before the sum of the squared

differences in Wi (or qj)3between successive iterations

is less than 1 part in 107.
Expression (7) for the predicted free-air gravity

anomaly is evaluated using the Taylor series algorithm

of Morrison (1976) for calculating the gravitational poten-
tial from a surface density distribution specified over a :
latitude-longitude grid. The contribution from each degree !

square is of the form I

U(x,¢,8) = _” F d¢' de’ :

= ' ' _l_ v 2 v 2 f:

= A¢' AO [F0 + 5y (F¢¢ Ad + Fee A¢ )1 (9) H

v 2 ] :

1 where F = G o ; cos¢ ‘ f
the observation point is (r,¢,0) in spherical coordinates !

(radius, latitude, longitude), the mass point is (r',¢',9"),

R is the distance between the two points and A¢' and ag’

are the dimensions of the degree square. In (9), FO’ F¢¢, |

are F, 8*F/6¢'? and §%F/8§0'?; respectively, evaluated H
1

and F96

at the center of the degree square. F¢¢ and F80 may be ;
i obtained analytically:
!
; F ] 2- '
L 0¢ _ - cos¢’ _ 2sing rr' [sin¢ cos¢' - cosd sind' (cosD cosb' }
! Gor'? R R? :
;. + sinf sin6')] C°?¢ rr' [sin¢ sin¢' + cos¢ cos¢’ )
.' R !
-t ]
;é (cosf cos6' + sind sind')] + 39952 (rr')? [sin¢ cosd'
)
B R
S

¢ - cos? sin®' (cos0® cosO' + sinO sinf')]? (10)

11




FGO cos¢’ .

—— = - ; rr' cos¢d cosd' (cos9 cos6' + sin® sing')
L
Gor R (11)
N 2
' 3coi¢ (rr')? [cos¢ cos¢' (-cos0 sino' + sing coso0')) ’
R

<

R? = r? + r'¢ - 2rr' [sin¢$ siny' + cos¢ cos¢' (cosp cosb' +

sin® sing')] (12)

Two separate contributions to U from each degree block are
included here: the contribution from topography (Ap' =
1.8 g/cm?® assumed at a datum plane 5 km below sea level) and
the contribution from Moho deflection (Ap = 0.6 g/cm® assumed
at a datum plane 12 km below sea level).

In practice the Taylor series truncation in (9) is a
good approximation only if rr' A$'?/R?> < 1. This limits
(9) to elevations above the appropriate datum plane comparable
to or greater than the dimensjions of the blocks used to specify
0, For the degree-square specification of seafloor depth and
free air anomaly in the application considered here, we |
calculated the potential at 100 km altitude from (9), and we
calculated the gravity anomaly from a centered finite
difference approximation to the radial derivative of the
potential. Sea level gravity was upward continued to 100 km
elevation for comparison with the predicted gravity anomaly.
An alternative scheme would be to treat the mass contribution
(topography or Moho deflection) degree square from each as a

three-dimensional prism and calculate the gravitational

attraction using the summed line-integral method of
Talwani and Ewing (1960).
Fortran programs to calculate the load g and subsidence
w from residual depths and to calculate the gravity from
the topography and subsidence are available from the author.

12




APPLICATION

We have applied the bathymetry-gravity algorithm

. described above to a portion of the central Pacific basin,
bounded by 15° and 35° N latitudes and 150° and 165° W

, longitudes. This region was chosen because (1) gravity,
bathymetry, and lithosphere age are all well known; and
(2) there are large superposed volcanic loads on the plate
of younger ages, notably the Hawaiian island chain. As we
shall see, however, the selection of this region in retro-
spect was far from ideal because of the presence of sea-
floor topographic variations of a type different from those
assumed in the theory used here.

The gravity from the region is taken from the degree
averages of Watts and Leeds (1977). Their values for the
area in question are shown in Table 1. The gravity contin- 1
ued upward to 100 km above sea level is shown in Table 2. ‘

H The bathymetry is taken from a 1978 NORDA compilation

’ of degree averages provided by AFGL (T.P. Rooney, personal ’
communication, 1978). A few blanks and obvious errors in ﬁ
this data set were filled in by estimating the appropriate :
degree averages from charts of the Scripps Institution |
of Oceanography (Chase et al., 1970). The topographic
data are shown in Table 3.

The lithosphere ages were taken from the magnetic
anomaly maps of Pitman et al. (1974). Residual depths were
calculated from observed bathymetry using the theoretical
depth~age profile of Parsons and Sclater (1977) for the
north Pacific. Residual depths are shown in Table 4.

The residual depths were used to calculate the 1load g
on the plate and the resultant subsidence w, following

the procedures outlined in the previous section. A plate
thickness T of 30 km was assumed for modeling the effect

of the Hawaiian ridge (Watts, 1978), and a plate thickness
of 5 km was used for modeling the effect of other topography
: (assumed to have been generated at or near a spreading

center) (Cochran, 1979). The resultant distributions of

i 13




q and w are given in Tables 5 and 6, respectively.

The gravity at 100 km altitude predicted from the
loading and subsidence model of Tables 5 and 6 is shown
in Table 7.

It is immediately apparent that the predicted gravity
does not match the observations. The predicted gravity
is much too large, particularly in the southern half of the
area modeled, and provides a much poorer predictor of the
rms gravity anomaly than does the a priori assumption of
zero anomaly.

The difficulty lies with the large depth anomalies
shown in Table 4. These large positive (shallow depth)
anomalies over a substantial area are treated as loads on
the lithosphere by the bathymetry-gravity algorithm, whereas
the regionally shallow seafloor depth is almost completely
compensated by density anomalies most likely below the litho-
sphere (Watts, 1976). The long-wavelength gravity is
correlated to the long-wavelength residual depth anomalies,
but the slope of a linear fit between these quanitities in
the north Pacific is much less (22 mgal/km) than in the
algorithm used here based on a plate loading model. Thus
the failure of the algorithm for this region of the Pacific
is due to the large values for residual depth that arise from
a process not included in the algorithm, namely deep compen-

sation of long-wavelength topography.

14
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SUGGESTIONS FOR FURTHER WORK

In spite of the wide disagreement between Tables 7 and
2 (predicted and observed gravity, respectively), the
success of the plate flexure model in isolated situations
over small areas prompts the belief that this approach
toward relating gravity and bathymetry has merit.

For regions similar to the north Pacific area studied
here, one of two approaches should be pursued in further
work: either (1) a relationship between gravity and
bathymetry based on lithospheric loading should be sought
only for wavelengths shorter than a few hundred kilometers;
or (2) the process that gives rise to long (>500 km) wave-
length gravity and depth anomalies should be explicitly
modeled as part of the algorithm. If approach (1) is
followed, then either small regions can be treated in
isolation after ‘regional' anomalies have been removed,
or the problem should be conducted in the wavenumber domain
and a high pass filter applied to both the gravity and depth
data. (We avoided the wavenumber dcomain here to allow for
a spatially variable isostatic response function, but
perhaps this capability is a frequently unnecessary luxury).

Approach (2) involves more free parameters in the algorithm

and a much less certain physical basis for modeling; Watts
(1976) has demonstrated the approach and the magnitude of
the effects for the region studied here.

I
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