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Cochran's Theorem, Rank Additivity,

and Tripotent Matrices

T. W. Anderson and George P. H. Styan

Stanford University and McGill University
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1. Introduction

Let x be a pxl random vector distributed according to a multivariate
normal distribution with mean vector O and covariance matrix Ip. We will

denote this by x - g(Q, }p). Let ql,...,qk be quadratic forms in X with

ranks r ., , respectively, and suppose that Xqi = x'x. Then what

1" k

has become well known as Cochran's Theorem is Theorem 1I of Cochran

(1934, p. 179): A necessary and sufficient condition that Qyae ey

be independently distributed as X2 is that Zri = p.

Rao (1973, §3b.4) gives this result with x - Q(y, I) as the Fisher-

Cochran Theorem. Fisher (1925) showed that if the quadratic form q in x

A T - T NI e g s e

is distributed as xi then g'g - q is distributed as Xg-h independently

of q, cf. James (1952).

s

Our purpose in this paper is to review various extensions of
Cochran's Theorem in a bibliographic and historical perspective, with
special emphasis on matrix-‘heoretic analogues. While we present over
30 references, we note that Scarowsky (1973) has a rather complete

discussion and bibliography on the distribution of quadratic forms in

et et
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%ormal random variables. See also the bibliography by Anderson, Das

i
Gupta, and Styan (1972), where 90 research papers published through 1966
are listed under subject-matter code 2.5 (distribution of quadratic and

bilinear forms in normal variables).

The first section is devoted to a survey of results summarized in :d
Theorems 1.1 and 1.2. The proofs are given in Section 2. 1In the
E following section the extensions fraom idempotent to tripotent matrices
are given and proved.

To formulate our first matrix-theoretic extension of Cochran's

Theorem we let él""’ék be pxp symmetric matrices and write A = Eéi'

Consider the following statements:
2

(a) A} = A, i=1,....k, !
(v) Ap =0 for all i#),
(c) A=1

(q) Z rank(Ai) = rank(A).

Then the matrix-theoretic analogue of Cochran's Theorem is:

(3)9 (b)’ (C) hd (d)9 (l-l)

(e), (a) + (a), (b). (1.2)

The reason that these two versions of Cochran's Theorem are equivalent

follows from the following two well-known results:




s
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LEMMA 1.1. Let x~N(u, Z), with I positive definite, and let A be

nonrandom and symmetric. Then §'§§-x?(62), a_noncentral x2 distribution R

with f degrees of freedom and noncentrality parameter 62, if and only if

AZA = A, and then f = trA = rank(A) and 62 = u'Ap.

~—— o~ ~

We write trA for the trace of A and note that when A = A2 then

trA = rank(A); this result holds even when A is not symmetric (cf., e.g.,

Reo (1973), p. 28).

o £ -

When 3 = I the condition in Lemma 1.1 reduces to A2 = A, and this

[ —

ke

was first given by Craig (1943) with y = O and then by Carpenter (1950)
with p possibly nonzero. (Thus (a) is equivalent to q; = x'Aix having i
a x2 distribution with number of degrees of freedom equal to rank(Ai).) '

-

Sakamoto (1944, Th. II, p. 5) gave the more general version, with I

positive definite and u = 9. Cochran (1934, Corollary 1, p. 179) took

X ~ (Q, I) and gave Lemma 1.1 with the condition that all the nonzero

eigenvalues of A be equal to 1 instead of the condition A2 = A.

-~

LEMMA 1.2. Let x and A be defined as in Lemma 1.1 and let B be

nonrandom and symmetric. Then x'5§ and x'Bx are independently distributed

if and only if ALB = O.

~

When £ = I the condition in Lemma 1.2 reduces to AR = 0, and this
was first given by Craig (1943) with y = O and then by Carpenter {1950)

with y possibly nonzero. Again Sakamoto (1944, Th. I, p. 5) gave the

more general version with I positive definite and y = 0. Their proofs, _.igﬂfi_
however, turned out to be incorrect and the first correct proof of {%
Lemma 1.2 (with p = 0) seems to be by Ogawa (1948; 1949, cf. p. 85). -
Cochran (1934, Theorem III, p. 181) let x - N(O, I) and gave the o ‘
. e e oan]
condition in Lemma 1.2 as  _odes
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|I - isA|-|I - itB|] = |I - isA - itB| (1.3)

for all real s and t, where i = /-1 and |+| denotes determinant.
Ogasawara and Takahashi (1951, Lemma 1) gave a short proof that (1.3)
implies é? = 9 when the symmetric matrice e and ? are not necessarily
positive semi-definite.

Cochran's Theorem was first extended to x - E(B, I ) by Madow (1940)
and then to x -~ 2(9, §)’ § positive definite, by Ogawa (1946, 19L47), who
also relaxed the condition (c) to 52 = A. Ogasawara and Tekahashi (1951)
extended Cochran's Theorem to x ~ g(y, g), L positive definite, and to
x ~ N(O, E), with L possibly singular. Extensions to x - g(y, E), with
§ possibly singular, have been given by Styan (1970, Theorem 6) and Tan
(1977, Theorem 4.2); Ogasawara and Takahashi (1951) extended Lemmas 1.1
and 1.2 to x -~ N(y, g), with E possibly singular.

James (1952) appears to be the first to notice that (1.1) could

be extended to
(a), (e} » (p), (4),

(b), (¢) -+ (a), (4),

vhile

(a), (b) = A% = A and (d)

follows at once from the definition of the x2-distribution.
Chipman and Rao (1964) and Khatri (1968) extended the matrix
analogue of Cochran's Theorem to square matrices which are not necessarily

symmetric:

- - . =T .
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THEOREM 1.1. Let Al""’Ak be square matrices, not necessarily

symmetric, and let A = ZAi. Consider the following statements:

it W

(a) Ay = A, i=l,...,k,
(b) AjA, =0 for all i#j, X
(C) 62 =€‘9

(d) Zrank(ei) = rank(A),

B (e)  rank(a}) = rank(4, ), i=1,...,k.
g Then 5
' (a), (®) -+ (c), (4), (e), (1.4) 5
(a), (c) = (b), (d), (e), (1.5)
(v), (¢}, (e) =+ (a), (4), (1.6)
(e), (@) = (a), (b), (e). (1.7)

As Rao and Mitra (1971, p. 112) point out, the extra condition (e) in

(1.6) is required {(to cover possible asymmetry); for if k=2 and

then (b), (c) hold, but (a) and (d) do not. Banerjee and Nagase (1976)

replace the extra condition (e) in (1.6) by

i’ vee &
|

(f) rank(A ) = trA

and prove that

- R

Aan

s s e - —




(b)) (c)a (f) > (a), (d)" (1.8)

however, the condition (b) is now no longer required on the left of

(1.8) since

(e¢), (£) » (a), (v), (4)

follows from

rank(A) = trA = trzgi = Ztrgi = Xrank(éi)

~

and (1.7).
In Section 2 we present several proofs of Theorem 1l.l.

Marsaglia and Styan (1974) extended Theorem 1.1 by considering an

arbitrary sum of matrices, which may now be rectangular. The analogue of

Theorem 1.1 is

THEOREM 1.2. Let Al”"’ék be pxq matrices, and let A = Zéi'

Consider the following statements:

(a") AATA, = A, i=1,....k,
(") AAA =0 for all i#),
(c') rank(AA"A;) = rank(A,), i=1,...,k,
(@')  Jrank(A,) = rank(A),

where A" is some g-inverse of A. Then

(a') > (b"), (c'), (4'), (1.9)
(b*), (c¢') +» (a'), (a'), (1.10)
(a') -+ (a'), (b'), (c'). (1.11)
6
KR i e }n-g,egmmm s




If (a') or if (b') and (c') hold for some g-inverse A~ then (a'), (b') _%
) and (c') hold for every g-inverse A™. -

In Theorem 1.2 we define a g-inverse of A as any solution e— to
AA"A = A, cf. Rao (1962), Rao and Mitra (1971).

The condition (c¢') in Theorem 1,2 plays the role of condition (e)
in Theorem 1.1. 4

Marsaglia and Styan (1974, Th. 13) proved (1.11), while Hartwig
(1980) has established (1.9). The proposition (1.10), however, appears .
to be new and is proved in Section 2, where we also present several %;

different proofs of (1.7). 1In Section 3 we extend Theorem 1.1 to 1

] tripotent matrices, following the work by Luther (1965), Tan (1975, 1976)
and Khatri (1977). 1In Section 4 we discuss the applications of these

algebraic theorems to statistics.

2. Some Proofs

2.1. Proof of Theorem 1.1. To prove (1.7) in Theorem 1.1 we begin

by reducing condition (c) to a sum being I as in the earlier version of
Cochran's Theorem; then (1.7) reduces to (1.2). We may do this since

if A is pxp, not necessarily symmetric, then, as we shall show,

A% = A « rank(I - A) = p - rank(A). (2.1)

(Note Fisher's 1925 result goes both ways, cf. Section 1, paragraph 2.)

2 A; then (I - 6)2 =1 - A and so

To prove (2.1) let A

rank(I - A) = tr(I - A) = p - trA = p - rank(A).

.""‘""-_“m’
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To go the other way we follow Krafft (1978, pp. 407-L408) by noting that
n(é) c C({ - A), (2.2)

where INM(A) = {x:Ax = 0} is the null space of A and C(I - A) = {(I-A)x}

is the column space of I -A. (If xehn{(A), then Ax = 0 and (I -A)x =

-~ ~ o~

xeC(I-A).) If rank(I-A) = p - rank(A), then equality must hold in

(2.2) and so gg = A.

We now write A, = I -A, and in view of (2.1) we replace (c) by

0
P - k -
YLi=oA; = I, end (a) by ) _ renk(A,) = p.

The proof of (1.7) by Cochran (1934, p. 180), cf. also Anderson

(1958, p. 164) and Rao (1973, §3b.4), requires that Al""’Ak be symmetric.

In this event we may write
, i=0,1,...,k, (2.3)

where Pi is pxPi, Qi is pXQi, and Ai has pi positive and g, negative
eigenvalues, cf. e.g., Anderson (1958, p. 346). 1In (2.3) we assume

that Ei has rank pi, 91 has rank qi, and pi + qi = ri, the rank of gi'

Hence
E k k
I_= = ] P.P!- ] Q.Q!
P y=0 "t j=0 ? i=0 174
{ v )
%o
I 0 :
»p_q ~
= (PO, sB Qs .,gk) P! (2.4)
0 -Iq
~ ~ ]
%
= PJP', :
T %
L k)

k
say, where q = Xi=0 q, » since from (d) now p = Z§=O r, = 2?=O(pi*'qi) =

(IX 5.) +q. But (2.4) is positive definite and P is nonsingular;
1=0 Py ¥

8
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hence q=0 and g’=§p. Thus Qg = +er = Q = 0 and (2.4) reduces to
A
%o
Ip = (BgeeewnBy) | 1| = 2P,

]
Tk

- . . 2 _ . . -

and so ? (go,...,gk) is an orthogonal matrix. Hence 6i = gigi?igi =

P.,P!P P! = Q for all i#j since

P.P!' = inc P, = =F,
P! éi since Elgl ;ri’ and 5153 PiPiPyEs

then P!P, = 0.
~id) <
We now present three other proofs of (1.7); these three proofs do
not require that 60""’ék be symmetric.
Following Craig (1938, p. 49), cf. also Aitken (1950, §6) and Rao
and Mitra (1971, pp. 111-112), we may prove (1.7) using a rank-subadditivity

argument. From (2.1) with Ak replacing A we have

P - rank(Ak) < rank(gp-Ak)

= rank(A) + ...+ A )
< rank(A)) + ... + rank(A )
=p - rank(ék) (2.5)

when (d) holds. This inequality string, therefore, collapses, and

_ , 2 . .
rank(?p-—ék) =1 ‘ank(@k), which implies AL ek by (2.1); repeating
the argument with A, ., A ,,... yields (a). To see that this implies
(b) we follow Rao and Mitra (1971, p. 112) by noting that the argument

used in (2.5) implies that

A+ A

2
(A + 4))

and so

AAy+ AR = 0.




Premultiplying by éi yields

A A = :
~i%J + 616361 9’ (2 6)

while postmultiplying (2.6} by 61 yields

2ALAA, =0 =

g, ek A | ~iéjéi'

Substituting into (2.6) yields (b).
OQur next proof of (1.7) follows Chipman and Rao (1964, p. L), cf.

also Styan (1970, p. 571). We write

where @i and Ci are pxri of rank ri. Then

= = '
I IA; = IBCt
Cl
= (BgseruB) |0 s
1]
%k
= BC',

say. By (4) ? and g are both nonsingular and so c' = §_1 and

] 1)
QO?O ’ ’ 90§k
C'B = Ep = ,
1] ]
% » o SkB
which implies that
2 = B,C'B,C! = B,C' = A
~i ~isi~ici <~i<i -i°

AA, = B, C!B.C! =
~i~]

O

for all i¥#J.

Hence (1.7) is established.
10
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y Our last proof of (1.7) follows Loynes (1966), cf. also Searle
(1971, p. 63). A rank-subadditivity argument is used similar to that

used in (2.5):

p - rank(ek)

1A

rank(;p-—ék)

in

rank(éo,@l,...,ek_l,gp-ék)

= rank(A BBy o A A ~k
= rank(A Ak—

< rank(@o) + ... 4 rank(@k_l)

=p - rank(@k).

The rest of Theorem 1.1 is easily proved. To prove (1l.L) we see

that (a), (b) -+

>

n

n
~1
e

W,

+
o~
e

[
>
[

n
o~
1>

H

n

e

while

"
]

z rank({\i) Xtr@i tr{i\i =trA-= rank(.l}), (2.7)

and so (1.4k) is established.
To prove (1.5) we see that (a), (c) + (d) from (2.7) and so (1.5)
follows from (1.7).

To prove (1.6) we see that (b), (¢) -

[}
>

2 2 2
= (JA,)" = VA + A A2
0 = (I = IAT ¢ ) Ay < A Iy

multiplying through by A

Ag yields

11




A7 = A; (2.8)

using (b). To see that (2.8) » (a) we use the rank cancellation rule
{(2.13) in Marsaglia and Styan (197h, p. 271); this rule will also be

useful later on.

LEMMA 2.1. Right-hand Rank Cancellation Rule. If

LAX = MAX and rank (AX)

rank(@) (2.9)

for some conformable matrices A, L, M and X, then

LA = MA. (2.10)

Thus (2.8) + (a) by replacing L, A and X in (2.9) vy éi and M by I. Then
(2.9) becomes (2.8) and (e), while {(2.10) becomes (a). (We note that

the two matrices A, and A  displayed right after Theorem 1.1 satisfy (2.8)

1 2
but not (e).) Then (d) follows from {1.k4) or (1.5).

Proof of Lemma 2.1. Let A = BC', where B and C have r columns and

r = rank(A) = rank(B) = rank(C). Then rank(AX) = rank(~g'¥) = rank(C'X) =
rank(A), and so C'X has full row rank. Thus LAX = MAX equals
LBC'X = MBC'X - LB = MB » LBC' = MBC', which is (2.10). Q.E.D.

Transposing the matrices in Lemma 2.1 yields:
LEMMA 2.2. Left-hand Rank Cancellation Rule. If
LAX = LAY and rank(LA) = rank(A)

for some conformable matrices A, L, X and Y, then

AX = AY.

-~

12




2.2. Proof of Theorem 1.2. Premultiplying (a') by A” yields (a) of

Theorem 1.1 with éi replaced by é-éi' Moreover, condition (c) of
Theorem 1.1 now always holds since A—A.==ZAfAi is always idempotent.

Hence (1.5) implies that A'Qie_@ = 0 for all i#j. Premultiplying by Ai

J
and using (a') yields (b'). Furthermore (1.5) implies that

) rank(A7A, ) = rank IA7A; = rank(A),
which reduces to (d') since (a')
rank(A"A;) = rank(A.), (2.11)
which follows from
rank(@i) = rank(gié-gi) < rank(g-gi) < rank(@i).
Thus (2.9) is established.
We now prove {1.11). Condition (4') implies
[ rank(a,) = rank(a) = rank(A”A) = rank(JA7A;) <] rank(A7A,)

< ] rank(4,) (2.12)

and so (d) of Theorem 1.1 holds with éi replaced by Q_Qi. Since {(c) now

always holds we obtain in lieu of (a)

AAAA =AA (2.13)

by (1.7). But (2.12) implies (2.11) and so we may cancel the front A~
on both sides of (2.12) using Lemma 2.2 to yield (a'). The rest of

(1.11) follows from {1.9).

13
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To prove (1.10) we use the same technique which we used above

to yield )

ATANAAA = AR, (2.14)

vwhich is (2.8) with A, replaced by 5-51. The rank condition (c') and
Lemma 2.1 allow us to cancel the 6-61 on the right of both sides of (2.14)

to yield
AAAA = ATAL (2.15)

Using (2.11) and Lemma 2.2 allows us to cancel the leading é- on both
sides of (2.15) and this yields (a'). The rest of (1.10) follows from

(1.9) and the proof is complete. Q.E.D.

We may extend Theorem 1.1 to tripotent matrices using Theorem 1.2,

We do this in the next section.

3. Tripotent Matrices

A square matrix A is said to be tripotent whenever 53 = A. Tripotent

matrices have been studied by Luther (1965), Tan (1975, 1976) and

Khatri (1977). These authors considered extending Theorem 1.1 to

51""’5k tripotent. This is of interest in statistics since if ¥"l(9’ I)
and A is symmetric nonrandom then x'Ax is distributed as the difference

of two independently distributed x2-variates if and only if 53 = A, cf.

Graybill (1969, p. 352), Tan (1975, Theorem 3.5). !

1k
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Consider, therefore, the following statements:

(a") 53 = A i=1,....k,
(v") AjA =0 for all i#J,
(c") A=,

(a") }rank(a;) = rank(a).

Then it is easy to see that (a"), (b") + (¢"). To see that (d") is also

3

implied we note that when A~ = A then, cf. Graybill (1969, Theorem 12.4.L),

Rao and Mitra (1971, Lemma 5.6.1),

rank(A) = tra°, (3.1)

since 52 is now idempotent, and has rank equal to trA” = rank(A

rank(AB) = rank(A) > rank(@E). Thus

2 2
I rank(a;) = JtrA] = trJA] = trA® = rank(A)

when (a"), (b"), (c") hold. Notice that we have not supposed that

Al,...,gk are symmetric; the equality (3.1) holds even when A is not
symmetric.
As Khatri (1977, p. 88) has pointed out, (c¢") and (d") need not

imply (a") and (b") even if the Ai's are symmetric; e.g., if

b 2 1 2 1 0

-]
1]
w |-
-
k-3
1]
]
w |
>
[[]
*

3

then rank(A)) + rank(4,) = 1 + 1 = 2 = rank(A) and A° = A, but A} # A,

o)
ég #A,, AJA, # 0. Tt is, therefore, of interest to see what extra

15

HTEERY TURT P ¥ e




condition could be added to (c") and (d") so as to imply (a") and (bv").

Khatri (1977, Lemma 10) uses
rank(A) = Z{rank[ei(l}z*l})] + rank[l_\i(l}e-{\)]}, (3.2)

which is rather complicated. We may simplify (3.2) in various ways. To

do this we first note that
A=A « A=A, (3.3)

cf. Graybill (1969, Theorem 12.4.1), Rao and Mitra (1971, Lemma 5.6.2).

Thus Theorem 1.2 implies that (c"), (d") are equivalent to

515{\1 = A, i=1,....k, {3.4)
and

éieéj =0 for all i#J. (3.5)
Summing (3.5) over all j#i and adding to (3.4) yields
A = @.. i=l,...,k. (3.6)
Hence under (¢") and (d") the condition (3.2) is equivalent to

rank(A) =] (rank{A (T +A)] + rank{A (I -A)]}, (3.7)

which is a little simpler than (3.2). But (3.7) implies

Iv

rank(A) Xrank(?Al) =§ rank(A, ) (3.8)

= rank(A)

when (d") holds. Thus equality holds throughout (3.8) and so (3.7) implies

rank(A,;) = rank[A (1 +A)] + rank[A (T-A)], i=1,....k.  (3.9)

Summing (3.9) and using (d") yields (3.7).
16
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} Some motivation for the condition (3.9), and hence also for the |
equivalent conditions (3.2) and (3.7), may be obtained from the following
characterization of a tripotent matrix, extending Lemma 5.6.6 in Rao and

Mitra (1971, p. 1l1k):

LEMMA 3.1. Let 5 be a square matrix, not necesssrily symmetric.

Then A3 = A if and only if 4
- 2 =
2 2 1
rank(A) = rank(A+A%) + rank(A-A%). (3.10)
; 2 2 :;
Proof. We use Theorem 1.2 with A, = A+ A, A= A-A, and
) o 1
Ap +A,=2A If @3 = A then %@ = (24)” and (3.10) follows from (1.9)
! since
(A-+A2) %@(6-+@2) = %@3 4 éu + %@5
=e§62’

To go the other way we use (1.11). Then (3.10) implies

0= (a+a%) 3 (a- %) =g - 3 ;
and so 53 = A and the proof is complete. Q.E.D.
This suggests using the condition
AA = A° i=1,... .k (3.11)
~i- <i? 0
i
instead of (3.9), or (3.7) or (3.2). We obtain:
'#
17
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THEOREM 3.1. Let Ql,...,ek be square matrices, not necessarily

symmetric, and let A = 261' Then

(a") A=, i=1,....k,
and
(") 5153 =0 for all i#j,

hold if and only if

(C") 6 = 6$

(a™) Zrank(@i) = rank(A),
and

CONNPWE

>

, i=1l,...,k.

The condition (e") may be replaced by (3.9}, by (3.7), by (3.2), by

(el) A%A = A, i=1,....k,
-i.. ~i
or bx
(e2) AA = AA, i=1,....k.

Proof. We have already shown that (a"), (b") imply (c"), (d") and
hence also {(e"), (3.9), (3.7), (3.2), (el) and (e2). To go the other way
let (c¢"), (d") hold. Then (3.4) and (3.5) are true. Substituting (e")
yields (a") and AZA,
We have shown that when (c"), (d") hold, then (3.9), (3.7) and (3.2) are

= 0 for all i#j; premultiplying by Ai yields (b").

equivalent. To see that (a"), (b") are implied we use Theorem 1.2 with

the A, 's replaced by the A, (I+A) and the A, (I1-4) in (3.7), which

i
equation shows them to be rank-additive (the sum is 2A). Then(1.11)
implies that

18
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A(I+R(ZMA(I-1) = 0, (3.12)

Substituting (3.4) and (3.6) into (3.12) yields

P
ok
"
—_
r
b
g

using
(A, +A%)(I-A) = 0.
~i “i’'s < <
Postmultiplying by @J (3#1) and using (3.5) gives
AA, = -A°A (3.13)
Ay = -AGA,. 3.13

However, (1.11) also implies, cf. (3.12),

éﬁ%'@“?ﬁéﬁg+6)=g’
which leads to
AA, = A°A (3.14)
2173 -i%y” :

Adding (3.13) and (3.14) yields (b"), and substituting (b") into (3.L4)
gives (a").

Now let (c¢"}, (d"), (el) hold. Then (3.4%), (3.5) hold and premulti-
plying (3.5) by A; yields (b"). Then (3.4) implies (a"). Finally, we let
{c") (d") (e?2) hold. Then substitution of (e2) into (3.4) yields (el),
and the proof is complete. Q.E.D.

Khatri (1977, Lemma 10) proved the part of Theorem 3.1 with (e")
replaced by (3.2). He also claimed that (b"), (c") » (a"), (d"), (e").
But this is not so for the same reason that this does not hold in

Theorem 1.1; again if we let

o 1 0o -1
A = . A, = , (3.15)
1o lo o R P
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then (b"), (c¢") hold, but (a"), (d") do not. If, however, we add the

condition
(e"') rank(A7) = rank(a,)

to (b"), {(c") as was done in Theorem 1.1, then (a"), (d") do follow.

From (b"), (c") we have
3 _
ZL\i = Z‘él
and so, cf. (2.8)

8 =

o>

which implies 513 = A; using (e") and Lemma 2.1.

The commutativity condition in Theorem 3.1:

(e2) AA = A4 i=1,...,k,

...~i’

has been used before in a generalization of Cochran's Theorem. Recall

the statements.

(") AjAy =0 for all i#j,
(a") ¥ rank(A,) = rank(A),
(e"') rank({\?) = rank(A, ), i=1,...,k.

Then Marsaglia (1967, Theorem 3) and Marsaglia and Styan (1974, Theorem15)

proved that
(d"), (a") « (a"), (e2)
("), (e”) > (a"), (3.16)
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while Luther (1965, Theorem 1, p. 68L) and Taussky (1966, Theorem 2),

assuming the ;}i’s to be symmetric, proved that
(b") <« (a"), (e2).

The condition (e"')in (3.16) cannot be dropped in view of the example
(3.15); when the A,'s are symmetric, however, (e") is automatically
satisfied.

Luther (1965, Theorem 3, p. 689) and Tan (1976, Theorem 2.2) have

given versions of Theorem 3.1 when the Ai's are symmetric. We obtain:

THEOREM 3.2. Let el"""ﬁk be symmetric matrices and let A = ):13.1

Then
(a") A=, i=1,... .k,
and
(") AiA =0 for all i#}
hold if and only if
(C") é3 = 'I}a
k
(a™) f_ rank({\i) = rank(4),
i=
and
(es) tr.l}{\i > tr{\f, i=1,...,k-1.
The condition (es) may be replaced by
k
(esl) trl}2 ) tr{\f
i=1
or by
2 .
{es?2) r&nk(l_&i) 2 traj, i=1,...,k-1.
21
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The condition (es2) was used by Luther (1965, Theorem 3, p. 689),

who also showed that the condition (es) may be replaced by

trA;Ay 2 0 for all i#3;  (3.17)

summing (3.17) over all i#j yields (esl). Luther also considered the

condition

A? =A., i=1l,....k-1, (3.18)
~1 ~1

and proved that (3.18), ("), (d4") » (a"), (b"), while Khatri (1977, Lemma 10

and Note 9) showed that (a"), {(c"), (d") » (b"). But (a") clearly implies
(3.18), which implies (es2) with equality in view of (3.1). Tan (1976,
Theorem 2.2) gives a condition which seems to be intended to be (esl)

with equality (Tan has an extra $ (in his notation) inside the trace on

both sides of his condition).
Our proof of Theorem 3.2 uses the following result, cf. Graybill

(1969, p. 235).

LEMMA 3.2. Let A be a square matrix. Then

tré'e > tr{\.2

with equality if and only if A is symmetric.

Proof. The result follows at once from
tr(A-A")'(A-A") =2umy5-m@% 2 0. Q.E.D.

Proof of Theorem 3.2. That (a"), (b") imply (c"), (4"), (es), (esl),

(es2) follows from Theorem 3.1. To go the other way, let (c"), (d") hold.

Then (3.4) and (3.6) hold, and so

22
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2, = ' 2 _
b trA; ATA, = tr(AA;)'AA, 2 tr(AA.)T = trAA AR (3.19) T
becomnes
traZ > trad, . (3.20)

The condition (es) implies equality in (3.20), and hence in (3.19) and

so by Lemma 3.2 ééi = (5@1)' = Ai@, which is condition (e2) of Theorem 3.1,

but only for i=1,...,k-1. Substitution in (3.6) yields
AA A, =0, i=1,...,k-1 and j#i. (3.21)

But (3.4) implies that rank(é@i) = rank(éi) and so by Lemma 2.2 we may '1
cancel the A in (3.21) to get

=0, i=1,...,k-1 and j#i.
Thus

i=1,...,k-1,

~
P
1]
O
1}
t
8
je
-
ot

upon transposition and so (b") holds. Substitution in {3.4) yields (a").

Now suppose (c"), (d"), (esl) hold. Then so does {2.20) which we

may sum to yield

k
) trA
i=1

2

i 2 tr@g.

But (esl) indicates that this inequality goes the other way and so we

must have equality, which in turn implies equality in (3.19) and that @@i

is symmetric for all i=l,...,k. Thus (a"), (b") are implied as before.
Finally let (c"), (d"), (es?) hold. Then from (3.4) AA, is

idempotent and so |

trAAi = rank(AAi) = rank(@i) > trAf, i=1l,...,k-1,

is condition (es) and our proof is complete. Q.E.D.
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We conclude this section with an extension of Theorem 3.1 to r-potent
matrices. We define a square matrix A to be r-potent whenever ér = A
for some positive integer r > 2. As Tan (1975, Lemma 1) has pointed out,
the nonzero eigenvalues of an r-potent matrix are the {r-1)th roots of
unity. Since a symmetric matrix has only real eigenvalues, a symmetric
r-potent matrix must be tripotent even though Tan (1976, p. 608) suggests

otherwise.

We obtain:

THEOREM 3.3. Let ﬁl""’ék be square matrices, not necessarily

symmetric, and let A = Z@i. Let r be a fixed positive integer > 2. Then

r .
(a) A, = éi’ i=1,...,k
and
(v) ARy =0 for all i#]

hold if and only if

r
(c) A" =4,
(d)  rank(A;) = rank(4),
and
-2 r-1 R
(e).. Aiér =48, i=1,...,k.

The condition (e)r may be replaced by

2. r-2 .
(el)r -{_\1{\ = 61’ i=1,...,k,
or by
r-2 r-2
(e2)r AA =A A, i=1,...,k

2k




Tan (1975, Theorem 2.1) suggested that (c), (d) + (a), (b) but,
cf. Knhatri (1976), seems to have realized that this is not true (Tan, 1976).
When r =3 the conditions (e)r, (el)r, (e2)r become the conditions (e),
(el), (e2), respectively, of Theorem 3.1. When r =2 the conditions (e)r,
(e2)r are automatically satisfied and Theorem 3.3 becomes part of
Theorem 1.1. The condition (el)r, however, when r =2 becomes @5 = A,
or (a), and so (el)r may be too strong an extrn condition to require that

(¢), (d) = (2), (b) in Theorem 3.3. Under (c), (d), however, the

condition (el)r is equivalent to the commutativity condition o
ATT)AL, i=1,....k, (3.22)

which is in the same spirit as the condition (e2)r. When r =2 the
condition (3.22) is automatically satisfied.

To prove that the conditions (3.22) and (el)r are equivalent when

(e), (d) hold we note first that 6r—2 = A" when A is r-potent. Then,

ef. (3.4)-(3.6), we see that (c), (d) are equivalent to

AASPA, = 4., i=1,...,k, (3.23)
~1-~ ~1 ~1
r-2 .
AjAT A =0 for all i#j, (3.24)
A AT =, i=1,...,k, (3.25)

and (3.23) shows that (3.22)H(el)r.

Proof of Theorem 3.3. Let (a), (b) hold. Then so does (c), and

?+r-2 - éT—l

(Ar-l)2 = A :

~i ~i

is idempotent and so
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rank(A,) = trAl " s
<1 ~i

ef. (3.1). Hence (a), (b), (c) imply

r-1 r-1 -1
Z rank(@i) = Ztrei =tr 251 = trér = rank(@),

which is (d). Then (b) implies (e)r and (e2)r and turns (el)r into (a).
To go the other way, let (c), (d), (e)r hold. Then so do (3.23), (3.24).
Substitution of (e)r into {3.23) yields {a), while substitution of (e)r

r-1

into (3.24) yields éi A, =0= 6163 upon premultiplication by @i and

J
substituting (a).

Now let {(c), (d), (el)r hold. Then (3.23), (3.24) nhold and
postmultiplying (el)r by @J (j#1) yields (b) by substituting (3.24). Then
(a) follows from (3.23) by use of (b). Finally, suppese that (c), (d),

(e2)r hold. Premultiplying (e?)r by Ai and substituting (3.23) yields

(el)r and so owr proof is complete, Q.E.D.

Tan (1975, Theorem 2.1) also sumrested that (b), (c¢) and

rank(@i"l) = rank(gf(r'l)), i=1,....k, (3.26)

imply (a), {d), but withdrew this, cf. Tan (1976, p. 608). It is

straightforward, however, to see that (b), (¢) imply

Al = A,
-.l ~1
and hence
r+l _ 2
AT = AL (3.27)
The extra condition
|
2
rank(@i) = rank(@i),

26
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3 w—m
. AL e S el

cf. (e"') , applied to (3.27) then yields (a) in view of the rank
cancellation rule Lemma 2.1. The extra condition (3.26) is, however,
not sufficient (unless r=2), as is seen from the counter-example

provided by (3.15).

L, Statistical Applications

The analysis of variance involves the decomposition of a sum of
squares of observations into quadratic forms. 1In classical cases these
quadratic forms are independently distributed according to xg-distributions.
Then ratios of them are proportional to F-statistics. Cochran's Theorem
provides an algebraic method of verifying the necessary properties of the
quadratic forms to justify the F-tests.

As indicated in Lemma 1.1, when x has the distribution Q(Q, ;) then
52 = A implies 5'55 has the x2-distribution with degrees of freedom equal
to the number of unit eigenvaluesof A, the other eigenvalues being O.

Lemma 1.2 statesthat AB = O implies independence of x'Ax and x'Bx

because the joint characteristic function when x - N(0,I) is, ef. (1.3),

g HRBETHNE L 11 son 18] ™% = |1- 137 1- 103 7).

As an example, consider the one-way analysis of variance. Let Yia
be normally distributed according to E(ui, 02), i=l,...,m, a = 1,...,n,
and suppose the mn variables are independent. Under the typical null

hypothesis H: ul = L. = Mo = py, say, the exponent of the normal
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. . . . m n 2
i distribution is Xi=l j=1 (Yiq u).” Let
4
m m
- -2 -2 -2
q, =n z (y.-¥)" =n Z yo - mny”,
. i i
i=1 i=1
m n _ m n mo,
4 = X 2 (yia'-yi) = Z X yia - 5 yi ’
i=1l a=1 i=1l a=1 i=1

- (1) _ '
yi/m' Let{ - (yila"-’y. ) ]

in
(1)’ (m)'
y= (" ey ),
1 1,
= = - ® 4
61 n(Im Egmgm) Enéne
= ® - !
62 zm (In Hgngn)’
A, = —¢cc'® €',
~3 mn ~m~m “n-~n
where €, = (1,...,1)" of n components and €, = (,...,1)' of m components.

Then q = y'@iy. We easily verify that X@i = ;mn’ rank(él) = m-1,
rank(g } = m(n-1), and rank(@B) = 1. Then (a) and (b) hold. (Of course,
in the simple example above the conditions could be verified directly.) By
Lemmas 1.1 and 1.2 the quadratic forms are independently distributed as
x2's, the last being noncentral.

The multivariate analogue of the x2-distribution is the Wishart
distribution. 1f Xl’

to E(Q, g), then the distribution of 5 = 2221 ¥u¥& is known as the Wishart

...,Y are independently distributed, each according

distribution. (Cf. e.g., Chapter 7 of Anderson (1958).) 1If Qgaecesly

have independent xz-distributions when the dimensionality of Ya is 1,
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N (1) , _¢oN (k) , .
a,8<1 a8 Yalgr oY = XG,B=1 8,8 YqYg have independent

Wishart distributions; here Ai = (aa;)), i=1,...,k. Cochran's Theorem

is correspondingly useful in multivariate analysis of variance.

then @ = ]

It should be noted that when Al,...,Ak are symmetric several proofs

show that there exists an orthogonal matrix that simultaneously
diagonalizes @l,...,Ak, the resulting diagonal matrices have O's and 1l's
as diagonal elements, and the 1's in the transformed éi correspond to O's

in the transformed A, J#i. cf. (2.3)-(2.%).

J
If 53 = A, the eigenvalues of A are 1, -1, and 0. Hence x'Ax for
§'~§(Q, {) has the distribution of xi - Xg: where xi and XS are independent, the
number of degrees of freedom of xi is the number of eigenvalues equal to 1
and the number of degrees of freedom of xg is the number of eigenvalues equal to -l.
Components of variance are often estimated as differences of
quadratic forms. Let yiu =y + ui + Via’ o=l,...,n, i=1,...,m, where u

is an unobservable constant and the unobservable ui's and via's are

independently normally distributed with means O and variances €u§ = oﬁ
&nd&‘,v‘ri“)a = 0‘2,. Then for ql and q2 as defined above

€q, = (m-l)(noi + 03),

€q, = (mn-m)os.

Thus q; (m-1) - qz/(mn—m) is an unbiased estimator of noi. Other
differences of quadratic forms arise in other designs.

Press (1966) has given the distribution of an arbitrary quadratic
form, which is a linear combination of x2's with possibly negative
coefficients. Let Z = axi - ng, where xi and xg are independently

distributed as xg-variables with m and n degrees of freedom, respectively,
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and a >0, B>0. The density of 2 iy

Limtn)-1 -u/la
t e

(K/T(%m) ] pllen, L(m+n); t{a+r)/0aB], t 2 0,

(mtn)-1 t/o8
<

[K/I‘("zn)](--t)'é lhm, lm+n); - t(a+8)/2a+B], t < O,

-1 L (m+n Y hn
where K = = 22( ) a®B? and

_ _P(1-b) . . r(b-1) 1-b o oah.
pla b x) (Lot lPl(a,b,x) YAy X lPl(lﬂl b,>-byx),

and lFl(a,b;x) is the confluent hypergeometric function. Robinson (1965)

gave a similar result for a=8=1. In the special case of equal degrees of

freedom (n=m) Pearson, Stouffer and David (193") pgave the density of

2 2
Z = X; = Xp as

-y
TR (0z)
n-"

2/7 I'(n)

where Kr(x) is the Bessel function of sceond order and imaginary argument.

In Theorem 3.2 (a")indicates that a; = x'Aix is distributed as the
difference of twc x2—variables if x ~y(Q, I) and (b")states that a and qJ
are independent. Then (c")and {d")and either (es), (esl), or (es2) are
conditions implying (a")and (V') In most cases (¢") is easily verified
and {d")is as in Section 1. Each of (es), (esl), and (es?) require

computation of tr@f, i=1,...,k-1, and (esl) needs also tr@ﬁ. Of the

(o]
left-hand sides, trA” may be easiest to compute.
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