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Abstract

A review is undertakxen of the various forms that have
been obtained for the recurrence relation from which the
eigenvalues of Laplace's tidal equation may be obtained.
Such forms sre shown to be analytically consistent and
are discussed in relation to their subsequent numerical
evaluation, By determining eigenvalues of equivalent
depth for a given frequency of oscillation instead of the
other way around the problem becomes a straightforward
one of matrix diagonalization. If solutions are based
on normalized Leijendre polynomials the matrix is symmetric

A method of ¢valuating the related wind functions is

described.
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l. Introduction

Laplace's tidal equation governs the latitudinal
variation of the depth of a thin layer of uniform fluid
on a rotating sphere that is executing small periodic
oscillations in longitude qﬁ and time T, Non-zero
solutions are found for discrete values (eigenvalues)
of the frequency of oscillation & : alternmatively, if
O is given, oscillations are found for eigenvalues of
the undisturbed depth A .

Laplace's tidal equation also arises in the treatment

of oscillations of a stratified and comnpressible atmosphere,

h being replaced by a constant of separation, which is
usually dinensionalized to a certain unit of length and
termed an equivalent depth. In this case the equation
governs the latitudinal variation pf pressure (and also of
temperature and vertical velocity) at any given height and
h has no direct physical interpretation, being capable
under certain conditions of assuming negative values.

A review of the theory of atmospheric tides has been
presented by Chapman and Lindzen (1970). Various
extensions of the theory have since been made to damped
oscillations in which case complex values of & and h

are introduced. (Semenovskiy, 1971; Volland, 1974a,b;
Ishimine, 1977). '

Work on the solution of Laplace's tidal equation was
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pioneered by Hough (1897, 18Y8) in terms of associated

Legendre polynomials leading to a third-order recurrence

relation between the series coefficients, The derivation

of this relation has been presented on several occasions

and will not be repeated heres the relation is to be found

in various forms which have led to different numerical

cve e h - —

procedures for evaluating the eigenvalues. This paper

ST e

reviews the various theoretical results with the objective i

of showing their relationship and providing an understanding

T i e

|
relevant to their numerical analysis. !
!

2. Laplace's tidal equation

Periodic variations in longitude and time have been

£(44>+s't) ‘
variously formulated in terms of either o or
(44 ~5t)
4{‘ + . Westward and eastward progressions of phase

may then be treated by assigning both positive and negative
values to one of the quantities -+ ,6 . We limit the
discussion to two forms of representation:

( (24~ 5t)
(i) = y Where s = 0, +1, +2, ... and ¢ is a

constant positive frequency, and
c(a¢ - st)
(ii) a.( ¥ , where s is a ncn-negative integer and &

a constant non-zero frequency. '

Form (i) was adopted by Hough (1897) and appears more i :

trequently in the literature than form (ii): it is found

{
4
i .
¢ iy N
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in the review of Chapman and Lindzen (1970). Form (ii)
has been adopted by Longuet-Higgins (1968), Volland (1974a)
and Volland and Mayr (1977). With (i) a westward
(eastward) progression of phase has s positive (negative);
and with (ii) a westward (eastward) pfogression of phase
has o negative (positive). Any results obtained in one
notation may be readily altered to apply to the other

according to the scheme in Table 1.

Table 1 : Ranzes of values of ¢, s for

westward and eastward travelling waves.

Direction of - Form (i) Form (ii)
travel of wave

Westward 4>0, >0 A%0, 6<0

Eastward A<0, 5 >0 A50, s>0

Wwith (i), Laplace's tidal equation may be written

as

d [\.-_t‘o\@ﬂ l [A o T
o T - 3|5, | N S - e = O ‘l)
R S e t :-PJ®+,& o

where
P = C.cte (2)

o o e e ————— ~ a R ¥ A Pa AR
ke o A

-

b 2 W




@ is colatitude, «> the Earth's rotation rate, a ihe
Earth's radius and g the acceleration due to gravity.
Table 1 and (3) show that with form (ii) the only change
required to (1) is the replacement of s/f by -s/f in the
centre term without regard to the direction of travel of

the wave,.

3, The recurrence relation with form (i) periodic terms

For given s (> 0) we write

® - i:: CE P2 )

Substitution of (4) into (1) leads after considerable

reduction to

Qr"'cr'a' * (M"— }\) Cr- *'sz C{‘—o'). =0 ((’2‘/5) (S)

where

(r-A)(r-5 =-1)

L 6
-2 L2ra|)(1r—%)[4/§- l'(l'-l)] ©
M - f’[c-(rn)—«s/ﬁ-’] (r<-1)1(r+,s+ E-S+ 1) B

- e R o C+ .)?-L‘.'Zr*‘s)(:lr.. 1)[‘4,§—U‘+\)(r“l)] .

=) Crteaty )

TR [l - R
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e

S (r4+8+-2)(r+.841)
~2 (2r+'5)Lﬂr +5')[4/§—(r4\)(r417]

I

®)

i A sA

FP——
B -

N = Rgfhote” @) ;

Equations (5) to (8) were first given by Hough (1898).
For given s (< 0), (1) shows that ® may be obtained

by replacing s by -s (>O0) and f by -f wherever they occur
in (6) to (8), as (1) is unaltered by these changes of

sign. For s = 0, M_ is infinite, C = O and { is ; i

o
based on P2, P4,... .

2 Lo

The natrix of coefficients of (5) has the form

M-»T = 0O (t0)

!
]
‘
where I denotes the unit matrix. On truncating Ii after ‘
|
the n th row and column, standard conputer routines are |

available for obtaining n eigenvalues of N . Numerical

accuracy may be investigated by repeating the calculation : F
with different values of n.

In Hough's work, fluid depth h and hence M\ were ' i
taken as given and eigenvalues of f and hence & were ﬁ

sought. Hough replaced (5) by two recurrence relations

involving Cr and a set of auxiliary constants Dr‘ Then

e m
<~ FLECR T




by eliminating Cr and Dr an equation in the form of a
continued fraction was obtained having an infinite number
oI roots for the frequencies of equatorially symmetric modes.
In a like manner another continued fraction was obtained
for asymmetric modes. As the numerafors of the fractions
were independent of f, only the denominators needed to be
re-determined at each successive iteration, which was
particularly advantageous for hand calculations.

If & is given and eigenvalues for A (and hence h)
are sought, the continued fraction iteration can still be
followed but appears less attractive than the matrix
formulation (10) as starting values need to be taken for
each solution whereas diagonalization of M yields n
eigenvalues simultaneously. In recent times, eigenvalue
solutions by the continued fraction method have been
evaluated for symmetric modes by Kato (1966) and Ishimine
(1977).

Chapman and Lindzen (1970) present equation (5) and give
Hough's two sets of recurrence relations in Cr and Dr as
the basis for finding eigenvalues of ) and hence h,
Procedurally, the method appears less attractive than
matrix diagonalization as an array size of (2n x 2n)
instead of (n x n) is needed for the calculation of n
eigenvalues as A occurs only in alternate diagonal
elements. Also as the form of (10) is lost, an iterztive

process needs to be followed to reach cach root.




4, The recurrence relation with form (ii) periodic terms

Longuet-Higgins (1968), following Love (1913), introduced

functions analogous to velocity potential and stream function

= 4 i (A -st)

% = :L;A A,. P'_ ‘.}“)4 ‘ | Ul)
L c(sg-ist

¥ = ¥ ;B,,?:(p,z( #oem8) (2)

~=d

where. s 2 0. The recurrence relations

Keher prBe 40P = 0 %)
L‘t'Br - [‘mA(_u - ‘1;_,A,,, = 0 :
were obtained, where
_ (r+1) (F+-4) _ . rlr=2+1)
- - (2¢41) ) i (r+1 ) 26=+1)
(%)

A —(r+1)

= = - L = A
Kr- ﬁ ¥ r(r—-rl) (g/h) L,_ §+ =+ l)

The coefficient.of A._, in (13) should read -q__, in
Longuet-Higgins (1968) instead of -q,,1» and in equation
(3.19) of that paper the sign of the term in Bg needs to
be changed. The same equation has been reproduced in

equation (28) of Volland and Hayr (1977) without correction

and the same error of sign appears in equation (2.12) of
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Volland (1974a) where the determinant of the coefficients
in (13), namely

Ko gt 0 0 - )

~Jo Lau s 0 ...
0 <1441 Kz r3*3 oo

. ¢ -

appears without the two negative signs. On eliminating

Br from (13) we obtain

(Vr-.: Y- A Y e e lew l'_'r.u!fr*zA - A
Lr-u o T (K,—'*_ Lea " Ll‘-ﬂ ) Ar * L.r+l o 0 L )

In the case of a uniform fluid, the dependent variable
in (1) may ve taken as the fluid depth and hence as the
rate of chanze of fluid depth with time. By mass continuity
the rate of decrease of fluid depth equals the divergence
of fluid from a unit column, and this is proportional to
V"‘I’ s Where Vz denotes the horizontal Laplacian operator
on a unit sphere. Hence (/) in (1) (with s/f replaced by

-3/f) is such that

LT . v E 1)
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In the case of a compressible atmosphere, the proportionality ;

is height dependent. From (4), (11) and the relation ’ f

1

Ty S _ - Py (S

YP o= e (r+) P2 us) 3

P

g it follows that |4

t

: l\,. oc C.—/ F(a) (19)

On substituting (14) and (19) into (16) a relation in Cr | ﬂ

is obtained which agrees with (5) on changing s/f to =s/f

g to accord with the use of form (ii). 4

The matrix of coefficients in (13) is seen by (14) to

separate into terms in f and )/f having the form

(Longuet-Higgins, 1968)

L e — e —

WpT «C-§1 @)

where J and C are readily constructed from (14). For
given \/f'= Coo SaY, eigenvalues of f may be obtained by
matrix diagonalization of coJ + C. This procedure does
not directly solve the problem of finding eigenvalues of
f for given Py , but provides a sequence of pairs of
values (f,, )\i) such that )\i/fi = ¢,. By taking a ’
range of values of c , Longuet-Higgins (1968) was able

to plot curves of £ = £( A), each curve relating to a

particular mode. Alternatively if a range of values

of £ were taken, the same set of curves in the form
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A = A(f) could be obtained by diagonalizing M of equation
(10) (with s/f changed to -s/f). The latter procedure

was followed in principle by Volland (1974a,b) in arn
investigation of the effect on M (and hence on h) of
varying the imaginary part of a complex f for particular
modes. A matrix of coefficients in the form.(20) was
adopted and on noting that only alternate meubers of the

diagonal elements KS, Ls+l’ K se+e contained )\, the

s+
determinant was condensed to one of half the order by
operations betws2en columns, The effect of this reduction

was the same as eliminating B, from (13) and using (16).

5 The use of normalized P
r,S

The results reviewed above have been based on the

associated Legendre polynomials

‘LAP:- La.l)

L’(. “4'»4

» 14/2
P2 = (- K)

which are related to the normalized form Pr s by
9

s _ 9_((’-&/&)! ‘}i QJ_Q)
F.- - [ (zr.:)(r-:;‘. Pr,/s
Writing
@ = Z & ﬁ,n (f‘) (‘23)

s s
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and comparing with (4) after substituting from (22) we

have

“ {u«m)(r-»ﬂr (a%)

2 (Cr+s)!

C, =

Substituting (24) into (5) and multiplying through
)
by l2(r + 8)t/(2r+ 1)(r - s)i]z, we obtain

Lea @ra ¥ (Mf*))“r t L‘_ a . . = 0 (34 @f)

2

where

i
[(r-* s 1)r+ a+2)(r-=5 *‘)(”—41»2)]
- (1r+3) [(_‘)r-n) (2r +sﬂt [4/{ —(ra-)(r.q)-)

L, @¢)
Equations (25) and (26) have been obtained by Dikii (1965)
although the factor (2r + 5) in the denominator of (26)

was misprinted as (2r + s). A typographical error also
appears in the recurrence relations which precede the
derivation of (25), where the factor (s/f - n + 1)

appearing in the coefficient of bn—l should read

(s/f - n -1). Dikii (1965) obtained the expression

M = - f7-1 .+ (F-8)rx8)(s7]-7+1)
- (A/£+r)(4/""") (2r- J(2ra \)(4/‘)4 f)(,_s/{- ,(_.-_‘ﬂ

(F-8 +1)(r+54 .)(A/f 4T+1)

(27)

+ @ r+1 (2 r+3)(4/{- r-1) [AI(—-((.. |)[r42)]

—— e et 1t




Equation (27) may be shown to be the same relation as

o (7) by separating it into its component partial fractions
witk denominators (s/f + r), (s/f - r -~ 1), [s/f - r(r - 1))
and [s/r -(r + 1)(r + 25} and then combining terms in
(s/f + r) and (s/f - r - 1), -

From (25) the matrix of coefficients is obtained as

F - NI, where

F=[MO0OL 0 0 --.| @)
0 M,0 L, 0 ...
L, 0 Mz O bgaz » - .
0 Lqu 0 Mz O L v »
0 O Lth 0 F&w# s e

As F is symmetric, it may be shown (Jones, 1970) that
the eigenvectors are orthogonal and that, on account of
the orthogonality of Pr,s’ the eigenfunctions (Hough
functions) are orthogonal.

Normalized spherical harmonics were adopted by Jones
(1970) in the development of a general theory of atmospheric
oscillations by expanding in terus of vector harmonics to
obtain a matrix formulation of the equations of motion.

On approximating to the case of classical tidal theory,
mode decoupling is achieved by transforming to basic field

variables that diagonalize a certain matrix of infinite

}
;
1
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order whose inverse is

H' = O [A-2TAT]L (29)

where T has non-zero elements

T T (Fres = Yr-641)c (ra2) (30) \
e = ral, ¢ - (_r*')‘(if*‘)Llr*S) ]

and g
L= r(c+) 1 G0 :

A= [1-egyre] 1 62) »

. )

L and A are diagonal matrices whose diagonal elements ?
have r = sy 8 + 1lye0e¢ &

On multiplying out (29), it is found that |
H-l - f-’). F (.53)

The eigenvalues of H are therefore those of F1 times fa,

i.es 12/ >‘i or 8.26‘2/8h1 by (3) and (9).
For numerical work, the order of arrays may be halved

by treating (25) as two sets of equations whose coefficients

form matrices F, - NI and F, - NI, where

. 1 (34)
Fc- = M4 LA’ O O L I ]
LA M,g.oz L4¢2 o * ; '
Q Lgez Mgy Ly - - :
| _ -l 3§
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r

F = ”Abl L»su 0 Y . e .1 (35)

L“b\ NA*’-’ LJ*J Y ‘£ -
0 L,«; M‘ﬂ' Lso¢s‘ c o

F
L
"

i » . - . J

The first set leads to eigenvectors for (as, B yorene )
and hence to eigenfunctions by (23) that are equatorially
synanetric being based on Ps,s’ Ps+2”“ . The second set

leads to eigenvectors for (a PIRRY ) which are based

s+l° 85+

on P greee and hence to the asymmetric solutions

s+l,s’ Ps+5,
(Dikii, 1965). i

6. £Evaluation of eicenfunctions and wind functions

before calculating C) from (23), the vector
(as, o, 8,09 O,eee ) is normalized by dividing it by |
2 2
(a8 + 85,5
treated likewise. C) is then determined apart from its

teoe )}é; and (as+1’ o, as+5’ O,¢e0 ) is '

sign, which is arbitrary. Signs may be chosen so that
symmetric functions are positive at the equator and |

asymmetric functions are increasing with latitude at the

equator.
The horizontal wind coumpounents of a tidaul oscillation

depend on horizontal sradients of the pressure field and

latitudinally depend on functions derived from ®. With
form (i), these functions are (Chapman and Lindzen, 1970) | i
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for the eastward and northward components respectively.

Series expansions of ®u ’ @V in terms of Pr g are
1

not obtainable, but developments are possible for

S. = a0 @o_ Se T AN @v (3%)

v

From (36) and (37) we have
§S, - 1S, ~@f)O -0 ()
l“su - {Sv - 20 = e (4e)

where D= (- lA‘)C‘IJR . For s > 0, we write

5‘0 = 3 ur’?f’A Sy ™ rg.“ v, T:_’é 4

and note that (39) is unaltered for s > O if written as
fSU ~ "‘Sv - (Ml/f’)@ = 0 ()

Then by (23), (41) and the relations

TR SIS




- e o LA ol WA g i~ - Nl A M5

e 0 s @ik e A, B . 54 G SO LSS

- 18 -

o Pr,A = ‘1( Pr-s,a + "Lr-v' ?rﬂ'-o (W3) :
¢
D?";" - ("“)"Lr?r-t,é - rd,, ‘Pr-n,‘é k)

where

d, = [ Viae-0)” ws)

the coefficients of P, , . in (40) and (42) give
]

]

de f‘l-o"r_' -~ dp,up, — (r-2)d ar t (T41)d a, o)

dev, = {u’r-a - dr, Ve © Cr14Vg) ac, ®7)

1

By successively putting r = s, s + 1,..s and taking

a, =u, =v, =0 for r <s, (46)and (47) enable

(uS’ 0, us+2’ 0,... ) and (0, Vs+l; O’ Vs+5’ooo ) to be
calculated for symmetric Hough functions 1tor which

Ag4l = Bg4z T eee = O; and likewise (O, u O, u

S+l’ s+3’... )
and (vs, o, V0o Oyeee ) for asymmetric Hough functions

for which 8g = 85,5 = eee = O. C)u ’ Qﬁv can then be

obtained from (33) and (41) except for the end points

P =o0, x. : '
To calculate ®U' ®V when s < O, it is only

necessary to replace s by -s (>0), and t by -f, as it

follows from (40) and (42) that the above procedure leads

>R s,
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to the evaluation of ®U and "@W If £< 1, (36) and
(37) become indeterminate at W = f, whereas no such

difficulty arises with the above procedure.

7. Discussion

The recurrence relation (5), which is that originally
derived by Hough, has a matrix of coefficients of the
form of equation (10) and standard computing routines
are available for the determination of its eigenvalues
and eigenvectors. If eigenvalues of equivalent depths are
required for a given frequency of oscillation the results
are obtainable in one step, but if eigenvalues of frequency
are required for a given depth an approximating iteration
is necessary. The latter case arises in a study of the
free oscillaticns of the atrosphere as equivalent depth
is then determined as an eigenvalue of the vertical
structure: it was ilso the problem that concerned Hough
and in devising an iterative procedure he undertook
further analytical developrents of the recurrence relation.
These developments are not however essential to the
eigenvalue analysis and it it doubtful whether they offer
any advantage over the matrix formulation with present-day
computing facilities.

The recurrence relation recommended for use is

equation (25) which was given by Dikii and corresponds

ol
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R mrer———
- v S g gt b R S PO 5 J,df’a AR S T
s, - - el aare Gl poafiga o o e o > 2 e N e

i

B2, T, 2 R PO




- 20 -

to solutions based on normalized associated Legendre
polynomials. Apart from th€ better numerical conditioning
that is to be expected with normalization, there is the

simplification of a symmetric matrix.
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