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Notes on obtaining the eigenvalues of D TA,3

Laplace's tidal equation u t .

By_
G. V. Groves

Department of Physics and Astronomy,

University College London,

England 1.19

Abstract

A review is undertaken of the various forms that have

been obtained for the recurrence relation from which the

eigenvalues of Laplace's tidal equation may be obtained.

Such forms are shown to be analytically consistent and

are discussed in relation to their subsequent numerical

evaluation. By determihing eigenvalues of equivalent

depth for a given frequency of oscillation instead of the

other way around the problem becomes a straightforward

one of matrix diagonalization.. If solutions are based

on normalized Le~endre polynomials the matrix is symmetric

A method of evaluating the related wind functions is

described.
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1. Introduction

Laplace's tidal equation governs the latitudinal

variation of the depth of a thin layer of uniform fluid

on a rotating sphere that is executing small periodic

oscillations in longitude r and time t . Non-zero

solutions are found for discrete values (eigenvalues)

of the frequency of oscillation t : alternatively, if

Sis given, oscillations are found for eigenvalues of

the undisturbed depth f.

Laplace's tidal equation also arises in the treatment

of oscillations of a stratified and compressible atmosphere,

h being replaced by a constant of separation, which is

usually dimensionalized to a certain unit of length and

termed an equivalent depth. In this case the equation

governs the latitudinal variation of pressure (and also of

temperature and vertical velocity) at any given height and

h has no direct physical interpretation, being capable

under certain conditions of assuming negative values.

A review of the theory of atmospheric tides has been

presented by Chapman and Lindzen (1970). Various

extensions of the theory have since been made to damped

oscillations in which case complex values of o and h

are introduced. (Semenovskiy, 1971; Volland, 1974a,b;

Ishimine, 1977).

Work on the solution of Laplace's tidal equation was

I.7
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pioneered by Hough (1897, 188) in terms of associated

Legendre polynomials leading to a third-order recurrence

relation between the series coefficients. The derivation

of this relation has been presented on several occasions

and will not be repeated here& the relation is to be found

in various forms which have led to different numerical

procedures for evaluating the eigenvalues. This paper

reviews the various theoretical results with the objective

of showing their relationship and providing an understanding

relevant to their numerical analysis.

2. Laplace's tidal equation

Periodic variations in longitude and time have been

variously formulated in terms of either 49- or

4 Westward and eastward progressions of phase

may then be treated by assigning both positive and negative

values to one of the quantities -,6. We limit the

discussion to two forms of representation:

(i) . , where s 0, +1, ±2, ... and 1 is a

constant positive frequency, and

(ii) - , where s is a non-negative integer and T

a constant non-zero frequency.

Form (i) was adopted by Hough (1897) and appears more

frequently in the literaturc than form (ii): it is found

4
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in tie review of Chapman and Lindzen (1970). Form (ii)

has been adopted by Longuet-Higgins (1968), Volland (1974a)

and Volland and hayr (1977). With (i) a westward

(eastward) progression of phase has s positive (negative);

and with (ii) a westward (eastward) progression of phase

has r negative (positive). Any results obtained in one

notation may be readily altered to apply to the other

according to the scheme in Table 1.

Table 1 : Ranges of values of 4 for

westward and eastward travelling waves.

Direction of Form (i) Form (ii)

travel of wave

Westward >>0 00 > (ro 0

Eastward -6 .<o r,6o, 6->o

With (i), Laplace's tidal equation may be written

as

,['~t j~ + 4 0(i

where

JA2

a-1 2 L

Mo
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e is colatitude, c. the Earth's rotation rate, a the

Earth's radius and g the acceleration due to gravity.

Table 1 and (3) show that with form (ii) the only change

required to (1) is the replacement of s/f by -s/f in the

centre term without regard to the direction of travel of

the wave.

3. The recurrence relation with form (i) periodic terms

For given s (>0) we write

C0

Substitution of (4) into (1) leads after considerable

reduction to

C" V . _ - 0 -. . ) ( 5 )

where

_= ___ .-._ ) (_ -_ - (4A4)(-~-i

M..
r'a r, ) " , r.)(2r.I r-(r )(r41)]

4.- -','
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Equations (5) to (8) were first gven by Hiough (1898).

For given s (< 0), (1) shows that G may be obtained

by replacing s by -s ( >0) and f by -f wherever they occur

in (6) to (8), as (1) is unaltered by these changes of

sign. For s = 0, ki 0 is infinite, Co = 0 and e) is

IP

based on PB2, P4,.0 . .

The matrix of coefficients of (5) has the form

(10)

where I denotes the unit matrix* On oruncating h after

the n th row and column, standard computer routines are j
available for obtaining n eigenvalues of N,. 'umerical

accuracy may be investigated by repeating the calculation

with different values of n.

In Hough's work, fluid depth h and hence were

taken as given and eigenvalues of f and hence a- were

sought. Hough replaced (5) by two recurrence relations

involving Cr and a set of auxiliary constants Dr Then

* ,*~, *- I
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by eliminating Cr and Dr an equation in the form of a

continued fraction was obtained having an infinite number

of roots for the frequencies of equatorially symmetric modes.

In a like manner another continued fraction was obtained

for asymmetric modes. As the numerators of the fractions

were independent of f, only the denominators needed to be

re-determined at each successive iteration, which was

particularly advantageous for hand calculations.

If V is given and eigenvalues for ) (and hence h)

are sought, the continued fraction iteration can still be

followed but appears less attractive than the matrix

formulation (10) as starting values need to be taken for

each solution whereas diagonalization of N yields n

eigenvalues simultaneously. In recent times, eigenvalue

solutions by the continued fraction method have been

evaluated for symmetric modes by Kato (1966) and Ishimine
(1I977).

Chapman and Lindzen (1970) present equation (5) and give
Hough's two sets of recurrence relations in Cr and Dr as

the basis for finding eigenvalues of and hence h.

Procedurally, the method appears less attractive than

matrix diagonalization as an array size of (2n x 2n)

instead of (n x n) is needed for the calculation of n

eigenvalues as occurs only in alternate diagonal

elements. Also as the form of (10) is lost, an iterative

process needs to be followed to reach each root.

* -- - ------- A, ' . . I ... i



4. The recurrence relation with form (ii) periodic terms

Longuet-Higgins (1968), following Love (1913), introduced

functions analogous to velocity potential and stream function

Z Ar LjPrL

where s >O. The recurrence relations

KrI~r + ±~~~ -riki 0
LiE' - I .,iA, - 'i-_,Ar,., -(0

were obtained, where

Ir(?-----a- -

K,- r- ) L,.

The coefficient of Ar 1 in (13) should read -qr-1 in

Longuet-Higgins (1968) instead of -q,+l, and in equation

(3.19) of that paper the sign of the term in Bs needs ton

be changed. The same equation has been reproduced in

equation (28) of Volland and 1 layr (1977) without correction

and the same error of sign appears in equation (2.12) of

.. V .. • ;.. "
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Volland (1974a) where the determinant of the coefficients

in (13), namely

(<1 P,&* 0 Q ---

- L, L, -p 0

appears without the two negative signs. On eliminating

B from (13) we obtain

/L-_ t (,- L,- + , . ,L)

In the case of a uniform fluid, the dependent variable

in (1) may be taken as the fluid depth and hence as the

rate of change of fluid depth with time. By mass continuity

the rate of decrease of fluid depth equals the divergence

of fluid from a unit column, and this is proportional to

V 13. , where V1 denotes the horizontal Laplacian operator

on a unit sphere. Hence 0 in (1) (with s/f replaced by

-s/f) is such that

(-1)

i ***J.77~~..
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In the case of a compressible atmosphere, the proportionality

is height dependent. From (4), (11) and the relation

it follows that

A. cC r 01)

On substituting (14) and (19) into (16) a relation in C
r

is obtained which agrees with (5) on changing s/f to -s/f

to accord with the use of form (ii).

The matrix of coefficients in (13) is seen by (14) to

separate into terms in f. and N/f having the form

(Longuet-Higgins, 1968)

C -

where J and C are readily constructed from (14). For

given c/ o = co, say, eigenvalues of f may be obtained by

matrix diagonalization of c0 J + C. This procedure does

not directly solve the problem of finding eigenvalues of

f for given ? , but provides a sequence of pairs of

values (fi, Xi) such that Ni/fi = Co . By taking a

range of values of co, Longuet-Higgins (1968) was able

to plot curves of f - f( X), each curve relating to a

particular mode. Alternatively if a range of values

of f were taken, the same set of curves in the form

-
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X(f) could be obtained by diagonalizing K of e4uation

(10) (with s/f changed to -s/f). The latter procedure

was followed in principle by Volland (1974a,b) in an

investigation of the effect on \ (and hence on h) of

varying the imaginary part of a complex f for particular

modes. A matrix of coefficients in the form (20) was

adopted and on noting that only alternate members of the

diagonal elements Ks, Ls+l, Ks+2,.. contained X. the

determinant was condensed to one of half the order by

operations between columns. The effect of this reduction

was the same as eliminating B from (13) and using (16).
r

5. The use of normalized P

The results reviewed above have been based on the

associated Legendre polynomials

r

which are related to the normalized form P byr,s

Writing

r C, r F....
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and comparing with (4) after substituting from (22) we

have

Substituting (24) into (5) and multiplying through

by 2(r + s)!/(2r+ 1)(r - s)!i, we obtain

where

Equations (25) and (26) have been obtained by Dikii (1965)

although the factor (2r + 5) in the denominator of (26)

was misprinted as (2r + s). A typographical error also

appears in the recurrence relations which precede the

derivation of (25), where the factor (s/f - n + 1)

appearing in the coefficient of bn_1 should read

(s/f - n - 1). Dikii (1965) obtained the expression

IA_- __ I(r- 4)r-i )( ",' I -,. 9
(c--- . -/CA/-,-) (-)C.ro-f,)j ,f-, rr-i-]

1)r(27)

(a• (2r3(.
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Equation (27) may be shown to be the same relation as

(7) by separating it into its component partial fractions

with denominators (s/f + r), (s/f - r - 1), [s/f - r(r -

and s/f - (r + 1)(r + 251 and then combining terms in

(s/f + r) and (s/f - r - l).

From (25) the matrix of coefficients is obtained as

F - XI, where

M4C 0 L4 , 0 ..

0~ 0 M 6+ 0

0L 0
f . 9

As F is symmetric, it may be shown (Jones, 1970) that

the eigenvectors are orthogonal and that, on account of
the ortho;onality of ,rs' the eigenfunctions (Hough

functions) are orthogonal.

Normalized spherical harmonics were adopted by Jones

(1970) in the development of a general theory of atmospheric

oscillations by expanding in terms of vector harmonics to

obtain a matrix formulation of the equations of motion.

On approximating to the case of classical tidal theory,

mode decoupling is achieved by transforming to basic field

variables that diagonalize a certain matrix of infinite iiA
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order whose inverso is

1' i ' [ A - TA"'T1L' L:)

where T has non-zero elements

-, Ig ) r .2(0
Tr,. .C.. ., (,, r : C-2 ,.') ](-

and

r (32)

L and A are diagonal matrices whose diagonal elements

have r = s, s + 1,... .

On multiplying out (29), it is found that

H-1 - F 1

The eigenvalues of H are therefore those of F
- I times f2

i.e. f2  or a2 2/ hi by (3) and (9).

For numerical work, the order of arrays may be halved

by treating (25) as two sets of equations whose coefficients

form matrices F- 0 1 and F1 - >I, where

q = M 4+L., 0 0 ..
LF M,4  L440 0 •

0 L,.2 M,6-4 L 4,4
0 0 S 0

. . . . . . . .



rL os+4, 0 0 **

o-+ L.A.3 LS4 ,3 i 0

The first set leads to eigenvectors for (as as+2,..9

and hence to eigenfunctions by (25) that are equatorially

symmnetric being based on P S.9 s+2'0* . The second set

leads to eigenvectors for (a5 , a5+,. which are based
S+9nP240

o s+1,s, s+3,s'* and hence to the asymametric solutions

(Dikii, 1965).t

6. Evaluation of ecenfunctions and wind functions

,before calculating 0~ from (23), the vector

(a8, 0, a.~ o~* ) is normalized by dividing it by
(2+ a2 +00* P and (a ,0, a 1 01000 ) isS s+2 8+11 s+3

treated likewise. is then determined apart from its

sign, which is arbitrary. Signs may be chosen so that

symmetric functions are positive at the equator and

asymmetric functions arc increasing with latitude at the

equator.

The horizontal wind components of a tidal oscillation

depend on horizontal -radients of the pressure field and

latitudinally depend on functions derived from G With

form (i), these functions are (Chapman and Lindzen, 1970)
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U'- ' * 6 ' / ] GT
@v- ','- 1 -,,l

for the eastward and northward components respectively.

Series expansions of ®L) 0V in terms of Ps arer~js

not obtainable, but developments are possible for

From (36) and (37) we have

JAS , D0 C40)

where Z - -")c/JH For s ; 0, we write

and note that (39) is unaltered for s ) 0 if written as

f.SU-AS -o

Then by (23), (41) and the relations

*1 :
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r~rA (Irl> + CLr 1 ~TI-(13

54-4 4IS 1 T C4 (144)

where

CL r

the coefficients of Pr-ls in (40) and (42) give

vOL b- -I I 1 - - (rL ri- z + (r-+1) 9 a

Ck 1r Ir- r-g -t... 2 - LIV~ Q47~

By successively putting r = s, s + 1,... and taking

ar = ur = vr = 0 for r < s, (46)and (47) enable

(us, 0, Us+ 2 , 0,... ) and (0, vs~l 0, vs+,... ) to be

calculated for symmetric Hough functions for which

as+l = as = ... = 0; and likewise (0, Us~l, O, Us 3 ,... )

and (vs, 0, Vs+ 2 , 0,... ) for asymmetric Hough functions

for which a. I as+ 2 - ... = 0. U , OV can then be

obtained from (353) and (41) except for the end points

B = O, 1' .

To calculate EU, I e when s < 0, it is only

necessary to replace s by -s (>0), and f by -f, as it

follows from (40) and (42) that the above procedure leads

-. 4 -- . - -- -- i ~ :. -i-i
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to the evaluation of OU and -EV. If f < 1, (36) and

(37) become indeterminate at . = f, whereas no such

difficulty arises with the above procedure.

7. Discussion

The recurrence relation (5), which is that originally

derived by Hough has a matrix of coefficients of the

form of equation (10) and standard computing routines

are available for the determination of its eigenvalues

and eigenvectors. If eigenvalues of equivalent depths are

required for a given frequency of oscillation the results

are obtainable in one step, but if eigenvalues of frequency

are required for a given depth an approximating iteration

is necessary. The latter case arises in a study of the

free oscillations of the atmosphere as equivalent depth

is then determined as an eigenvalue of the vertical

structures it was i!so the problem that concerned Hough

and in devising an iterative procedure he undertook

further analytical developments of the recurrence relation.

These developments are not however essential to the

eigenvalue analysis and it it doubtful whether they offer

any advantage over the matrix formulation with present-day

computing facilities.

The recurrence relation recommended for use is

equation (25) which was given by Dikii and corresponds

p. -
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to solutions based on normalized associated Legendre

polynomials. Apart from th better numerical conditioning

that is to be expected with normalization, there is the

simplification of a symmetric matrix. 1*
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