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INTRODUCTION

In Technical Report Nos. 15, "Ultrasonic Wave Reflection at Liquid-
Solid Interfaces," and 17, "Studies of Linear and Nonlinear Ultrasonic
Phenomena," we presented summaries of our contributions to certain
subjects. Technical Report No. 18 is intended to expand on the summary

and bring it up to date. It is divided into two parts,

Part I. Schlieren Studies of Ultrasonic Waves

The Report begins with the description of a unique goniometer designed
by members of the Ultrasonic Group for use in the schlieren system for
visualization of ultrasonic waves in liquids. By using the properties
of parallelograms we were able to produce a precision goniometer without
use of precision machine shop facilities. The second paper presents
some photographs made with the gcniometer in the schlieren system and
shows the effect of a layer of A1203 on a stainless steel reflector of
ultrasonic waves in water. The leaky Rayleigh wave excited in the
A1203 layer has a velocity smaller than that exicted either at a water-

stainless steel interface or at a water-A1203 interface.

Part II. Nonlinear Acoustics of Solids

In relatively large sinale crystal samples (1 inch in diameter and
1 inch long) one can measure such things as "The Nonlinearity Parameters
and Third-Order Elastic Constants of Copper between 300 and 3° K" as
reported in Paper No. 3. The fact that the measurements can be made
to Tow temperatures is especially important, as the effect of thermal
motion of the atoms is ignored in many theories. This means that they
are strictly applicable only at 0° K. For comparison with these theories,
then, we measure to the lowest readily obtainable temperature.
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A problem encountered in the study of the nonlinear properties of
solids is the fact that oftentimes it is difficult to grow large single
crystals of interesting substances. Ordinarily we use a 30 MHz ultra-
sonic wave of finite amplitude to determine the nonlinearity parameters
of single crystals 1 inch in diameter and 1 inch long. The amplitude
of the second harmonic, which must be measured absolutely, typically is
of the order of 10'2 R in these samples. We posed for ourselves a
question: Given our desire to measure nonlinearity parameters, what is
the smallest sample one can measure with present technique? The fourth
paper, "Measurement of Nonlinearity Parameters in Small Solid Samples
by the Harmonic Generation Technique," is an attempt to answer the
question.

Another question of fundamental importance to nonlinear acoustics
of solids is the relationship between the nonlinearity parameter
measured acoustically and the Griineisen parameter which comes from
measurement of thermal properties, This question is given a relatively
simple, and almost complete, answer in the fifth paper on "Relationship
between Solid Nonlinearity Parameters and Thermodynamic Gruneisen
Parameters." This paper was based on the oral presentation given at the
joint meeting of the Acoustical Society of America and the Acoustical
Society of Japan. This was an especially appropriate audience since two
of the authors were from the United States and one was from Japan.

The final paper in this Peport, "Quantum Mechanical Theory of Non-
linear Interaction of Ultrasonic Waves," answers in part another
fundamental question of nonlinear acoustics. Presumably in the corres-

pondence 1imit the quantum mechanical description of phonon-phonon

interaction would become identical to the description (based on nonlinear
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elasticity)of the scattering of one acoustical disturbance by another.
But this assumption was hard to prove. The paper provides specific
examples. It begins with the general quantuin mechanical description

of phonon-phonon interaction and specializes the description to that

of two collinear phonons of frequency v which interact to produce a
phonon of frequency 2v. (This comes from energy conservation:

hv + hv = 2hv.) By maintaining the wave description (avnidina auantiza-
tion), one is able to show that the mathematical result is identical

to that previously obtained from a generalization of elasticity. This
is true also in the description of third harmonic generation. In third
harmonic generation one is able to show, in addition, that the small
term in the third harmonic amplitude which contains fourth-order elastic
constants in fact comes from four-phonon interactions in the gquantum
mechanical picture, whereas all of the other terms (those involving second-
order and third-order elastic constants) resulted from three-phonon
interactions. The advantage of the gquantum mechanical approach lies
primarily in the fact that the path from the general description to the

particular application is explicitly marked, and the point at which one

makes any particular simplifying assumption can be located unambiguously,
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A UNIQUE GONIOMETER FOR USE IN SCHLIEREN
VISUALIZATION OF ULTRASONIC WAVES
M. A. Breazeale
Department of Physics

The University of Tennessee

Knoxville, Tennessee 37916
Introduction

Alignment problems encountered in the use of schlieren systems have

been recoanized, and often solved, by a number of investigators. For
example, Fig. 1 is a schlieren photoqraph] of the interaction between an

ultrasonic beam of Gaussian cross section2 and a leaky wave at an inter-

face. The fact that the reflected beam is displaced to the left, rather
than to the right, results from a fine periodic structure (grating) at
the interface. The periodic structure shifts the phase of a leaky wave
trapped at the interface by 180°, and causes the enerqy flow to follow
the path indicated in Fig. 2.

The photograph of Fig. 1 was made only after expenditure of
considerable effort. The grating periodicity of 0.178 mm required not }
only precision alignment, but also the maintenance of the precision
] alignment as the incident andle was changed. Subseauently a movie was
made3 to show in detail what happens as the incident anqgle is changed.

For the movie the point of contact between the ultrasonic beam and the
reflecting interface had to remain the same for all incident angles.
This required a precision goniometer capable of rotatina the transducer
alona a circular path centered at the point of contact between the

ultrasonic beam and the reflecting interface.

5




Figure 1. Schlieren photograph of an ultrasonic beam of Gaussian cross
section reflected trom a brass arating in water.
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The purpose of the present discussion is not to give an exhaustive
description of the phenomena that occur when an ultrasonic beam is
reflected at a liquid-solid interface. Rather, the purpose of the
present discussion is to describe a precision goniometer that has made

an experimental study of such phenomena possible.

Description of Goniometer

The design of the goniometer can be understood by observing
geometrical properties of parallelograms. Suppose a parallelogram were
constructed by placing bearings at the four corners. The parallelogram
then could distort as shown in Fig. 3, in which two positions are drawn.
The property of interest here is the fact that any point on the top edae
of the parallelogram traces out a circle centered at a corresponding
point on the bottom edge. This is true not only at the corner, labelled
A] and AZ’ but also for any other point (e.q., B, and Bz), as indicated.
The centers of the circles are CA and CB’ respectively.

Let us now remove the bottom edge of the parallelogram, but fix the

position of the bearings by adding an auxiliary support. Further, let

us form another paralielogram by adding a horizontal piece, as indicated

in Fia. 4. To the two horizontal portions of the new parallelogram, lei
us now add a new set of bearings and attach a new vertical member, A
transducer attached to this piece has the capability we desire: the
possibility to rotate about a point, the point of intersection of the
two dotted lines. A reflecting surface placed at the position indicated
can be studied in detail. The ultrasonic beam reflected from it will
reflect from exactly the same noint on the interface for all incident

angles.




*A3A1328dSad ,mu pue <u 940 9UNLIBAUND JO SUADJUID 3Y] .Nm

10 3ALA4R 03 Y3ed JR[NDOULD B SMO||04 OS|P Fm juiod syl .N< 3@ 3ALJ4R 03 yijed Jendatd e
SMO| |04 Ly jutod ay3 sy °~pajedipul se S3A03SLp S43U40D 3@ sbulJeaq yjim weabojdjjeaed y ¢ aanby4

v




10

‘weuabo(3||e4ed 3y3 4O UOLIAORSLP
ybnouyl pabueYD SL I|DUR JUIPLIOUL BYF SR “3UNJBAUND JO 4IJUID 3yj °) e pauwLe
SULEWOU 4BINPSURAY BY] "€ "bLF UL PauL|{Ino s3[dLduiad 3Yy3 U0 P3IINAISUOD UIJBWOLUOY “§ BuNbL 4

|
40123143y
27\ T
/N
Y \
g S
CEESAN \ SONINV 3
Vd
/ \\
Yo TN N2 1= A \ —— x\ A\
\
N\
} N /.\\
] =

\




1

A aoniometer using the principles described has been in use in the

Ultrasonics Laboratory at The University of Tennessee for several years.
A photograph of the aoniometer and one lens of the schlieren system is
| shown in Fig. 5. In the photograph several refinements are observable:

1. The support for the transducer has a dog-leg in it. This avoids
problems that would arise for incident anales areat enough that
the edge of the water tank would interfere with transducer
motion.

2. A scale is provided on one of the supports so the incident anale
can be measured directly.

3. A worm gear is used to make precision adjustment of the
incident angle.

4. The entire system is counterbalanced by lead bricks.

Finally, it is obvious that the same effect could be accomplished

by use of a circular track of sufficiently large diameter. Such systems
have been constructed in other laboratories, but they require complicated
and expensive machine shop work. The advantages of the paralleloaram
goniometer are:

1. Simplicity of construction. (One only needs to bore the holes
for the bearinas at the correct positions. No large or complicated
machine shop facilities are needed.)

2. Precise adjustment possible (no stick-slip in the movement).

3. Maintenance of precision over long periods.

R e o




Figure 5. Parallelogram ultrasonic goniometer in a schlieren system.
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Conclusion

This new approach to an old problem nas produced a goniometer that

is working effectively in a schlieren system having an aperture of 8 inchec,

The principle on which the goniometer is based can be used with even
larger systems without a fundamental increase in the complication of

construction.
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LEAKY WAVE GENERATION AT Al.,O3 LAYER ON <T"AINLLSS STELL IN WATLR

Laszlo Adler and Daniel L. Butler

Department of Physics
The University of Tennessee
Knoxville, Tennessee 37916

Abstract

When a finite ultrasonic beam with a Gaussian
amplitude distribution is reflected from an Al;03
layer on stainjess steel in water the reflected
amplitude field distribution indicates )eaky wave
generation. The angle at which the leaky wave is
generated defines the leaky wave velocity. The
leaky wave velocity of this structure is measured
as a function of kh (where k is the wave number
and h is the layer thickness). The effect of the
presence of the layer on the reflected amplitude
distribution is discussed.

1. Introduction and Background

The reflection of ultrasonic waves at a
liquid-solid interface as a function of incident
angle 1s a basic boundary value problem. For
infinite plane waves one solves the wave equation
with appropriate B.C. Recently interest has been
focused on the physically realistic problem of
the reflection of a finite heam of some well-
defined shape from the liquid-solid interface.

Both experimentall.l and theoretical3 analysis

have established the existence of the so-called
leaky Rayleigh waves at the liquid-solid boundary,
The existence nf these waves is easily demonstrated
by a Schlieren picture of an incident Gaussian
ultrasonic beam reflected helow, at and above the
Ravleigh angle. Figure 1l shows the case for water-
stainless steel interface. The middle picture is
taken at the Rayleigh angle about 30.5°. The angle
of incidence 1s such that the refracted wave is
coupled along the interface and leaks back to the
liquid as it propagates. This leaky wave together
with the specularly reflected field produces the
totsl reflected field.

The theoretical analysis of this finite beam
probilem was carried out hy Bertoni and Tamir. In
their development of an analytical approximation to
the reflection integral, Bertona and Tamir show
that 1t divides into two parts and can be written
as

Veer1 (%020 = vplxi2) o v (x,2) . 1)
v .(x,2} represents a specular reflection, which
résemhles the incident heam tn ats amplitude dis-
tribution hut is shifted 180° in phase. v, (x,2) is
the surface component, which 15 in phase wlth the
incident heam over part of the interface and out of
phase over the remainder; its amplitude

distribution 1s, in general, significantly
different from that of the incident beam and
the specular component.

(a)

Figure 1 - Reflection of a Gaussian Ultrasonic Beam
from a Water-Stainless Steel “:rtace for
Incident Angles (a) 5%, (b} . 5° (Rayleigh
Angle), (c) 40°,

1979 Ultrasonics Symposium Proceedings, 1EEE Cat. #79CH14%2-95U
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For a Gaussian 1ncident beam, as used in the
experiments described below, Bertoni and Tamir3
obtained an analytical approximation valid at the
interface. In order to compare theory with cxperi-
ment, Breazeale, Adler, and Scott< corrected the
approximation for points in the liquid halfspace.
The expressions for the leaky wave field compo-
nents are:

Vo(xr.zr) =
2
e (-(xr/wr) o1k(xr51nepo(zr-zolcos0p]} @
2n /mw_coso
r P
/;Qr 2
itz o= -aVilx Lz )L - 7 exp(y“erfc(y}] (3)
where
r %
Y i w (4)
3 r
and
2i(z_-z,)
W s w(l + r "0 l1/2 )
kw cosep

The beam halfwidth w is measured at 25 A, is the
liquid-solid equivalent of the Rayleigh aggle, and
A_ is the so-called "Schoch displacement." As was
dérived by Schoch in his original lateral displace-
ment theory and was shown to be mathematically
equivalent to a surface wave decay constant
occurring in the Bertoni-Tamir approximation, It
is a complex function of the acoustic velocities
and densities of the interface media. The finite
beam reflection from the solid layer-solid in water
has no theoretical treatment at present. The
experimental investigation of this problem will be
presented in the next section.

2. Leaky Wave Generation of Solid Layer-
Solid Interface in Water

The problem presented here deals with the
generation of leaky waves at a liquid-solid layer-
solid interface. The problem is shown on Fig. 2.

VATER
h e LAYER
Laver THICKYESS
he A
SUBSTRATE

Figure 2 - Water-Solid lLayer-Solid Interface.

A solid layer which is of Al103 ceramic layer is
sprayed on a stainless steel block. The reason

15

Al203 1s chosen ts hecause of our previous

studics of leaky wave structure on hoth water-
Al203 and on water-stainless steel.<  [he main
part ot the cexperimental arrangement to obtain
quanti .ative lata of the reflected beam profile is
a rpecially uausigned goniometer shown on I'ip. 3.

A 2-Miz Gaussian transducer sends out some long
pulses of 20-30 usec. The receiver is scanned
through about 7 cm, which is the extent of the
reflected field.

Figure 3 - Ultrasonic Goniometer.

The demonstration of the existence of leaky
waves was done in the following ways: The receiver
and transducer arms were scanned by small incre-
ments of angle< until the RF waveforms indicated
the phase cancellation. On Fig. 4 the RF wave-
form reflected from the Al 03-stainless steel in
water is shown. The angle at which the phenomena
took place in 31.5°. The Ravicigh leaky velocity
is calculated to be 2.08 « 105 cm/sec. The thick-
ness of the Alx0z3 layer is 80u. The ieaky wave
velocity from the Al203 laver-stainless stcel was
meacured as a function of kh. On Fig. 5 the result

Figure 4 - Recerved Signal in the Rayvleigh Angle
Reflection from Water-Al203 Layer-Stainless
Steel .

is plotted. At kh = 0, the Rayleigh leaky velocity
of the stainless steel is obtained. As hh + =, the
Rayleigh velocity of the sprayed Al.0z obtained (in
bulk) is 2.18 x 10° cm/sec. which is Significantly
lower than the velocity of the Al;03 in compact
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form (vp = 5.53 x 10° cm/sec). From the asymptotic
value of the leaky wave velocity one may obtain the
shear velocity and shear modulus as well of the
porous material Al,03. Additional knowledge of the
wave popagation in the thin layered material may
be obtained from the measurements of the ampli-

tude distribution of the reflected wave at the
T T T —
3
X 0}
Q \
ol \,
z 28 1
8 \‘ K Vave mownn
§ 26t S N Tuicaness or Aty Laven 1
_
& 1 N ]
3 24 .
o -~
@ 22 AR
> - '\-_.____‘ _____ B
é - -
- 201 N
1 l 1 -
1 2 3 4
kh

Figure 5 - Variation of Leaky Rayleigh Velocity
(Vg) for Water-Al,03 Layer-Stainless Steel
Interface.

Rayleigh angle. On Fig. 6 the theoretical values 1
of the reflected field is plotted (solid line). :
This curve was calculated from the modified

Bertoni theory for liquid-steel interface and for

the parameters used in the experiment (beam width 2
w=8mm f = 2 MHz, transmitter-interface- )
receiver total distance zg = 400 mmn). The

corresponding experimental points measured are in 3
good agreement with the theory. The effect of )
the 80u Al1203 layer on the experimental data is

shown by the points. There are several features

of these latter data points to consider. First,

the amplitude of the first peak is diminished

compared to the one without the layer. Second,

the null point which indicates the phase can-

cellation has shifted laterally, indicating that

the parameters changed and at phase cancellation

between Vg and V] will take place at another

point. Since at that point Vg = V] equations may

be inverted to obtain additional parameters of the
interface when a thin layer is present on a sub-

strate., Further theoretical work is required to

interpret these experimental findings.

3. Conclusions

The problem of ultrasonic leaky wave
propagation in thin (80u) ceramic layer (Al,0%) on
stainless steel immersed in water has been investi-
gated. It appears that the leaky wave velocity
becomes dispersive with the presence of the layer.
The layer also affects the amplitude distribution
of the reflected field. No theoretical work is
available at present to analyze this problenm.
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Ultrasonic nonlincarity parameters and third-order clastic constants

of copper between 300 °K and 3 °K

W. T. Yost*
John H. Cantrell, Jr.** and
M. A. Breazeale

Department of Physics, The University of Tennessee, Knoxville, TN 37916

ABSTRACT

The ultrasonic harmonic generation technique has been used to extend
measurcment of the nonlinearity parameters of copper to 3 °K. Comparison
of these data and combinations of truly adiabatic TOE constants with
predictions of simplified models show that a central force, nearcst
neighbor model accounts reasonably well for the behavior of copper in
the regions of 45 °K and 200 °K and less well at other regions. The
central force, nearest neighbor model also gives a good qualitative
explanation for the temperaturé dependence of the combinations of TOE

constants that are measured in this investigation.

To be published in the December 1980 issue of Journal of Applied Physics.
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I. INTRODUCTION

In the present investigation previously established techniques afc used
to measure combinations of third-order elastic constants of copper from
300 °K to 3 °K. The technique involves the measurement of the distortion
of an ultrasonic wave as it propagates through various copper single
crystals.

The development of @ capacitive detector and its calibration
permit the absolute determination of the amplitudes of finite amplitude
ultrasonic waves.1 Later refinements made possible the extension of
these measurcments to lower temperatures.2 These methods have been
used to calculate various combinations of TOE constants at low
temperatures. Peters, Breazeale, and Parésused this techniquec to
mcasure combinations of TOE constants of copper to 77 °K. Yost and
Breazcaledmcasured combinations of TOE constants of germanium to 77 °K.

5extended the measurcments of germanium to 3 °K.

6

Bains and Brcazecale
Cantrecll and Breazeale measurecd C111 for various samples of fuscd
silica between 300 and 3 °K.

Various investigations of thc TOE constants of copper have been
made. Danicls and Smith7isolatod various combinations of TOE constants
for copper by measuring the pressure derivatives of second-order
clastic constants. Hiki and Granatosused pressure derivatives and
uniaxial-stress derivatives to determine a complcte set of TOL constants
for copper at room temperature. Salama and Alcrs9 used uniaxial stress

derivatives cxclusively to determine a complete set of TOE constants for

copper 2t three different temperatures, 295 °K, 77 °K, and 4.2 °K.
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Gauster and Brcazcalc10 cxamined combinations of copper TOL constants at
room temperaturc.  Peters and Breazeale and Par63 extended these
measurcments to 77 °K. In this paper, we report results of copper
which have been measured to 3 °K, by a technique sensitive to changes
of TOE constants as a function of temperature. From these measurements,
we isolate certain combinations of TOE constants, which are of
particular theoretical interest.

The noble metals, of which copper is an ecxample, form face-centercd
cubic crystal configurations, for which simplified models exist to
explain the behavior of TOE constants. For this configuration, we find
that if forces of intcraction are central in nature, the crystal is free
from cxternal stress, and ecach atom is at a center of inversion,11 then

the Cauchy relations must ho.d:

Second-order constants C12 = C44 (1)
Third-order constants C112 = C166 (2)
and
C = C =C

123 456 144

Hiki and Granat08 have shown that if, in addition to the above
assumptions, nearest-neighbor repulsive interaction is the predominant

contribution to the clastic constants, then the additional relationships

also hold.
Second-order constants C11 = 2C12 = 2C44 (3)
Third-order constants C111 = 2C112 = 2C166 (4)
C = C =C =0

123 456 144

Our data allow us to makec some statements about the validity of

the TOE constant Hiki-Granato reclations for copper between 3 °K and room

temperature.




IT. EXPERIMENTAL TECHNIQUE

Purc mode propagation for a longitudinal ultrasonic wave is
possible for three principal directions in a cubic crystal. For these

. . . 12
directions, the wave equation reduces to

2
23g+(3K2+K3)
da a

2
o U U
pU = K =3 (5)

where K2 and K3 are combinations of SOE and TOE constants rcspectively,
which are given in Table 1.

Assuming a sinusoidal wave of frequency w applied at a = 0, this
equation has the solution

U = A1 sin(ka - wt) - (3K2 + K3)/8K2 A12k2a.c052(ka —wty +... (6)

where k is the propagation constant 2m/A, a is the propagation distance

in the sample, and A1 is the amplitude of the fundamental. The amplitude

A2 of the second harmonic term is given by

A, = -0k, + K)/8K,0 A% KPa (7)

The measurement of A, and A1 is the basis of the calculation of the

2

nonlincarity parametcr B where 8 is the ncgative of the ratio of the
nonlinecar term to the linear term in Eq. (5).
SKZ + K

3
K,

Solving Eq. (7) gives 8 in terms of measured quantities:

PN
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3
The quantity KZ can be determined by the relation K2 = pv“, where v is

the velocity of sound in the appropriatc dircction. For our purposcs,

we calculated the values of K, at the various temperaturcs from data

2
given in Overton and Gaffncy.la

IIT. RESULTS AND DATA ANALYSIS

In these measurements one uses techniques similar to those which have

3,4,5,6

been previously cited in the literature. The room temperature

measurements for K3 in the various crystallographic directions have
been taken from Peters, Breazeale, and Paré,3 since the same

samples werce used. Figurc 1 shows the values of £ as a function of
temperaturc in the three principal crystallographic directions. Data
from Ref. 3 were used between 300 °K and 77 °K. Those below 77 °K arc
the new data which were matcheq to the 77 °K datum from Ref. 3.

Figure 2 shows the values of K3 as a function of temperature
calculated from the data of Fig. 1. The scatter in the Ks {110] data results
in part from thc shape of the sample. The [110] faces arc at an angle
of approximately 15° to the axis of the cylindrical sample. This canting
of the samplc axis led to difficulties in keeping the sample scated on
the ground ring of thc capacitive detector.

Error for thesc mcasurcments arc determined by the measurcments
at room tcmperaturc and the relative mecasurcments at the other

temperatures. The random errors for K, at room temperaturce arc £1.5%,

3

+3.2%

, and *2% for values of Kq in the [100], [110), and [111]
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respectively. Systematic error for these measurcments is estimated to
be at most *10%. It is estimated that K3 can be mcasured relative to
room temperature to well within 3%.

Examination of Table I reveals that the expressions for K; are not
the simplest combinations of TOE constants available from our data. The

K3 for the [100] direction is the single TOE constant C But the

111°
K3 for the other dircctions also include Clll‘ Thus, it is possible to
subtract C111 from K3 for the dircctions [110] and [111]. Proceeding

in this fashion, one is able to obtain the combinations Clll’ C112 + 4C166

and C123 + 6C144 + 8C456 plotted in Fig. 3.

IV. DISCUSSION

The nonlinearity paramecter B in Fig. 1 is observed to be rclatively
indcpendent of temperature, as was originally assumed to be the case with

14,15

the Gruncisen paramcter v. As a matter of fact it is possible to make

a spccialized definition of a "Grinecisen number'" which is related to the

16,17,18 Variation in the valuc of B does occur between

nonlinearity paramcter.
approximately 25 °K and 50 °K, with the most distinct variation occurring
in the data for the [110] direction,

When onc examines the third-order elastic constants combinations
plotted in Fig. 2, the temperature dependence becomes more pronounced.
Although the K3 for [110] direction C111 varics by only 8% over the
temperaturc range, and the valuc of C111 at 0 °K is almost identical to
the valuc at 300 °K, the other two oricntations cxhibit morc variation
with temperaturc., Nevertheless, it may be worthwhile to point out that

the three curves behave in somewhat the samc way., The most obvious

temperaturce variation occurs in the K3 for the (110] dircction. The
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origin of this cffect can be located somewhat morce exactly by examining
Fig. 3, a plot of the simplest TOE constant combination available from
our data.

The combinations of TOE constants in Fig. 3 happen to correspond
to combinations which occur in the Hiki-Granato relations. One finds

that the Hiki-Granato reclations predict that

Cr12 * %Ce6 = 372 C1y
and C123 + 6C144 + 8C456 = 0,
Thus, on Fig. 3 we have plotted 5/2 C111 to aid in the comparison. In
. . - " s .
Fig. 3 onc finds that C112 + 4C166 5/2 C111 to within approximately

% over the entirc temperaturc range. We may also point out that the two

curves have almost identical shapes over the entire temperature range,

and this implies that

ac166

aT

L | %2 * %Gee) | Xz,

aT daT ar

over the same temperature range. This observation is consistent with
the contentions of Hiki, Thomas, and Granato19 that higher-order
clastic constants of materials which have markedly overlapped closecd
shells are influenced most strongly by ncarest ncighbors.,

The combination of TOE constants (C123 + 6C144 + 8C456) cxhibits
an interesting bchavior, beccoming slightly positive above 200 °K.
(This combination should be zero according to the central force,

ncarest neighbor model.) At all temperatures, it remains small in

comparison to thc other combinations. However, it cxhibits a dip which
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begins necar 45 °K, reaches its minimum valuc near 75 °K and changes
slopce in the neighborhood of 200 °K. Thi. bechavior has the same geoneral
temperature dependence as the Bordoni peak in copper.20 Perhaps this
combination is sensitive to dislocation movement.

In conclusion, we fecl that our data arc nominally consistent
with the predictions of a central forces, nearest neighbor interaction
model. As usual, there are details which need to be explained, but
further explanation would depend upon a more detailed model than we

have used, and morc detailed data than are available.
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MEASUREMENT CF NONLINLARITY PARAMETERS I\ SMALL SOLTD SAMPLS HY THI HARMONIC

GENFRATION THUHNIQUE

M. A. Breaceale and Hruce Blackburn

NDept. of Phvsics, Univers:ty of Tennessee, Knonwvilie, TN 1761¢, USA

he rresent results of examinat.on ¢f *he ultrascnic harmoni.
generation technig.e for measurement of norl.nearity parareters,
and tence the thir! order elastic venstarte, of <olids. Hereto-
fore, sampies .. 5 vr 1n liameter and at least [ 3 o= gn length
have heen used :n measurements with a | orm Jlameter 30 MH: cuart:
transducer. Our results reveal that *he mirimum «1:¢ of a sample
which wil! allow wccuracies between & and 1™ n .} measure-
ments 1s 3 mroan ultrasonic path lergth and 5 mr in dlameter
Correct:on of the data for Jdiffraction eftects i< recessary with
trarnsducers or recetvers smaller thar (.. ¢5 ~m.

INTRODUCTTION

A finite amplitude sinusojdal ultr.<onic wave rropagating through a nonlinear medium
disterts as 1t propagates.  This wavetnrm Jdistertior can be characterized as har-
monic generation, and the measurement of the harmonic generation makes possible the
evaluation of the nonlinearity parameter< of the mater:al. If the mater:.al is a
cubic c¢rystal, then one finds pure mode propagation aleng the principal (irections.
Measurement of the harmonic generation along the pure mode directions reduces to the
measurement of the arplitude of the fundumental i and of the second harmonic A:
since the nonlinearity parareter 1s given hy [
3, o ) 8A,

.

R p—

‘—.“— T — ’1\
1 2 J A; ba

where V. and X3 are *he linear corbinations, respectively, of the second- and third-
crder e;astic constants given in lable I, k = =/} 15 the propagation constant, and
a 15 the proragation dis-ance (<arple length)

Tabie 1 K, and K, for [roo], [11eY, and [111) direct iene an cubio crvatals

irection LI K‘

170 { (

11 11
( . ¢ 2t ) ¢ M ¢ 10
T IR 11 111 1t M
L ’ .\ J
L + K ¢ 60 ¢ 1.0 Ja] Ay

.. TSI T 11 R L R P AT

i 3 3 — e e——— -
EXPERTYENTAL TECHNTDUE
The amplitudes of the fundamental and of the secord harmeni. © measure. "y use of

Reprinted from Proceedings of Ultrasonics International 1979,
Graz, Austria, May 15-17, 1979, pp. 500-504.




the capacitive receiver shown in Fig. 1. Ultrasonic wave pulses are generated by the
quartz transducer and propage downward through the sample and impinge on the bottom
surface. Since the sample surfaces are optically flat, a receiver button can be
placed at a distance Sy from the sample to form a paralle! :’ate capacitor. With a
bias voltage Vy of approximately 150 volts dc, one finds that the ultrasonic wave
impinging on the 1nterface gives an ac voltage []]

where A is the amplitude of the harmonic to be measured.

\Egroxxmatlons

We have examined the approximations inherent in the use of harmonic generution to
measure the nonlinearity parameters of solids and find that three of them need to be
examined in order to defite the smalle<t sample one can us<e-

(a) Infinite planc wave assumption,

(b} Parallel plate capacitor approximation,

(¢) tifect of diffraction,

ANALYSIS OF MEASUREMENT THCHNIQUY

Witk the approvimaticns in mi1n., one can evaluate the smallest sample -1:e ucuhle
with present techrigues:

rar Infinite Flane have Assumption

In deritving fq. (1:, the assumption 1% mac. that the secord harmoric 1< gernerated by
a fundamental which 1s an infinitely exterded plane wave. Althouph thic 1< not
strictly true In our experimental arrangemer?, as we will see, we can assure
infinively extended plane waves for the morent te estimate the mrnimum sampic thioh

ness required to produce measurable second harmenics.  We have found that we can
reiiat iy measure <econ! harmonics i- of the order of 10-7 Angetrome, and “ave
measured 17 % Anystroms.  Using Ao - b Angstrons, and values of b amd b oter
copper [1111 as toprcal values, one fainde 1t the mimimu= <ample thishne< a. .,
4 omm. In oorther cacertals Different aalues of booand b b change thic mamarge
thidress by g fa0tor of tee in either direct:on
D arailel Flate Uapacitor Aps aimoion
Pangat, o 1) s stra oty vl b eriy L o rhe apgs itave Te Coner s eftel s el
tetsr o tels eeterged paratlel late capa tor Tr o the groerimeste s be 0 e
osr o illiese 1 Lrter tocrar bad g liameter of 60 %t e 0 by i e 8 o e
The it ot diameter toospa tny, trer 1 ¢ the roer o o e et ¢
Hringing, Wk 2 o0 te o bgrpe the effectiuve area nf o orh T grtee g 1 LA
1w ¢ the riter ¥ Vo, owhaeh ey nes gt le ar TR e et The gt
PeoLmgller vy g tycior 0 ter vedre clerrentosr wn e At T
fore, PhLC Gror. vim Lt ion ot g ey I I A XA
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was assumed to satisfy the infinite plane wave assumption reasonably well in samples
which were small enough to place in a helium cryostat.

EXPERIMENTAL RESULTS

We now would like to report the results of a systematic experimental investigation of
the effect of diffraction on our measurements. A single crystal copper sample¢ was
selected which allowed ultrasonic wave propagation along the [111] direction. The
sample was 2.54 cm in diameter and 3.96 cm in length. By selecting transducers with
diameters given in Table Il, we were able to effectively have the capacitive receiver
in either the Fresnel zone or the Fraunhofer ctone of the ultrasonic wave diffraction
field. Two capacitive receivers were used with ciameters of 11.8 and 6.36 mm,

Table 1. Transducer diameters and ultrasonic beam characteristics used in a [111]
copper sample. Receiver diameters were 11.8 and 6.36 mm,

Transducer ~
Diameter D/x a“/x 8
(mm) (mm) (degrees)
12.65 74 233 0.9
5.40 32 43 2,2
3.70 22 2 3.2
1.95 11 6 6.1

To give an idea of the relative size, a scale drawing of the (linear) ultrasonic
wave field in the sample is giver in Fig. 2. To make the drawing we have assumed
that the interrediate size 3.70 mm transducer is behaving as a piston vibrator and
15 producing a heam whose half-angle 2 is given bty

sin 8 = 0.¢1 )/a (3

where ) is thc’(fundanental) ultrasonic wavelength and a is the transducer radius.
The distance a-/\, soretimes referve!l to as the Fresnel distance, also is indicated.
For the largest transducer this distance is much greater than the sample length so
that the measurements are made within the Fresnel zone where the plane wave approxi-
mation 1s reasonably well-satisfied.

As seen from Fq. (1), a measure of the nonlinearity parateter for a given frequency
and sample length is the ratio A:/A’. From Fq. (2%, it is clear that this ratio is
proport:ional to \:/Vf where V7 and V. are the voltages generated in the receiver by
the fundamenta: and the second harmonic, respectivelv. We would determine the effect
on this measured qlant;tv by Jiffraction. The averages of a number of measurements
of the ratio V./\: are plotted as a function of the tran<ducer diameter in tig. 3.

As indicated, we find that the ~easurel Y a/Vs vatues fall on smooth curves for each
re civer size. At the =orernt there 1< no thenrctical justification for thi< expert-

mentally ohservec fact. However, ®oere are <ome .onci<tent ch<ervations which cuan
he malde.
The car: 1rr far the trgns

feeTorecelier ooarhieqtiar keretetore ased an o measuring
N

toomariaveterc 1e v

Anrline dreates By ovoln !t peant, Tt i< reassuriny ta note that
Shi asitprtate f the oo foar vie «mpller reLerer aLtron passes throayh the nolad
- ooy v £ttt Comeparero. U the data, cre omogabe qrenee that aar alata to
Pyt VgLe teer taeer o Lorditl ot owraohoreaserat by owell satgaf. tre thearetycoal
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data points at a transducer diameter of 3.7 mm require a correction to bring them in
line with the value of V;/V¢ indicated by the solid point, and the correction factor
can be evaluated from the curves. Correction of data for smaller transducer
diameters might not be accurate enough. Allowing the sample walls to be well out-
side the ultrasonic beam might require a sample diameter of, say, S mm. Thus, we
come to an approximate answer to the question posed: the smallest sample usable with
the harmonic generation technique has a diameter of 5 mm and a length of 4 mm. The
surfaces must bhe optically flat and parallel, of course.

Finally, we would point out that a very promising prospect exists for progress in the
general subject of nonlinear acoustics. Figure 3 is the first numerical evidence we
have that after including the nonlinear terms describing the propagating medium, the
diffraction integral should have solutions which are tractakle. The curves give the
values of an integral across a plane at specified distances fron a sinusoidally
vibrating piston source which is radiating into a nonlinear medium. A large number
of such curves taken for different distances and different transducer sizes would
allow one to evaluate directly the effect of diffraction on harmonic generation.

This remains one of the unsolved fundamental problems of nonlinear acoustics.
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Relationship between solid nonlinearity parameters and
thermodynamic Griineisen parameters

John H. Cantrell, Jr..® M. A. Breazeale, and Akira Nakamura®

Department of Physics. The University of Tennessee, Knoxville, Tennessee 37916
(Received 9 April 1979; accepted for publication 15 February 1980)

The relationship between the ultrasonic nonlinearity parameter for solids and the acoustic Griineisen
number has been derived for longitudinal ultrasonic wave propagation in the pure mode directions of
cubic crystals and isotropic solids. Agreement between the acoustic Grincisen number and the
thermodynamic Griineisen parameter is best for ultrasonic harmonic generation measurements along the
[100] direction of a cubic crystal. Comparison of the temperature curves of the acoustic Griineisen
number of copper shows that the acoustic Grineisen number generally follows the temperature
dependence of the lattice contribution to the thermodynamic Griineisen parameter.

PACS numbers: 43.25.Ba, 43.35.Cg

INTRODUCTION

In developing the harmonic generation technique for
measurement of the nonlinear properties of solids, we
have found a fundamental significance to the ratio of
coefficients of the nonlinear terms to the linear terms
in the nonlinear wave equation describing the propaga-
tion of a finite amplitude ultrasonic wave in the solid.
This ratio, defined as the ultrasonic nonlinearity pa-
rameter for solids, is found! in the perturbation solu-
tion for the particle displacement, in the expression
for the discontinuity distance, in the implicit solution
for the wave velocity, etc. In addition, this quantity is
observed to be only weakly dependent on temperature
in those solids studied.?™® These observations have led
us to realize that there is an intimate relationship be-
tween the ultrasonic nonlinearity parameter and the
Griineisen parameter evaluated, for example, from
studies of Brillouin scattering,® from thermal expan-
sion,” or from ultrasonic attenuation.® The purpose of
the present work is to define the acoustic Grineisen
number for cubic crystals and isotropic solids and to
give the relationship between it and the ultrasonic non-
linearity parameter. Values of the acoustic Griineisen
number taken from room temperature data on ultra-
sonic harmonic generation are presented, and a com-
parison is made between the temperature dependence
of the acoustic Grineisen number and that of the ther-
modynamic Griineisen parameter.

I. THEORY

One can consider the wave equation in a cubic crys-
tal for three pure-mode directions: (100}, (110], and
[111]. In these three directions pure longitudinal
waves may propagate and the transverse wave is not
excited. The nonlinear equation of motion for pure lon-
gitudinal waves in these three directions, assuming no
attenuation, may be written

Y present address: NASA Langley Rescarch Center, M. S 499
Hampton, VA 21685,

® present address: Institute of Scientific and Industrial Re-
search, Osaka University, Osaka, Japan,
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where p, is the unstrained mass density, » is the lon-
gitudinal displacement, and « is the Lagrangian coor-
dinate along the wave propagation direction. X, and &,
are linear combinations of second- and third-order-
elastic constants and are given in Table I for the three
pure-mode directions in the cubic crystal. The equa-
tion of motion for an isotropic solid is identical to that
of a cubic crystal in the [100]} direction, with the ap-
propriate interpretation of C,, and C,,,. An implicit
solution for the particle velocity 8u/3¢, which satisfies
Eq. (1) and the boundary condition

A [ou \
ﬁ—(gl—)ﬁ, sin w/f (2)

can be written in the form!

e (2) sinfure s (5)
8t LA e oy
1K\ (3K, + K, 81:]
*’2“<E)( 7)) ©

In analogy with the results of Earnshaw® for gases, one
finds that the phase velocity V, can be written
1, du

V= Voi*"'si‘gl"

3 @

where V= (#,/p,)!/? is the velocity of a wave having
infinitesimal amplitude and

TABLE I. Kk, and K for 1100}, [110), and [111] directions,

Direction K Ks
(100} Cy Cun
N N 20 N + 3C v 12¢
[110] Cutliptaty Cuy * 3012 + 12C 6
2 4
: N N - “ a0 .
(111] Ci+ 204 4 4Cy Clg* 602+ 12C g * 24¢
3 9
, 2C13 + 16Case
9
© 1980 Acoustical Society of America 1477




TABLE II. Acoustic Griineisen numbers Y§ for (100}, 1110], and [111) directions in cubic crystals.

Direction v
2Cy,
(110! _fGC"+6C|2+12C4;+Cm*3C11;+1201§§
4C1 +4C; +8Cyy
(111) _ (9Cu +18C12+36C44 + Ci11+6C112 +12C144 +24Ci66 + 2C123 + 16Ci56
6Cyy+12Cy;, +24Cy
8= (3K, + K,)/K, ], (5) This is possible because in harmonic generation exper-

is defined as the ultrasonic nonlinearity parameter for
solids, The subscript i represents all indices specify-
ing longitudinal wave propagation in the pure-mode di-
rections of the crystal. The effect of the nonlinear
terms in the wave equation, then, is to change the
phase velocity by an amount proportional to the product
of the particle velocity 8u/8¢ and the nonlinearity pa-
rameter 8;. This solution is valid for propagation dis-
tances less than the discontinuity distance

S -1
owafu) ]

which is of the order of 1 m for common solids. From
Eq. (4) and assuming irrotationality, the change in ve-
locity, AV, =V, - V,,, resulting from the nonlinearity
of the medium can be expressed in terms of the dis-
placement gradient 3u/aq by

1 o 1 B
AV;“EBiﬁ“’z‘ Bivofa—a' M

In order to relate this change in velocity to the
change of thermal phonon velocity resulting from lat-
tice anharmonicity, it is convenient to define the acous-
tic Griineisen number specifying the adiabatic strain
dependence of a lattice frequency v, for the longitudinal
mode i by

1
- o), ®

where the subscript S emphasizes the fact that the de-
rivative is taken under isentropic conditions, and the
subscript i represents all indices specified by longitu-
dinal wave propagation in the directions [100], [110],
and [111] Here we take the derivative with respect to
the displacement gradient 8n/3a rather than with re-
spect to the Lagrangian strain measure as ordinarily
is done in defining generalized Grineisen parameters.

iments the nonlinearity parameter is obtained by ex-
trapolating to zero amplitude a plot of the ratio of the
amplitudes of the second harmonic to the square of the
fundamental amplitude as a function of the fundamental
amplitude. In the limit of zero amplitude the difference
between the displacement gradient and the Lagrangian
strain measure vanishes. When evaluated at zero
strain, the acoustic Grineisen number of Eq. (8) is the
same as Brugger’s tensorial isentropic Griineisen num-
ber'® for a longitudinal strain along the propagation di-
rection of the mode.

According to the standing wave condition of the Debye
continuum meodel, for any state of strain the mode fre-
quencies are related to the wave speed V; and the un-
strained dimension I of the crystal by'°

v, V/I. (9)

Substituting this expression for the mode frequencies
into Eq. (8) and integrating between V,, and V,, one ob-
tains

o

Vi=Vo=aV,=- ?isvma_a’-

(10)
Comparing Eqs. (10) and (7) one finds the relationship
between the acoustic Grineisen number and the ultra-
sonic nonlinearity parameter for solids is expressed
by

7’?:;3(- (11)

In Table II are listed the acoustic Grineisen numbers
for the three pure-mode directions in cubic crystals.

II. COMPARISON WITH EXPERIMENT AND
CONCLUSION

Ultrasonic nonlinearity parameters have been mea-
sured for germanium, copper, and fused silica., As

TABLE MI. Comparison of adiabatic Griineisen number and other Grineisen parameters.

s .
¥i 1 ¥
Dresent work Nava and Romero* Collins and White"
S S 3 ~ . .
Yo Yo Yun o Do Dt Tun
Copper 2.64 5.50 3.94 2.00
Germanium 1.5 3.0 2.6 1.07 1.12 1.41 0.75
Fused silica -5.8 0.1%

*R. Nava and J. Romero, J. Acoust, Soc, Am, 64, 529-532 (1978).
b 3. Gi. Collins and G. K, White, “Thermal Expansion of 8olids™ in Progress in Lon Temperaluve

Physics, edited by C. J, Gorter (Wiley, New York, 1964), Vol.
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these measurements have been made from room tem-
perature down to 3 °K, a fairly detailed comparison can
be made between the acoustic Griineisen number and
other Griineisen parameters in some cases.

In Table Il we list room temperature values of the
acoustic Griineisen number. Also listed are room tem-
perature values of thermodynamic Grineisen param-
eters? and effective ultrasonic Griineisen parameters.
The thermodynamic Griineisen parameter is given by

y=a/K.L,=a/KCp, (12)

where a is the total thermal volume expansivity, K .
and K ; are the isothermal and the isentropic compres-
sibilities, respectively, and C, and C are the isocho-
ric and isobaric heat capacities. The effective ultra-
sonic Griineisen parameter I'; is related to the ultra-
sonic attenuation for a wave of polarization p and prop-
agation direction q by

a,= (3FK TpS )T, (13)

where K _ is the thermal conductivity along q, 7 is the
absolute temperature, Q is the ultrasonic angular fre-
quency, p is the inass density, and C,and $ are the
sound wave and Debye average velocities, respectively.

Examination of Table III reveals the fact that the
acoustic Grineisen number 7v;,,,, agrees most closely
with the thermodynamic Griuneisen parameter, and that
all three of the acoustic Griineisen numbers are larger
in magnitude than the thermodynamic Griineisen pa-
rameter. The greatest discrepancy between the two
Grineisen parameters occurs for fused silica for
which the acoustic Griineisen number is negative, In-
terestingly enough, the behavior is consistent, for
fused silica exhibits an anomalous behavior of many
of its thermodynamic and ultrasonic properties.'?™*
The negative value of the acoustic Griineisen number
is related to the fact that the second harmonic in fused
silica is generated 180° out of phase with that generated
in other solids.'®

It is significant that the agreement between the acous-
tic Griineisen numbers and the effective ultrasonic
Griineisen parameters of germanium is as good as it is,
because the data come from fundamentally different
measurements: ours from harmonic generation, Nava
and Romero’s from attenuation.

The temperature dependence of the acoustic Grinei-
sen number for the [100] direction in single crystal
copper was found to be quite similar to that of the ther-
modynamic Griineisen parameter. The two are plotted
on the same graph in Fig. 1. The temperature scale is
the reduced temperature 7/6, where the Debye tem-
perature 6 =345 K for copper. A smooth curve is
drawn through experimental values of ¥/, For com-
parison, values of the thermodynamic Griineisen pa-
rameter” are plotted on the same graph. The total
Grineisen parameter is indicated by a solid curve, In
the low temperature region the electronic contribution
to the thermodynamic Griineisen parameter is distin-
guighable. The dotted curve labeled “I" for “lattice™
contribution remains essentially constant, while the
total carve labeled “/ + ¢ for “lattice plus electron™

1479 J. Acoust. Soc. Am,, Vol. 67, No. 5, May 1980
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FIG. 1. Temperature dependence of the acoustic Gruneisen
number %y, and the thermodynamic Grineisen parameter y
of copper.

decreases as the temperature is lowered.

It is interesting to notice that the acoustic Gruneisen
number ¥/, remains parallel to the lattice contribu-
tion to the thermodynamic Grineisen parameter, and
almost exactly 1.5 times as large. The significance
of this observation is under investigation at the present
time.
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QUANTUM MECHANICAL THEORY OF NONLINEAR INTERACTION 40
OF ULTRASONIC WAVES
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ABSTRACT

Nonlinear intcraction of ultrasonic waves is discussed from the

very general quantum mechanical viewpoint. By using the concept of three-
phonon interactions one is able to derive formulac for power and intensity
of ultrasonic waves generated through nonlinear mixing of two ultrasonic
waves, as well as the formula for parametric amplification of an ultra-
sonic wave through its nonlinear interaction with another ultrasonic wave.
The effect of attenuation on nonlinear ultrasonic wave interactions also
is discussed, and it is shown that in some situations attenuation strongly
affects the generation of the second harmonic of an initially sinusoidal
ultrasonic wave. It is shown that in the correspondence limit the quantum
mechanical vicewpoint gives results which are in very good agrcement with

results obtained from classical physics.

Will be published in November 1980 issue of Journal of the Acoustical
Society of America.




I. INTRODUCTION

Nonlinecar intcractions of ultrasonic waves in solids are of two general
types. First is thc interaction in which two waves generatc a third wave
i (this also includes harmonic generation of an initially sinusoidal wave, as
we will see). Second is the amplification of an ultrasonic wave through

its interaction with another ultrasonic wave. Taken together, these two

types of nonlinear interaction offer a wide range of prospects of technical
application in addition to providing an excellent possibility to study the
fundamental anharmonicity of a crystalline lattice.

Theoretical discussion of the subject can be either from the classical

approach or the quantum mechanical approach. In the classical approach one

uscs coupled-mode equationsl_6 and the classical language of 'planc waves
propagating in a scmi-infinitc medium." 1In spite of the fact that
classical physics is quitec adcquate for discussion of ultrasonic intcractions
in which quantum cffects are negligible, the quantum mechanical approach
using the conccpt of phonons also has been applied to this probl(:m.7-12 The
quantum mechanical approach gives a reasonably straightforward solution cven
when the interaction is treated as a three-dimensional problem in an
anisotropic medium.

In general, the advantages of the quantum mechanical point of view in
the description of ultrasonic wave interactions have not becn utilized fully.
Occasionally discrepancies occur in the results obtained by diffcrent

7 .
o1 and often there is difficulty in comparing different theoretical

authors,
rcsults because the definitions of the physical parameters arc not totally
consistent. Such nonuniformity of the theoretical approach tends to

discourage comparison between experimental results on the nonlinecar bechavior i

of ultrasonic waves and results of quantum mechanical theories.




The present paper, therefore, is devoted to a unificd quantum
mechanical discussion of the nonlincar behavior of ultrasonic waves in
crystals. We discuss both noncollincar and c~llincar intcractions of ultra-
sonic waves and point out the possibility to mcasure nonlinear constants of
the propagating mcdium. We employ the quantum mechanical treatment using
the concept of phonons and show that the quantum mechanical trcatment gives
not only results obtained previously by classical methods, but also gives
the possibility to describe very general cases of interaction of ultrasonic
waves in an anisotropic medium of finite size.

In describing the nonlincar behavior of ultrasonic waves using the
concept of three-phonon interaction, the very first problem is the derivation
of the interaction Hamiltonian density operator. Section II is devoted to
this derivation. Section III descrives interactions in which two ultrasonic
waves, through nonlinear mixing, generate an ultrasonic wave whose frequency
is the sum of the frequencies of the mixed waves (parametric up-conversion).
Scction IV discusses paramctric down-conversion of two ultrasonic waves
and paramectric amplification of an ultrasonic wave through its intecraction
with another ultrasonic wave. 1In Scction V we consider the effect of
attcnuation in nonlinear intcractions of ultrasonic waves. Finally, in

Section VI we discuss the effect of our limiting assumptions and relate

them to assumptions made in classical theories.
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TI. INTERACTION HAMILTONTAN i
‘ The interaction Hamiltonian density operator fur three-phonon interactions i
can be obtained by starting with the classical form of the energy of interaction ]
, between two ultrasonic waves. First, one replaces the classical displacement E
i i
vector by the corresponding operator. The components of the displacement
operator then have the form: 13
1
- M 1/2,% i3-F ", =igeryg (@)
= T har e MK,
up = Gpug ) (@ge 8 € ok (1)
q
where -t is Planck's constant divided by 27; p is the mass density; V is the 1

volume of normalization; wq is the angular frequency of a phonon having the
wave vector a; Qq and 5; are respectively the annihilation and the creation

operators of the considered phonons; and kgq) are components of the polarization

vector > (q)
> u q)
@ _ o ,
o (@
0
>
where uo(q) is the amplitude of the ultrasonic wave, As the phonon of wave

vector a in general can have three different polarizations, the index "g'" will
1 be understood to be a double index, referring both to wave vector and to
] polarization. Here, and in what follows, the Einsteinian summation over
| rcpeated indices will be understood.
Next, the classical form of an interaction energy density for the scattering
of an ultrasonic wave Sij by an ultrasonic wave S{j can be obtained if we assume

that the wave Sij modulates the properties of the medium in which the wave Sii

is propagating. Thus, the energy density of the wave Sij has the form




a4

5C. .
1 1jke .. N
?[Cijkz M Smn] Sijskz‘ (2)

where the Sij and the S;j are the strain tensor components of the given

ultrasonic waves and the C.

ijk8 are the elastic moduli of the medium stiffened

by the presence of gg_ultrasonic wave.
Using relations (1) and (2) and making a plane wave expansion, brings the

Hamiltonian density to the form

=>
]
[}

if - )3/2]. (@) (a") (q“) (q"") Q) | @)
int 2tzov} [Lljkl i M Ky S

BC ’ . -, rd
b SLIKE (0, (a7 )k(q) (@ )N“’g“’q q” ]w
8 2 7
mn v;v;,vs,,
(3)
x ; ela' ;*e—lq rJi - 121-‘.; a - —ii{-‘ J
q q q q
~ Ed >
[a et T L gx 7 ]

where vq, vq, and vq,, are phase velocities of the phonons (a,uq), (a',mq,) and

() §q’), and rn(q”)
2”7

(3 ,wq,,) respectively, and h

>(q) )

arc components of the unit

->
vectors m = q/q, = q‘/q and m = q“/q“. The first part of the
interaction Hamiltonian density (3) arises as a result of the nonlinearity of
the strain tensor and it expresses self-coupling of phonons; the second part of

(3) is a consequence of the anharmonicity of the lattice.14 In this form, the

Hamiltonian density describes two kinds of three-phonon processes: First, the

creation of a phonon through the annihilation of two phonons is suggested by

those terms in Eq. (3) which contain ﬁq, 8 ., and aa,,; second, the disintegration




45

of a phonon and the simultaneou- creation of two ncew phonons is sugpested by
terms containing 8 , 8*., and 8*...
QT 9 q

In the following we discuss both processes and show their macroscopic
behavior in the nonlinear interactions of ultrasonic waves,

ITT. PHONON CREATION THROUGH ANNIHILATION OF TWO PHONONS
(Nonlinear Parametric Up-Conversion)

In a nonlinear medium two phonons can interact to create a ncw phonon. The
experimental situation corresponding to this process is the situation in which
two ultrasonic waves of angular frequency w) and W generate a new ultrasonic
wave of angular frequency Wy T Wyt W,

In describing the main features of this interaction, we will need knowledge

u of the size and shape of the interaction volume. In order to keep our discussion

general, but also fairly simple, we shall assume that the interaction volume and

the volume of normalization coincide with the volume of the sample under
investigation, The interaction coupling constant quqﬂq3’ however, will be
assumed to have nonzero value only in that part of thehsample in which the
interaction actually takes place. This assumption can be emploved if the
considered part of the sample is much larger than the wavelength of the ultra-
sonic wave,

Let us now assume that therc are N1 phonons having the wave vector 31
and NZ phonons having the wave voctor az in the volume of the sample. Let us
also assume that the initial state of the newly created phonons having the

-» . . . . . .
wave vector qg is empty., This means that the initial state vector is

|N1,N,,O>. The probability amplitude for transition from this initial state

to the final state <N1‘1,N2-l,l| is ‘




4f

(V)
“spss

_l
:.7'31
\'l\

- { -7 14
N -1 N -1 1ip In N0 = 1"‘“—)"/‘ ‘ '
1 ' O int | . \-p\) qlq‘ql {

( A 1((-; ’(;'»-a‘).-’:
x !Nl.‘:,,“ “fe BTy
{ -} (Yi) 1

where Yi, the interaction volume, is the volume in which € I assumed
[E RN -

I 3

to have noncero value.  The quantity Gl q.4 has the form
17273

[ (a)) (42) (4q) (@) L(q)) (4,)
' k PO

G =C jm m, My )
9,459 11}9( j k 4
(4;) (@5) (q5) (q,) ,(a;) ,(a)
1 3 27 0127 117 213
+m mj m kl (k k )
(a,) (a5) (ay) (q;) ,(a,) ,(q,)
2 3 1 17 7720 13
+ my mj m k2 (k k )
(a,) (a.) (a7) (a;) (q,) (q;)
A R THE T .
ijkemn i kK ™ '3 £ n (5)
L)) L (g5)
where (k «k T )is the cosine of the angle betwcen the polarization vectors
Slap) (a,)
k and kK 7, ectc.

In deriving the probability amplitude, Eq. (1), we have assumed that
V1>>1, and No>>1, A factor 3! is implicit in Eq. (4) as a conscquence of the
summation over all possible q, q°, and q°°. The vectors 31 and 52 are fixed

by the experimental situation, and the transition probability amplitude is to

be considered a function of 33. The variability of 53, however, is limited by

the integral

> > >
i(al*QZ'qs)‘r

av, (o)

— - —
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which has, tor an ointieartels large o lame v 0 noer R YERNLLE SN
4q qp ¢ In wdse the volume v oyt gre, the nteyral Pt oa hToer
- 4
value also when g4 4 Gp " dne v whoen tThe Taw f conservat on o morentar
interactinge quass particles 1s not tultalled exact o
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part of the sample 1n which interaction actudallsy tukes place.  Thererore, tor
a Jdertarled treatment, the value of should e cuiculated for eadh evperirenta,
‘ i
s1tuation separatelyv,  In the general Case such ettect- Qs COnNL L retfraction
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In order to pget the total transition probability rate we must sam a1l the part:
probability rates, g, S, over all nossable tinal states of phonons g, |
' R 3
This means we anst intearate P, Y over all poaaable states of phonors @
With the x-axis parallel to ((gl*q,), the total tran ation probaba oty rate
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where do. = d% de_ 1~ the space anule, The inteeral over the space angle can be
S .

evaluated 1t we know by, s as~ g function of the angies Gv and 3_, which are the

» R .
Jeviations of g, tfron the direction 4t 4, dn, respectively, the (x,y) plane
h) -

and the <, plane, 1t enters fo. ~ through the integral T, which is expressed
for the ity volume \l by 1.

I rger t cortore the antegral over the space angle, we put Aqy = q3ey’
At ool patting g o= U, we specify that |33| is a constant

i

whose value 1s determined bv simultaneous fulfillment of the law of conservation of

e amd the law ot concervatior of monentur of the interacting quasi-
Lo oy, et Pl T we can write
N
M Tt
,’ [ e e . 1 (1
Lo v —
- Lt .
v z 3
P \ ter it ace s the tact that Uodecreases rapidly owith o inereasing
A toa s e batoon e and a0 = g can be usod for large
. RS N I N
i o e errery Vo0 and L are much larger than the wavelength
S
L Lo et owun e e rne that -7 v s very large and then we can
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In the following we shall discuss some special exanples of ultrasonie
interactions, In proparation for this discussi n we nust realize that phonoens
> . v ~ . . .
(qx’“%) produced in the volume \i are scattered from this volume principally
. . d - . - -
alonyg the direction dy * 4. Therefore, we can obtain the power of the

generiated wave simply by multiplying Eq. 11 by—ﬁbs.

Noncollincar Interactions of Ultrasonic Waves

>
The power of the wave (q],wl) is EﬁwlLyva TI/V), and the power of the

->
Wave {({,,w,) 15 Gﬁw7LvLﬂv,N2/V). Using these evpressions and multiplyving

E4. Il by Tw we can express the power of the wave generated by the noncollincar
. . hid g
interaction of (ql,mlJ and (qz,wq) as

2

GI—
3 3 3
z 1

8p vV

N RN

v
(13) P = —3
y

N

The wave of power P3 is scattered from the volume Yj principallyv alons the

B >
x-direction which is parallel to 4y * Gse By examining the relations (70 and

(%), it can be shown that most of the phonons (fygpegt are scattered imto the

solid angle given by the first minimum of the tunction 7. The anzular

. . . S (max) 2n (max R
positions of these minima are given by N = i and 9 b, + T
gL 2 gLl
: 3V 3z

so that the solid angle in which most of the phonons are observed is
h)

. 1617
& s (13)

Rl

q;LyL:

~

At large distances R>>Ly, ., the average intensity of the wave scattered

trom the volume Vi can bhe calculated as




where I1 and I2 are the intensities of the two interacting waves (ql,ul) and

(4,,w,). The apparent difference hetween (12) and (14) must be considered
caretully when experimental data are taken,

For comparison with experiment we shall derive the formula for the
amplitude of the ultrasonic wave (as,ms). Using relations (7) and (87 and
putting a. = 0, a_ = q,0 Ly/Z, and a = q30 L:/Z, the transition probability

y 3y z

-~ . . . -
rate for scattering of phonons (qs,ws) into a certain solid angle A% 1s given

by
n 6 3 2
Vio©(e_,*?
G995 “1¥¥s o d Oyt
Ap(e ‘g") = Al 55§ 1[,7 5 Ll (15)
\' z o 4_'-) = V
/ 27 p V,V,Y
123
where
12

" sin q39 L /212(sin q8_ L /.

Ok(ey,ez) = "“‘—""q e' L 72 q3 N (l())
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[ee]

(2
—

&
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-
Fquation (153) gives the average number of phonons (q;,ms) scattered per unit of

.

time into *he solid arcle A0 along the direction determined by the deviation

anales Qv and 4_.  Thus, by multiplving By. (15) by4ﬁm; and dividing it by

9

R one can caleulate the average intensity of the scattered wave at a

S
distance R from the interaction volume. From this, one can obtain the amplitude

of the ultrasonic wave in the form
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This formula gives the distribution of the amplitude of the generated wave as a
function of Sy and SZ. It gives an excellent possibility to analyze experimental
{ data in detail and to correct for geometrical diffraction of the generated wave.
It is interesting to compare Eq. 17 with similar formulae obtained in
references 9 and 11. Agreement is obtained if we put into Eq. 17, 0 = 1 and
R =‘ﬂ§; , where S is the cross sectional area of the wavefront. However, making
this substitution eliminates the '"wave' character of the scattering, and thus
leads to inexactness. The results in 9 and 11 are inexact in that the scattering
process has been calculated as though it were spherically isotropic scattering
with strict fulfillment of the law of conservation of momentum. No such
assumption is made in deriving Eq. 17.

Coll?near Interactions: Second and Third Harmonic Generation
by Sinusoidal Ultrasonic Waves

Collinear interactions of ultrasonic waves bring some peculiarities to

the problem of correct interpretation of the theoretical formula because

the created phonons (as,ms) remain in the interaction volume: their phase

velocity and direction of propagation arc the same as the phasc vclocity and

dircction of propagation of the interacting waves (we neglect the cffect of

dispersion). First, we recall that the optimum conditions for interactions ; }
arc given by simultancous fulfillment of the laws of conservation of cnergy .

|

ol : 3 ‘)j

and of momentum. The corresponding relation can be written symbclically as ]
{

}

!
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@ 0)) *+ @y00,) = @gu5) - (18)

"

We can now introduce the symbolical vector Zﬁ (ah,wn),and using it we can
graphically solve the relation (18) in the (q,w) plane as shown in Figure 1.

Dashed lines in Figure 1 should be drawn so that the tangent of the angle of

deviation from the q-axis is equal to the corresponding phase veclocity, Thus,
using a diagram like Figure 1, it can be shown that collinear interaction can
exist when the interacting waves have the same phase velocities, or only in :
special cases when the phase velocities are different; i.e., when vy # v, # Ve

This relation can be satisfied only in directions in a crystal which are not

pure-mode directions, Thus, collinear interaction of waves of different modes

can exist only when the waves are propagating along a direction which is not

a pure-mode direction,

Let us now consider the casc when v. = v_ = v i.e., the collinear

1 2

interaction of waves of identical modes of polarization. The cxperimental

33

situation in this case can be described as follows: Two ultrasonic pulses
(al,wl) and (az,wz) are simultaneously launched into the sample at time t = O,
The pulses travel along a pure mode direction in the sample producing phonons
(as,ms) which remain in the space simultaneously occupied by both pulses, as

we have assumed v, = v, = v Describing this situation in terms of continuous

1 2

waves, we can say that the concentration (number per unit volume) of phonons

30

->
(qs,wz) at time t = Lx/v3 produced in the pulse regime will be the same as
the concentration produced by continuous waves propagating a distance on

Using this conclusion and using Eq. 11 for the concentration of phonons (Jz,mzl

at a distance Lx’ we obtain




Figure 1. Vector diagram for simultaneous fulfillment of the laws of
conservation of energy and of momentum.
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Ng(L ) = —5 g wy0walyNoby
3V X 8p3vg

where v = Vy TV, = Vg Realizing that*ﬁmNi is the energy density of phonons
in the wave identified by the subscript i, onc can calculate the amplitude of
the wave at the distance Lx as

G
q,9,95
__ateis 0
Ag(Ly) = Y ;958451 (20)
ov

and N, are constants

In deriving both NS(Lx) and A3(LX) we have assumed that N1 2

and that N3 =0 at t = 0,

Second Harmonic Generation

Equations 19 and 20 can be applied directly to second harmonic generation

by an initially sinusoidal ultrasonic wave. Simply putting Nl = N2 = NO/Z
and assuming V] TV, =Vg=Vas before, we find that the second harmonic
generated by a wave which has a concentration of phonons NO is, from Eq. 19:
‘HG:IQ3Q3 2 N2L2 .
Ng = —;;;335——-w0w5 0 X (21

where NS is the concentration of phonons in the second harmonic, while
wg = 2w0 is its angular frequency. In a similar manner, from Eq. 20 one
finds that the amplitude of the sccond harmonic at a distance Lx from the

beginning of the sample is




8pv

This formula agrces with that derived from classical considcrations.l In Ref. 1,
3K, 4Ky 5
the amplitude of the second harmonic is given as —(—gi———)A k“a, where K, and K
o
Z

2 3
arc the appropriate combinations of second-order and third-order elastic con-
stants, rcspectively, A is the initial fundamental amplitude, k is the

propagation constant 2m/A, and a is the sample length. Except for notational

differences, these two expressions are identical.

Third Harmonic Generation

The third harmonic of an initially sinusoidal ultrasonic wave is built
up by two processes: First is a three-phonon process in which the fundamental
phonon (qo,wo) and the second harmonic phonon (qs,ws) annihilate to create
the third harmonic phonon (qt,wt), where w, = W Y= 3w0; and second is a
four-phonon process in which three annihilating fundamental phonons (qo,mo)
create the third harmonic phonon (qt,mt). We shall consider here only three-
phonon processes which will give the significant terms found in the third
harmonic amplitude. The four-phonon processes are ignored in the

following,

Generation of the third harmonic gradually increases with the increase
of the generation of the second harmonic., The second harmonic concentration
at a distance Lx from the end of the sample is given by Eq. 21. This relation-
ship is used in Eq. 11, along with the expression dNt/dt = v dNt/dx to obtain

the concentration of the third harmonic in the form

,
oGo .
U 3

[o]

803v8

o= L
dng = 7

w w2 n3vsdx
t sYtMo™ ©

t (23)
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Applying the boundary condition N3 = 0 at x = 0, we find that the third harmonic
can be expressed as
A= 2A2/A 4
t s 0 A

which is in very good agrcement with the formula3 obtained from considering

1

. . . 15. . 1 .
the harmonic gencration as a nonlincar process. To facilitatc comparison, we

repeat Eq. 1 of Ref. 3 with slight notational changes:

1 3 . 72]1/2
3200 (G362 16 ‘0% S 3% 7 G)
Ap = 2A3LEag |t {1 . 1 -
t x70 811 9q2L2 (c + 3C )2
07'x 111 11 (24a)

Comparison of Eqs. 24 and 24a lecads to thc conclusion that our neglect of four-phonon

processes has dropped terms corresponding to the small term involving fourth-
order eclastic constants. This term was found to be negligible in the experi-

ments reported in Ref. 3. |

TV. PARAMETRIC DOWN-CONVERSION OF TWO ULTRASONIC WAVES
AND PARAMETRIC AMPLIFICATION OF AN ULTRASONIC WAVE
THROUGH ITS NONLINEAR INTERACTION WITH ANOTHER
ULTRASONIC WAVE

The parametric down-conversion mixing process is observed as the i

generation of an ultrasonic wave of frequency we by two ultrasonic waves w and ;
w, such that Wg = W)+ W, This process can be described as a process in which

a phonon (31'“1) is annihilated, and phonons (az,w,) and (as,ms) are created.

The process involving the annihilation of the phonon (al,wl) and the creation
of two new phonons is suggested in the Hamiltonian density (Eq. 3) by terms
containing aq 8, aa,,. Although spontaneous annihilation of a phonon has a

q
very low probability of occurrence, the disintegration can be stimulated by the

prescence of onc of the two components resulting from the annihilation.




57

Let us assume that the annihilation of the phonon (al,wl) is stimulated
by the presence of the phonon (az,wz). We assune that there are Nl phonons
(al,ml) and N2 phonons (az,wz) in the volume of normalization V under con-
sideration, The amplitude of the transition from the initial state ]NI’N2’0>
to the final state INl-l,N +1,1> is given also in this case by Eq. 4, provided

that N, and N2 are much larger than unity. Repeating the procedure described

1
in the previous section, one can again derive Eq. 11. This means that
parametric down-conversion is described by the same formulae as the parametric
up-conversion; however the down-conversion is accompanied by the effect of

the amplification of the stimulating wave, The amplification of the stimulating

wave results from the fact that the phonons (az,mz), created from the disin-

tegration of the phonons (al,wl), contribute to the stimulating wave.
Let us now calculate the effect of the amplification, and simultancously

take into account the attenuation of the stimulating wave. Wc¢ define the

attcnuation coefficient of an ultrasonic wave as

AL I S U
@ = - oNdT T T aNax V- Vo (25)

where a”, the tcemporal attenuation coefficient, expresses the decrease of
amplitude per unit of time, and a expresses the decrease per unit of length.,

Using this definition we can modify Eq. 11 to include attenuation:

dN <h Gi Q7 W W,W
dt 8 3 zvzv 3 7'x'1 2172
P V1v2¥s3

Assuming that N2 = 0 at t = 0, the energy density of the stimulating wave at

time t = L /v, is
X <«
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qlq qs‘”
I)Z(Lx) = pz(O)exp o 3 3
p”v

Lo dii SN R §8]

(7] I

V2V

where Lx is the length of the sample in the direction of the wave vector

-+ >

_~>
3 = 4 - 9;-

Influence of Attenuation on Nonlirear Interactions
of Ultrasonic Waves

We have tacitly assumed that the attenuation of the interacting waves 1s zero
in all previous scctions cxcept for the section on parametric down-conversion.
This, however, ncver is complcetely truc, and therefore this scction will be
devoted to discussion of the possible effect of ultrasonic attcnuation on

nonlincar interactions of ultrasonic waves.

As before, the total transition probability rate (Eq. 11) is equal to
the total number of transitions per unit of time; i.e., it expresses the
average number of phonons (33,w3) created in the volume Vi per unit of time.
With the help of Eq. 25 and Eq. 11 we can write for the concentration of

phonons (as,ws).

2
. ™G
dN qy 00, W Wyw
3 112143 717273 'N . 2a°N
e . S LN, - 2038 28)
80 Viva¥s
-207t -20’t
If we assume that N1 = NOI e and N2 = N02 e , when N01 and N02 are

the concentrations of phonons at time t = 0, Eq. 28 has a solution of the

form

ta
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| (‘.("{ s -2(af+al)t —;’.agt] (20
(] - e
LxNUlNOZ 2(a§-ﬁi-u5) J

Expanding the exponential functions and keeping only the linear terms, onc has

9
G-
43993 , L
Ny = —3557 919%3N01No2kx
8p VivaVs

[1-(ai+a£+a§)t]t (30)

which is valid for small attenuation and short times t. From this, one sees

that attenuation can be neglected, and Eq. 30 reduces to Eq. 19, when
L
+ a3) 7; << 1., In materials with a low value of

(af + a

1 > + as) t = (al + a

2
attenuation, the attenuation coefficient often is expressed by a

- - - 2 .
A is a constant of the order of magnitude 10 20 to 10 17 cm 1 sec . Using

. .. . . .. . 2 2 ) .
this condition, the attenuation is negligible 1if Wy tow, + “; << K%—. This
X

condition usually is very well fulfilled when noncollinear interactions at

1]

A mz, where

frequencies between 10 and 100 MHz are investigated., Therefore, we shall go

into greater detail only on collinear interactions.

Collinear interactions. Since the power of the ultrasonic wave can be

written Pi=-ﬁmiNiL szi‘ we can use Eq. 29 to write

y
G2 2 ~2(af+al)t -2ast
q,9,q9,w, L 1 72 3
P = 1'2737°3 "x PP e - e
3 . 3352LL_ 0102 2(a‘-ai-a§) (31)
8p VivaVz Y 2 3 2

Here Lx is interpreted to mean the effective interaction length, while t is the
effective interaction time, Although this expression is limited to collinear

interactions, it nevertheless is quite general in that it is valid for
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describing the interaction of ultrasonic waves of different polarization

modes.

If the interacting waves are of the same polarization mode we can again

put vy = v, = vy =V and write
G2 2 -2(o+a,) 2oy 1
qquq3w3 2 e - € k
P, = —x3 X P01P02 - = = A 1
807V L L, 2(ag-ay-a,) (32)

where E; = aan is the total attenuation of each wave over the sample length L‘.

From this, the amplitude at the end of a sample of length Lx is found to be

G -2 (o, +a -20,]1/2
4y9,93 i) s
M7 wRtate T o S S
pv 37%17% (33)

Stabilization Distance

At a certain distance of propagation in the sample, the harmonic growth
will be equal to the attenuation, with the result that a stabilization of the
waveform will occur., This stabilization distance Lmax can be calculated from
Eg. 32 by taking the derivative and setting it equal to zero. For a sufficiently
long sample the stabilization distance is

tn(a, + a,) - n a
Loax = Vimax © T TE T - (34)
max max @, *a, - ag

This is the distance at which the ultrasonic wave Q3 resulting from the

nonlinear interaction has its maximum value,
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Comparing this ecquation with that published in Ref. 6, one finds a ditterency

of a factor of two. The origin of this differonce i. not known at present,

Second Harmonic Generation

Assuming that A01 = A02 = AO//f, the case of second harmonic generation

by an originally sinusoidal ultrasonic wave of amplitude AO can be calculated.

From Eq. 33 we find

cq @.q -4&5 -26;
A =—-—-—1§3q2A2L £ - ¢ (35)
s 8pv 00 x 20 - 4a
) o]

where E; and E; denote total attenuation of the primary wave and the second

harmonic, respectively,

V. CONCLUDING REMARKS

We have discussed in some detail the nonlinear cffects arising from the
intcraction of two ultrasonic waves. As has been mentioned, there is good
agreement between our results and the results in Refs. 1, 2, 3 and 15, if onc
compares the particular limiting cases of our gencral trecatment with the results
in these papers. This agrecment is a valuable result becausc it shows that in
the correspondence limit the quantum mechanical description of harmonic
generation gives the same results as classical calculations for both the second
harmonic amplitude and the third harmonic amplitude. This cmphasizes the point
that nonlincar interactions arc a unique and powerful tool for the mcasurcment
of the nonlincar properties of materials.

Finally, we shall discuss the limiting assumption concerning the power

of the gencrated wave. In discussing the nonlinear ultrasonic interactions




we have gssamed that tae tnitral state of the created phonons is empty,  This

neans that onl. the beginning of the generation proc ss has been considered,
This is ehactly the s1tuatron described in a previous paper based on classicul
1 . . : .
caleulations. But 10 the present situation this does not put an essential
limctation on our considerations,  If the inttial state of the created phorons
were not initially ompty, the "back scattering” should be taken into account,

This situation can be described symbolically by

. ar A "< tar ' |“‘ . - A . . , - -
[N =1, T NG NN N> T = TN T N T NI NN N
(36)
2NN, - (N NN
The sitnation desceribed 1n our discussion is obtained if Nl = N, >> NS. It

Yo

can be shown that the correction for '"back scattering" is about 2% when the
power of the generated wave is about 1% of the primary waves., In most
practical cases the power of the generated wive is much lower than 1% of the
power of the primary wave. Therefore, the equations we have derived are

adequate to describe most experimental situations,

Acknowledgment

Rescarch supported in part by the International Rescarch and Exchanges

Board and in part by the Office of Naval Rescarch,




63

a . . . - .
Present address:  College of Advanced Transport kEngineering, hepartment of
Phvsices, 01088 Tilina, Czechoslovahia.

. A, Breazeale and J, Ford, J. Appl. Phys, 36, 3430 (1965)

2. J. A, Bains, Jr. and M. A, Breazeale, J. Acoust. Soc. Am, 57, 745 (1975),
5. R. D, FPeters and M, A, Breazeale, Appl. Phys, Letters 12, 106 (1968).

4. k. M. Conwell and A. K. Ganguly, Phys. Rev. B 4, 2535 (1971).

S. 1. N. Spector, Phys. Rev. B 7, 13420 (1973).

6. N. R, Valitova and K. V. Goncharov, Fiz. Tverd., Tela 12, 3089 (1970)
[Sov. Phys.-Solid State 12, 2499 (1971).

7. L. H, Taylor and F. R, Rollins, Jr., Phys. Rev. 136, A591 (190},

8. F. R, Rollins, Jr., L. I, Tarlor, and P, H. Todd, Jr., Phve, Rev 136,
A597 (19647,

9. Yosio Hiki and Kiichiro Mukai, J. Phys. Soc. Japan 34, 454 (1973).
10. R. W. funham and B. H. Huntington, Phys. Rev. B 2, 1098 (1970).
11. A. C. Holt and J. Ford, J. Appl. Phys. 40, 142 (1969).

12. T. L. Bajak, Wave Electronics 3, 51-68 (1977),

13. A, S. Davydov, Quantum Mechanics (NecoPress, Ann Arbor, Mich., 1948),
Pe 554,

14. The interaction Hamiltonian density, Eq. (3), has been obtained on

the basis of Eq. (2). 1t cannot be compared mechanically with the Hamiltonian
density ohtained, for cxample, by Hiki and Mukai (Ref. 9). Hiki and Mukai
derived their formula from an expansion of the free cnergy density by
considering only the clastic potential cnergy. 1In gencral, the cxpansion of

the free energy density has the form

1 .k

£, E
ot 7 %keSi0ke

1
* 3T Mm% Smn

o = & 4+

RTHER T

1 .
+ :—‘(1.. [ “
3P ijkeiik




T

64

where the Ei are the components of a macroscopic applied electric ficld, anu
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in Dielectrics (Wiley, New York, 1979), p. 446. The constants Cijki in our

relation (2) are stiffened, and also there is a contribution to the stiffening

by the terms acijkk/asmn‘ Taking into account the contribution of the

stiffening we can put

5C. .. ,/0S

ijk2’ "Tin - Aijklmn/3 ’

where the Aijk?mn are the third-order elastic moduli stiffened by the presence

of an ultrasonic wave. The Cmnpqrs of Hike and Mukai describe the undisturbed

medium, and are not stiffened in this way.
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