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NON-LINEAR RENEWAL THEORY FOR LATTICE RANDOM WALKS

1. Introduction

Let {xn}n>1 be 1id with mean u > 0 and variance o2 < ®,
Sn = Z;_l xj. and—in - Sn + En, where En is, for each n, independent
of the sequence xn+1,xn+2,... . Under various assumptions concerning
the nature of the process {En}, Lai and Siegmund ([1], [2]) developed
a "renewal theory" for {zn} and demonstrated its usefulness in
sequential statistical analysis. Their results, however, were
derived under the standing assumption that the random walk {Sn} be
nonlattice; this is sometimes troublesome in statistical problems
vwhere discrete data is involved.

The purpose of this note is to state the appropriate ana-
logues of the Lai-Siegmund results for the case of a lattice walk
{Sn}n>l and indicate briefly how their proofs should be modified.

A sp€:1al case of one of these results (Theorem 1) was recently
obtained by Hagwood and Woodroofe ({1]) via a rather different
approach; however, for the purposes of sequential statistics, the
more useful result would seem to be Theorem 3, which gives precise
information concerning the hitting times involved.

Acknowledgement. The author has had illuminating conversa-

tions with D. Siegmund and M. Woodroofe on the subject of renewal

theory.
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2. Statement of Results

We will assume throughout that the walk {Sn} is supported by

the lattice h. 2, and also that
(1) E —

where the limit random variable £ has a continuous distribution
function. (It is easy to find counterexamples to Theorems 1 and 3
when the distribution of £ has discontinuities: for example, when En
oscillates between + en and - En for some sequence en + 0.) 1In addi-

tion we will use the following notations and conventions:

(2) T = Ta = min{n: Zn>a}
L min{n:sn>0}
g(k) = [BS_ 7! P(s_ >hk} ; k=1,2,...
+ +
o =L gy 5 x>0
Gy(x) =G(x+y) 3 0<y<h
Hy(x) "Iz P{kh+y<E<kh+y+x} ; 0<x,y<h

THEOREM 1: Assume that for some 8§, 1/2 < § < 1,

(3) a” (T, - w

and that for each n > 0 there exists p > 0 for which
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(4) P{max €. <€ |>n} +0 .
ngj5n+29n6 i ’n

Then for all x,y,t such that 0 < x,y < h and teR, and each
ke{0,1,2,... },

(5 P{kh < Z, -a<kh+x} + Hy(x)-g(k+1)

as a + @ through the coset y + hZ. Furthermore, as a + « through R,

(6) plr, cau™t+eou 32 a2 5 0(n)

{(® is the standardized Gaussian distribution function.) If in addi-

tion to the previous assumptions

1/2

(7 P{E;ngy 3 (s -nu)/n"' % ocal > ¥(y,0)

for some two-~dimensional distribuion function ¥, then

r ~alkh+x; Taf_au-1+tou-3/2 31/2}

8 P{kh< 2

+gk+1) X J da¥(£,%)
IEZ 1 yay<tcytydn; T>-t}

as a + » through y + h2.

It is worth noting that, in contrast to the nonlattice case,

the extra condition (7) is essential to the joint convergence of

(Z.r - a) and (T.-au-l)/al/z. Moreover, (Z.r -a) and (’l'a--m,l-l)/all2
a a
will in general be asymptotically independent only when En and

(Sn-m&)/nll2 O are asymptotically independent: that is, if

¥(y,w) = P{E<y} - &(t), then

T T 1 iy Tt e
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(9) P(kh<Z, -a<kh+x; T, cau” + eou™/? al’%)
a

+ gk + l)l-ly (x)o(t)

In many applications, En and (Sn -nu)/n]'/za will be highly dependent

(in fact, En is often a constant multiple of (Sn-nu)zln) and so a
limit distribution somewhat different from that given in (9) will

occur.

The analogue of Blackwell's Theorem for the process {zn} is

amusing in that the limit is not a Haar measure.

THEOREM 2: Suppose in addition to (1) that there exists 6, 1/2

1/2 < § < 1, such that the following three conditions hold:

(10) Elx |28 <

(11) for each € > 0 Z‘; P{lgnl >0l €} < w

and for each € > 0 there exists p > 0 such that
trllpn6
(12) I plle,-g [2€} >0 as nve .

j=n

Then for each x,y such that 0 < x,y < h,
]
(13) L, Pla< Zn_<__a+x} + ny(x)/u

as a * ® through the coset y + hZ.

Next we give an asymptotic expansion of ET a’
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THEOREM 3: Assume for some n > 0

(14) P{T <nal =o(a7) y ato®

and also that the sequence {En} satisfies

(15) L, P{sup k‘6|§k| >E} <o |, €>0
k>n
(16) L GPflij-EnIZG}*O a8 n+®
n<j<min
(17) {mxn Blgjl}tgl is uniformly integrable .
<J<mrin

Then as a + «® through y + h2, 0 < y < h,

2
(18) MET_ = a - EE + (Est+/zsst+) - h

h
+ L x Hy(dx) + o(l) .

Random processes of the form Zn - Sn + En and stopping rules
of the genre T = min{n: Zn> al occur frequently in sequential statis-

tical analysis. An important class of such processes is given by
(19) z, = ng(¥)

vhere Yn = (Y1+... +Yn)/n; Yl""’yn"“ is an 1id sequence of

p-dimensional random vectors; and g: Rp ad Rl is a t‘:2 function with

the property g(EYI) > 0. Expanding g in a 2-term Taylor series about

EY., we find that zn = sn + En for a random walk sn drifting to + =

1'
and a sequence En converging in law to a continuous distribution
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EXAMPLE: Let Y ,...,Y ,... be iid with P{Yj =1} =p=1- P{Yl-o}

|

4 § (namely a weighted sum of independent xi variables).
f

|

E 1]

P

for 0 < p < 1. In order to estimate log(p/q) by an estimator with

preassigned variance a—l, Robbins and Siegmund [ 4] defined the stop-

ping rule

: (20) T, = min{n : B - (n-B) > na}
where Bn = Yl + ... + Yn’ and proposed the estimator
(21) 108[(BT8+1/2)/(T3 -BTa+1/2)] .

They showed that as a + « this estimator is asymptotically normal

with mean log (p/(1-p)) and variance ~ 1l/a regardless of p, and that
EPTa ~ a/p(1-p). Subsequently, Siegmund [ 6] noted that as a conse-

quence of the nonlinear renewal theory for nonlattice walks, k

(22) P(1-p)ET, =a+ (2p -1)2%/2 + p(1-p)/2 + o(D)

as a + », provided [p/(l-p)]2 is irrational. It now follows from

our Theorem 3 that 1if [p/(l-p)]2 is rational, [p/(l-p)]2 = r/h in

lowest terms, then
(23) p(l-p)EpTa = a+ (1~ 2p)2/2 + p(l-p)/2
2 -1

q h - -
- I T P{quh 1+>~< Eiquh
u=0 keZ

14y +ulduto(l)

as a + @ through y + hZ; here -§ ~ xi.
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3. Proof of Theorem 1

We will present a complete proof only for Theorem 1. Theorem

3 follows from Theorem 1 via Wald's Identity:

HETa = EST
a

- EZ, - EE,
a a

=a+E(ZT -a)-EET .
a a

The assumption En —§L+ £ suggests EET + E£, and Theorem 1 leads one
a

to hope that

lim E (ZT -a)
a-o a
acy+h2

exists and is the mean of the limiting distribution recorded in (5).
The details of this argument are so similar to those given in Theorem
3 of Lai and Siegmund [ 3] that we omit them.

Theorem 2 requires considerably more care. However, a proof
can be distilled from the ideas contained in the proof of Theorem 1
and in the papers of Lai and Siegmund, so we refrain from presenting
it.

We will assume for the proof of Theorem 1 that the span h of
the lattice supporting the random walk {Sn} is 1. Now the assumption
a-c('l‘a- au-l) i N 0 implies that there is a function p(a) ¥ O as

a + « guch that

(26) Pla®|1, ~au” | 2p()} » 0 .

— " ’ TP AT e L,

T P DT 2 AR WA b NI £ S oy

bR 7~y s

e~

gk




o a-

We are certainly free to let p(a) ¥ 0 as slowly as we like; thus we

will assume

(25) p(a)ad > o |
Define
(26) ny = ngla) = [an!-p(a)al 1

T, = min{n > no(a) : Sn+§n0> a}

LEMMA 1: Under the conditions (1), (3), and (4),

(27) P{Ta#ra] +0

and for every n > 0

(28) p{lz. -s_ -& |>n} +0 .
T, ‘ta no(a)

PROOF: Lemma 3 below guarantees that P{Ta¢ [no, n0+2p(a)36]} + 0.

On the event T, € [no. n +2D(a)86],

0
z_ -s_ -E | = lg_ -¢ l
‘ T s no(a) T, no(a)
< max le, - |
noﬁ,jinoﬂp(a)a6 i %0
and since p(a) + 0, assumption (4) implies
P{max 6[& -£ [>n} +0 .
n05j§n0+2p(a)a ] 0

This proves (28).
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Next, fix n > 0; then

{Ta#'ra} c {Tat [no, no+2p(a)a6]}

U (t, ¢ [ng, ny+ 2p(a)a’ 1}

U {max slgj-g | >n}
o< <ng*2p (a)a B

U {Sne:[no, no+2p(a)as]:

s, + E,'no efa-2n, a+2m]} .

By (24) P{T ¢ [no, n0+2p(a)a6]} + 0; by Lemma 3,
P{‘r ¢ [no, ny +2p(a)aG]} + 0 and P{Sne[no, no+29(a)a6] :

Sn + En ela-m, a+2]} is small if a is large and n small; and by
0
assumption (4), P{max 5|Ej -t l >n} + 0. This proves
nogj§n0+2p(a)a %
(27).

The objective now will be to show that (ST +En - a) has the
a 0
limiting distribution advertised in (5). Before doing so, we recall

a useful result from standard renewal theory.

LEMMA 2: Let v =v_= min{n : Sn>a} and let ye (0,1]. Then as a +
through y + 2,

(29) P{sv -ag<x;v, <ap +tou -3/2 1/2}

a

> 'Nt)cy(x)

for all x > 0, and all teR.

T e gy &




For a proof of this result see Siegmund [ 5].

LEMMA 3: For all x,y with 0 < x,y < 1, and each ke {0,1,2,... }, if

(1) holds, then

(30) P{STa+£n (a)

-ae(k, k+x]} > H (x)g(k+1)
0 y

as a > ® through y + Z. Moreover,

(31) plr, <an b+ eou™2 a2} 5 0(o)

as a -+ o
and for all € > 0 there is an A = A(€) and n = n(€) > 0 such that
a > A implies

(32) P{S +£ e[a-n, a+n] for some n > n,(a)} < € .
n no 0 -

Finally, if (7) holds, then for x,y ¢ (0,1] and ke {0,1,2,... },

(33) P{k<sT +g -agk+x ;'ra_<_au'1+tou'3/2 al/z}

a 0

+g(k+1) £ J d¥(g,z)
€% {sy<tegtytx; 0o-t)

as a > o through y + Z.

P
PROOF: It is evident that a - Sno(a) - gno(a) — 4+ ® gince
[au-l-no(a)]a_ll2 + + ®, Thus we may use the result of Lemma 2 for

the random walk 0, S and the

no(a)+1 - Sno(a)’ snO(a)+2 - Sno(a)"“

hitting time v, o _; to estimate Ps, +E —af_z]lin } .
n, g a 0 0

10




(34) p{|p{s_ +& -a<z|3 }-¢ (z)|>€l + 0
Ta T % (y-£_ )"

)

as a > < through y +2 ,

for every € > 0, where

*
(35) u =umodl for all ueR

Since Ejn N £, and £ has a continuous distributionm,

0

(36) EG (z) > EG (z) ;

(y-E. ) v-5"
0

this and (34) prove (30) since

Co-8"+21
(37) &G x(z) = E z g(3)
(y-8) j=1

Cz1 .
21 g(1+e(Cz+1 PP{L (y-8) +z 1 = [Cz+1 I}
j=

Cz1
Zl g(i)+e([ zr1 ])Hy(z- Lz
js

Similarly we may deduce from Lemma 2

. -1 -3/2 1/2
(38) P{lP{ST +£n -a<z; ‘raiau + toy a I:}n}

a 0 0
¢

-G (z) 1 {(s_ +&_ - u)/0n1/2>-t}|>€}+0 .
(v-£ )" M 070
0

e T

(as a + ® through y + 2)




(3

The reasoning is as follows: the event

(39) {s. +& -a<z; 1 <au-1+t0u-3/2 al’?)
T n - a—
a 0
= {(s -S )-(a-8_-E )<z;
n0+\) no nO no
v < (ap” ! - ngy) +tou_3/2 al’%
where
Py
(40) V=Vv.g £ = min{k tS_ 4 ~S, >a-S_ -& }
n n 0 0 0
0 0
By Lemma 2 and the fact that a - S - £ -P—> + ®
n n
0 0
(41) P{(s -8 )-(a-S_ -t )< z;
n0+\) ng n, n,
ve(a-s -t Wl t (a-s_ -£ )% )
o "o o " "o
-C . (2) i N 0 ;
(y-En )
0
moreover, since (a-S -E )G/nu2 2, 0, and al/zln
n, n, 0 0
-1 )
(42) u(a-g)-gn)u t(a-s -§ )
0 0 0 0
i (au-l_no) + to,u-3/2 81/2}
1/2

- l{(Sn +€n -nou)/cn

0 0 0

This and (41) imply (38).

12
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If we set z = + ®» in (38), we obtain (31). Furthermore, it
is clear that if (7) holds, then (38) implies (33).
To prove (32) we choose n (0<n<1/2) small enough and A

large enough so that a > A implies

*
(43) P{Eno(a) € 12n} < €

for every interval I, < [0,1] of length 2n (this is possible since

n
66!L+£ and £ has a continuous distribution). Since the random walk
{sn} is supported by 2, it is clear that (43) implies (32).

Theorem 1 is an immediate consequence of Lemmas 1 and 3.
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