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ABSTRACT

Optimal missile avoidance is analyzed with a two-dimensional
linearized kinematic model. It is shown that inclusion of a control-
effort penalization term in the payoff function leads to extend the
domain of validity of the trajectory linearization. The required
values of the weighting coefficient of the control penalization and
the resulting loss in the optimal miss distance are evaluated. A
recursive algorithm for the numerical solution of the modified
optimal avoidance problem is presented. The optimal solutions
obtained for the linearized kinematical model are compared to results

of non-linear simulation.
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I. INTRODUCTION

The problem of optimal missile avoidance was analysed in the past
using different types of simplified mathematical models. Three types of

simplifying assumptions were used:

a. Neglecting guidance dynamics.'™?

b. Restricting the motion to a plane,3 !°

c. Trajectory linearization,!”% 729712

It was shown that the attractive assumption, made by neglecting the
dynamics of the pursuer, yields seriously misleading results!’2’? When-
ever guidance dynamics is considered”!? (even if by an approximation
of a first order time constant or a pure time delay), optimal evasion
can guarantee non-zero miss distance even from a pursuer of unlimited

maneuverability’ or from one of an optimal guidance strategy.?

Trajectory linearization, both for two and three dimensional
models has been proved to be a useful way to obtain analytical solutions

providing an insight to the problem. Recently accomplished studies

with a linearized kinematic model!°’ ! indicate that the optimal maneuver

for missile avoidance is a '"bang-bang' type with the continuous use of

maximum load factor of the evading airplane. It can be therefore reduced

to an optimal roll-position control problem of two consecutive phases:
(1) Orienting the airplane lateral acceleration vector into the plane
of optimal evasion; (2) Changing the direction of this acceleration,

which has to be maximal, by rapid roll maneuvers of 180° in accordance

with an optimal switch function.
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However, the validity of trajectory linearization is not always
obvious. This assumption is valid as long as the evader's trajectory
does not deviate much from its initial direction. This requirement

can be satisfied if: y

]
’..
a. The dynamic similarity parameter of the problem,13 defined by €
direction change of the evader during a period of the pursuer's time

constant, is small,.
b. The solution does not include excessively long turns in one direction.

The first condition has to be examined before trajectory linearizationm.
The second one, however, can be verified only a-posteriori. Due to the
"bang-bang'" structure of the optimal evasive maneuver, in most cases this
second condition is also satisfied. A recent investigation'* has shown
that there exists a range of parameters (long flight times, small values
of effective proportional navigation constants, low missile/target
maneuver ratios) for which long turns are predicted by the linearized

kinematic model maximizing the miss distance. Moreover, it has been

shown!? that the sensitivity of the miss distance to target maneuver,

performed far away from the point of closest approach is relatively small.

e TG

The objective of the present paper is to modify slightly the

optimal control problem, to enable the extension of the validity of

trajectory linearization. j

In this new formulation the payoff to be maximized is the square E

of the miss distance penalized by a quadratic integral term of the
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control effort. A similar cost function has been used in the past® to
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avoid numerical difficulties in singular control. The optimal miss

distance obtained with this new formulation will be, no doubt, smaller

— -

than the value predicted in the original problem.
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Recently, it has been proven that the difference between the
miss distance obtained using different cost functions can be made small by

proper choice of the weighting coefficient of the integral term.

In the present work the emphasis is to eliminate the long initial

turn of the optimal maneuver sequence, which can be achieved by using a

relatively large weighting coefficient for the control penalization.

The analysis is carried out under the following set of assumptions:

- 1. Missile and target are considered as constant speed point-mass !

elements.

2. The missile is guided by proportional navigation with constant

effective P.N. coefficient.
3. Both missile and . jet perform lateral accelerations perpendicular to
the initial line of sight.

4. The deviation of the trajectory from the reference line of sight can

be decomposed in two perpendicular planes. For the sake of simplicity
only one of these planes is considered and the gravity component
in this plane is neglected. i

5. The dynamic response of the guidance system is approximated by a

ST

first order transfer function with a time constant T,




6. The missile has unbounded lateral acceleration.

7. Target dynamics are neglected in first approximation but target

lateral acceleration is bounded.

Based on these assumptions the modified optimal missile avoidance
problem is formulated in Section II in a nondimensional form, and
solved in a closed form (up to a multiplicative constant) in Section
IIT1. The criteria for the selection of the proper weighting of control
effort penalization term is outlined in Section IV, while the reduction
in the optimal miss distance dre to the penalization is estimated in
Section V. In Section VI a simple recursive algorithm for computing

the solution of the modified optimal missile avoidance problem is

presented. In the sequel the extension of the solution to cases of

limited missile acceleration and target roll rate is discussed. Solution

of the linearized modified optimal missile avoidance is compared to

results of non-linear simulation in Section VII
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II. PROBLEM STATEMENT

A. Mathematical Model

The goemetry of a two-dimensional pursuit-evasion is shown in
Fig. 1 defining the parameters of the problem. The equations of motion
of optimal missile avoidance can be written, subject to the set of

assumptions outlined in the Introduction, as follows:

a. Relative geometry perpendicular to the line of sight

and consequently the relative acceleration is
y() = yp(t) - yy(t) (2)

b. Missile guidance transfer function is expressed by

¢. Missile acceleration command is obtained according to the guidance

law of Proportional Navigation!?

v N! o
(YM)C = f?;:?j' y + t;ﬁ%gT 4)

The time of of flight of the missile te is fixed, determined by
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R(0)

t = (5)
f VM cos YM(O)'VT cos YT(O) L

Target acceleration perpendicular to the line of sight, which is

the control function of the problem, is bounded

¥, 01 < (@), (6)

Introducing nondimensional variables for time and distance’® by

(a4

= t/1T
(7)

y
Tz(aT)

<t
"

max

leads to normalize the velocity components by T(aT)max and accelerations

by (aT)max' As a result Eqs.(l), (2), and (4) are transformed to

~ o~ ~ -~

y(£) = ¥ (t) - §,(t)

y + ?M = (5"M)C (8)
~ N' ~ [} Py
oy = 5 Y+t ——=Y
M’c ~ 2
(tf-t) (tf-t)

with the constraint

EXOINE! (9)
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The non-dimensional state vector of the problem can thus be defined as

IOENMORICEAO)

(10)
If the non-dimensional control vector is defined as
u(®) £ co1(0,u,0] £ co1f0,5,.(),0] (a1
The normalized state equation can be written as
dx ~
—_—= A(t)i +u (12)
dt
with
-0 1 0]
. 0 0 -1
A(t) = (13)
N' N'
~ ~. 2 ~ ~ -1
i (tf-t) (tf-t) J
and the constraint
[ul] <1 (14)
T A
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B. Formulation of the Optimal Control Problem

The objective of the missile avoidance is to maximize the survivability
of the evading aircraft. Assuming uniformly performing warhead and
proximity fuse leads to determine the payoff as the square of the miss
distance. For normalized parameters and linearized kinematics it is

expressed as
m (15)

The optimal missile avoidance with the above described mathematical

model can be formulated as a fixed duration optimal control problem.

This problem with the payoff (15) was solved in a previous work, 1°
yielding a non-singular bang-bang solution. This solution predicts,
for long normalized times of flight, long initial maneuvers. Implementation
of such a maneuver in the real world (described by non-linear equations)
results in significant changes in interception geometry, and may
consequently invalidate the assumptions of the linearized kinematic model.

10

It has been also shown'~ that the sensitivity of the miss-distance to

target acceleration performed far away from intercept is negligibly small.

In order to avoid excessively long and inefficient maneuvers it is
proposed to modify the payoff of Eq.(15) by adding a term of a target
maneuver effort penalization. Such a modified payoff for the non-

dimensional mathematical model has the form

(16)

[
I
<
N
~
(o]
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]
»
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The value of the weighting coefficient K has to be specified later.

The modified optimal evasion problem can be thus formulated:

-

Given the dynamic system described by Eqs.(12) with aero initial
conditions (§0 = 0) and unspecified terminal state, find, for a ‘

fized normalized time of flight t » the optimal control gf(;) subject

f
to the congtraint (14), which maximizes the payoff given in Eq.(16).

The payoff function in the form of Eq.(16) was used in the past®

to avoid numerical difficulties. Here it is used for a different

e N L R N TR

purpose and it will be shown that the value of the weighting coefficient

ke ot

K will determine the domain of validity of the linearized kinematic

e

model.

III. SOLUTION OF THE MODIFIED OPTIMAL CONTROL PROBLEM

For the optimal control problem formulated in the previous section,

the variational Hamiltonian 1

2

H(x,A,u,8) = -Ku? + AT[ACE)x + u] a7

can be rewritten, separating the part independent of the control variable )

u, as

H= Ho(e2,0) - ku? v Au (18)

MW"""""‘ —
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The components of the costate vector A are determined by the adjoint

equation

dA/dt = -3H/3x
with the terminal conditions

Xl(tf) = -2x1(tf) = -2m

Xz(tf) Xs(tf) =0

For a linear system as (12) Eq.(19) yields

dA/dt = -AT (£)r

which can be transformed by introducing the normalized time-to-go

tf-t

o &

to

ar/de = AT ()2
with the initial conditions

Al(6=0) = -2m

2,(0) = Ag(0) =0

The system of equations (24) can be reduced to a scalar differential

equation of the form

(19)

(20)

(21)

(25)
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(26)

which was partially solved in the pastf° A complete close-form solution

for integer values of N', is presented in the Appendix.

The optimal control u* is obtained by

« = arg max H = arg max (-Ku2 + Azu)

yielding

u* (8)

where

2, (®)

lul(?

x5 (8)
sat { 2 l

2K

-2m fz(e)

lu] <1

and fz(e) is given by Eq.(A-13)

N'-2

-8 N'-2-i [ .
£,00) = e 7 (-1 t i’
. (N'-1-1)!

N'-z]

N'-1-i

The saturation function is defined by

sat(a) =

A I 3

l sign(a)

if

if

la] <1

lal 31

(27)

(28)

(29)

(30)

(31

L~ X W
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For integer values of N' the value of Xz(;), hence the value
of u*(;) can be computed in a closed-form up to a multiplicative
constant. It can be easily seen that as K approaches zero, u*(;)
becomes a '"bang-bang' control. The normalized form of AZ is depicted
in Fig. 2. In guidance analysis this function is well known as the
miss distance sensitivity function to a unit target lateral acceleration
impulse. The exponential form of Eq.(30) leads to affirm, as it can be

seen also in Fig. 2, that
lim Az(e) =0 (32)
B>

In Figs. 3 and 4 the optimal control function u*(6) is depicted for

different values of N' and K.

From these figures we observe that the optimal control solution,
for long normalized time of flight (but using a not excessively large

weighting coefficient K) consists of 3 phases:

1. An initial phase of no-maneuver.
2. A phase of gradually increasing maneuver.

3. An almost '"bang-bang' terminal phase.

Thus excessively long initial target maneuvers can be avoided by

a proper choice of K.

The miss distance using non-zero values of K will be obviously

smaller than the miss distance with K=0. In a recent study'® it was

shown that the upper bound of the difference in the miss distances

PR i
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can be estimated. Such an estimate will be made in the sequel after the

criteria of selecting the proper value of the penalization coefficient

K is discussed.

IV. DETERMINATION OF THE WEIGHTING COEFFICIENT K.

In the mathematical model used in this work, trajectory linearization
is performed assuming that both vehicles have constant speeds and that they
do not perform excessive turns. The first assumption appears inherently
in the Eqs.(4) and (5). The second assumption, however has to be verified

using the optimal control function.

In this section a method is presented which leads to determine a
proper value of the weighting coefficient K of the control effort
penalization in Eq.(16), such that the validity of trajectory lineariza-

tion is guaranteed.

The "'bang-bang' structure of the optimal missile avoidance
maneu er at the terminal phase leads to conclude that validity of
trajectory linearization can be achieved by avoiding excessively long

initial maneuvers in a constant direction.

l.et us define as t the time at which the first direction change

1

of the evader's lateral acceleration occurs (see Figs. 3 and 4).

The validity of trajectory linearization can be preserved by

il TR T TR TY BT I

> »R
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assuming that in the initial phase of the evasion (t € tl) the direction
change of the target is bounded by some limiting value (AF)max. This

limiting value has to be empirically specified.

The target's turning rate is given by

a
. T
Yo = o (33)
T VT
assuming constant velocity, the target's initial direction change,
(AYT)l is given by
f1
S
@Y, = 7= i I ap(t)dt| (34)
T
0
and it is required that
by, € @D (35)
Using the normalized variables of Eq.(7) and noting that
y . a
R o ool e (36)
- T/ max T max
Eq.(34) can be rewritten as
t
~ T(aT)max ' Ty av
0y, F——— | | u(®)dt] (37)
T1 VT

0

Ao ¥ &
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Defining the dynamic similarity parameter, @, BoGin sadiane

I by
1{a,.)
~ A I'"ma,
O (38)
T
and substituting it into ¥q.(37) vields
}1
(Y } u(dt - Ly (39)

where (/\)',l.)l , the initial normalized target velocity change perpendicular

to the 1nitial line of sight, is defined by

t

1
(A}T)l d I u(t)de’ (40
0

In Fig. 5 (A;T)] is depicted as a function of the weighting coetficient
o for Jitferent values of N', Substitution of (39) into (35) leads to

the inequality

. (AP
(Ap), & —= (41)
(1,1,

If the value of (AF)qu is chosen to be in the order of 20-30 degrees
the validity of the lincarization will not be violated. Thus for any

given problem the proper value of K can be determined using (41) and

Pig. 6.
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In the following an approzimate method to evaluate the required

value of K is presented.

For a given (AI’)max and dp, @ maximum admissible value of (/\vT)l

is obtained using (41),

N

K _max
(W dpax = T (42)
1 U,
1
We define (see Fig. 3)
é ~ ~
6, = t. -t (43)
and
6 Y0+ (v ) (a4)
u 1 T1 max

~
.

Thus a unit step of the control, applied at Ou, will generate (AyT )ma‘
) b

as given in Eq.(42).

Inspection of Figs. 3 and 4 indicates that the actual value of the

optimal control function at Ou
|u(6u)|= n <1 (45)

Assuming a parabolic approximation for the control function in the

unsaturated phase and using Eq. (28) and (29) we obtain (n = 4/9)

T
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lue )l = 5 | £,001 =) (46)

yielding an approximation for K

kz?2

m* [£,(8 )] .

The actual value of n ranges from 0.25 to 0.5.
Using this approximation will eventually lead to a value of [A).r,r)I only

slightly different than the limit determined in Eq.(42).

V. EFFECT OF CONTROL-EFFORT PENALIZATION ON THE MISS DISTANCE

The use of control-effort penali:ation term in the modified cost J
(Eq.16) reduces the optimal miss distance compared to the one obtained

optimizing the original cost function J (Eq.15). The bounds of this

difference can be calculated using the method presented in a previous work.'®

We denote the optimal control function maximizing J by u*, and

the resulting miss distance hy m*, while the miss distance obtained by

maximizing J is denoted by m*.

Obviously we have

£ e
- - ~ 9 -~
m*2 - K u*z dt ¢ m*z - K J ur” dt (48)

TP VTS liana - A P SRR = . AE . W - P

Y . 2 . . . y "
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Since

we have

(49)

J @*? - ur?) dt (50)

As can be seen from Figs. (3) and (4), both controls are almost equal

except for the initial unsaturated part of u*.

the normalized time when saturation starts.

of (50) can be thus decomposed

Let us denote by fs

The integral in the right side

Since the second integral has a negligeable small value (see Figs. 3 and 1)

we may write approximately

We also recall that the optimal control of the original problem is of

"hang-bang'" type, 1.c.,

-2
u*” =1

B . L L S T e A

(53)

R PE T v

4 e I RN SR I S . P N
. " N v TS . S

(@ - u?)dt  (s1)
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1 Substituting (52) and (53) into (50) leads to
£ 7 z
_ 2 ~ ~ ( 7 "
0w - T ¢ K J(t -ty - u*” dt‘ (54 o
s 0 ) b,
> ¥
o T
! or
-, 2 2 ~ ~ ~y 2
0 =« m* - m*” < K(tq - to)(l - u*’) (5%)

where U* is the average value of the optimal control u* in the

interval £ = 1 & f% being defined by

0
t
s
bl 2 ~ '
u* " a 1 J u* dt < 1 (56) !
tS - tO EO :
:
-2 '
Dividing Eq.(55) by m* ‘
,‘i
-~ R
-2 2 K - - Q*-
mrT - om (t< tﬂ)(l u )A e
'2—-"—‘ Y —5 = ¢t (57)
m? m*“ :
r
|
%}
an upper bound for the difference between the normalized miss distances, £
Am* s (m* - m*) 2 0 (581 1
can be obtained  Assuming that ¢ << 1, i.e., i
-2 2 - -
m*” - om* o= (m* o+ m*)Am* & 2m* /ot {59
i
I
U e e rmeen e sy e et ane o

gl e st g i AR
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the upper bound of Am* (for EO = 0) becomes

KES(l-G*Z)
bm* § —— (60)

"

2m*

A rough approximation of this upper bound is obtained by taking the

"worst case", i.e., {s = Ef and {i* = 1 leading to

Kt
£ (61)

2m*

Am* <

This inequality is of course valid only if the product Kff is sufficiently

small.

From Table 1 it can be clearly seen that the difference Am* in

the optimal miss distances is well within the bounds predicted by Eq.(60)

and (61).

T . I' I‘ A
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Predicted
Actual Value
upper bounds
- Am*
N! m* K Am* (%) Eq. (60) Eq. (61)
ﬁ‘l*
107" | 1.03x107"% 0.02 1.53x10°° | 2.8x107?
3 | 0.541
1002 ] 1.4 x1072 2.58 0.21 0.28
107 | 2.9 x107* 0.1 2.53x1073% | 5.1x107 3
s | 0.294
107 | 5.4 x107° 1.83 3.49x107% | s.1x107?
TABLE 1. Actual loss in the optimal miss distance and its predicted

upper bounds (ff

= 30).




O R A ey

i »

S L s e s O Pt v < ot 1 a

1o
to

VI {}.CURSIVE ALGORITHM FOR NUMERICAL SOLUTION

A. Linear Model

The state cquation (12) yields a formal solution of the form

t
X(1) = Y(E,£)X(0) + J ¥(t,E)u(g)ag (62)
0

where W(E,EO) is the state transition matrix of the homogeneous time-

varying linear system
X = A()X (63)

This solution can be expressed in terms of confluent hypergeometric
functions, which are not suitable for explicit analysis. Therefore, a
complete solution of the optimal problem rc¢qaires some numerical aid.
The existence of explicit, time-dependent expression for f (¥) which
serves as a switch function of the '"bang-bang'" solution in the original
problem. (K = 0) provides a handy algorithm for the sotlution cf tne

modified optimal evasion.
The procedure is the following:

1. Known the function fz(f) from Eqs. ") aud '"7), solve Eq.(12) and
compute the miss distance m*, obtained by '‘bang-bang' control

u* = sign[f,(¥)]. Pose




= Mg

>
1

238
v &

mos m* i =1 (04)

where 1 1is the i1teration index.

2. Solve Eq.(12) with the new control

m,
o i, s
u,,, = sat (Tr-fz(t)} (65)

and compute the new miss distance moq

3. Advance the index 1 by a unit and repeat step 2 until a required

convergence criterion for m* is satisfied.

. . -2
This algorithm has a very fast convergence for values of K < 10

In most of the practical cases, 1 to 3 iterations are needed to obtain a

relative error of 0.1% in the miss distance.

B Extension to Other Cases

In a realistic description of the problem of optimal missile avoidance
the assumptions ot intinite missile maneuverability and instantancous target
response (implying an infinite roll-rate), enabling to solve a linear

1011

problem, have to be abandoned. In previous works it was shown that

taking into account the limits of missile latecral acceleration and target

roll-rate does not change the "bang-bang' structure of the optimal control

TSI T




solution. lowever, due to the non-linear effects the solution has to bhe
obtained numerically. Assume that the original solution for K=0 is
obtained and it seems to generate large variation of the interception
geometry, which invalidate trajectory linearization. (This solution
includes the optimal switch function A7(f) obtained by some numerical
method). The appropriate value of K > 0 that guarantees validity of 1
lincarized kinematics can be estimated using the same equation (47) as in |

the presented case, giving to f_(f) the correct interpretation.

T

In order to obtain the optimal solution of the modified missile
avoidance problem (K > 0) the recursive algorithm presented in the previous
subsection can be used. The only difference is that for cach iteration a

new switch function has to be computed numerically.

VIT ~ COMPARISON TO NON-L.INEAR SIMULATION

Solutions of modified optimal missilec avoidance problems with
lincarized kinematics were compared to results of non-linear simulations.

In the simulation the optimal control functions obtained by the linearized

—

mode) were used. The comparison was carried out for several values of N', i

K and ¢

£ The constant parametcrs used for the comparison were:

T = 0.35 sec

V., = 770 m/sec
M / !
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2
(aT)max = 50 m/sec

VT = 250 m/sec

3

Thus the value of the dynamic similarity parameter,! &T’ defined in

Eq.(38), is 4. = 0.07 rad.

T
In Table 2 results of the comparison are presented for Ef = 30, i.e.,
predicted flight time of te = 10.5 sec for the linear model. In the
Table, Tf denotes the actual time of flight and M* is the normalized

miss distance obtained by the simulation.
From the results of Table 2 the following conclusions can be drawn:

a. For small (or zero) values of the penalization coefficient K which
allow large changes in the geometry (AYT > 30°) the miss distance
obtained by the simulation is smaller than the linearized prediction.
Moreover, the actual time of flight T_. also differs from the predicted

f

value te. Both observations indicate that assumption of trajectory

linearization is not valid in these cases.

b. If the direction change of the target AYT is kept below 30° the
miss distance obtained by non-linear simulation is slightly larger than

the value predicted by the linearized model.

c. If Ay, < 30° the actual time of flight is well approximated by the

linearized prediction and the resulting miss distance is even larger than

the value predicted by the linear model with K=0.

e e
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simulation.

Simulation
N'! K m*
M* AYT(deg) Tf (sec)

0 0.541 0.138 95.4 9.08

3 107" 0.541 0.496 46.0 10.33

1072 0.537 0.551 23.9 10.47

0 0.294 0.177 73.3 9.41

5 107" 0.294 0.300 30.3 10.41

1072 0.243 0.256 1.1 10.50

TABLE 2. Comparison of results of the linearized model to non-linear




VI1I.  CONCLUSIONS

The work presented in this paper showed that the validity of linecar: -oo
kinematical model used in the analysis of optimal missile avordance 2’ can
be largely extended by adding a control effort penalization term to the
original pay-off function. Both linear prediction and simulation indicate
that the loss of miss distance due to the control effort penalization is
of no practical significance. In the nresent paper a 2-D case was

analysed merely for sake of simplicity. The method is equally applicable

for 3-D optimal missile avoidance.
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APPENDLX

CLOSED FORM SOLUTION OF THE COSTATE VECTOR FOR LINEAR FIRST-ORDER DYNAMICS

The costate equations of the problem are given by Eq.(24)
T
dA/d6 = A (6)A (A-1)

with the tmitial conditions of Lq. (25),

l'ollowing the solution of Ref.{10] we obtain

i

Nl
xl(e) dkz/de e xs(e) (A-2)

SN'-2
A,(s) = -¢ v (A-3)
“ (s+1)

i

SN'-Z
Ao {s) = ¢ - e (A-4)
(S’l)N¢1

and, tor integer values of 3 and ¢,

-1 s d -8 0 :
[ 1T'} = = {e IT} U (A-5)

P,



|
;
- 31 - !
b
L
3 According to Leibnitz rule for the derivative of a product!'® {
j j . j-1
d’ [d) ] j [dJ 14
—— . = | —— . ——— 0 —
r (£0) - g(®)) = | = £(®) |~ £(®) +(1> T F0) | gg 8O ..
deo de :
1 | E
\[d 1 a" & g
f(8 == 8 £f(0) — g(B) = i
(31/[35()] g()+()d6 g(®) = E
g
] A
. ¥
() [ 14 1
= f(6) | — g(® A-6 v
E (1} [deJ = £( )J = 2(0) (A-6) :
!
(5 :
where the binomial coefficients \i/ are defined by :
Yo _ gt -
(0) ¢ e A-n _
the i-th derivative of the expression |
£(0) = e ® (A-8)
. }
yields |
f
i1
1 .
| - %e'e - (-t e (A-9)
- de
g *

and the i-th derivative of the expression

6%
g(0) = T (A-10) i
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yields, provided i < &

s

at ¥ ae1)... (Reiel) gh-1 _ 9}_1 (A-11
el T S 1

Substituting (A-9) and (A-11) in (A-6) we obtain

(A-12)

Equations (A-3) and (A-4) are solved by direct application of Eq. (A-12)

yielding

N'-2 (N'-Z)
. -0 N'-2-i i N'-1-i
A,(8) = -c e b (-1) woT ° (A-13)
i=0
N'-2 ' (N -2)
A(6) = ¢ e 7 (Nt %E#TT%T o' -1 (A-14)
i=0

XZ(O) in Eq.(A-2) can be obtained by using Eq.(A-12) in the expression

i
E
k,
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N'-1
A -1 -1 0 s 1
A8) = L7 Ish (s)] = L PR S
2 2 [ (s+1)" ]
N'-L (-1
- -6 N'-1-i i N'-1-i
=-ce ] (-1) LY ] (A-15)
i=0

by substituting Eqs.(A-15) and (A-14) into Eq.(A-2) and rearranging, we

obtain

N'-1-1

8 (A-16)

-6 ) N'-1-i (N'-2)!

2,0 = -ce (-1) G- TN -1 (N'-1-1) ]

The initial conditions of Eq.(A-1) are satisfied by Eqs.(A-13), (A-14)

and (A-16). The constant c¢ 1is determined by Egs.(A-16) and (20)
Al(O) = -¢ = -2y(tf) = -2m

yielding

R e T [h TR S SN Y

RS AL

R
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