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ABSTRACT

Optimal missile avoidance is analyzed with a two-dimensional

linearized kinematic model. It is shown that inclusion of a control-

effort penalization term in the payoff function leads to extend the

domain of validity of the trajectory linearization. The required

values of the weighting coefficient of the control penalization and

the resulting loss in the optimal miss distance are evaluated. A

recursive algorithm for the numerical solution of the modified

optimal avoidance problem is presented. The optimal solutions

obtained for the linearized kinematical model are compared to results

of non-linear simulation.

'tocession For

"'ITI-S &Rui
1VDC TAN
S mnawunced
I ustification

-iy.. _ _ -

* )isrlut to_______

L1

A %-ai 11b Ri n~dcI or

A pca

big"



TABLE OF CON4TENTS

ABSTRACT .

TABLE OF CONTENTS................... .. . . ... . ... .. .. . . ...

LIST OF FIGURES. .... ................. .. .. ..

I. INTRODUCTION................... . . ... . . . .. .. .. ... 1

II. PROBLEM STATEMENT........................5

III. SOLUTION OF THE MODIFIED OPTIMAL CONTROL PROBLEM .. ... .... 9

IV. DETERMINATION OF THE WEIGHTING COEFFICIENT K .......... 13

V. EFFECT OF CONTROL-EFFORT PENALIZATION ON THE MISS DISTANCE. . 17

VI. RECURSIVE ALGORITHM FOR NUMERICAL SOLUTION. .. ......... 22

VII. COMPARISON TO NON-LINEAR SIMULATION .. ............. 24

VIII. CONCLUSIONS .. .......................... 27

REFERENCES. .. ....................... ..... 28

APPENDIX. ......................... ..... 30



f - iii -

'LIST OF FIGURES

Figure 1: 2-D pursuit geometry.

Figure 2: Normalized miss-distance sensitivity function.

Figure 3: Optimal avoidance control for different values of penalization

coefficient (N.' = 3).

Figure 4: Optimal avoidance control for different values of penalization

coefficient (N' = 5).

Figure 5: Effect of the penalization coefficient on the initial target

direction change.

Figure 6: Effect of the penalization coefficient on the optimal miss

distance.

?-.

. ..........

IW1&



I. INTRODUCTION

The problem of optimal missile avoidance was analysed in the past

using different types of simplified mathematical models. Three types of

simplifying assumptions were used:

a. Neglecting guidance dynamics.1
- 3

b. Restricting the motion to a plane. 
3-
10

c. Trajectory linearization. 
1 -

b7,9-12

It was shown that the attractive assumption, made by neglecting the

dynamics of the pursuer, yields seriously misleading results' 2' 3 When-

ever guidance dynamics is considered4- 12 (even if by an approximation

of a first order time constant or a pure time delay), optimal evasion

can guarantee non-zero miss distance even from a pursuer of unlimited

maneuverability 7 or from one of an optimal guidance strategy.
12

Trajectory linearization, both for two and three dimensional

models has been proved to be a useful way to obtain analytical solutions

providing an insight to the problem. Recently accomplished studies

with a linearized kinematic modell °' indicate that the optimal maneuver

for missile avoidance is a "bang-bang" type with the continuous use of

maximum load factor of the evading airplane. It can be therefore reduced

to an optimal roll-position control problem of two consecutive phases:

(1) Orienting the airplane lateral acceleration vector into the plane

of optimal evasion; (2) Changing the direction of this acceleration,

which has to be maximal, by rapid roll maneuvers of 1800 in accordance

with an optimal switch function.
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However, the validity of trajectory linearization is not always

obvious. This assumption is valid as long as the evader's trajectory

does not deviate much from its initial direction. This requirement

can be satisfied if:

a. The dynamic similarity parameter of the problem,1 3 defined by

direction change of the evader during a period of the pursuer's time

constant, is small.

b. The solution does not include excessively long turns in one direction.

The first condition has to be examined before trajectory linearization.

The second one, however, can be verified only a--posteriori. Due to the

"bang-bang" structure of the optimal evasive maneuver, in most cases this

second condition is also satisfied. A recent investigation 1 has shown

that there exists a range of parameters (long flight times, small values

of effective proportional navigation constants, low missile/target

maneuver ratios) for which long turns are predicted by the linearized

kinematic model maximizing the miss distance. Moreover, it has been

shown10 that the sensitivity of the miss distance to target maneuver,

performed faraway from the point of closest approach is relatively small.

The objective of the present paper is to modify slightly the

optimal control problem, to enable the extension of the validity of

trajectory linearization.

In this new formulation the payoff to be maximized is the square

of the miss distance penalized by a quadratic integral term of the

....... . .-. ... .
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control effort. A similar cost function has been used in the past 8 to

avoid numerical difficulties in singular control. The optimal miss

distance obtained with this new formulation will be, no doubt, smaller

than the value predicted in the original problem.

Recently, it has been proven that the difference between the

miss distance obtained using different cost functions can be made small by

proper choice of the weighting coefficient of the integral term.

In the present work the emphasis is to eliminate the long initial

turn of the optimal maneuver sequence, which can be achieved by using a

relatively large weighting coefficient for the control penalization.

The analysis is carried out under the following set of assumptions:

1. Missile and target are considered as constant speed point-mass

elements.

2. The missile is guided by proportional navigation with constant

effective P.N. coefficient.

3. Both missile and .,yet perform lateral accelerations perpendicular to

the initial line of sight.

4. The deviation of the trajectory from the reference line of sight can

be decomposed in two perpendicular planes. For the sake of simplicity

only one of these planes is considered and the gravity component

in this plane is neglected.

S. The dynamic response of the guidance system is approximated by a

first order transfer function with a time constant T.
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6. The missile has unbounded lateral acceleration.

7. 'iarget dynamics are neglected in first approximation but target

lateral acceleration is bounded.

Based on these assumptions the modified optimal missile avoidance

problem is formulated in Section II in a nondimensional form, and

solved in a closed form (up to a multiplicative constant) in Section

III. The criteria for the selection of the proper weighting of control

effort penalization term is outlined in Section IV, while the reduction

in the optimal miss distance d'te to the penalization is estimated in

Section V. In Section VI a simple recursive algorithm for computing

the solution of the modified optimal missile avoidance problem is

presented. In the sequel the extension of the solution to cases of

limited missile acceleration and target roll rate is discussed. Solution

of the linearized modified optimal missile avoidance is compared to

results of non-linear simulation in Section VII
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II. PROBLEM STATEMENT

A. Mathematical Model

The goemetry of a two-dimensional pursuit-evasion is shown in

Fig. 1 defining the parameters of the problem. The equations of motion

of optimal missile avoidance can be written, subject to the set of

assumptions outlined in the Introduction, as follows:

a. Relative geometry perpendicular to the line of sight

y(t) = YT(t) - YM(t) (1)

and consequently the relative acceleration is

5(t) = YT(t) - jM(t) (2)

b. Missile guidance transfer function is expressed by

T'M+ Y'Y = (YM)c (3)

c. Missile acceleration command is obtained according to the guidance

law of Proportional Navigation
i

S= ((4)(YM~c (f-t) (ft

The time of of flight of the missile tf is fixed, determined by

Bo* .- *
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-R (0)
tf VM cos YM(0)-V T cos YT(0) (5)

Target acceleration perpendicular to the line of sight, which is

the control function of the problem, is bounded

IYT(t)i < (aT)ma x  (6)

Introducing nondimensional variables for time and distance 3 by

= t/t

(7)

T (aT) x

leads to normalize the velocity components by T(aT)max and accelerations

by (a T)max  As a result Eqs.(l), (2), and (4) are transformed to

(t)= YT(t) - YM(t)

+M = ((M)C (8)

N' N'
- -)) y + - y(tf-t)

with the constraint

I T~t) I  (9)

- -

* ' . 71L%%

. . . . . . . . . . . . . . .
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The non-dimensional state vector of the problem can thus be defined as

T~

If the non-dimensional control vector is defined as

u T6) 4col[0,u,0J =col[0,YT('),0] (11)

The normalized state equation can be written as

dX
-= A(t)X + u (12)

dt

withI

0 1 0

0 0 -1
A(i) =(13)

N' N' -

and the constraint

lul (14)

J AO"
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B. Formulation of the Optimal Control Problem

The objective of the missile avoidance is to maximize the survivability

of the evading aircraft. Assuming uniformly performing warhead and

proximity fuse leads to determine the payoff as the square of the miss

distance. For normalized parameters and linearized kinematics it is

expressed as

-2(' A 2
( tf) = m (15)

The optimal missile avoidance with the above described mathematical

model can be formulated as a fixed duration optimal control problem.

This problem with the payoff (15) was solved in a previous work,'0

yielding a non-singular bang-bang solution. This solution predicts,

for long normalized times of flight, long initialnaneuvers. Implementation

of such a maneuver in the real world (described by non-linear equations)

results in significant changes in interception geometry, and may

consequently invalidate the assumptions of the linearized kinematic model.

It has been also shown'0 that the sensitivity of the miss-distance to

target acceleration performed far away from intercept is negligibly small.

In order to avoid excessively long and inefficient maneuvers it is

proposed to modify the payoff of Eq.(15) by adding a term of a target

maneuver effort penalization. Such a modified payoff for the non-

dimensional mathematical model has the form

.2 t f u2

d = (t f) K u dt (16)

0

- ,.....4..,tt .
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The value of the weighting coefficient K has to be specified later.

The modified optimal evasion problem can be thus formulated:

Given the dynamic system described by Eqs. (12) with zero initial

conditions ( = 0) and unspecified terminal state, find, for a

fixed normalized time of flight tf , the optimal control u*(t) subject

to the constraint (14), which maximizes the payoff given in Eq. (16).

The payoff function in the form of Eq.(16) was used in the paste

to avoid numerical difficulties. Here it is used for a different

purpose and it will be shown that the value of the weighting coefficient

K will determine the domain of validity of the linearized kinematic

model.

III. SOLUTION OF THE MODIFIED OPTIMAL CONTROL PROBLEM

For the optimal control problem formulated in the previous section,

the variational Hamiltonian

H(x,X,u,t) = -Ku + X [A(t)x + u] (17)

can be rewritten, separating the part independent of the control variable

u, as

H = H0 (X, t.) - Ku2 + X2u (18)

4i
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The components of the costate vector X are determined by the adjoint

equation

dX/dt = -a/x(19)

with the terminal conditions

xA (t f -2x1(f -2m (20)

x (t f x A3(t f) 0 (21)

For a linear system as (12) Eq.(19) yields

dX/dt = -AT(t)X (22)

which can be transformed by introducing the normalized time-to-go

A (23)
t f-t(3

to

dX/dO =A T(6)X (24)

with the initial conditions

A I(6:=O) = -2m

(25)
A 2 (0) = A 3(0) =0

The system of equations (24) can be reduced to a scalar differential

equation of the form

ALa
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d3X d 2  NO T 0 (26)

which was partially solved in the past.O A complete close-form solution

for integer values of N', is presented in the Appendix.

The optimal control u* is obtained by

arg max H = arg max (-Ku2 + X2u) (27)
lul". IUI27

yielding

u*(O) = sat (e)} (28)

where

X2 (6) = -2m f2(O) (29)

and f 2(0) is given by Eq.(A-13)

N'-2 IN'-2)

f2(0) = e I (-I) i oN'-l-i (30)
i=O(N '- -l i)

i=0

The saturation function is defined by

A f a if al < 1
sat(a) s aa(31)

sign(a) if jal 1
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For integer values of N' the value of X2(t), hence the value

of u*(t) can be computed in a closed-form up to a multiplicative

constant. It can be easily seen that as K approaches zero, u*(t)

becomes a "bang-bang" control. The normalized form of A2 is depicted

in Fig. 2. In guidance analysis this function is well known as the

miss distance sensitivity function to a unit target lateral acceleration

impulse. The exponential form of Eq.(30) leads to affirm, as it can be

seen also in Fig. 2, that

lim X2(e) = 0 (32)
0 -0-0

In Figs. 3 and 4 the optimal control function u*(6) is depicted for

different values of N' and K.

From these figures we observe that the optimal control solution,

for long normalized time of flight (but using a not excessively large

weighting coefficient K) consists of 3 phases:

1. An initial phase of no-maneuver.

2. A phase of gradually increasing maneuver.

3. An almost "bang-bang" terminal phase.

Thus excessively long initial target maneuvers can be avoided by

a proper choice of K.

The miss distance using non-zero values of K will be obviously

smaller than the miss distance with K=O. In a recent study' s it was

shown that the upper bound of the difference in the miss distances
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can be estimated. Such an estimate will be made in the sequel after the

criteria of selecting the proper value of the penalization coefficient

K is discussed.

IV. DETERMINATION OF THE WEIGHTING COEFFICIENT K.

In the mathematical model used in this work, trajectory linearization

is performed assuming that both vehicles have constant speeds and that they

do not perform excessive turns. The first assumption appears inherently

in the Eqs.(4) and (5). The second assumption, however has to be verified

using the optimal control function.

In this section a method is presented which leads to determine a

proper value of the weighting coefficient K of the control effort

penalization in Eq.(16), such that the validity of trajectory lineariza-

tion is guaranteed.

The "hang-hang" structure of the optimal missile avoidance

maneu~er ait the terminal phase leads to conclude that validity of

trajectory linearizattion can be achieved by avoiding excessively long

initial maneuvers in a constant direction.

Let us define as t I the time at which the first direction change

of the evader's lateral acceleration occurs (see Figs. 3 and 4).

The validity of trajectory linearization can be preserved hy
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assuming that in the initial phase of the evasion (t 4 t1) the direction

change of the target is bounded by some limiting value (A) max. This

limiting value has to be empirically specified.

The target's turning rate is given by

aTaT (33)
T VT

assuming constant velocity, the target's initial direction change,

(AYT)l is given by

t
I

(AYTa I T Tt)dtj (34)

0

and it is required that

(AYT)l < (Ar) max (35)

Using the normalized variables of Eq.(7) and noting that

A T T(36)u = a(36

ITmax (Tmax

Eq.(34) can be rewritten as

T(aT)max 
(

(AYT) I VT u(t)dtj (37)

0

* ' . ,
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Def ining the dynamic similarity parameter, 1 i , ' (il

A Mi
VT  (38)Vr

and substituting it into lq. (37) yields

(A ' 'rl' rAy r u t ) : r A 'r 1  (39 )

0

where (Ay.T) , the initial normalied target velocity chaile perp-ndiciilar

to the initial line of sight, is defined by

t
(AYT ) I u(t)dt' (1

0

In Fig. S (Av ) is depicted as a function of the weighting coefficint

k for 2 ifferent values of N' Substitution of (39) into (351 leads to

the inequa Ii ty

(AYT 1 Max (41

'T I

If the value of (AF)max is chosen to he in the order of 20-30 degrees

the validity of the linearization will not be violated. Thus for any

given problem the proper value of K can be determined using (41) and

Iig. 6.

A
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In the following an appro-:imate method to evaluate the required

value of K is presented.

For a given (AP)max and &T) a maximum admissible value of (ART)

is obtained using (41),

Al'

(,\YT )max
1

We define (see Fig. 3)

01 =~ -f t (43)

and

0 A 01 + (AyT )max (44)

Thus a unit step of the control, applied at 0 will generate (AyT1max

as given in Eq.(42).

Inspection of Figs. 3 and 4 indicates that the actual value of the

optimal control function at 0u

u(0)I n < 1 (45)

Assuming a parabolic approximation for the control function in the

unsaturated phase and using Eq.(28) and (29) we obtain (n 4/9)

-t .,-

. . . . . . . . . . . . . .
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u )j = f (O) (46)

yielding an approximation for K

9-
K T m f(47)

The actual value of n ranges from 0.25 to 0.5.

Using this approximation will eventually lead to a value of (Ay only

slightly different than the limit determined in Eq.(42).

V. EFFECT OF CONTROL-EFFOIRT PENALIZATION ON THE MISS DISTANCE

The use of control-effort penali::ation term in the modified cost J

(Eq.16) reduces the optimal miss distance compared to the one obtained

optimizing the original cost function J (Eq.15). The bounds of this

difference can be calculated using the method presented in a previous work. "'

We denote the optimal control function maximizing J by u*, and

the resulting miss distance by m*, w3,il the miss distance obtained by

maximizing J is denoted b), m*.

Obviously we have

ti
(ff

-.2 * dtm* 2  
-

m -K *- udi dt (48)

t0

I. _ __ _

-',IA S.'~2 A ~ _

. .. ,-, .'.' . "-r,- - t " . C , , •_ '5,4
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Since

m*2 m" (49)

we have

0 M_ 2 -m 2 K 2(2  - u 2  dt (50)
to

As can be seen from Figs. (3) and (4), both controls are almost equal

except for the initial unsaturated part of u*. Let us denote by i
s

the normalized time when saturation starts. The integral in the right side

of (50) can be thus decomposed

tf 5 f
(u2 u. 2 )di : (11*2 - *2)df + (u*2 - u*2 )d (51)

to t ts

Since the second integral has a negligeable small value (see Figs. 3 and 4)

we may write approximately

f ts

S 2 u)di (11*2 - * 2 )di (52)

t 0  to

We also recall that the optimal control of the original problem is of

"I!aiig -bang" type, i.e.,

*'= 1 (531
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Substituting (52) and (53) into (50) leads to

1Itt
- ~.jj K (t -t) u. 2 dt ~ (54

or

0 lt m .*2  11" KM U^

0 * - m*" ( K(t? -t~o)(l - fi,21 (55) t

0

where ui is the average value of the optimal control u* in the

interval t t t being defined by
0

5

i* I u* dt < (56)

t 0 0

Dividing 'q. (55) by M*

0)to-)m-s -

, = (57)
m *

an tipper bound for the difference between the normalized miss distances,

Am* (m* - m*) a 0 (58)

can be obtained Assuming that F: << 1, i.e.,

-*2 ~2 =-
m , m2 (m* + m*)Am* 1 2* /41n * (59)

4

~. ... , . t..', , .'. .. .. . .', ,_____-.- ___' __,_, __, . " . .,'
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the upper bound of Am* (for o = 0) becomes

Kt s (I -3* 2

AM* < (60)
2m*

A rough approximation of this upper bound is obtained by taking the

"worst case", i.e., t = tf and fj* leading to

K5 f

Am* < Ktf (61)

2m*

This inequality is of course valid only if the product Kf is sufficiently

small.

From Table 1 it can be clearly seen that the difference Am* in

the optimal miss distances is well within the bounds predicted by Eq.(60)

and (61).

I

.. . -' -
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Predicted

Actual Value
upper bounds

N' rn* K A~m* % Eq.(60) Eq.(61)
m*

10- l.03xl10- 0.02 1.S3xl0- 2.8Xl0-3

3 0.541

10- 1.4 xlb 2.58 0.21 02

10- 2.9 x10- 0.1 2.53x10-3  5.ixi0-

5 0.294

10 .4 xlO~ 1.83 3.49x102  51x102

TABLE 1. Actual loss in the optimal miss distance and its predicted

upper bounds (f 30).



VI ,'...IJRSIVE ALGORITHM FOR NUMERICAL SOLUTION

A. Linear Model

The state equation (12) yields a formal solut-ion of the form

X(t) = 'ij(,M)X(O) + I T(i,&)u({)d& (62)

0

where Y(it0O)  is the state transition matrix of the homogeneous time-

varying linear system

= A(t)X (63)

This solution can be expressed in terms of confluent hypergeometric

functions, which are not suitable for explicit analysis. Therefore, a

complete solution of the optimal problem rc'.iires some numerical aid.

The existence of explicit, time-dependent expression for f.,() wthicX

serves as a switch function of the "bang-bang" solution in the original

liroblem. (K = 0) provides a handy algorithm for the solution of tiae

modified optimal evasion.

The procedure is the following:

1. Known the function f2 (i) from Eqs. -itd '), solve Eq.(12) and

compute the miss distance m-*, obtained by "bang-bang" control

*= sign[f.,()]. Pose

S•. . . . , .9 .-



where i is the iteration index.

2. Solve IEq.(12) with the new control

=sat ( f 2 (t)} (65)

and compute the new miss distance m.

3. Advance the index i by a unit and repeat step 2 until a required

convergence criterion for m* is satisfied.

This algorithm has a very fast convergence for values of K < 10 2.

In most of the practical cases, I to 3 iterations are needed to obtain a

relative error of 0.1% in the miss distance.

B Extension to Other Cases

In a realistic description of the problem of optimal missile avoidance

the assumptions of infintte missile maneuverability and instantaneous target

response (implying an infinite roll-rate), enabling to solve a linear

problem, have to be abandoned. In previous worksl° ' ll it was shown that

taking into account the limits of missile lateral acceleration and target

roll-rate does not change the "bang-bang" structure of the optimal control

. . . .. -' ,.,..,, at.I,, .d~d-' * ,.. ,. ...... , . , *, 
.

.. l



- 24

solution. However, due to the non-linear effects the solution has to be

obtained numerically. Assume that the original solution for K=O is

obtained and it seems to generate large variation of the interception

geometry, which invalidate trajectory linearization. (This solution

includes the optimal switch function X,(f) obtained by some numerical

method). The appropriate value of K > 0 that guarantees validity of

linearized kinematics can be estimated using the same equation (47) as in

the presented case, giving to f,() the correct interpretation.

In order to obtain the optimal solution of the modified missile

avoidance problem (K > 0) the recursive algorithm presented in the previous

subsection can be used. The only difference is that for each iteration a

new switch function has to be computed numerically.

VII (COMPARISON TO NON-LINEAR SIMULATION

Solutions of modified optimal missile avoidance problems with

linearized kinematics were compared to results of non-linear simulations.

In the simulation the optimal control functions obtained by the linearized

model were used. The comparison was carried out for several values of N',

K and f The constant parameters used for the comparison were:

T = 0.35 sec

VM
k .7 0 ./sec

- .
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(aT)max = 50 m/sec
2

VT = 250 m/sec

Thus the value of the dynamic similarity parameter, 13  &T, defined in

Eq.(38), is &T = 0.07 rad.

In Table 2 results of the comparison are presented for ff = 30, i.e.,

predicted flight time of tf = 10.5 sec for the linear model. In the

Table, Tf denotes the actual time of flight and M* is the normalized

miss distance obtained by the simulation.

From the results of Table 2 the following conclusions can be drawn:

a. For small (or zero) values of the penalization coefficient K which

allow large changes in the geometry (AyT > 300) the miss distance

obtained by the simulation is smaller than the linearized prediction.

Moreover, the actual time of flight Tf also differs from the predicted

value tf. Both observations indicate that assumption of trajectory

linearization is not valid in these cases.

b. If the direction change of the target AyT  is kept below 300 the

miss distance obtained by non-linear simulation is slightly larger than

the value predicted by the linearized model.

c. If AYT < 300 the actual time of flight is well approximated by the

linearized prediction and the resulting miss distance is even larger than

the value predicted by the linear model with K=O.

i
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Simulation

N' K M

M* AY T(deg) T f (sec)

0 0.541 0.138 95.4 9.08

3 10- 0.541 0.496 46.0 10.33

10 0.537 0.551 23.9 10.47

0 0.294 0.177 73.3 9.41

5 10- 0.294 0.300 30.3 10.41

10- 0.243 0.256105

TABLE 2. Comparison of results of the linearized model to non-linear

simulation.



VIi I CON(:],USIONS

The work presented iii this paper showed thiat the validi tv of' lineari -~

kinematical mnodel used in the analysis of opt imalI mis sile avoidance All

be largely extended by adding a control effort penalization term to the

original pay-off function. Both linear prediction and simulation indicate

that the loss of miss distance due to the control effort penalizat ion is

of no practical significance. In the present paper a 2-1) case wasIanalysed merely for sake of simplicity. The method is equally applicable

for 3-Dl optimal missile avoidance.
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APPF N1) 1 X

CLOSED FORM SOLUTION OF THE COSTATE VECTOR FOR LINEAR FIRST-ORDER I)YNAMICS

The costate equations of the problem are given by Eq.(24)

dA/dO AT(O), (A-i)

with the ini:,l conditions of Eq. (25).

ol lowing the solution of Ref.[iO] we obtain

N'xi(a) =dX2/dO - -- 3{}(A-2)

X,(s) -c (A-3)

N I-2

3 is) c N+I (A-4)

and, tor integer values of j and Z,

( I -- I l" ) d - °

(s l l. . S .;
- - - - - - - - - - - - - - -
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According to Lecihnitz, rule for the derivative of a product'6

1j Fd g) dJ f(% dO

+(O f-4- g(6

1[d_ f () -,-j 1 di(e

- ( ) Ld - f (O)j .g(O)(A )

i=O Ldoi- d1

where the binomial coefficients are defined by

(j j!(A-7)

the i-th derivative of the expression

f(e) C-o (A-8)

yields

-C (-1) e (A-9)
de'

and the i-th derivative of the expression

g() -- (A- IC
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yields, provided i 1

d ( - ). .(Z i l - - (A-11)
dO

Substituting (A-9) and (A-il) in (A-6) we obtain

(e- {e j- D e (9-i

ITS +1 T. d~ji=0 i

(A-12)

Equations (A-3) and (A-4) are solved by direct application of Eq. (A-12)

yielding

N'-2 (N--2)
X()=-c e- (-1) N'-2-i \.i N'-l-i (A-13)

1=0

N'-2 (N'-2

A (O) =c e0e I (l) N-2-i ('i ) 0 I1(A-14)

i=0

A2(0) in Eq.(A-2) can be obtained by using Eq.(A-12) in the expression

Vtt



sN' -11
2 IO) =L-1 [sX 2(s)] L- 1[c(s1N]

N'-l (N -1\

- -c -eI() -i 4 N--i (-s

i=O

by substituting Eqs.(A-15) and (A-14) into Eq.(A-2) and rearranging, we

obtain4

N'-1

X()=-c e- (1 )NI-1-i (N'-2)! 0 N'-1-i (A-16)

The initial conditions of Eq.(A-1) are satisfied by Eqs.(A-13), (A-14)

and (A-16). The constant c is determined by 1iqs.(A-16) and (20)

A (0) = -c = 2 (t f) -2mn

yielding

c =2m (A-17)
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