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SCALE SIZES AND LIFETIMES OF F REGION PLASMA CLOUD STRIATIONS
AS DETERMINED BY THE CONDITION OF MARGINAL STABILITY

1. Introduction
Phenomenologists have been pressed to account for certain features of

late time barium cloud striations, despite the early time success and near

universal acceptance of results from the E x B gradient drift instability theory

[Linson and Workman, 1970; Perkins et al., 1973, Francis and Perkins, 1975].

We refer to the simultaneous occurrence of three phenomena as documented
in the 1977 STRESS program: a) the generation of structure on scales as

small as 15 meters [Baker and Ulwick, 1978]:b) the apparent ubiquity of

visible striations separated by distances approaching one kilometer; and
c¢) the survival for hours (sometimes referred to as "freezing up") of this

kilometer-scale structure as evidenced by propagation studies [Prettie et al.,

1977]. 1If the gradient drift instability is at work producing small struc-
ture through a series of bifurcations, why do the kilometer scale structures
persist? What parameters select out the kilometer scale size so often?

(Observers have often noted that visible structuring seems to

halt when scale sizes transverse to the neutral wind direction decrease to
just under one kilometer [J. A. Fedder, W. Chestnut, private communication,
1980] . Past this point, there is a tendency for the striations to drift

in unison as long as they can be seen.)

We support the gradient drift instability as the explanation for stri-
ation behavior. In fact, the emergence at late times of density power law

spectra from numerical simulations [Scannapieco, et al. 1976] is in agreement

with observation LBaker and Ulwick, 1978]. We feel, however, that attempts

to explain the above mentioned three features have been hindered by approach-

ing the problem from two opposite extremes: 1) application of analytic
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results from an idealized one dimensional slab model; and 2) brute force case-
by-case numerical simulation beginning with an initially smooth plasma dis-
tribution, and proceeding toward a highly structured state. One is not
surprised that some disagreement exists between an idealized linear result
and the highly structured nonlinear envirunment. On the other extreme,
global numerical simulation on present day computers must eventually be
hindered by inadequate resolution. We feel. too, that the role of diffusion
(both classical and turbulent) has not been sufficiently emphasized in de-
termining late time structure. This is partly because present day computers
cannot resolve both the global cloud scale and the diffusion scale due to
storage and speed limitations. 1In order to fill in these gaps, we shall ex-
tract from the basic one level (F region) striation model a scaling law
which allows individual structures to provide information concerning '"bifur-
cation tendencies" applicable to other similar structures of arbitrary size.
We demonstrate in Section 2 that bifurcation or non-bifurcation of a par-
ticular structure hinges upon whether a diffusion parameter R, analogous

to the Reynolds number for neutral flows, exceeds a critical value. This

R value provides an estimate for the scale size of the state of marginal bi-
furcation tendency. It also provides an estimate for the lifetime of the
marginal state. We determine the critical R by high resolution numerical
simulation of an isolated structure of relevant geometry. Just enough physical

diffusion is added to prevent bifurcation and loss of resoclution.

We are aware that mechanisms other than diffusion can affect structure

on suitable scales. Among these are inertial forces, kinetic (finite

gyroradius) effects, and E-to-F layer coupling. It is our desire, however,

to present the most basic model which seems to agree with the stated obser-

vations. In order to explain the side-by-side existence at late times of




15 meter and kilometer scale sizes [Baker and Ulwick, 1978] we hypothesize

that the cloud is dominated by turbulent diffusivity of order 100 m2/sec,
but that selected regions may reflect non turbulent electron diffusion of
order 1 m2/sec.

In Section 3 we describe the numerical techniques by which the equations
of motion are solved. These techniques reflect appropriate advances in the

state-of-the-art since the early simulations of large scale striation morphology
[zabusky, et al., 1973; Scannapleco, et al., 1974, 1976]. The scaling

derived in Section 2 allows us to simulate a small region of the plasma with
adequate resolution, providing that boundary conditions can be specified
appropriately. Section 4 contains results of the numerical simulations and
illustrates how the critical R depends upon the conductivity ratio M. In
Section 5 we show that our calculated R values are compatible with rocket

probe data on scales of tens of meters [Baker and Ulwick, 1978]. We show

that if turbulent diffusivity is operative, a wide range of conditions will
lead to marginally stable scale sizes of approximately one kilometer. In
addition, we predict that the lifetime of the kilometer-scale structure
should be of order 104 sec., in agreement with propagation experiments

conducted during the STRESS program |Prettie et al., 1977]. Thus it is

possible that our results may help to explain the "freezing up" of visible
kilometer-scale barium cloud structures [J. A. Fedder, W, Chestnut, private
communication, 1980].
2. Equations of Motion for the One Level Model
The two dimensional field line integrated Pedersen conductivity model

appropriate to F-region clouds consists of the following equations (in cgs

units) which are cast in a frame drifting with the ambient plasma:

(1)




. !=_%v¢x§ (2)
‘ -
- V.zv¢=Eog—§, (3)

where £ is the magnetic field-line-integrated Pedersen conductivity, K is

the cross-field diffusivity of the cloud plasma, V is the local plasma drift

relative to the ambient drift velocity, c is the speed of light, B = B z is

the constant magnetic field strength, ¢ is the induced electrostatic potential,

/ and Eo = EO i is the ambient electric field in the rest frame of the neutral
atmosphere. Equations (1) - (3) are two dimensional (x,y) where x is parallel
. to the relative neutral wind and y is the direction of Eo' Except for the

assumption of constant K, these equations are accurate to first order in the

ratio of ion collision frequency to gyrofrequency. Equation (1) results from
multiplying the ion continuity equation by the Pedersen mobility and integrat-
ing along the magnetic field. One assumes that the electrostatic potential

and therefore V are constant on field lines. The diffusion term in (1) results
from the assumption of a constant Pedersen mobility and K value within the {
cloud. The assumption of constant K is admittedly simplistic. For a typical
barium cloud without turbulence, K is roughly proportional to the local plasma

density [Perkins et al., 1973]. For a turbulent cloud, K may be scale size

dependent [Goldman and Sperling, 1979]. Attempts to model the variation of

K introduce an additional scaling parameter and tend to muddy the results

without changing them significantly., Equation (3) is the equation of quasi-

neutrality, which states that the field line integrated electric current, J
J=ZE= z(go -~ V¢), must be divergence free.

For the sake of completeness, we should mention that a two layer model

with one layer for the cloud and another for the background ionosphere has




been in use for several years [Lloyd and Haerendel, 1973]. One notices that

simulations performed with the model tend to yield late time configurations
in which there is a strong correlation between density distributions in the

two layers [Scannapieco et al., 1976; S. T. Zalesak, private communication,

1980]. This may lend support to one level predictions concerning bifurcation

of a particular structure, providing that the conductivity is dominated by

the Pedersen component at the cloud level. Equations (1) - (3) may be put

into dimensionless form as follows [McDonald, et al., 1978]. Let

x =L x

dt =t dt’

(o]
£ =5 7
v=v Y @)
¢ =LE ¢
Vo = c‘Eo/Bl,
and t, = LJ/V, -

Here L0 is a measure of the cloud's gradient scale size, and all primed
quantities are dimensionless. Vo is the relative drift speed between the
ambient plasma and the neutral atmosphere, and ZB is the ambient integrated

Pedersen conductivity. 1In this paper we take

L = (fzz dx dy)l”f/(/(vz)2 dxdy) ? (5)

H

where the region of integration is a rectangular box containing the structure
of interest. We have experimented with more sophisticated definitiors of L0
which are insensitive to the size of the box. These yield results within 20%

of those given by (5) for the cases presented here. We prefer to retain the

straightforward simplicity of (5),




! Substituting (4) into (1) - (3) and dropping primes from all variables

we have the dimensionless equations

1.2

] 3 --V-ZV+R V1 (6)

V=-V¢xz )

V.EV¢ =3.V3, (8)

‘ where R=VL /K. (9)
o0

Note that R is analogous to the Reynolds number for neutral flows, with the
kinematic viscosity replaced by the cross-field plasma diffusivity.
Equations (6) - (8) reveal that the evolution of a plasma cloud is
completely determined by initial cloud geometry, boundary conditions, and the
value of R, Thus the answer to whether or not a given structure will
bifurcate depends upon whether R is greater or smaller than some critical
R value applicable to that structure. For sufficiently small R, diffusion
will be dominant and will smooth out small structures faster than they can
be created. For sufficiently large R, diffusion will be negligible, allowing
steepening and bifurcation to preceed,
If the critical R for a particular structure is known, we can use (9)

to estimate the scale size of the marginally stable state, providing esti-~

mates for Vo and K are available: {

L =KR/V (10)
(] o]
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The lifetime of the marginal state may also be estimated. The time re-
quired for diffusion to degrade the structure is approximately
tD = LOZ/K
(11)
=RL/V

One sees that tD is R times the one dimensional gradient drift instability
growth time. Anticipating that R is a large number, (11) implies that the
marginal state can persist for times much greater than basic gradient drift
structuring times.

In this work we investigate bifurcations which originate near the tips
of striations. This seems to be the most likely place for new structure
to emerge, although there is photographic evidence, for example in SPRUCE,
that some new structure can emerge from sides of striations. The procedure
for estimating the critical R for a given initial condition on X will be to
carry out a set of simulations from equations (1) - (3) with assorted values
of K. An upper limit on the critical R will be taken to be the smallest R
at the time of f.rst bifurcation. A lower limit will be taken as the largest
R among non-bifurcating cases at times used to determine the upper limit.
The initial condition on X will be taken as an appropriate form representing
a single .ated striation tip. This allows numerical resolution to be

4 to 8 times that of our earlier studv [McDonald et al., 1978].

3. Numerical Simulations
Equations (1) - (3) are advanced in time using numericai techniques
described below. A more detailed description of the NRL one-level stria-

tions code has been given by McDonald et al.,[1979]. We choose the dimension-

al set rather than (6) - (8) to facilitate comparison with experiment.




With Z(x,y) given at a particular time, we calculate ¢ from (3), and use the
result in (2) to arrive at the flow field V. Then we use (1) to advance X
by one timestep, after which the cycle can be reinitiated. Finite difference
representations are used for all derivatives in (1) - (3).

Solution of the variable coefficient elliptic equation (3) accounts for
nearly two-thirds of simulation time for grids as large as that used here
(162 by 82 points). We use the Chebychev semi-iterative method to calculate
a series of approximations which converge to the true solution of (3)

[nggg, 1962; McDonald, 1980]. This method was chosen because of its
efficient execution on a vector computer such as the NRL Texas Instruments
ASC. It also allows convenient implementation of a wide variety of boundary
conditions. Derivatives are represented bv second order finite differences
on a uniform, non-staggered grid (I, ¢, and V are calculated on the same

set of points). It 1is possible to obtain an exact solution to the finite
difference analog of (3) [Madala, 19787, but computer time and storage re-
quirements become excessive for large grids. We use time extrapolation to
obtain an accurate initial approximation to ¢ , and carry out iterations
until the root mean square residual error is apporoximately 3 x 10—& of the
root mean square source term. Reduction of the error much below this level
would not necessarily improve results, since discretization introduces errors
of this order or greater into the equations.

For the advection term in equation (1) we use the two dimensional flux
correction method of Zalesak [1979]. This technique can be incorporated into
a number of standard advection schemes to prevent formation of spurious
oscillations in the advected quantity. There are two reasons why these
oscillations should be avoided: (1) in a divergenceless flow field (see
eq. (2)) new maxima or minima cannot be created: and (2) high order schemes

can drive Z negative, resulting in degeneracy of eq. (3) and physically




meaningless velocities. Traditional remedies include local "fill-in" and

addition of artificial diffusion globally. The flux correction technique
operates locally in regions where the oscillations tend to form, effectively
truncating the scheme to first order such that ripples cannot form. The
diffusion term in equation (1) is added in a separate step using second order
spatial, forward time differencing. 1In the integration of equation (1) we
tacitly subtract from V the structure's centroid velocity. This keeps the
interesting structure from drifting off the computational grid. More
important, it reduces the number of grid cells through which the structure
drifts during a simulation. This helps to reduce discretization error due
to the irreversible loss of information that occurs when an arbitrary pro-
file is advected at constant velocity through an Eulerian grid.

The simulations were carried out on a grid of 162 by 82 points in the
x and y directions respectively. Each simulation was carried out with a
uniform grid interval of 80 meters and was then rerun with a grid interval
of 40 meters as a check on the sensitivity of results to resolution. The
use of a non-stretched grid increases execution efficiency of the code. The
problems arising from electrostatic images on the boundaries are partially
alleviated bv the use of transmittive boundarv conditions described below.
The calculation procedure is to update quantities on the interior of the grid
(160 x 80 points) by the methods described above, and them calculate ex-
terior values from the boundary conditions.

Boundary conditions used during the simulation are as follows.

Neumann boundaries




(with n the outward normal) are imposed upon I and intermediate variables

involved in updating equation (3). This allows inflow and outflow of ambient
plasma on three sides of the grid where structure does not intersect the
boundary (see Figures 1-4). It is also a good approximation for the fourth
side (the left boundary of each figure) since I contours tend to align with
the neutral wind direction (x) except near striation tips. For the present .
study, the Neumann condition seems more realistic than the periodic bounda-
ries used in most earlier simulations. The "re entry" of plasma resulting
from periodicity would be nonphysical in the study of an isolated structure.

The physically proper boundary condition on ¢ is that its gradient van-
ish at infinity. Since we are constrained to a grid of finite extent, we can
either stretch the grid to move the boundary far from the structure or
attempt to match the interior solution with an appropriate exterior solution.
We have chosen an approximation to the second alternative and have developed
a physically motivated algorithm which is admittedly simplistic, but has
been validated empirically. Our approximate boundary condition is

2 3>

n + S - =0 (13

where n is the outward normal and S is a constant taken to be the cloud's
initial scale size (see (15)). This states that the normal component of
the polarization electric field must decrease in the outward direction on

a spatial scale comparable to that of the gross structure. We choose to
cast (13) in terms of the first two derivatives rather than ¢ and its first
derivative so that the addition of a constant to ¢ would have no effect
upon structure evolution. We have validated (13) by comparing analytic

and finite difference solutions to (3) for elliptic "waterbag" distributions

10
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Z (x,y). The condition (13) gave results superior to the dsual perfodic,
Neumann, or Dirichlet boundaries.
Initial conditions for the simulations are taken to be descriptive

of the tip of a striation (see upper portions of Figures 1-4). Taking

the origin at the center of the rectangular grid, we have at t 0

1+ (M-1) exp(-y2/s2), x < 0

™
]

(14)

1+ (M-1) exp(e(x2+y2)/sz, x=20

where M is the ratio of peak conductivity to ambient. For all cases

presented here,

S=1knm. (15)

The computational domain for results shown in Figures 1-4 is 6.4 by 12.8
kilometers. That we have normalized I to the ambient Zé has no effect
on the model (1) - (3) (i.e., I can be replaced with ZVZ%). All other varia-

bles retain their dimensionality. For all cases we take B = .5 gauss, and

E = 21.67 x 107/ stat volts/cm, so that v, = 100 m/s. In this particular
simulation it is not necessary to perturb the initial condition, since (14)
does not represent a steady state. One must note, however, that discreti-

zation and roundoff errors provide effective pertubations to any simulation.
4, Results

Simulation results used to determine upper and lower limits on R for
each of four M values (2, 5, 10, and 30) are shown in Figures 1-4. For

each M, a set of simulations were carried out for various K values in order

11




to help locate the demarcation between bifurcating and non bifurcating states.
For each M value we present the two simulations which most accurately bound
the critical R. 1In each case this involves a pair of K values separated by

a factor of 2. The range could be narrowed by further simulations, but the
approximations involved in taking K constant and specifying boundary con-
ditions at finite distances would lend some uncertainty to the result. Our

earlier critical R value for an M = 11 structure [McDonald et al., 1978] is

approximately a factor of 2 lower than one would expect from the present work
(see Figure 6). We attribute this to the use of different initial conditions,
boundary conditions, lower spatial resolution, and a different procedure

for determining the critical R.

In each of Figures 1-4 the left column gives contour plots of T

for cases where K is small enough to permit bifurcation. The plot just
below the initial condition plot shows X at a time when it is qualitatively
clear that bifurcation is about to occur. This time is chosen as appro-
priate to determine the critical R from (5) and (9). We choose not to
determine R at t = 0 because the uniform separation of contours is not
"natural.”" This becomes clear when one examines the non bifurcating

states in the right column of Figures 1-4, A quasi stationary state is
established only after a sufficient amount of steepening has occurred. It
is the rtability of a pre-steepened and thus more 'natural" state that we
wish to address. When the structure is near bifurcation, the selection

of a time for calculating R is not crucial. As shown in Figure 5, the
length scale tends to level off just prior to the development of new

structure. Thus our resalts are not sensitive to the precise definitfon of

an onset time.




M2
K = 200 wl/s

K = 100 rl/s

360 369

540

1080

Fig. 1 — Contour plots of Z(x,y) at selected times illustrating the demarcation between bifur-
cating (left column) and non-bifurcating (right column) states for M = 2. Contours are spaced
linearly between T = 1 (ambient) and M. Limits on the critical R are evaluated at times when
bifurcation of the low K striation (second plot in left column for Figures 1—4) is eminent.
Times appear in the upper right of each plot.




Ke5
K« 100m/s =

Ma5
K = 200m /s

230 300

400

600

Fig. 2 — Contour plots of I(x,y) at selected times illustrating the demarcation between bifur- ;
cating (left column) and non-bifurcating (right column) states for M = 5. The diffusion dominated i
case is plotted at 300 seconds, the time at which L attains a shallow minimum (see Figure 5). Past
this time diffusive dominance is evidenced by the drying up of inner contours.
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Fig. 3 — Contour plots of (x,y) at selected times illustrating the demarcation between bifurcating
(left column) and non-bifurcating (right column) states for M = 10. Contours are spaced linearly
between T =1 (ambient) and M. Limits on the critical R are evaluated at times when bifurcation of
the low K striation (second plot in left column for Figures 1—4) is eminent. Times appear in the
upper right of each plot.




Mo« 30 =) M= 30
K« 25 nl/s r K« 50 n/s
480 480
®
‘ 540 660
=
p 660 1080
1

Fig. 4 — Contour plots of Z(x,y) at selected times illustrating the demarcation between bifurcating
(left column) and non-bifurcating (right column) states for M = 30. Contours are spaced linearly
between T = 1 (ambient) and M. Limits on the critical R are evaluated at times when bifurcation of
the low K striation (second plot in left column for Figures 1—4) is eminent. Times appear in the
upper right of each plot.
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Curves 1 and 2 of Figure 5 shows Lo as a function of time for the M = 5
simulations. Both curves show an initial transient for 0 < t & 125 sec,
indicating that the initial condition 1is far from a 'natural" quasistationary
state. For 125 < t & 300 sec, curve 1 shows Lo slowly decreasing, correspond-
ing to the well known backside steepening phenomenon. Then for t > 300 sec,

Lo decreases rapidly, indicating the onset of bifurcation. This abrupt change
in the slope of Lo(t) coincides with bifurcation in all our runs. In con-
trast, curve 2 of Figure 5 shows Lo settling down to a nearly constant value
after the transient period. Lo reaches a shallow minimum at 300 sec., in-
dicating the onset of diffusive dominance rather than bifurcation. The coin-
cidence of this minimum with the knee in curve 1 is fortuitous, since the

minimum can be made to occur earlier by increasing the diffusivity.

The bounds on critical R values gleaned from the simulations are
given in Table 1. The column denoted "resolution" refers to results from
Figures 1-4 and a duplicate set of simulations performed with twice the
spatial resolution on the 162 x 82 grid (boundaries are placed closer to
the structure). The degree to which upper and lower bounds are different
for different spatial resolution gives a measure of discretization and
boundary effects. The geometric means of all R values from Table 1 are 1207
and 1355 for high and low resolution, respectively, and differ by only 11%.
The geometric mean of upper and lower bounds for a given M is plotted as a
function of M in Figure 6. This plot suggests that the critical R attains

a minimum value between 600 and 700 for M = 4.

18




[ Table 1 — Critical R vs. Conductivity Ratio

Geometric
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e 2 > w> o
o 45 %
. oo e 2 |
o we o

19




‘[8L6T “Ie 10 19yeqg
1 30 T'Q 9[qe]] I9Y3ISH JUSA3 10] Bjep 9YO01 WOIY A SA 7T dzIs 3[eds jjo[rey Aysusp :sjutod pajoI)
‘S90URLIRA 50] 3j0USp STeq oLy ‘| dqeJ, Wolj sanfea ueaw :sjutod prog ‘W SA Y [eONU) — 9 ‘Sig

. |
4 0¢ 0} G 2
0l =T T _4‘ T T T T Y
UoI}eadny (g uoy v
T o
07 b . IIRTENTINY;
- O4ﬁ
w | \
1 T
i 4
s — 9
i O
B ie
o %

00} °—¢ —¢Q

e & . . " Lo . e o et P . atandie i s _aiain ikl



The shape of this curve is a gratifying result which lends support to

the simulations. Linson [1975] offered an ad hoc model to explain observed
onset times as a function of M. This model, based on slip velocities for
elliptical piecewise constant density ("waterbag") clouds, predicted a U-
shaped curve with a minimum onset time for some M > 2, the exact value de-

pending on the shape of the cloud. This model was found qualitatively con-

———

sistent with simulation results for realistic cloud profiles [McDonald et al.,

1980]. This minimum onset time may be viewed as a maximum bifurcation ten-

e akn o it e LT

dency. The amount of diffusion required to halt bifurcation is thus maximum

at some M value, resulting in a minimum critical R. A recent result of

Overman and Zabusky [1980] for circular waterbag clouds also supports the

qualitative dependence of the critical R upon M as shown in Figure 6. They

find that shielding and dissipation cooperate so as to produce an effective i

diffusivity which is the actual diffusivitv times (M+1)2/(M-1). If we assume

that the amount of effective diffusivity required to halt bifurcation is in-

e e omaatis e A

sensitive to M, the critical R should be proportional to (M+1)2/(M—1). This
expression has a minimum at M = 3, in approximate agreement with the curve

of Figure 6. In fact, with the exception of the M = 2 case, the expression

o i M e e -

R =75 (M*l)%(M—l) gives the mean R values of Table 1 to 3% accuracy. For

high M, the polarization charges responsible for shielding reside in a thin

layer in which the cloud's conductivity rises from ambient to a few times
the ambient value. The thinness of this layer results in agreement of the i

cloud's polarization electric field with that of a suitable waterbag cloud.

Other data from the simulations are presented in Table 2. The margin-

ally stable structures in the right columns of Figs. 1-4 have been Fourier

analyzed at times at which the critical R is evaluated. Summing the two

dimensional spectral power over the transverse wavenumber yields one dimen-
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-n -n
sional in situ power spectra P(kx) x kx X and P(ky) x ky Y for the x and
y directions respectively. The proportionality is valid only in the central

portion of the spectrum., Diffusive dominance is evident in the steepness

of the y spectra as compared to the x spectra. This suggests the possibility
that a rocket moving transverse to the neutral wind through a "frozen' cloud
might find a power spectral density gteeper by one or two powers of k than
a rocket moving parallel to the neutral wind (assuming that turbulent fluctu-
ations can be removed from the data), Finally, the coupling coefficient { is
given which is simply the ratio of striation centroid velocity Vc to ambient
plasma drift speed Vo in the frame of the neutral atmosphere. 1In agreement
with analytic results from a waterbag model _Linson, 1975], { is roughly
proportional to M-l as a result of electric field shielding at high M.,
Figures 1-4 reveal that the manner in which an unstable structure
comes apart is dependent on the conductivity ratio. For M < 10, depletions
are able to penetrate the initial structure with ease. However, for M > 10,
there is a tendency for the secondary structure to be confined to the surface
of the original structure. High conductivity clouds are peeled like an
onion, while low conductivity clouds are cut like an apple. This effect is

even more apparent in our earlier work [McDonald et al., 1980].

Table 2 — Spectral Indices and Centroid Drifts for Marginally Stable States

M TIME n_ ny ¢ = (vc-vo) /v0
2 360 2.2 5.4 0.634
5 280 1.8 4,2 0.305
10 280 1.8 3.1 0.160
30 480 2.0 3.1 0,057
22




5. Summary and Comparison with Data

For plasma structures resembling striation tips, the model (1) - (3)
implies that the demarcation between bifurcating and non bifurcating states
is determined by the value of R (analogous to the Reynolds number in hydro-
dynamics) and the conductivity ratio M. This demarcation has been estimated
by computer simulation and is presented in Figure 6. The critical R reaches
a minimum of roughly 700 for M ® 4. 1Its dependence upon M is similar to
that of the onset time for striation emergeace from a two dimensional cloud

[Linson, 1975; McDonald et al., 1980]. This similarity is a result of bi-

furcation tendency being offset by a proportional amount of diffusion.
Our results compare favorably with three distinct types of experi-
mental observations. These are a) minimum scale sizes as determined by
rocket probe data; b) the "freezing-up" of visible structure on scales of
approximately one kilometer; and c¢) the lifetime of the "frozen" state.

We shall now discuss each of these areas.

A. Minimum Scale Sizes
If M is known for a structure, we can find the critical R from the
curve of Figure 6. We can then use (10) to estimate Lo, providing we have
estimates for Vo and K. Since Lo is proportional to K, one expects the

smallest scales to be determined by the classical (non turbulent) diffusivity

v
e ckT
K=Zn—e B ° (16)

where Ve is the sum of electron collision frequencies with cloud ions and
ambient neutrals, f% is the electron gyrofrequency, k is Boltzmann's con-
stant, T is the plasma temperature, and e is the electron charge. The

expression (16) is equivalent to that used in eq. (22) of Perkins et al.

[1973].
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For plasma number densities n > 3 x 105 cm_3 at altitudes of 150 km

or greater, Ve is dominated by ionic collisions. Thus K varies approximately
PR P,

as nT °B 2, as a result of the following.

Ve Vg = (34 + 4.18 log) (T°/n)) T2,

e e (17)

where n is in cm_3, T is in OK, and Ve is in sec-l. High resolution plasma

probe data for the barium cloud Esther [Figure 2 of Baker and Ulwick, 1978]

at approximately 170 km give 5 x 106 >2n>3x 105 cm—3. We have from (16)
and (17) with T = 1000 °k,
K = 0.182 mz/s, n=3x10 cm 3
3 (18)

2 -
2.7l m" /s, ns=>5zx lO6 cm

In order to estimate M for individual striations in the cloud, we need X
values in the ambient ionosphere and throughout the cloud (denoted by 2;
and Zk, respectively). Taking a magnetic dip angle I = 61.5° for Eglin

AFB, Florida, Francis and Perkins [1975] give for the twilight ionosphere

Za ~ 3.5 mho (19)

+
Since the cloud is contained well above 125 km (where vi/(ﬁ & 1 for Ba )

we can take

ec
Zc = /7 vi/Qi dh csc I,

(20)

where the path of integration is along the magnetic field, h is altitude,
and field line curvature is neglected. Use of altitude rather than distance

along the field facilitates comparison with data. Assuming
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2, 2
n, =0, exp (-h"/p™),
v, =V exp (-h/H),
(20) gives
ec Yo s 2,,..2
Zc =D n =Y ﬁ; escl 1 ° exp(p /4H). (21)

Zero subscripts refer to values at the cloud peak along a given field line.
For conditions applicable to 170 km altitude at sunset, the result of

.0749 and H = 25.0 km.

Linson and Baxter [1977] for Ba+ gives VO/Qi
Taking B = .5G, and D = 17.31 km corresponding to Esther's full width

at half maximum [Baker and Ulwick, 1978] .of 24 km, (21) gives

ZE =n (cm—3) x 9.433 x 10—6 mho

5 3
The measured values 5 x 106 >2n23x 100 em T give

47.2 2 >:c > 2.83 mho. (23)

M values for the individual striations in the Esther cloud are taken to be
ratios of ¥ = Zg + Zcfor neighboring peaks and valleys as given by Table
5.1 of Baker et al. [1978]. Scale sizes L for density falloff are given in
this table and are plotted as circled points in Figure 6. One sees that
minimum scale sizes for a given M are in agreement with our simulation
results, providing we take

K/Vo = 0.02 meter. (24)

with Vo = 100 m/s, we have K = 2 m2/s, in agreement with the range given

by (18). The existence of scale sizes well above the curve of Fig. 6 could
be a result of oblique cuts through shanks rather than tips of striationms.

It could also be a result of an enhanced diffusivity (to be discussed below),.
lack of complete temporal development, or effects not included in the model

(as mentioned in Sec.1l).
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B. Kilometer Scale Visible Structure

Departing the issue of minimum scale sizes which seem to be controlled
by classical diffusion, our results can be used to address the frequent
emergence of visible structure with scale sizes of order 1 kilometer. We
hypothesize that plasma turbulence may be involved in these structures. This
admits the possibility of individual parcels of plasma macroscopically acting
as agents of fluid transport, while microscopically being subject to classical
particle diffusion. Thus the smallest structures may reflect electron
diffusion dominance, while much larger structures may reflect enhanced
diffusivity effects. In order to model these large scale structures, we
replace the classical particle diffusivity (16) by an enhanced diffusion term
descriptive of a turbulent process. Our goal is not to prove that turbulence
is operative, but to offer at least one physically plausible explanation for

observed scale sizes and lifetimes.

If we take Bohm diffusion [Chen, 1974]

G % % e (25)
as descriptive of turbulent diffusivity, we find K values much greater than
those given by (16) for typical barium releases. With T = 1000°K and
B=.5G, (25) glves KB= 108 m2/s. The curve in Figure 6 suggests that

R & 1000 is accurate to + 30% for a range of M values from approximately 2 to
15. Thus (9) would predict L0 ~ 1 km for the gradient scale size for a
variety of typical barium releases in which Vo ~ 100 m/s. This in agreement

with observations cited in the Introduction [J. A. Fedder, W. Chestnut,

private communication, 1980].




C. Lifetime of the Kilometer Scale Structure
If the persistent structure is viewed as marginally stable to bifur-
cation, its lifetime will be determined by diffusion, and should be in
approximate agreement with (11). Using L° = 1lkm and Kg = 100 m2/s, we find
a diffusion time scale of 104 sec. = 2,7 hours. Horizontal drift and sun-
lighting conditions make visual tracking of.a cloud for this length of time
very difficult. However, satellite communications experiments have been

conducted for timescales on this order during the STRESS program. For the

five STRESS releases, propagation through the clouds resulted in signal

fading for durations of 1.4 to 3.7 hours after release [Prettie et al. 1977].

The beam frequency of 341 MHz and the approximate 200 km range from cloud to

receiving aircraft implies that the fading was sensitive to structure on
scales roughly that of the Fresnel size (Az)% = 420 meters.
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