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SECTION 1

INTRODUCTION

The Middle Gust III baseline calculation, to be performed by
California Research and Technology (CRT), Inc., will use a pres-
sure-time boundary condition to describe the surface loading
(References 1 and 2). The close-in [(0-3 m (0-10 ft) radius]}
pressure-time fit will be made to a recent Air Force Weapons
Laboratory (AFWL) calculation of the airblast from a 100 ton TNT
sphere (References 2 and 3). Beyond 3 m (10 ft), the pressure-
time boundary condition will fit the averaged Middle Gust III
airblast data (Reference 3). The actual fit used in the calcula-
tion was developed by Schuster of CRT, and is currently being
used in several coarsely zoned preliminary calculations which are

being performed in advance of the baseline calculation.

Since most of the energy (at least 80 percent) that produces
the final crater comes from the energy coupled over the dimen-
sions of approximately the high explosive (HE) charge diameter
{4.9 m (16 ft)], it is appropriate to investigate and review the
details of the calculational modeling that led to the pressure-
time boundary condition being used in that region. 1In
particular, it is important to compare the assumptions made by
the AFWL in modeling the HE source with the actual Middle Gust
III charge geometry. The as-built Middle Gust III1I TNT source is
siiown in Figure 1.1 (Reference 4). The 100 ton surface-tangent
TNT sphere was constructed by stacking 17 kg (37.6 lb)
rectangular TNT blocks. The TNT support structure consisted of
two 4.9 m (16 ft) diameter sheets of 19 mm (3/4 inch) thick
plywood, upon which were stacked a low density charge support
material called Phurane.* This material has a density of 0.032

3

g/cm” (2 lbs/ft3) and was cut from sheets to approximate the

outline of the TNT charge to be stacked within it (Reference 5),

*Manufactured by Dow Chemical, 1Inc.
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Figure 1.1 Explosive charge's upper hemisphere,

Middle Gust III.




The charge support extended to approximately one charge

radius above the ground surface.

The AFWL recalculation of a 100 ton TNT sphere (referred to
in this report as the “new calculation"), from which the pres-
sure-time boundary within a 3 m (10 ft) radius of the ground zero
is being obtained, is currently unpublished., Some of the details
of this calculation were obtained from Dr. Meedham (currently of
Systems Science and Software, Inc.) and Lt. Guise (AFWL/DYT).

The Hull (Eulerian) calculation was performed for a spherical
charge of TNT placed above, and tangent to a rigid (reflecting)
boundary. The pressure versus time and maximum positive phase
impulse were given for ranges of 0, 0.6, 1.2, 2.7, and 3.0 m (0,
2, 4, 7, and 10 ft). As well as including a reflecting boundary

below the charge instead of Middle Gust soil, the calculation

ignored the charge support structure; this region was filled with
normal density air, The TNT sphere was not detonated in this
calculation; the calculation was begun at the time the detonation
wave reached the boundary of the sphere (240.5 cm). The
conditions within the sphere, including pressure, density,
internal enerqy, and radial velocity, were obtained from a
similarity solution of the detonation of a 100 ton TNT sphere
performed by Nawrocki (Reference 6). The TNT detonation condi-
tions, which will be referred to in this report as the AFWI STD,
were obtained in the early 1960's. They used an equation of
state called Landau, Stanyukovich, Zeldovich, and Kompaneets
(LSZK). This equation of state is an empirical fit to a strong
blast wave solution for TNT during both the pre- and post-

detonation phases.

Based on examination of the AFWI, 100 ton recalculation,
three specific items were investigated. The first of these was
the effect of using more recently developed high-explosive
equations of state to describe the HE detonation and the
detonation products. The second point was the effect of
replacing the rigid boundary with a movabhle soil boundary. The
third point was the effect of including the charge support

7




structure in the two-dimensional calculation. Each of these
points will be addressed in this report. The effect on the
overall energy coupling results of including each of these three
items in a "full-up" two-dimensional calculation will be
estimated (based on one-dimensional calculations and a review of
what other calculators have done).




SECTION 2

MATERIAL MODELING FOR THE CALCULATIONS

One-dimensional calculations were used as part of the
investigation to aid the analysis efforts. To perform the calcu-~
lations material models were required for TNT, Middle Gust III
soil, styrofoam, plywood and air. This section describes the
models used for these materials.

2.1 HIGH EXPLOSIVE (TNT)

To describe the 100 ton TNT spherical charge. tw wodels are
currently used. The first is the Landau, Stanyukovich,
Zeldovich, and Kompaneets (LSZK) equation of state (EO0S). This
EOS is a standard model in the present AFWL HULL two-dimensional
computer code, and in older AFWL codes, which might be considered
to be forerunners of HULL, such as SHELL-OIL and SHELL-2
(Reference 6). The basic functional form, given in Reference 7,
describes the state of the explosion products of a condensed
explosive. Data from Lutsky (Reference 8) was used to derive the
values of the constants required by the functional form to de-
scribe TNT. The resulting EOS is given (Reference 7) as:

P = 0.34 Ip + 1877 p2+78 (2.1)

where p is the density (Mg/m3), I is the specific internal energy
(J/g), and P is the pressure (MPa). This EOS was used by
Nawrocki (Reference 6) to develop a similarity solution for the
conditions within a completely burned 100 ton TNT sphere, at the
time the detonation wave just reaches the edge of the sphere
(radius = 2,405 m). This solution has been used as an initial

condition in many subsequent airblast and cratering calculations.




Explosive initial conditions for the LSZK TNT model
(Reference 7) are:

TNT initial density: 1.56 Mg/m3 (1.56 g/cm3)
TNT detonation velocity: 6.81 m/ms (0.681 cm/us)
TNT energy release: 4.264 X lO3 J/g

(4.264 X 1010 ergs/qg).

The total energy contained within a LSZK 100 ton TNT sphere

is then 3.876 X 1011 J; the total explosive mass is 9.09 x 104
kg.

The second EOS currently in use is the Jones-Wilkins-Lee
(JWL) EOS (Reference 9). This EOS describes the state of the
explosion products for a wide range of explosives, including
TNT., The JWL EOS form is widely accepted, and will not be de-
scribed again here, as it is very well described in
Reference 9. The TNT coefficients used are given in Table 2.1.
The total energy contained within a 100 ton JWL TNT sphere is
then 4.05 x 101l J or 4.6 percent more than in the LSZK
treatment.

Table 2.1 JWL EOS coefficients for TNT.

A= 3.712
B = 0.0323
C = 0.0104527
Ry = 4.15
R, = 0.95
= 0.30

Ejg = 4.46 X 103 J/g (0.07 Mbar—cm3/cm3)
o = 1.56 Mg/m> (1.56 g/cm3)
D = 6.93 m/ms (0.693 cm/ s)

It is useful to compare the isentropes produced by the LSZK
and JWL forms for TNT. Such a comparison is given in Figure 2.1;

the LSZK pressures are generally lower when the specific volunme,
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V exceeds 1 (V = p /p where p, is the initial density and o is
the current density). This is the high pressure region [P > 10
GPa (100 kbar); the Chapmann-Jouguet (C-J) pressure is 200

kbar]. For lower pressures, there are minor differences between
the two curves. For V > 20, the LSZK curve falls below the JWL
curve because of the lower value of gamma used (y = 1.30 for JWL;
1.34 for LSZK).

2.2 SCIL

The Middle Gust III upper soil layers (0-2.7 m, 0-9 ft) are
described by Zelasko (Reference 10) as a partly saturated sandy
clay soil. For the investigation reported here, it was unneces-
sary to use the complete soil model describing this layer; a
simpler one describing a 95 percent saturated, low strength soil

3 was considered

using a initial density of approximately 2.1 g/cm
sufficient. The basic reason was that only the initial phase of
the charge coupling was to be investigated using one~dimensional
calculations, and all that was required was an approximate soil

boundary for the parametric studies.

The soil model was obtained from Reference 11, it describes
95 percent saturated, low strength sand/clay soil with a bulk
density of 2.1 g/cm3 and a grain density of 2.67 g/cm3. Figure
2.2 plots pressure versus compressibility, w (u = p/pO - 1) over
the pressure range of interest [l0€< P<2 X 104 MPa (0.1 P 200

kbar)j. Pressure versus u is given by:
P (MPa) = 10p + 10%,2 (2.2)

Thus the soil is highly compressible at low pressures, but be-
comes increasingly "stiff" with pressure. The unloading and
loading curves are the same for this soil over the range of in-
terest. A Poisson's ratio of 0.48 was used, and the initial
sound speed in the soil was 0.70 m/s. A Mohr-Coulomb strength
model was used, with a maximum value of Y (Y = /STZSOf 350 kPa
(3.5 bar).

12
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Figure 2.2 Middle Gust III soil model hydrostat.
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2.3 STYROFCAM, PLYWOOD AND AIR

The Middle Gust III charge support structure was modeled
using an EOS for styrofoam developed by F. H. Ree of Lawrence
Livermore Laboratory (Reference 12). Hugoniots are shown in
Figure 2.3 for various densities; the ones of greatest interest
are 5 (oo = 0.055 g/cm3) and 6 (oo = 0.018 g/cm3). The initial
density of the Middle Gust III charge support structure was 0.032
g/cm3. It is seen from Figure 2.3 that at these low densities
shock heating effects become important, and the material begins
to offer some resistance to total compaction (the solid density
of the styrofoam is 1.044 g/cm3). Many comparisons with LASL
Hugoniot data are included in Reference 12. Two such comparisons
are given in Figures 2.4 and 2.5, It must be noted that at the
lowest density (0.018 g/cm3, Figure 2.5) the data show a great
deal of scatter, and that the model does not fit the data very
well. Agreement between model and data is much better in Figure
2.4 (pg = 0.055 g/cm).

Plywood typically consists of thin Douglas fir sheets held
together with an epoxy glue. A small piece of three-quarter-
inch, grade A exterior plywood was obtained, and its density
determined tc be 0.54 q/cm3.

Hugoniot EOS data do not currently exist for plywood;
however, data exist for a Douglas fir with an average density of
0.536 g/cm3 (Reference 13). A linear fit to the Hugoniot data

gives

Ug = 0.041 + 1.389 Up ’ (2.3)

where Ug is the shock velocity (cm/us) and U_ is the particle

p
velocity (cm/us). Using the classical Hugoniot relationships one
can derive from Equation 2.3 the relationship between pressure, P

and the density, o»:

14
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Figure 2.3 Dependence of theoretical styrofoam
Hugoniots on initial volume (after
Reference 12).
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Figure 2.4 Styrofoam Hugoniots at initial density = 0.055 g/cc.
Volume of (nonporous) solid polystyrene is indicated by
arrow in the P vs. V/V, plot (after Reference 12).
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2
Po Ug ¥ (W + 1)

P (Mbar) = (2.4)
2
lil+u(l+Bﬂ
where py = 0.54 g/cm’
UO = 0.0481 cm/us
= 1.389, and
W= p/pg -1 .

Equation 2.4 is valid over a pressure range from 0.8 to 27.9

GPa (8 to 279 kbar), and thereby encompasses the Chapman-Jouguet
(C-J) pressure of TNT (200 kbar).

Air was modeled using an ideal gas-type EOS (gamma-law) with
the variable specific heat ratio found as a function of the air
density und specific internal energy by table look-up (Reference
14). The initial air density was 0.001224 g/cm>.

18




SECTION 3

CALCULATIONAL RESULTS AND ANALYSES

One-dimensional (1D) calculations using PISCES 1DL and re-
sults obtained from previous two-dimensional (2D) calculations
were used to assess the effects of: (1) differing high explosive
models (Section 3.1), (2) reflecting versus soil ground surfaces
(Section 3.2), and (3) inclusion of the charge support {Section

3.3), on the charge coupling for tangent-above 100 ton TNT
spheres.

3.1 CONDITIONS WITHIN A 100 TON TNT SFHERE

One-dimensionsal calculations were used to compare condi-
tions within the TNT sphere at the time that the detonation wave
just reaches the edge of the 100 ton sphere, using the JWL and
LSZK TNT models. The LSZK conditions, i.e., pressure P, specific
internal energy, I, density, p, and velocity, V, are given in
Reference 6. A 1D calculation was performed to obtain the corre-
sponding JWL conditions. The results are summarized in Figures
3.1 to 3.4, respectively. The comparison is given at a time of
0.35 ms [the sphere radius is 2.405 m, and the TNT detonation
velocity is 6.9 km/s (0.69 cm/us)]. Close to the detonation
front the comparison between the results of the two TNT models is
guite good. Behind the front the JWL-calculated pressures and
velocities are 10 to 20 percent lower than the LSZK-calculated

values, but the densities and internal energies are slightly
higher.

To investigate what effect these differences might have on
charge coupling, a series of 1D calculations was performed.
These employed spherical symmetry, and surrounded the TNT with
soil, and with a rigid wall. Pressure versus time at the inter-
face was monitored. The calculations were run to only 0.7 ms,
and simulate (at best) only the conditions at the point of

19




PRESSURE, GPa

20 |- Legend & — 200
= LSZK, AFWL STD
O JwL, PISCES IDL 8
X
15 150 ;
o
2
1%
10 100 &
o
a
6 o oo o 50
| ] 1 1l 0
0 0.5 1.0 1.5 2.0 25
RADIUS, m
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explosive equations of state.
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tangency between the sphere and the surface. Actually, 2D effects
are very important, and the results can be compared only in a
relative sense. The results are shown in Figure 3.5, along with
the 2D result from the AFWL recalculation of a 100 ton tangent-
above TNT sphere (Reference 3). As expected, the JWl-calculated
curve lies below the LSZK-calculated curve for both the soil and
rigid wall calculations. This implies about a 13 percent l.wer
total impulse for the TWI, model. Two-dimensional effects are
important throughout the coupling process, as seen by comparing
these 1D results with the AFWL recalculation* (Reference 3). One
can conclude that a 2D calculation using the JWL EOS with a rigid
surface would produce a pressure-time curve that would lie helow

the AFWL LSZK points presented in Fiqure 3.5.

3.2 MODFLING OF THFE AIR-GROUND INTERFACE

This section reviews past 2D cratering calculations and the
techniques used to model the air-ground interface. Any such
discussion must begin with the AFWI, airblast-only calculations
performed for tangent-above TMT sphere events over the past 13
years. Pressure histories from these calculations have been used
as bhoundary conditions for cratering calculatiors modeling many
different site geologies. Table 3.1 summarizes pertinent infor-
mation for three AFWI, calculations: those of Nawrocki et al. for
the 100 ton event NDistant Plain 6 (Reference 6), Needham for the
500 ton Prairie Flat event (Reference 15), and Needham's unpub-
lished recalculation of 100 ton event (Reference 3). All three
of these calculations used the AFWI, STD conditions for the com-
pletely detonated TNT sphere; the LSZK EOS to describe the
detonation products, and a rigid ground surface. Stations at
which the airblast overpressure histories were saved along the
rigid surface are qgiven for each calculation (stations from the

Prairie Flat calculation were scaled to 100 tons using cube root

*The apparent agreement between the 2N AFWI, recalculation and the
In JWI./SOIL calculation is purely coincidental.
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Figure 3.5 Pressure histories at the edge of a 100 ton
TNT sphere from 1C calculations using the
JWL and LSZK TNT equations of state (2D results
from the AFWL recalculation (3) are denoted
bycircles).
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scaling). One of the deficiencies of the 1967 and 1969 calcula-
tions was that overpressure and impulse histories were not saved
along the surface over the TNT charge radius; this deficiency was

corrected by the 1978 recalculation.

For the purposes of this discussion, the cratering calcula-
tions for surface tangent-above spherical HE events can he placed
into two categories: those which included the HE source (Table
3.2) and those which used a pressure-time bhoundary condition to
describe the surface loading (Table 3.3). Tt is vseful to com-
pare some results for the two types of calculations because such
a comparison shows whether the pressure-time boundary condition
is an adequate representation of the surface loading. Specific
comparisons were made for total energy coupled to the ground, and

total impulse versus range.

The maximum total coupled energy is summarized in Table 3.2
for the first class of cratering calculations. The Distant Plain
6 calculation clearly overestimates the coupled energy because of
the extremely high value of gamma used to describe the entire
source region. That reported for the pre-Mine Throw IV calcula-
tion is a clear underestimation for the reason given in the table
footnote. Thus Table 3.2 yields only one relevant coupled energy
number, the 5.6% reported for the Mixed Company III calculation
(Reference 17).

A majority of the more recent calculations have used pres-
sure-time boundary conditions, as indicated by Table 3.3. Most
have been performed using a combination of the results from the
Prairie Flat airbhlast calculation and Schuster's 1972 Middle Gust
111 calculation to define the boundary condition. Schuster's
calculation (containing the HE source) is used to provide the
first 1.1 ms (scaled) of the boundary condition; the calculated
Prairie Flat airblast is used to describe later times. For a
wide range of geologies, Table 3.3 indicates that the total
coupled enerqy lies hetween 5 and 6.8 percent, in close agreement
with the 5.6 percent reported by Ialongo (Table 3.2). This good
agreement hetween the two approaches indicates that the pressure=-
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time boundary condition is an acceptable way of defining the

overall surface loading.

The boundary condition used in the current Middle Gust TII
baseline calculation differs from previous approaches (see intro-
duction). Figure 3.6 compares the total coupled energy versus
time from one of the preliminary {(current) CRT calculations with
that reported by Ialongo for Mixed Company III. FExcellent
agreement is seen within the first 2 to 3 scaled milliseconds;
differences in site geology probably account for the differences

at later times.

Finally, the close-in total impulse is compared (Figure 3.7)
for the 1978 AFWL 100 ton sphere recalculation (Reference 3),
Schuster's 1972 Middle Gust III calculation (Reference 23) and
Needham's (scaled) Prairie Flat calculation (Reference 23). The
first two agree very well; the latter is a linear interpolation
between 0 and 4.3 scaled meters, which obviously overpredicts the
impulse in this range. It can be concluded that the close-in
boundary condition currently being used by CRT for the Middle
Gust 1II cratering calculation is an acceptable representation of
the direct surface loading from a 100 ton surface tangent-above

TNT sphere without any charge support structure.

3.3 EFFECT OF THE CHARGE SUPPORT STRUCTURFE

Previous cratering calculations were also reviewed with
respect to the modeling of the charge support structure. The
data base is limited to those calculations listed in Table 3.2,
Of those, only one calculation actually attempted to model the
structure, the Mixed Company III calculation of Ialongo
(Reference 17). The model used, as described in the footnote in
Table 3.2, did not allow for any resistance of the styrofoam to
initial shock compression. More recent EOS models for styrofoam
indicate that there is substantial resistance, caused by shock
heating, if the initial density of the styrofoam is very low (as
it is in the support structure). To see what effect a more
realistic material model for styrofoam might have on the impulse
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Figure 3.6 Percent of yield coupled to the ground versus time
for the Mixed Company event (500 tons) and the
Middle Gust III c¢vent (100 tons).
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Figure 3.7 Comparison of close-in total impulse delivered
to the ground by 100 ton surface tangent-above
TNT spheres.
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delivered to the soil, a series of 1D calculations was performed
using the styrofoam F0OS described in Section 2. The 100 ton TNT
sphere was modeled using the LSZK FROS.

Calculations were performed for a surface range of 2.3 m
(7.5 ft), corresponding to a radial distance between the edge of
the TNT sphere and the ground surface of N.93 m (3 ft). This is
close to the maximum thickness of styrofoam between the edge of
the charge and the ground surface in the Middle Gust III exveri-
ment. The space between the sphere and the Middle Gust soil (see
Section 2) in the 1D (spherically symmetric) calculations was
filled with air, styrofoam, and stvrofoam with 38.1 mm (E@ in.)
of plywood on top of the soil. Pressure and impulse were moni-
tored at the soil "surface" and pressure was monitored at a depth
of 0,5 m in the soil (soil was placed to a total depth of 5 m in

the calculations).

It was found that the styrofoam absorbed about five times
more energy than air; the absolui> value for styrofoam was about
10 percent of the total energy. Figures 3.8 and 3.9 compare the
pressure-time and impulse-time profiles from the 1D calculations,
respectively. It is obvious that the plywood does not affect the
results. The air-filled region allows the shock from the TNT
sphere to arrive sooner (0.25 ms after the sphere is completely
burned*) than the styrofoam does, but the.initial pressure pulse
is broader with the styrofoam (Figure 3.8). Total impulse
(Figure 3.9) is abhout the same for both calculations after 0.3
ms. In the soil (Figure 3.10) the maximum pressure using
styrofoam filler is higher than with air [4.2 GPa versus 2.2 GPa
(42 versus 22 kbar)l.

These results indicate only the general trend one could
expect if the charge support structure were modeled in a 2D cal-
culation. Although the total impulse delivered to the soil does
not appear to be significantly affected by the presence of the

*All times are measured from the time the TNT sphere is totally
burned. 33
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Pressure histories at the soil interface (1D calcu-
lations) corresponding to a surface range of 2.3 m
(7.5 ft) from the point of tangency of a 100 ton
TNT sphere.
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Figure 3.9 Specific impulse at the soil interface (1D
calculations) corresponding to a surface range
of 2.3 m (7.3 ft) from the point of tangency
of a 100 ton TNT sphere.
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Figure 3.10 Pressure histories at a 0.5 m (1.6 ft) depth in

the soil.
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styrofoam support, the initial shock pressure seen at, and

slightly below the soil surface may he up to a factor of two
higher if the charge support were modeled better. The ahsolute
effect of the structure on the initial coupling can only be

determined by performing a 2D calculation.
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SECTION 4

CONCLUSIONS

Calculational techniques used in prior surface-tangent TNT
sphere cratering calculations were reviewed with respect to the
modeling of the interaction of the TNT source with the ground.

Three basic types of modeling have been used:

1. Start with the detonated TNT charge and allow it to

interact with a realistic ground surface.

2. Start with a pressure-time bhoundary condition derived
from AFWL airblast calculations which treat the surface

as a reflecting boundary.

3. Hybrid Models - use the best parts of both (1) and (2).

a. Illse a pressure-time boundary condition from (1)
close-~in, followed by one from (2) bevond 15 ft.
Many AFWIL cratering calculations, and the 1972
Middle Gust III (MGIII) cratering calculation, were
performed this way.

b. Use a pressure-time bhoundary condition from (2)
close-in, followed by a fit to event airblast data
heyond 10 ft. This approach, which apparently has
never been used hefore, is being used in the

current CRT haseline MGIII cratering calculation,.

A majority of the impulse and energy (=80 percent) coupled
to the ground is accomplished within the first 10 ft from the
charge center. All approaches listed above give approximately
the same total impulse at the ground surface over this range, and
coupled enerqgy. It can be concluded that the close-in surface
loading model being used currently by CRT is an acceptabhle repre-

sentation of the direct surface loading obtained from a 100 ton
38
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sur face tangent-above TNT sphere which has no support struc-
ture. None of the past cratering calculations has accurately
modeled the charqge support structure, which has consistently been
a part of such experiments. The effect of this structure is
probably to send a stronger shock into the ground initially, due
to the resistance of styrofoam to the initial shock pressure.
Total impulse delivered to the ground probably would not change
significantly if the support structure were included, but since a
2N calculation has not been performed, this cannot be stated

conclusively,
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