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SECTION I

INTRODUCTION

The Middle Oust III baseline calculation, to be performed by

California Research and Technology (CRT), Inc., will use a pres-

sure-time boundary condition to describe the surface loading

(References 1 and 2). The close-in [0-3 m (0-i0 ft) radius]

pressure-time fit will be made to a recent Air Force Weapons

Laboratory (APWL) calculation of the airblast from a 100 ton TNT

sphere (References 2 and 3). Beyond 3 m (10 ft), the pressure-

time boundary condition will fit the averaged Middle Gust III

airblast data (Reference 3). The actual fit used in the calcula-

tion was developed by Schuster of CRT, and is currently being

used in several coarsely zoned preliminary calculations which are

being performed in advance of the baseline calculation.

Since most of the energy (at least 80 percent) that produces

the final crater comes from the energy coupled over the dimen-

sions of approximately the high explosive (HE) charge diameter

[4.9 m (16 ft)], it is appropriate to investigate and review the

details of the calculational modeling that led to the pressure-

time boundary condition being used in that region. In

particular, it is important to compare the assumptions made by

the AFWL in modeling the HE source with the actual Middle Gust

III charge geometry. The as-built Middle Gust III TNT source is

shown in Figure 1.1 (Reference 4). The 100 ton surface-tangent

TNT sphere was constructed by stacking 17 kg (37.6 lb)

rectangular TNT blocks. The TNT support structure consisted of

two 4.9 m (16 ft) diameter sheets of 19 mm (3/4 inch) thick

plywood, upon which were stacked a low density charge support

material called Phurane.* This material has a density of 0.032

g/cm 3 (2 lbs/ft 3 ) and was cut from sheets to approximate the

outline of the TNT charge to be stacked within it (Reference 5).

*Manufactured by Dow Chemical, Inc.
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Figure 1.1 Explosive charge's upper hemisphere,
Middle Gust III.
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The charge support extended to approximately one charge

radius above the ground surface.

The AFWL recalculation of a 100 ton TNT sphere (referred to

in this report as the "new calculation"), from which the pres-

sure-time boundary within a 3 m (10 ft) radius of the ground zero

is being obtained, is currently unpublished. Some of the details

of this calculation were obtained from Dr. Needham (currently of

Systems Science and Software, Inc.) and Lt. Guise (AFWL/DYT).

The Hull (Eulerian) calculation was performed for a spherical

charge of TNT placed above, and tangent to a rigid (reflecting)

boundary. The pressure versus time and maximum positive phase

impulse were given for ranges of 0, 0.6, 1.2, 2.7, and 3.0 m (0,

2, 4, 7, and 10 ft). As well as including a reflecting boundary

below the charge instead of Middle Gust soil, the calculation

ignored the charge support structure; this region was filled with

normal density air. The TNT sphere was not detonated in this

calculation; the calculation was begun at the time the detonation

wave reached the boundary of the sphere (240.5 cm). The

conditions within the sphere, including pressure, density,

internal energy, and radial velocity, were obtained from a

similarity solution of the detonation of a 100 ton TNT sphere

performed by Nawrocki (Reference 6). The TNT detonation condi-

tions, which will be referred to in this report as the AFW, STD,

were obtained in the early 1960's. They used an equation of

state called Landau, Stanyukovich, Zeldovich, and Kompaneets

(LSZR). This equation of state is an empirical fit to a strong

blast wave solution for TNT during both the pre- and post-

detonation phases.

Based on examination of the AFWL 100 ton recalculation,

three specific items were investigated. The first of these was

the effect of using more recently developed high-explosive

equations of state to describe the HE detonation and the

detonation products. The second point was the effect of

replacing the rigid boundary with a movable soil boundary. The

third point was the effect of including the charge support

7



structure in the two-dimensional calculation. Each of these

points will be addressed in this report. The effect on the

overall energy coupling results of including each of these three

items in a "full-up" two-dimensional calculation will be

estimated (based on one-dimensional calculations and a review of

what other calculators have done).

8

L, • , •i i III



SECTION 2

MATERIAL MODELING FOR THE CALCULATIONS

One-dimensional calculations were used as part of the

investigation to aid the analysis efforts. To perform the calcu-

lations material models were required for TNT, Middle Gust III

soil, styrofoam, plywood and air. This section describes the

models used for these materials.

2.1 HIGH EXPLOSIVE (TNT)

To describe the 100 ton ThT spherical charge. ti, ..odels are

currently used. The first is the Landau, Stanyukovich,

Zeldovich, and Kompaneets (LSZK) equation of state (EOS). This

EOS is a standard model in the present AFWL HULL two-dimensional

computer code, and in older AFWL codes, which might be considered

to be forerunners of HULL, such as SHELL-OIL and SHELL-2

(Reference 6). The basic functional form, given in Reference 7,

describes the state of the explosion products of a condensed

explosive. Data from Lutsky (Reference 8) was used to derive the

values of the constants required by the functional form to de-

scribe TNT. The resulting EOS is given (Reference 7) as:

P = 0.34 Ip + 1877 p2 .7 8  (2.1)

where p is the density (Mg/m 3 ), I is the specific internal energy

(J/g), and P is the pressure (MPa). This EOS was used by

Nawrocki (Reference 6) to develop a similarity solution for the

conditions within a completely burned 100 ton TNT sphere, at the

time the detonation wave just reaches the edge of the sphere

(radius = 2.405 m). This solution has been used as an initial

condition in many subsequent airblast and cratering calculations.

9



Explosive initial conditions for the LSZK TNT model

(Reference 7) are:

TNT initial density: 1.56 Mg/m 3 (1.56 g/cm 3)

TNT detonation velocity: 6.81 m/ms (0.681 cm/ws)

TNT energy release: 4.264 X 103 J/g

(4.264 X 1010 ergs/g).

The total energy contained within a LSZK 100 ton TNT sphere

is then 3.876 X 1011 J; the total explosive mass is 9.09 X 104

kg.

The second EOS currently in use is the Jones-Wilkins-Lee

(JWL) EOS (Reference 9). This EOS describes the state of the

explosion products for a wide range of explosives, including

TNT. The JWL EOS form is widely accepted, and will not be de-

scribed again here, as it is very well described in
Reference 9. The TNT coefficients used are given in Table 2.1.

The total energy contained within a 100 ton JWL TNT sphere is

then 4.05 X 1011 J or 4.6 percent more than in the LSZK

treatment.

Table 2.1 JWL EOS coefficients for TNT.

A = 3.712

B = 0.0323

C = 0.0104527

R1 = 4.15

R 2 = 0.95

W = 0.30

E0 = 4.46 X 103 J/g (0.07 Mbar-cm 3 /cm 3)

Po = 1.56 Mg/m 3 (1.56 g/cm 3 )

D = 6.93 m/ms (0.693 cm/ s)

It is useful to compare the isentropes produced by the LSZK

and JWL forms for TNT. Such a comparison is given in Figure 2.1;

the LSZK pressures are generally lower when the specific volume,

10
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V exceeds 1 (V = pO/p where po is the initial density and p is

the current density). This is the high pressure region [P > 10

GPa (100 kbar); the Chapmann-Jouguet (C-J) pressure is 200

kbar]. For lower pressures, there are minor differences between

the two curves. For V > 20, the LSZK curve falls below the JWL

curve because of the lower value of gamma used (y = 1.30 for JWL;

1.34 for LSZK).

2.2 SOIL

The Middle Gust III upper soil layers (0-2.7 m, 0-9 ft) are

described by Zelasko (Reference 10) as a partly saturated sandy

clay soil. For the investigation reported here, it was unneces-

sary to use the complete soil model describing this layer; a

simpler one describing a 95 percent saturated, low strength soil

using a initial density of approximately 2.1 g/cm 3 was considered

sufficient. The basic reason was that only the initial phase of

the charge coupling was to be investigated using one-dimensional

calculations, and all that was required was an approximate soil

boundary for the parametric studies.

The soil model was obtained from Reference 11, it describes

95 percent saturated, low strength sand/clay soil with a bulk

density of 2.1 g/cm 3 and a grain density of 2.67 g/cm 3 . Figure

2.2 plots pressure versus compressibility, (I = p/po - 1) over

the pressure range of interest [10< P<2 X 104 MPa (0.1 P 200

kbar)]. Pressure versus p is given by:

P (MPa) = 101 + 1051 2  . (2.2)

Thus the soil is highly compressible at low pressures, but be-

comes increasingly "stiff" with pressure. The unloading and

loading curves are the same for this soil over the range of in-

terest. A Poisson's ratio of 0.48 was used, and the initial

sound speed in the soil was 0.70 m/s. A Mohr-Coulomb strength

model was used, with a maximum value of Y (Y = 7of 350 kPa

(3.5 bar).

12
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Figure 2.2 Middle Gust III soil model hydrostat.
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2.3 STYROFOAM, PLYWOOD AND AIR

The Middle Gust III charge support structure was modeled

using an EOS for styrofoam developed by F. H. Ree of Lawrence

Livermore Laboratory (Reference 12). Hugoniots are shown in

Figure 2.3 for various densities; the ones of greatest interest

are 5 (Po = 0.055 g/cm 3 ) and 6 (po = 0.018 g/cm 3 ). The initial

density of the Middle Gust III charge support structure was 0.032

3
g/cm 3

. It is seen from Figure 2.3 that at these low densities

shock heating effects become important, and the material begins

to offer some resistance to total compaction (the solid density

of the styrofoam is 1.044 g/cm 3 ). Many comparisons with LASL

Hugoniot data are included in Reference 12. Two such comparisons

are given in Figures 2.4 and 2.5. It must be noted that at the

lowest density (0.018 g/cm 3 , Figure 2.5) the data show a great

deal of scatter, and that the model does not fit the data very

well. Agreement between model and data is much better in Figure

2.4 (Po  = 0.055 g/cm3 ).

Plywood typically consists of thin Douglas fir sheets held

together with an epoxy glue. A small piece of three-quarter-

inch, grade A exterior plywood was obtained, and its density

3
determined to be 0.54 g/cm

Fugoniot EOS data do not currently exist for plywood;

however, data exist for a Douglas fir with an average density of

0.536 g/cm 3 (Reference 13). A linear fit to the Hugoniot data

gives

U s  = 0.041 + 1.389 Up , (2.3)

where U s is the shock velocity (cm/ps) and Up is the particle

velocity (cm/us). Using the classical Hugoniot relationships one

can derive from Equation 2.3 the relationship between pressure, P

and the density, p:

14
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Figure 2.3 Dependence of theoretical styrofoam
Hugoniots on initial volume (after
Reference 12).
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Figure 2.4 Styrofoam Hugoniots at initial density = 0.055 q/cc.
Volume of (nonporous) solid polystyrene is indicated by
arrow in the P vs. V/V O plot (after Reference 12).
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arrow in the P vs. V/V O plot (after Reference 12).
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2
P (Mbar) = 0 4( )(2.4)

we + p (1 + B

where Po 0.54 g/cm
3

Uo = 0.0481 cm/ps

B = 1.389, and

P= P/Po - 1

Equation 2.4 is valid over a pressure range from 0.8 to 27.9

GPa (8 to 279 kbar), and thereby encompasses the Chapman-Jouguet

(C-J) pressure of TNT (200 kbar).

Air was modeled using an ideal gas-type EOS (gamma-law) with

the variable specific heat ratio found as a function of the air

density Lad specific internal energy by table look-up (Reference

314). The initial air density was 0.001224 g/cm

18
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SECTION 3

CALCULATIONAL RESULTS AND ANALYSES

One-dimensional (1D) calculations using PISCES lDL and re-

sults obtained from previous two-dimensional (2D) calculations

were used to assess the effects of: (1) differing high explosive

models (Section 3.1), (2) reflecting versus soil ground surfaces

(Section 3.2), and (3) inclusion of the charge support (Section

3.3), on the charge coupling for tangent-above 100 ton TNT

spheres.

3.1 CONDITIONS WITHIN A 100 TON TNT SPHERE

One-dimensionsal calculations were used to compare condi-

tions within the TNT sphere at the time that the detonation wave

just reaches the edge of the 100 ton sphere, using the JWL and

LSZK TNT models. The LSZK conditions, i.e., pressure P, specific

internal energy, I, density, p, and velocity, V, are given in

Reference 6. A 1D calculation was performed to obtain the corre-

sponding JWL conditions. The results are summarized in Figures

3.1 to 3.4, respectively. The comparison is given at a time of

0.35 ms (the sphere radius is 2.405 m, and the TNT detonation

velocity is 6.9 km/s (0.69 cm/us)]. Close to the detonation

front the comparison between the results of the two TNT models is

quite good. Behind the front the JWL-calculated pressures and

velocities are 10 to 20 percent lower than the LSZK-calculated

values, but the densities and internal energies are slightly

higher.

To investigate what effect these differences might have on

charge coupling, a series of ID calculations was performed.

These employed spherical symmetry, and surrounded the TNT with

soil, and with a rigid wall. Pressure versus time at the inter-

face was monitored. The calculations were run to only 0.7 ms,

and simulate (at best) only the conditions at the point of

19
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Figure 3.1 Pressure vs. radius within a 100 ton TNT sphere at
a time all the explosive has detonated: a comparison
using two different (LSZK and JWL) explosive
equations of state.
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Figure 3.2 Specific internal energy vs. radius within a 100 ton
TNT sphere at the time all the explosive has detonated:
a comparison using two different (LSZK and JWL)
explosive equations of state.
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Figure 3.3 Density vs. radius within a 100 ton TNT sphere
at the time all the explosive has detonated:
a comparison using two different (LSZK and JWL)
explosive equations of state.
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Figure 3.4 Particle velocity vs. radius within a 100 ton TNT
sphere at the time all the explosive has detonated:
a comparison using two different (LSZK and JWL)
explosive equations of state.
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tanqency between the sphere and the surface. Actually, 2D effects

are very important, and the results can be compared only in a

relative sense. The results are shown in Figure 3.5, along with

the 2D result from the AFVWL recalculation of a i00 ton tangent-

above TNT sphere (Reference 3). As expected, the JIL-calculated

curve lies below the LSZK-calculated curve for both the soil and

rigid wall calculations. This implies about a 13 percent l'wer

total impulse for the JWL model. Two-dimensional effects are

important throughout the coupling process, as seen by comparing

these ID results with the AFWL recalculation* (Reference 3). One

can conclude that a 2D calculation using the JWL EOS with a rigid

surface would produce a pressure-time curve that would lie below

the AFWL LSZK points presented in Figure 3.5.

3.2 MODFLING OF THE AIR-GROUND INTERFACE

This section reviews past 2D cratering calculations and the

techniques used to model the air-ground interface. Any such

discussion must begin with the AFWL airblast-only calculations

performed for tangent-above TNT sphere events over the past 13

years. Pressure histories from these calculations have been used

as boundary conditions for cratering calculatiorn modeling many

different site geologies. Table 3.1 summarizes pertinent infor-

mation for three AF TI, calculations: those of Nawrocki et al. for

the 100 ton event Distant Plain 6 (Reference 6), Needham for the

500 ton Prairie Flat event (Reference 15), and Needham's unpub-

lished recalculation of 100 ton event (Reference 3). All three

of these calculations used the AFWL STY conditions for the com-

pletely detonated TNT sphere; the LSZK FOS to describe the

detonation products, and a rigid ground surface. Stations at

which the airblast overpressure histories were saved along the

rigid surface are given for each calculation (stations from the

Prairie Flat calculation were scaled to 100 tons using cube root

*The apparent agreement between the 2D AFWL recalculation and the

1D JWL/SOIL calculation is purely coincidental.
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Figure 3.5 Pressure histories at the edge of a 100 ton
TNT sphere from 1D calculations using the
JWL and LSZK TNT equations of state (2D results
from the APWL recalculation (3) are denoted
bycircles)
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scalinq). One of the deficiencies of the 1967 and 1969 calcuIla-

tions was that overpressure and impulse histories were not saved

along the surface over the TNT charge radius; this deficiency was

corrected by the 1978 recalculation.

For the purposes of this discussion, the cratering calcula-

tions for surface tangent-above spherical HE events can he placed

into two categories: those which included the HE source (Table

3.2) and those which used a pressure-time boundary condition to

describe the surface loading (Table 3.3). Tt is tuseful to com-

pare some results for the two types of calculations because such

a comparison shows whether the pressure-time boundary condition

is an adequate representation of the surface loading. Specific

comparisons were made for total energy coupled to the ground, and

total impulse versus range.

The maximum total coupled energy is summarized in Table 3.2

for the first class of cratering calculations. The Distant Plain

6 calculation clearly overestimates the coupled energy because of

the extremely high value of gamma used to describe the entire

source region. That reported for the pre-Mine Throw IV calcula-

tion is a clear underestimation for the reason given in the table

footnote. Thus Table 3.2 yields only one relevant coupled energy

number, the 5.6% reported for the Mixed Company III calculation

(Reference 17).

A majority of the more recent calculations have used pres-

sure-time boundary conditions, as indicated by Table 3.3. Most

have been performed using a combination of the results from the

Prairie Flat airblast calculation and Schuster's 1972 Middle Gust

III calculation to define the boundary condition. Schuster's

calculation (containing the HE source) is used to provide the

first 1.1 ms (scaled) of the boundary condition; the calculated

Prairie Flat airblast is used to describe later times. For a

wide range of geologies, Table 3.3 indicates that the total

coupled energy lies between 5 and 6.8 percent, in close agreement

with the 5.6 percent reported by Ialongo (Table 3.2). This good

agreement between the two approaches indicates that the pressure-
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time boundary condition is an acceptable way of defining the

overall surface loading.

The boundary condition used in the current Middle G, ust III

baseline calculation differs from previous approaches (see intro-

duction). Figure 3.6 compares the total coupled energy versus

time from one of the preliminary (current) CRT calculations with

that reported by Ialongo for Mixed Company III. Excellent

agreement is seen within the first 2 to 3 scaled milliseconds;

differences in site geology probably account for the differences

at later times.

Finally, the close-in total impulse is compared (Figure 3.7)

for the 1978 AFWL 100 ton sphere recalculation (Reference 3),

Schuster's 1972 Middle Gust III calculation (Reference 23) and

Needham's (scaled) Prairie Flat calculation (Reference 23). The

first two agree very well; the latter is a linear interpolation

between 0 and 4.3 scaled meters, which obviously overpredicts the

impulse in this range. It can be concluded that the close-in

boundary condition currently being used by CRT for the Middle

Gust III cratering calculation is an acceptable representation of

the direct surface loading from a 100 ton surface tangent-above

TNT sphere without any charge support structure.

3.3 EFFECT OF THE CHARGE SUPPORT STRUCTURE

Previous cratering calculations were also reviewed with

respect to the modeling of the charge support structure. The

data base is limited to those calculations listed in Table 3.2.

Of those, only one calculation actually attempted to model the

structure, the Mixed Company III calculation of Ialongo

(Reference 17). The model used, as described in the footnote in

Table 3.2, did not allow for any resistance of the styrofoam to

initial shock compression. More recent EOS models for styrofoam

indicate that there is substantial resistance, caused by shock

heating, if the initial density of the styrofoam is very low (as

it is in the support structure). To see what effect a more

realistic material model for styrofoam might have on the impulse
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Figure 3.6 Percent of yield coupled to the ground versus time
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Middle Gust III event (100 tons).
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Figure 3.7 Comparison of close-in total impulse delivered
to the groun&7, by 100 ton surface tanqent-above
TNT spheres.
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delivered to the soil, a series of 1D calculations was performed

usinq the styrofoam FOS described in Section 2. The Ion ton TNT

sphere was modeled using the L SZK FOS.

Calculations were performed for a surface range of 2.3 m

(7.5 ft), corresponding to a radial distance between the edge of

the TNT sphere and the ground surface of 0.03 m (3 ft). This is

close to the maximum thickness of styrofoam between the edge of

the charge and the ground surface in the Middle Gust III exoeri-

ment. The space between the sphere and the Middle Gust soil (see

Section 2) in the 1D (spherically symmetric) calculations was

filled with air, styrofoam, and styrofoam with 38.1 mm (II/ in.)

of plywood on top of the soil. Pressure and impulse were moni-

tored at the soil "surface" and pressure was monitored at a depth

of 0.5 m in the soil (soil was placed to a total depth of 5 m in

the calculations).

It was found that the styrofoam absorbed about five times

more energy than air; the absoluL' value for styrofoam was about

10 percent of the total energy. Figures 3.8 and 1.9 compare the

pressure-time and impulse-time profiles from the I) calculations,

respectively. It is obvious that the plywood does not affect the

results. The air-filled region allows the shock from the TNT

sphere to arrive sooner (0.25 ms after the sphere is completely

burned*) than the styrofoam does, but the initial pressure pulse

is broader with the styrofoam (Figure 3.8). Total impulse

(Figure 3.9) is about the same for both calculations after 0.3

Ms. In the soil (Figure 3.10) the maximum pressure using

styrofoam filler is higher than with air [4.2 GPa versus 2.2 ,Pa

(42 versus 22 kbar)].

These results indicate only the general trend one could

expect if the charge support structure were modeled in a 2D cal-

culation. Although the tota. impulse delivered to the soil does

not appear to be significantly affected by the presence of the

*All times are measured from the time the TNT sphere is totally

burned. 33



8 1 .80

6- 60

a. -0

SStyrofoam _Y

4 - 40 cc
W .7 wSAir

ww

2 20

Srofoam/plywood

I J 0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
TIME, ms

Fiqure 3.8 Pressure histories at the soil interface (ID calcu-
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Figure 3.9 Specific impulse at the soil interface (lD
calculations) corresponding to a surface range
of 2.3 m (7.3 ft) from the point of tangency
of a 100 ton TNT sphere.
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styrofoam support, the initial shock pressure seen at, and

slightly below the soil surface may he up to a factor of two

higher if the charge support were modeled better. The absolute

effect of the structure on the initial coupling can only be

determined by performing a 2D calculation.
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SECTION 4

CONCLUSIONS

Calculational techniques used in prior surface-tangent TNT

sphere cratering calculations were reviewed with respect to the

modeling of the interaction of the TNT source with the qround.

Three basic types of modeling have been used:

1. Start with the detonated TNT charge and allow it to

interact with a realistic ground surface.

2. Start with a pressure-time boundary condition derived

from AFWL airblast calculations which treat the surface

as a reflecting boundary.

3. Hybrid Models - use the best parts of both (1) and (2).

a. Pse a pressure-time boundary condition from (l)

close-in, followed by one from (2) beyond 15 ft.

Many AFWL cratering calculations, and the 1972

Middle Gust III (MGIII) cratering calculation, were

performed this way.

b. Use a pressure-time boundary condition from (2)

close-in, followed by a fit to event airblast data

beyond 10 ft. This approach, which apparently has

never been used before, is being used in the

current CRT baseline MGIII cratering calculation.

A majority of the impulse and energy (;80 percent) coupled

to the ground is accomplished within the first 10 ft from the

charge center. All approaches listed above give approximately

the same total impulse at the ground surface over this range, and

coupled energy. It can be concluded that the close-in surface

loading model being used currently by CRT is an acceptable repre-

sentation of the direct surface loading obtained from a 100 ton
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surface tanqent-above TNT sphere which has no support struc-

ture. None of the past cratering calculations has accurately

modeled the charge support structure, which has consistently been

a part of such experiments. The effect of this structure is

probably to send a stronger shock into the ground initially, due

to the resistance of styrofoam to the initial shock pressure.

Total impulse delivered to the ground probably would not change

significantly if the support structure were included, but since a

2D calculation has not been performed, this cannot be stated

conclusively.
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