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We study the family of power transformations proposed by Box

and Cox (1964) when the choice of the power paramcter A is restricted
to a finite set QR . The two cases in which obvious answers obtain

are when the true paramceter A is an element of QR and when A is
"far" from 8, . We study the case in which Ao is Yclose" to 2
finding that the resulting methods can be very different from un-
restricted maximum likelihood and that inference depends on the design,

the values of the regression parameters, and the distance of A to
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I Introduction

Pox and Cox (1964) sugpested the power family of trausformations,

wherein for sowme unknown A,

@) . - .
(1.1) oA : xiB +oc, = 1. +ooc, y i=1,...,N .

)
i2 cip) y B = (BO ces Bp-l) R

the £, are independent and identically distributed with mean zero,

Here the design vectors X = (1 ¢

variance one and distribution F , and

y(x) = (y(x)- 1) /2 A +0

Lij

log y A =0,

They studied both maximum likelihood and Bayes inference when F is
the normal distribution. There is now a substantial literature on

the problem, an incomplete list of which includes Andrews (1971),
Atkinson (1973), Hinkley (1975), Bickel and Doksum (1980, denoted B-D),
Carroll (1980), aud Carroll amnd Ruppert (1980, denoted C-R).

B~D developed an asymptotic theory for estimation. If the normal
thecory MLE is £ when A is known and 6* = é(i) when X is
unknown and estimated by i , they Compute the asymptotic distributions
of 8728 - gy and N/2(% - 8)/o as N+ e, 6 +0 . These
distributions arc different, with the latter having a covariance
matrix at least as large and often very much larger than that of the
former; the estimates i and B* are highly variable and highly
correlated in gencral. This suggests that there is a large "cost" due
to es'imating the powcr parameter A . Unfortunately, these results
(and independent Monte-Carlo work by Carroll (1980)) suggest that
unconditional inference concerning 8 can be very difficult for,
except in certain balanced designs, inference without taking
into account the variability of A will be incorrect while g* is
itsclf too variable to be much help., A theory for conditional inference

might prove useful.

It is relevaut to note that when 820 and o=l are known, the
curvature (Efron (1975)) for X at A=0 is yoz- 10.67; Efron suggests

that a value y: > 1/8 is "large'™!

-~
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C-R study the prediction problem in the scnse of estimating
the conditicnal median of Y given a design point x, this is
inference in the original scale of the data. Their results are much
more cucouraging; while there is a cost duc to estimating A , it
L

)

is generally not scvere. For example, if B = (Bo Bl N Bp-l
the cost averaged over the distribution of the design is

(14p) ! (asymptotically as N »» and o > 0).

We arce concerned with the following point which has been raised
concerning the applicability of the B-D and C-R theories. In practice,
one may be uncomfortablc¢ using an estimate such as A= .037, then
the much more common log scale (i=0) is "just as good". Thus it
is reasonable to restrict the estimate of X to a finite set QR
and to study the consequences of such a decision. Asymptotically,
as N+ o but A and QR stay fixed, onc has the trivial results
that if X € QR one is almost always in the right scale so there
arc no difficulties, while if A ¢ QR bias dominates and no uscful

results are obtainable,

In Table | we present the results of a Monte-Carlo study for
estimating the conditional median of Y given X, The model is

simple lincar regression based on a uniform design with B°=5. BI-Z

and
-1 N |
(1.2) N iél x; % = 1, .

'
The crrors were normally distributed with mean O and variance 02.
and there were 500 replications of the experiment. The restricted
power set was QR = {0, +1/2,%+1} , and we made decisions in this
set on the basis of the likelihood. For a given A , our estimator is

1/A

(1 + 2 x, 8% QO + 0)

(1.3) - -
exp ( X, 8) { (A = 0)

The numbers listed in the Table 1| arc the "reclative mean square
errors (MSE)", i.e., the mean square error of (1.3) divided by the

MSE when ) is known. We list results for the origen xo-(l o) and




when xo is a randomly chosen number of the designg the latter is

in effect an averape relative MSE over the distribution of the design.

In Table | we sec that the restricted cestimator (RE) dominates
the MLE wheu A=0 (hence X C QR) , while the MLE dominates when
A ¢ QR . In this latter case note that incrcasing N or decreasing o

results in improved performance of the MLE relative to the RE,

In Table 2 we repeat the above cxperiment with the changes
80=7. 8l=4 . The slightly worse behavior of the MLE relative to the
A-known case is cxpected from the C-R theory. Note here that the
change in parametcr values causes the RE to be much worse than the
MLE if ¢ QR . Also, the effect of changing N or o is
highlighted.

From the Monte-Carlo, we see that the performance of the RE
relative to the MLE depends on A, N, 0 and B . One purpose of
the rest of this paper is to propose and investigate a simple
theury which gives a somcwhat more systematic understanding of this
performance. More gencrally, we also investigate the question of
the fecasibility of constructing procedures for which the choice

of A is restricted but which also give performance comparable
to the MLE.
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wedian of Y piven L Here
o ﬂl =2 .
AVERAGE.
@ 1) (x,
Ratio
(Migh/low) MLE RE RATIO
1.1 1.07 1.01 1.06
1.08 1.17 1.01 1.16
1.13 1.08  1.00 1.08
1.22 1.16 1.00 1.16
1.12 1.07 1.15 1.07
1.14 1.13 1.24 1.10
1.15 1.0 1,10 1.07
1.22 1.05 1.24 1.18
1.04 1.06 1.10 1.04
1.08 1.12 1.24 1.1
1.17 1.04 1.10 1.06
1.24 1.06 1.14 1.08
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Table 2

The MSE bLehaviov of the MLE and RE relative to the A-known

estimate of the conditional median of Y given LI Hiere

QR = {0, +1/2,21}, R, = 7 and Bx =4,

OR1GEN AVERAGE

(xo = (0 1)) (xo random member of design)

Ratio |

N o A MLE RE  (lligh/lLow)  MLE RE RAT10
20 1 0 1.3 1.00 1.34 i.25 1.00 1.25
20 12 1.43  1.00 1.43 .27 1.00 1.27 |
40 1 1.23  1.00 1.23 1.32 1.00 1.32
4 /2 o 1.37  1.00 1.37 1.22  1.00 .27
20 1 /8 ) 1.25 1.72 1.38 1.15  1.61  1.40
20 /2 1.37  2.24 1.64 1.18  2.30 1.95 : .
40 1 1.24  1.80 1.45 1.06  1.59  1.53
40 1/2 1/8 | 1.38  2.47 1.79 1.07  2.33  2.18
20 ! V4 1.24 1.65 1.33 1.13 1.49 1.32
20 1/2 1.36  2.52 1.85 1.16 2.19 1.89
40 i 1.22 2.1t 1.73 1.05 1.42 1.35
40  1/2 146 ) 1.36 3.41 2.51 1.09 2.20 2.02
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2. A large sample theory

Any reasonable theory must have A "close” to QR for large

sample sizes. We choose to do this by letting the cardinality of

QR increase with increasing sample size N and by letting A = AN

converge to a fixed clement of QR . Far casc of calculation we

focus on the iwmportant special casc that the log scale is "almost"

correct, i.e., QP always contains zero and
AN

A = ba/n'/2

Of course, when b = 0 the data truely have a log-normal distribution.

i Let A and Yy denote the restricted and ML estimates of A ,

~

let BK or 8* be the estimate of R having chosen the power
AR or AM , and let i
fL, xB) = (1 +ax )t/ (A + 0)
o o
= exp (x 8) (x=0),

which is the conditionional median of Y given L with estimate (1.2).
: We assume the errurs are normally distributed. Letting e = (Il o ... 0),

wWe assume

x; e = 1 (there is an intercept)
. v

-1 ' ’
} N Z xi xi = I .
Then, for any value of b , when A is known the limit MSE is
. _ 2
(2.2) MSE (A known) = "xol exp(2 X, g) .
For fixed o the computations are very difficult, so we will

follow the lead of Bickel and Doksum aud consider only the case that

o= T n, wiere T = (N) + 0 is a known sequence; it simplifies

notation to make the convention n = 1 .
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We are now in a position to defline the restricted estimate
;R of A, which we take by convention to satisfy Ilkl AL
et D = {dk) be a finite or countably infinite subset of the-
extended real line with do =0, d—k &= - dk , and sup(dk} I

Define intervals midway between these points:

B, = [de—;‘*dk)/Z : (dk-+dk+|)/:]

)
Our restricted estimate AR satisfics ]ARj < 1 and maximizes
the likelihood over the admissible set with Nl/2 AR/F cD.

Asymptotically, the procedure becomes

. /22, . 1/23 T
Choose N AR/I dk if N AM/F € B and 'ARI <1
If not possible, choose A, = +1 on the basis of the

R
likelihood.

-

The resulting cstimate of B is B, and the estimate of the

R - -
conditional median of Y given X, is f(AR,xoﬁR) .

The above procedure is asymptotically the same as a restricted
maximum likelihood method and is quite intuitive as it choses the
point in D closest to N‘/ZXM/P . Note also that as N increases,
the number of possible choices for scale also increases, as

desired. Make the definitions:

-]
L}

= g al - 97102

]
n

2 2
A IV I 7Y

XN = (xl ere Xy )

- 4 2
g = o e = lagl® s e >0

Theorem. Using the B-D asymptotics, the limit distribution of the

restricted estimator of the conditional median




2.1 N'”[m..x Ry - £(r = bo/k' 17« s]
; R [§) R (4]

is given by

, YT o112,
(2.2) oxp(aoﬂ)[ux“ﬂl| +ay E (dk h)]((o Z

2+b € Bk)] ,

where Zl and Z, are independent standard normal random variables.
s .

The proof is in the appendix.
The Theorcm shows that the estimate of the conditional median

of Y gpiven X, based on a restricted choice of A is not

recessarily asymptotically normally distributed,

]ﬁg@gﬂg!”l.A Suppase that for any sample size we restrict our choice

of )\R to a fixed sct, say ',
|

8, = fo,211/2,+1})

~

In this case we eventually have AR =0 so that D = {0, t=} and

(2.3) MSE (fixed finite set)

+ exp(? X, B)[onﬂz + bzalz} .

In simple lincar regression with a symmetric design and fourth moment
U& satisfying (1.2), we find that at the origen xo= (Io),a?=8'a/6 and
e = Br (u4~l)/4 . In this case, while (2.3) does not serve as a

very good method for predicting the individual values in Tables |

and 2, it does, however, lead to the following qualitative conclusions,

all of which are satisfied by the simulations:

(i) Changing the value of N from 20 to 40 while fixing
QR and A bnsicall* increase b by a factor of /2.
Hence, larger values of N will result in a worse

performance for the RE when A § QR .

(ii) Changing ¢ from | to 1/2 iucrecases b by a factor

of 2 and should result in worse performance for the RE,
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(111) Chanpgiuny, l'! from 2 to 4 1incrcases the term f\)‘ by

a factor of sixteen Surh a larve chanee should cause

much vorse porflormance in Table 2.

(iv) The increase in (1ii) above should make the changes in the RE
when one changes N or ¢ much more dramatic in Table 2 than in

Table 1.

-~

Eig@p]n*#ﬁ. The theory includes the MLE XM by choosing UV dense.

In this case we got

(2.4a) MSE (ML of V)

1. 2 2
-+ cxp(?yoﬁ) _lxoﬁ +a, /CO]

Ju the simple linear regression, at the origen this becomes
r -1

(2.41) cxp(Z{’-U) I+ (“1.—') ) .

Note that (2.4h) is independent of the value of b .

E}ﬂFT}“#tz; An Iuteresting example in which the number of possible

values of AR increases with N occurs when D = {all integers} .

It is not too umicasonable to suspect that this restricted estimate
will be at lcast cowparable to the MLE, perhaps somewhat better

when b=0 and hence A & but not too much worse when b = /2

R
and ) ¢ QR . In this case

(2.5) MSE (restricted procedure)

> exp(2xoe)r ”xoﬂ2

2 -1 2 -
1 % ) E (k-b) e P{eo

1/2
Z+b € Bk} .

Tne only important differvence between (2.4a) and (2.5) is the term

2 =172,
E (k-b)"e pfe ""“z+b c B}

(&)




In Table 3 we corpare the values of (2.4b) and (2.5) for the uniform
simple linear repression desipgn of the introduction with u“ = 1.79;

all comparisons are at the origen x, = 1 o).

Table 3

Cowparison of MSH for a simple lincar regression design with moments

1, = 1.79, x. = (1 o)

¥y = “3 =0, l‘,. o

) 2

_MSEQILE) MSE (RE ) MSE (RE )

MSE(XN known)  MSE (X known) MSE (MLE)

——————— —— —— —

2.27 2.37
2.27 2.59
2.27 1.03
2.27 2.37
2.27 2.61 1.15

2.27 129.42 57.01

The result< are somcwhat surprising. First note that the
case b=0 corresponds to situations in which A truely belongs

to the set QR . The restricted estimate does not always outperform

the MLE, although it docs for large Bl . What is even more inter-

esting is the casc b=1/2 , which is one of the simplest cascs
in which X is not in the set QR although it is quite close.
Here we see that the restricted procedure can perform very badly
indeed.

Tables 1-3 and the Theorem thus suggest that if the number of

1/2 , the per=-

possible choices' of scale is only on the order of N
formance of the resulting estimates will differ from estimates based
on the MLE of X , in some cases being better but in others being
very uich worse. I{ oue has no prior belief or evidence that only

a finite number of valucs of A are possible, but rather in
estimiting the counditional median of Y given X, one wants to

make only "reasonable” choices of A while retaining MLE-type

behavior, the number of possible choices of A will have to be
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Appendix

We will usc contipuity techniques (Hajek and Sidak (1978)). Let

Ll be the log-likelihoond when b=0 and let Lz be the log-likelihood
for fixed b#*0 . Somcwhat detailed calculations show that as

N «, 0+0, under the distribution L' with A=0,

N
L2 .
(A1) = (LyL)) = (07 /6N) } 1:

+ (bN—”2

N 2
) g ciTi/Z + op(l)

This shows that the case b 4+ 0 is contiguous to the case b=0 .

Proof of the Theorem: When A = b = 0 it follows by a Taylor expansion

i A that as N » « ¢ » 0

R
(AL Ly,o= Nl/2 }(; % ) - £(A=0,R)| exp(~x_R)
N YRR ’ ) o]
N
R Y ! /2 3
N izl X% + a,N AR/O + op(l)

Also, B-D show that when X = 0 , (
f

1/2

IV 5 SR
(A.3) 200N \M/o = N ) (ri x;q )ci + Op(l) . |

It is casy to check that the r.h;s. of (A.3) is asymptotically independent
of the first term on the r.h.s. of (A.2). We now use the definition of

kR and the convention o = r(N)n = r(N) to obtain that when X =0 , !
|

as N -»®» and o » 0 ,

N
(A.4) s, = N2 T xxte. +a Tarw
1y %k

2A
N Ly To%is AM/O € Bk) + op(l) .

We are now in a position to use Theorem 7.2 of Roussas (1972, page 38).

In his notation,

N

' -1/2 . ' 2
TN N izl (xoxici q x{€; T ei)
L]
(A.5) = E TN 1N
L]
h = (0 0 -h/2) .




-,3—

One can show that the terus in (A.5) satis{y the conditions of Roussas'

Theorem 7.2 so that when A = b(JN-l/Z yas N=+ o and o + 0O, TN is
" asymptotically normally distributed with mecan Th and covariance T .,
Because of (A.3), this means that N”2 AM/o and the first term on the
-1/2

r.h.s, of (A.2) are, when X = boN » jointly asymptotically normally
distributed with means (b —bxoq/2), variances (e;‘, “xonz) and zero
covariance. From this we obtain that (2,1) is asymptotically distributed
with the same distribution as

/2

Z,+b C Bk) s

-1
"xonz' - bnl ta, E dkl(cO 2

are as in the Theorem. This completes the proof.

i

where Z and 7

1 2




