CHEMICAL AND BIOCHEMICAL STUDIES OF PGBX (U)

AUG 80 T M DEVLIN

N00014-77-C-0340
OFFICE OF NAVAL RESEARCH
Contract N00014-77-C-0340
Task No. NR 206-003
ANNUAL REPORT NO. 2

Chemical and Biochemical Studies of PGBx

by

Thomas M. Devlin, Ph.D.

Department of Biological Chemistry
Hahnemann Medical College & Hospital
Philadelphia, Pa. 19102

August 30, 1980

Reproduction in whole or in part is permitted for any purpose of the United States Government

*Distribution of this report is unlimited
Chemical and Biochemical Studies of PGBN

by

Thomas M. Devlin, Ph.D.

Department of Biological Chemistry
Hahnemann Medical College & Hospital
Philadelphia, Pa. 19102

August 30, 1980

Reproduction in whole or in part is permitted for any purpose of the United States Government

*Distribution of this report is unlimited
TABLE OF CONTENTS

I. Introduction 3

II. Report of the Research Program at Hahnemann 4
 A. Background 4
 B. Progress Report 6
 1. Summary 6
 2. Assay of Samples 8
 3. Studies with Intact Mitochondria and Sub-mitochondrial Particles 11
 4. Interaction of PGB_\text{x} with Calcium and Bovine Albumin 14
 5. Ionophoretic Activity of PGB_\text{x} 16
 6. Perfused Heart Studies 19

III. Report of the Research Program at NADC 33
 I. Preparation and Purification of PGB_\text{x} 33
 II. Further Purification of PGB_\text{x} 36
 III. Structural Studies 54
Department of Biological Chemistry
Hahnemann Medical College and Hospital

I. Introduction:

In September 1979 two existing contracts, one to the Department of Biological Chemistry, Hahnemann Medical College, and the other contract for studies conducted at the Naval Air Development Center (NADC), Warminster, Pa., were combined into one contract awarded to the Hahnemann Medical College and Hospital. The combined contract led to a more integrated research activity and an increase in professional staff interaction during 1980 even though the two groups are physically separated and each had separate goals and objectives. The specific activities of the two groups can be clearly delineated and are presented separately in this report.

In addition to the activities supported by this contract at the NADC are the separately funded activities at the NADC directed by Dr. Herman Shmukler. The NADC groups function as an integrated total unit rather than as two separate activities. On this basis, the report submitted here for the NADC activities overlaps the report submitted by Dr. Shmukler because it was deemed important to prepare a comprehensive report for the activity at NADC.

Both the Hahnemann and NADC units perform a service function. It is the responsibility of the Hahnemann group to carry out assays of samples submitted by other contractors who are conducting purification studies of PGB\textsubscript{x} or are preparing analogues of PGB\textsubscript{x}. The NADC group is the principal laboratory for preparation of PGB\textsubscript{x} serving the contract to the Department of Chemistry, St. Joseph's University, by purifying intermediates in the synthesis of PGB\textsubscript{x} as well as preparing PGB\textsubscript{x} for
II. Report of the Research Program at Hahnemann:

A. Background:

Previous progress reports described the earlier studies from this laboratory confirming the observations of Polis, Polis and Kwong (Proc. Natl. Aca. Sci. USA (1979) 76 1958) that a polmeric form of 15-keto prostaglandin B\(_1\), designated PGB\(_x\), was capable of protecting oxidative phosphorylation of isolated rat liver mitochondria which had been aged at 0\(^\circ\) for several days. The complexity of the energy transduction mechanism has been discussed in previous reports as well as the sensitivity of this system to a variety of treatments, chemical agents and perturbations of the membrane. A variety of events could occur during aging periods in vitro any of which could be prevented or reversed by PGB\(_x\). Based on the studies conducted during the last two years it is now considered that the principal effect of PGB\(_x\) is on intermediate in the energy transduction mechanism but the possibility of a direct effect on the membrane thus protecting the ATP synthetic activity indirectly has not been ruled out.

The ability of PGB\(_x\) to protect oxidative phosphorylation is a very unusual property in that no other compound has been found to have a similar activity particularly at the low concentrations of PGB\(_x\) that are effective; some prostaglandins do have nominal activity but none at the low concentration observed with PGB\(_x\). Thus an understanding of the action of PGB\(_x\) should have a major impact not only on our understanding of the mechanism of oxidative phosphorylation but also on possible therapeutic approaches to protecting mitochondria from loss of integrity in pathological
conditions where loss of mitochondrial function occurs.

A major effort was undertaken in 1980 by several laboratories to purify PGB\textsubscript{x} and analogues of PGB\textsubscript{x}. Samples of purified PGB\textsubscript{x}, various analogue derivatives and a number of other compounds have been tested to determine if they have an activity similar to PGB\textsubscript{x}. As reported previously PGB\textsubscript{x} has a biphasic effect on mitochondria protecting oxidative phosphorylation at low concentrations but causing an inhibition at higher concentrations. A number of samples have been tested which have lower inhibitory activity but also lower activity in protecting oxidative phosphorylation from loss. It is still not known whether the protective and inhibitory activities are the function of one or two different compounds in the sample.

In 1978, we demonstrated (Ohnishi, S.T. and Devlin, T.M., Biochem. Biophys. Res. Commun. (1979) 89 240) that PGB\textsubscript{x} had ionophoretic activity, capable of translocating Ca++ across biological membranes and partitioning Ca++ between an aqueous and an organic phase. Studies of the ionophoretic properties have continued with the evidence suggesting that PGB\textsubscript{x} serves as an ionophore and not to form channels in the membrane. The ionophoretic properties of PGB\textsubscript{x} have been confirmed by Weissmann, et al (Weissmann, G., Anderson, P., Serhan, C., Samuelson, E., and Goodman, E. (1980) Proc. Natl. Acad. Sci. USA 77 1506). The relationship between the ionophoretic activity and the protective action on oxidative phosphorylation of PGB\textsubscript{x} has not been delineated. Extensive studies have been conducted in order to demonstrate a possible relationship or lack of relationship but the results
are inconclusive. In addition it is not certain whether the two activities are due to the same or different compounds in samples of PGB\textsubscript{x}.

B. Progress Report:

This report covers the period September 1, 1979 through August 30, 1980. For those phases of the investigation which have been completed experimental procedures and results are presented but where work is still in progress and results are preliminary the details are presented in summary form only.

(1) Summary: Over one hundred different samples were tested for their ability to protect isolated rat liver mitochondria from the loss of oxidative phosphorylation; samples were tested at several concentrations and with several different mitochondrial preparations. Results were reported to individuals submitting samples. Several modifications of the assay system have permitted a quantitative comparison between samples tested and a stock sample of PGB\textsubscript{x}. There is a direct relationship between mitochondrial protein and quantity of PGB\textsubscript{x} in the assay system. Test results were reported on the basis of the ratio of amount of sample to produce 50\% protection and mitochondrial protein. The assay system has been modified to permit the use of fresh mitochondria which are aged by preincubation in the absence of ATP but in the presence of phosphate. This has reduced some of the erratic results of the previous assay system. Oligomers of the ethyl-analogue (from Dr. G. Nelson) have been evaluated; the most active fraction is approximately 40\% as active as the PGB\textsubscript{x} but does have less inhibitory activity.
PGB\textsubscript{x} apparently binds specifically to the proteolipid of the F\textsubscript{0} portion of the F\textsubscript{1}-F\textsubscript{0} ATPase of mitochondria. This was demonstrated by competitive binding studies with dicyclohexyl-carbodiimide (DCCD). The F\textsubscript{0} complex is involved in proton movements across the mitochondrial membrane and interaction of PGB\textsubscript{x} on the proteolipid portion would explain the observed inhibition of respiration with freshly isolated mitochondria. This proposal for a site of action does not, however, explain the inhibition of uncoupler stimulated respiration.

A comprehensive study of the binding of Ca++ by PGB\textsubscript{x} and serum albumin by PGB\textsubscript{x} has been completed. The results demonstrate that PGB\textsubscript{x} binds high affinity sites on serum albumin in an area identical to or overlapping Ca++ binding sites. Physical chemical studies on the binding of Ca++ by PGB\textsubscript{x} in an aqueous system indicates that a similar interaction occurs in the ionophoretic activity of PGB\textsubscript{x} in the lipid membrane.

The ionophoretic activity of PGB\textsubscript{x} with isolated liposomes has been evaluated. The pH of optima activity is approximately 6.9 but in contrast to other ionophores there seems to be a maximum pH with decreasing activity at both higher and lower pHs. The temperature profile supports the proposal that PGB\textsubscript{x} is a true ionophore and not a channel former in the membrane. The ionophoretic activity of fractions of PGB\textsubscript{x} and of the ethyl-analogue demonstrate that the activity is a function of the molecular weight; the higher molecular weight fractions have higher ionophoretic activity. The ethyl analogue has nearly the same ionophoretic activity as PGB\textsubscript{x}.
In very preliminary studies with an isolated perfused heart system, PGB\textsubscript{x} apparently protects the heart during periods of anoxia permitting the heart to resume its function when O\textsubscript{2} is administered.

(2) **Assay of Samples:** During the past year over one hundred samples have been tested for their ability to protect isolated mitochondria from the loss of oxidative phosphorylation. Samples were usually tested with two to four different mitochondrial preparations and at three to five different concentrations. Samples were received from and reports of results were submitted to Dr. H. Shmukler (NADC), Dr. G. Nelson (St. Joseph's University), Dr. R. Doskotch (Ohio State University), Dr. K. Biemann (MIT) and Dr. D. Trainor (Columbia University). This report does not contain detailed results on all the samples; any activity of the samples tested should be reported in the Progress Reports from the submitting Institutions.

During this past year a major modification of the assay system has been carried out. The original studies of Polis as well as those in this laboratory indicated the requirement to age isolated rat liver mitochondria in their isolation medium at 0\textdegree C for several days before assay. This aging period apparently labeled some component of the energy transduction mechanism such that when the mitochondria were preincubated for short periods (5 to 10 minutes) at 30\textdegree C there would be a loss of phosphorylating capacity. The loss could be prevented by the presence of PGB\textsubscript{x} during the preincubation. The need to age for several days presented problems in that there was a great variability in the results
and thus one could not be certain that a particular mitochondrial preparation could be used for an assay. An evaluation of the effect of preincubating rat liver mitochondria at 30° under varying conditions led to the conclusion that it was possible to use freshly isolated mitochondria if the mitochondria were preincubated in the presence of inorganic phosphate and absence of ATP. A system has been developed in which freshly isolated mitochondria can be preincubated in the absence or presence of PGB\textsubscript{x} to demonstrate the protective effect. Results with this system are more reproducible than with two to five day aged mitochondria but we still encounter some lack of consistency. The system is presented in Figure 1 which demonstrates the effect of increasing concentrations of PGB\textsubscript{x} on phosphate uptake. In the experiment presented in Figure 1, the mitochondria after preincubating for 45 minutes in the presence of ATP were able to catalyze the uptake of 33\(\mu\) moles of phosphate in a 30 minute incubation period. In the absence of ATP, however, there was a significant loss of the phosphorylating capacity as indicated. PGB\textsubscript{x} was able to protect the mitochondria from this loss. The system permits a determination of the percent protection as indicated on the right hand ordinate and a method to compare the protective effect of other samples. The protection by ATP is presumably due to its ability to maintain the integrity of the phosphorylating mechanism and to maintain the mitochondrial respiratory chain in a reduced state. The absence of ATP or any addition which leads to a depletion of adeninenucleotides of the mitochondria causes a loss of phosphorylating activity. It should be noted that this assay system does not require the
presence of factors such as NAD, cytochrome c or bovine serum albumin (BSA) which are frequently added to improve the activity of oxidative phosphorylation.

As discussed below in more detail, the effect of PGB$_X$ was related directly to the ratio of PGB$_X$ and mitochondrial protein rather than to the concentration of PGB$_X$. Variations in mitochondrial protein will lead to differences in the degree of protection by the same concentration of PGB$_X$. Thus in reporting results on the assay of samples, the concentration of material required to protect 50% based on mg mitochondrial protein was used. For PGB$_X$ to protect mitochondria 50% the value was between 1.7 and 2.4 µg/mg mitochondrial protein. PGB$_X$ is usually tested at 20 to 30 µg/2.8 ml of incubating system.

The assay system also permitted the evaluation of the inhibitory activity of a sample. As presented in Figure 1 at higher concentrations of PGB$_X$ there was a decrease in the protective effect. In fact, if the concentration of PGB$_X$ was raised above 60 µg/2.8 ml there was a greater loss of activity than in the control. Thus samples can be compared for both their protective and inhibitory activity. An alternative assay for the inhibitory activity is to use freshly prepared mitochondria as shown in Figure 2. There was a close correlation between the inhibitory activity of PGB$_X$ where PGB$_X$ was preincubated in the presence of ATP or the absence of ATP. Without the preincubation there appeared to be somewhat less inhibitory activity. There is no ready explanation for the lack of effect at low PGB$_X$ concentrations either with or without the preincubation in the presence of ATP. It is possible that we are dealing with a single phenomena with a threshold concentra-
tion required beyond which the effect of the PGB\textsubscript{x} becomes deleterious but below which it has a positive protective effect or no effect as observed with mitochondria which are not preincubated. A number of samples have been tested in this fashion and some have been found to have reduced levels of inhibition in comparison to PGB\textsubscript{x} but they also have reduced protective effects. At this time no fraction of PGB\textsubscript{x} has been found to be totally free of inhibitor even though some of the fractions appear to have a lower inhibitor activity than others.

Dr. G. Nelson (St. Joseph's) has prepared an ethyl-analogue of PGB which has been oligomerized and partially purified. The results of the assay of these samples is presented in Table I. It will be noted that none of the samples of the ethyl-analogue were as active as PGB\textsubscript{x}. Of particular interest is that the samples have very low inhibitory activity. The samples have also been evaluated for their ionophoretic activity and it will be noted that one fraction of the oligomer is more active than PGB\textsubscript{x}.

(3) Studies with Intact Mitochondria and Sub-mitochondrial Particles: Studies of the effect of PGB\textsubscript{x} on specific aspects of the energy transduction mechanism of mitochondria have continued. It has been observed that the inhibition of oxidative phosphorylation by PGB\textsubscript{x} was dependent on the concentration of mitochondrial protein. This is reported in Figure 3 where the effect of PGB\textsubscript{x} on inhibition of phosphorylation is measured at three different levels of mitochondrial protein; with increasing mitochondrial protein there was a decreasing effect of PGB\textsubscript{x}. A similar observation has been made with respect to the protec-
tive effect of PGB\textsubscript{x} on mitochondrial phosphorylation. Thus we have had to relate the effect of PGB\textsubscript{x} and other compounds to the amount of mitochondrial protein rather than to the absolute concentration of PGB\textsubscript{x} in the incubation system. The results indicate a direct interaction of PGB\textsubscript{x} with a component of the mitochondria with a high affinity constant.

We have found that PGB\textsubscript{x} is also tightly bound by serum albumin. As presented in Figure 4 inhibition of phosphorylation by PGB\textsubscript{x} can be prevented by increasing concentrations of serum albumin. At a molar ratio of 1 there was no effect of PGB\textsubscript{x} on phosphorylation; at ratios lower than 1, PGB\textsubscript{x} was inhibitory. This suggests a very specific binding by serum albumin of PGB\textsubscript{x} and is reminiscent of the high affinity binding sites for \textit{I}\textsubscript{I}s on albumin. Further studies on the binding of albumin and PGB\textsubscript{x} are described below. This binding by BSA partially explains some of the erratic results observed earlier where BSA could prevent the protective effect of PGB\textsubscript{x}. Data in the NADC Report below confirms this proposal.

Studies have also continued on the specific site of action on PGB\textsubscript{x} on the energy transduction mechanism. Results reported in the 1979 progress report indicated the possibility of a direct interaction with one of the proteins of the F\textsubscript{1}-F\textsubscript{0}ATPase. Studies of the effect of PGB\textsubscript{x} on the rate of respiration in the presence and absence of ADP or Ca++ and on reverse electron transport indicated a site of action on the ATPase. The F\textsubscript{1}-F\textsubscript{0}ATPase is the enzyme involved in proton translocation across the mitochondrial membrane and reversal of the ATPase activity is considered to be
the mechanism of ATP synthesis. PGB\textsubscript{x} inhibited the ATPase activity of sub-mitochondrial particles. Isolation of the F\textsubscript{1} portion, which catalyzes the actual hydrolysis of ATP, however, demonstrated that the PGB\textsubscript{x} did not inhibit this aspect of the enzyme. The F\textsubscript{0} portion of the enzyme is considered to be the channel through which protons move from the cytoplasmic side of the membrane into the matrix and driving ATP synthesis. Results with the purified F\textsubscript{1}ATPase supported the proposal that PGB\textsubscript{x} was specifically binding the F\textsubscript{0} complex. This was demonstrated with sub-mitochondrial particles prepared in the presence of urea which removes the F\textsubscript{1} portion of the complex leaving particles containing the F\textsubscript{0} portion. These particles are essentially uncoupled in that protons can move through the membrane via the F\textsubscript{0} complex. The addition of PGB\textsubscript{x} to these particles re instituted respiratory control, an expected observation if PGB\textsubscript{x} is reacting with the F\textsubscript{0}. Proof for the interaction of PGB\textsubscript{x} with the F\textsubscript{0} complex came from the isolation of the complex and the demonstration that PGB\textsubscript{x} apparently binds with one of the proteins. The F\textsubscript{0} complex contains a number of proteins, one a small molecular weight proteolipid which specifically binds DCCD. PGB\textsubscript{x} apparently competes with DCCD for binding to the proteolipid of F\textsubscript{0} as shown in Figure 5. These results confirm the original proposal of a site of interaction at the energy transduction mechanism. Since it is considered that proteolipid is involved in the proton movements, PGB\textsubscript{x} might be inhibiting a leak of protons across the membrane at low concentrations but at high concentration inhibiting all proton translocations thereby inhibiting ATP synthesis.
This explanation, however, does not explain all the observations. PGB\textsubscript{x} also affects the uncoupling due to 2,4-dinitrophenol as reported by Polis et al (op. cit.). Dinitrophenol has been considered to be a protophore, short circuiting the F\textsubscript{1}-F\textsubscript{0}ATPase. If this is the case, it would be necessary to propose a site of action of dinitrophenol somewhere close to that of the interaction of PGB\textsubscript{x}.

The effect of PGB\textsubscript{x} on mitochondrial swelling suggests that the compound prevents various types of induced swelling particularly that caused by phosphate. The fine details of this system have not been worked out and it appears that there is a specific cation and/or anion requirement in order to demonstrate the protection. Further studies in this area are currently underway.

(4) **Interaction of PGB\textsubscript{x} with Calcium and Bovine Serum Albumin:**

As indicated above, it was observed that the addition of bovine serum albumin could prevent the protective effect of PGB\textsubscript{x} on aged mitochondria or prevent the uncoupling by PGB\textsubscript{x} presumably due to binding. Detailed evaluation of this interaction was undertaken as well as the interaction of Ca++ with PGB\textsubscript{x} as part of a continuing study on the ionophoretic activity of the material. The results of binding as measured by the quenching of fluorescence of bovine serum albumin indicated that BSA binds at least two molecules of PGB\textsubscript{x} with an affinity constant of 2 x 107/M. This is higher than the affinity of serum albumin for sodium dodecyl-sulfate. There are apparently two different types of binding—a low affinity and a higher affinity. Calculations of the molar ratio suggest that two molecules of PGB\textsubscript{x} of approximate molecular
weight of 2000 are bound per serum albumin, one to the high affinity and one to the low affinity binding site. Similar data was calculated in the presence of liposomes but the results suggest a higher binding ratio of PGB\textsubscript{x} to BSA. This could be accounted for by the interaction of PGB\textsubscript{x} in the liposomes permitting only a portion of the molecule to interact with the BSA. Thus more than one molecule of PGB\textsubscript{x} in the liposome system would be able to interact in contrast to the aqueous system where only two molecules are able to interact. There are known to be ten hydrophobic binding sites on serum albumin and thus it may be able to bind a large number of PGB\textsubscript{x} molecules dissolved in the lipid bilayer.

The interaction of serum albumin and PGB\textsubscript{x} is prevented by prior treatment of the serum albumin with Ca++. The results of binding experiments suggest that Ca++ can prevent the PGB\textsubscript{x} binding and PGB\textsubscript{x} can prevent Ca++ binding. It appears as if both the Ca++ and PGB\textsubscript{x} binding sites are located close together and presumably in an area close to the chromophore of BSA fluorescence. The results suggest that the binding of PGB\textsubscript{x} to BSA may involve not only hydrophobic binding but also ionic charged sites and that the interaction between the three molecules, PGB\textsubscript{x}, Ca++ and BSA occurs on a first come first occupied basis.

A study of PGB\textsubscript{x} interaction with Ca++ in an aqueous system has been completed since PGB\textsubscript{x} is water soluble and thus has the advantage over other ionophores which are usually only soluble in lipid solvents. The water solubility of PGB\textsubscript{x} permitted the measurement of the titration of PGB\textsubscript{x} by Ca++ in the presence of
a metalochromic indicator, titration of changes in intrinsic fluorescence of PGB\textsubscript{x} in addition of Ca++ and measurement of Ca++ influx across the liposome membrane. Evidence has developed that the ionophoretic activity of PGB\textsubscript{x} with Ca++ in lipid membranes was closely related to the Ca++ binding properties of PGB\textsubscript{x}. The dissociation constant was found to be 0.5mM in the absence of KCl and that approximately 3 to 4 Ca++ molecules can be bound/PGB\textsubscript{x}. These findings with the three different methods strongly suggests that the ionophoretic activity is directly proportioned to the formation of a PGB\textsubscript{x}–Ca++ complex. These results would suggest the interaction of two carboxy groups on the PGB\textsubscript{x} molecule for each Ca++.

These studies demonstrate the importance of PGB\textsubscript{x} binding of Ca++. The results will be submitted for publication in the near future.

(5) Ionophoretic Activity of PGB\textsubscript{x}: We reported in 1979 that PGB\textsubscript{x} has ionophoretic activity, and is capable of moving Ca++ across naturally occurring membranes such as mitochondria and sarcoplasmic reticulum and to partition Ca++ between an aqueous and organic phase.

In late 1979 Weismmann and coworkers (op. cit.) confirmed the ionophoretic activity of PGB\textsubscript{x} and characterized its ion selectivity as Sr++ > Ba++ > Mn++ > Ca++ > Mg++. These studies were conducted using multilamellar liposomes prepared from phospholipids in which a metallochrome indicator was encapsulated. They also confirmed that other prostaglandins did not show any measurable ionophoretic activity. We elected to expand on
these studies with liposomes as a means to evaluate the interaction of PGB\(_x\) and Ca\(^{++}\) and to determine the mechanism of ionophoretic activity. Measurements of Ca\(^{++}\) uptake can be determined by the measurement spectrophotometrically of the change in color of the encapsulated arsinazo III dye as Ca\(^{++}\) enters the phospholipid liposome. The rate of uptake can be determined and a kinetic analysis of ionophoretic activity can be determined.

The pH profile was determined and maximum activity observed at a pH of 6.9. It should be noted that this is close to the pK of 6.65 as determined by Mrs. E. Polis. It is of interest that the shape of the curve showed a maximum with decreasing activities at both higher and lower pHs. In comparison, the ionophores A23187 and x537A both have pH optima above their pK's but increasing the pH did not significantly decrease the ionophoretic activity. This would suggest that there is something rather unique about the activity of the PGB\(_x\). A kinetic analysis indicated that the bacterial ionophore A23187 is approximately 1.4 orders of magnitude more active than PGB\(_x\) and approximately 1.8 orders of magnitude more active than x537A. Thus PGB\(_x\) falls somewhere between these two very active ionophores. From the slope of the lines of a double log plot of the initial velocity as a function of ionophore concentration suggests that two PGB\(_x\) molecules are involved in the movement of each Ca\(^{++}\) ion. This is also true for A23187 in that several investigators have proposed that the functional unit is a dimer. This data does not imply that there need to be one Ca\(^{++}\) bound for each PGB\(_x\) molecule but rather that two PGB\(_x\) molecules are involved in the move-
ment of a particular Ca\(^{++}\) ion.

Two possible mechanisms for movement of ions across membranes are that a molecule may serve as a mobile carrier or create a channel to permit the movement of the ions. Evaluation of the change in initial rate of Ca\(^{++}\) movement with increasing ionophore concentration suggests that PGB\(_x\) is serving as a mobile carrier in that the curve demonstrates saturation kinetics. In contrast deoxycholic acid did not demonstrate saturation kinetics and is known to cause a detergent effect on the membrane equivalent to formation of a channel at high concentrations. A study of the effect of temperature on ionophoretic activity also leads to a similar conclusion. The Arrhenius plot reveals a direct dependence of ionophoretic activity on temperature, with increased rates of transport occurring at higher temperatures. The slope of the curve for both A23187 and PGB\(_x\) were distinctly steeper than that for deoxycholate which would suggest that PGB\(_x\) is a mobile carrier rather than a channel former.

The ionophoretic activities of some of the samples received for assay in the phosphorylating system were evaluated using the liposome system. A series of samples derived from an LH-20 column separation of crude PGB\(_x\) were evaluated. The results are reported in Figures 6 and 7 (the fractions were supplied by Dr. H. Shmukler and compared to a control batch of PGB\(_x\).) The results indicate a direct correlation between oligomer size and ionophoretic activity. The larger the oligomer the more active the ionophoretic activity (LH-20 #1 is a larger MW than #2, etc.).
can be noted, there appears to be some batch to batch variability in the samples in that the LH-20 #2 fraction tested was slightly different than the control PGB\textsubscript{x}. Control PGB\textsubscript{x} is supposed to be a sample of LH-20 #2. The methyl ester of PGB\textsubscript{x} was found to have no activity in this system. In addition to PGB\textsubscript{x} a series of ethyl analogues prepared by Dr. Nelson were also assayed. These fractions were also separated on an LH-20 column and as can be seen in Figure 8 for the bicarbonate soluble fractions and in Figure 9 for the bicarbonate insoluble fractions, the higher the molecular weight the more active the fraction was with respect to ionophoretic activity. The results are also summarized in Table #1 in which a direct comparison of the rate of ionophoretic activity in comparison to PGB\textsubscript{x} is presented. It can be noted that there are several fractions of the ethyl analogue which appear to be more active than PGB\textsubscript{x}. The liposome system will be employed as a standard assay procedure for samples in the future.

(6) **Perfused Heart Studies:** In an attempt to develop a whole organ system for evaluation of PGB\textsubscript{x} it was decided to conduct preliminary experiments on the effect of PGB\textsubscript{x} on a perfused rat heart preparation. A recirculating perfused rat heart system was established in which the rate of heart activity could be measured. With this system it was possible to insult the heart by stopping the perfusion and permitting the heart to become anoxic. Preliminary studies demonstrated that if perfusion stops for fifteen to forty-five minutes that the heart is unable to recover. In preliminary studies, the presence of PGB\textsubscript{x} during the anoxic phase protected the heart from loss of function when the perfusion was
reinitiated. These results suggest that it will be possible to use the perfused heart system as a means to evaluate the protective effect of PGB$_x$ during anoxia in the intact tissue. This approach opens a variety of new directions including the ability to determine in a controlled series of experiments the changes in mitochondrial function, structural changes and perhaps the specific sites of action of PGB$_x$ in the tissue.
Table 1

Activity of fractions of LH-20 chromatography of Ethyl Analogue prepared by Dr. G. Nelson (St. Joseph's University). BS series are sodium bicarbonate soluble and N series are sodium bicarbonate insoluble. See Figure 1 and 6 for description of assay procedures for oxidative phosphorylation and ionophoretic assays.

<table>
<thead>
<tr>
<th>SAMPLE</th>
<th>OXID. PHOSPHORYLATION</th>
<th>IONOPHORE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>50% PROTECTION</td>
<td>%PGB<sub>x</sub></td>
</tr>
<tr>
<td></td>
<td>µG/MG PROT.</td>
<td></td>
</tr>
<tr>
<td>PGB<sub>x</sub></td>
<td>2.4 ± 0.4</td>
<td>(100)</td>
</tr>
<tr>
<td>ETA - BS 90</td>
<td>8.2</td>
<td>30</td>
</tr>
<tr>
<td>BS I 90</td>
<td>21.</td>
<td>10</td>
</tr>
<tr>
<td>BS II 90</td>
<td>5.7</td>
<td>42</td>
</tr>
<tr>
<td>BS III 90</td>
<td>4.4</td>
<td>54</td>
</tr>
<tr>
<td>BS IV 90</td>
<td>11.8</td>
<td>20</td>
</tr>
<tr>
<td>BS V 90</td>
<td>11.4</td>
<td>20</td>
</tr>
<tr>
<td>ETA - N 90</td>
<td>23.6</td>
<td>10</td>
</tr>
<tr>
<td>NI 90</td>
<td>20.</td>
<td>12</td>
</tr>
<tr>
<td>NI I 90</td>
<td>7.9</td>
<td>30</td>
</tr>
<tr>
<td>NI II 90</td>
<td>16.</td>
<td>15</td>
</tr>
<tr>
<td>NI IV 90</td>
<td>> 25.</td>
<td>0</td>
</tr>
</tbody>
</table>

*RATE = µG SAMPLE/ML FOR A RATE OF 2µMCA⁺⁺/MIN.
Rat liver mitochondria, (8mg of protein) were preincubated for 45 minutes at 30°C in 18mM KH₂PO₄-K₂HPO₄, pH 7.4, 10mM MOPS, 7mM Mg Cl₂, 36mM Ketoglutarate. After preincubation, hexokinase-glucose and 1.0mM ADP added and incubated for 30 minutes at 30°C. Where indicated as ATP control mitochondria preincubated with 1.0mM ATP. Total volume was 2.8 ml.

Figure 1. Assay for Protection of Mitochondria From Loss of Oxidative Phosphorylation

![Graph showing phosphate production and percent protection in a line graph.](image)
Preincubation and incubation system as indicated in Figure 1; where indicated, no preincubation was conducted but reaction initiated at zero time.

![Graph showing Dose Response Curve of PGBX on Oxidative Phosphorylation](image)

- △ NO PREINCUBATION
- ■ ATP IN PREINCUBATION
- ○ NO ATP IN PREINCUBATION
Figure 4. Effect of Bovine Serum Albumin on PGB_x Inhibition of Oxidative Phosphorylation.

Assay system and incubation periods as in Figure 1. No preincubation period. Albumin concentration adjusted to have molar ratios with PGB_x concentrations indicated (Serum albumin MW= 68,000)
Figure 3. Effect of Varying Mitochondrial Content on Inhibition of Oxidative Phosphorylation by PGBx.

Incubation system as described in Figure 1. No preincubation period. Values indicate mg mitochondrial protein in total volume of 2.8 ml. Incubation time, 30 minutes at 30°C.
Figure 5

Submitochondrial particles were incubated 4 hours with \(^{14}\text{C}\) DCCD (2 µg/mg protein) with no further additions. Equimolar unlabelled DCCD or 30 µg PGBx. Proteolipid was extracted with n-Butanol and electrophoresed. Gels were either scanned for protein (280 nm) or sliced into 4 mm fractions and counted.

Continuous tracing: protein
Bar graphs: radioactivity
Figure 5

Track and Control Dye

- Control
- + DCCD
- + PGBx

DPM

Fraction

-27-
Figure 6: Ionophoretic activity of fractions of PGB\textsubscript{x} separated by LH-20 chromatography.

Assay conducted with liposomes at pH 7.0. Ca2+ added to external medium and rate of uptake as measured by changes in absorption of Arsenazo III encapsulated inside liposomes. Concentration of PGB\textsubscript{x} expressed as µg/ml.

Figure 7: Ionophoretic activity of fractions of PGB\textsubscript{x} separated by LH-20 chromatography.

Assay described in Figure 6. Concentration of PGB\textsubscript{x} expressed as molarity. Molecular weights of fractions presented on page 39.

Figure 8: Ionophoretic activity of fractions of the Oligomerization of the Ethyl Analogue of PGB. Fractions are the sodium bicarbonate soluble fractions separated by LH-20 chromatography. Fractions ETA-B-IV 90 and ETA-B-V-90 had no measurable activity at 60µg/ml.

Figure 9: Ionophoretic activity of fractions of the Oligomerization of the Ethyl Analogue of PGB. Fractions are the sodium bicarbonate insoluble fractions separated by LH-20 chromatography.
Figure 6
Figure 9

III. Report of the Research Program at NADC

I - Preparation and purification of PGB_x

A: Preparation of PGB_x - Fiscal 1980

The details for the preparation of PGB_x were worked out previously by Polis and Kwong¹ and improved by Shmukler². In general this methodology is routine and the stockpiling of PGB_x is on schedule. At the end of fiscal 1979 NAVAIRDEVCEN received 150 g of purified 15-keto PGB₁ from St. Joseph's University. This was converted to PGB_x during fiscal 1980 to yield: 13.64 g of Type II and 10.0 g Type III both having in vitro mitochondrial effects equivalent to the standard PGB_x normally shipped to CNR investigators. The present stockpiles of PGB_x fractions are:

- Type I = 29.98 g
- Type II = 28.98 g
- Type III = 14.98 g
- Type IV = 31.0 g
- Type V = 39.55 g
- Type VI = 27.82 g
- Type VII = 6.18 g

By rechromatography of Type I and Type IV PGB_x preparations on Sephadex LH-20 additional amounts of Type II and Type III PGB_x may be obtained. Figure 1, panels 1 and 4 shows the "distribution" of PGB_x following rechromatography of Type I and Type IV PGB_x. Thus the recovery of Type II and Type III PGB_x from Type I and Type IV should be about 16% and 73% respectively. On the basis the Type II and Type III
stockpile should be increased by 15.65 g and 10.9 g respectively.

B. Preparation of PGB\textsubscript{x} precursors during fiscal 1979-1980.

In order to obtain homogeneous preparations of 15-keto-PGB\textsubscript{1} all precursors must be at least 99% pure. The synthesis of the 15-keto-PGB\textsubscript{1} precursors are carried out at St. Joseph's University and the intermediate stages are sent to NAVAIRDEVcen for purification. For this purpose preparative chromatography of 20 g charges of intermediates are chromatographed on silica gel. The separated fractions are tested for identity and degree of purity by TLC, HPLC, NMR, UV absorption analysis, and if pure by these criteria are returned to St. Joseph's for the next synthetic step. During fiscal 1979 and 1980 NAVAIRDEVcen received 1483 g of impure 7-(2-(3-hydroxy-1-octynyl)-5-oxocyclopentenyl heptanoic acid (compound #12 of NADC-78235-60)1 from St. Joseph's. The purified product (63% yield) was returned to St. Joseph's for reduction to the cis-PGB\textsubscript{x}. The cis-PGB\textsubscript{x} received in this shipment was a 3 component system containing unreduced precursor, cis-PGB\textsubscript{x}, and dihydro PGB\textsubscript{1}. In previous years the precursor at this stage consisted primarily of cis-PGB\textsubscript{1} with small contamination with dihydro PGB\textsubscript{1}. From this mixture the cis-PGB\textsubscript{1} could be isolated by preparative silica gel chromatography in one pass. However, the 3 component mixtures supplied this year could not be separated completely by silica gel chromatography even after repetitive chromatography. To obtain pure cis-PGB\textsubscript{1},
PVP chromatography had to be used and this reduced our productivity capability since only 2 grams of material could be processed in one day, compared to 40 grams per day on silica gel prep chromatography. The yield of pure cis-PGB₁ was 34%. The PGB₁ was isomerized at St. Joseph's and the resulting trans-isomer purified over silica gel to yield 317 g product (72%). The next step is the oxidation of the trans PGB₁ to 15-keto-PGB₁. At present an additional 94 g of compound #12 has been received from St. Joseph's and is in the synthetic scheme to yield additional trans-PGB₁. On the basis of this years experience 94 g of compound #12 should yield an additional 20 g trans-PGB₁ for a sum total of 337 g. On the basis of previous experience 337 g should yield about 174 g of 15-keto-PGB₁ which in turn should yield about 42 g of Type II and Type III PGBₓ. Further rechromatography of Type I and Type IV should increase the yield by 32 g.

Summary of PGBₓ stocks

<table>
<thead>
<tr>
<th>Type II and III on hand</th>
<th>44 g</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type II and III fiscal 80-81</td>
<td>42 g</td>
</tr>
<tr>
<td>Rework of Type I and Type IV fiscal 80-81</td>
<td>66 g</td>
</tr>
</tbody>
</table>

| Expected PGBₓ on hand fiscal 80-81 | 152 g |
II - Further Purification of PGBx:

A: Repetitive MEC on Sephadex LH-20

In previous studies it was found that rechromatography of the PGBx fractions separated by ME on Sephadex LH-20 increased the recovery of the Type II and Type III PGBx preparations. It was of interest then to rechromatograph a Type II preparation a number of times in order to purify the active principle and/or to obtain a PGBx preparation with a narrower molecular weight range of components than the standard Type II PGBx. The separation methodology used in this study is summarized schematically in Figure 2. In this study 6620 mg crude extract of PGBx, i.e., the NaHCO3 extract1 were converted to the free acid, dissolved in methanol and chromatographed on Sephadex LH-20 as described by Polis et al1. The resulting 7 fractions were flash evaporated and analysed for weight recovery, Mn and in vitro PGBx effects. These results are listed in Table I. As seen in this table, fraction 1-2*

DISTRIBUTION OF PGBx IN SEPHADEX LH-20 FRACTIONS: 1st MEC

<table>
<thead>
<tr>
<th>Fraction</th>
<th>MW</th>
<th>Wt (mg)</th>
<th>Ka</th>
<th>Total Ka</th>
<th>Ki</th>
<th>Total Ki</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3049</td>
<td>767</td>
<td>.82</td>
<td>629</td>
<td>1.18</td>
<td>905</td>
</tr>
<tr>
<td>2</td>
<td>2554</td>
<td>1107</td>
<td>.97</td>
<td>1074</td>
<td>1.33</td>
<td>1471</td>
</tr>
<tr>
<td>3</td>
<td>2137</td>
<td>825</td>
<td>1.02</td>
<td>842</td>
<td>1.48</td>
<td>1221</td>
</tr>
<tr>
<td>4</td>
<td>1706</td>
<td>706</td>
<td>.98</td>
<td>692</td>
<td>1.36</td>
<td>960</td>
</tr>
<tr>
<td>5</td>
<td>1257</td>
<td>1107</td>
<td>.47</td>
<td>520</td>
<td>.81</td>
<td>897</td>
</tr>
<tr>
<td>6</td>
<td>915</td>
<td>959</td>
<td>.33</td>
<td>316</td>
<td>.40</td>
<td>384</td>
</tr>
<tr>
<td>7</td>
<td>372</td>
<td>386</td>
<td>.30</td>
<td>116</td>
<td>.12</td>
<td>46</td>
</tr>
<tr>
<td>Sum</td>
<td>5858</td>
<td></td>
<td></td>
<td>4189</td>
<td></td>
<td>5885</td>
</tr>
<tr>
<td>Recovery %</td>
<td>88.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Column Charge:
Crude Extract, 6620 mg

-36-
DISTRIBUTION OF PGB\(_X\) IN SEPHADEX LH-20 FRACTIONS: 3rd MEC

<table>
<thead>
<tr>
<th>Fraction</th>
<th>MW</th>
<th>Wt (mg)</th>
<th>(K_a)</th>
<th>Total (K_a)</th>
<th>(K_i)</th>
<th>Total (K_i)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2862</td>
<td>98.4</td>
<td>0.87</td>
<td>85.6</td>
<td>0.89</td>
<td>87.2</td>
</tr>
<tr>
<td>2</td>
<td>2364</td>
<td>209.1</td>
<td>1.18</td>
<td>246.7</td>
<td>1.18</td>
<td>246.3</td>
</tr>
<tr>
<td>3</td>
<td>2209</td>
<td>200.3</td>
<td>1.09</td>
<td>218.3</td>
<td>1.26</td>
<td>251.53</td>
</tr>
<tr>
<td>4</td>
<td>2008</td>
<td>115.5</td>
<td>1.06</td>
<td>122.4</td>
<td>1.23</td>
<td>161.8</td>
</tr>
<tr>
<td>5</td>
<td>1886</td>
<td>43.3</td>
<td>1.02</td>
<td>44.2</td>
<td>1.26</td>
<td>54.5</td>
</tr>
<tr>
<td>6</td>
<td>1466</td>
<td>22.9</td>
<td>0.93</td>
<td>21.3</td>
<td>0.91</td>
<td>20.8</td>
</tr>
<tr>
<td>7</td>
<td>2.43</td>
<td>0.17</td>
<td>0.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sum</td>
<td></td>
<td>691.9</td>
<td></td>
<td>738.9</td>
<td></td>
<td>802.1</td>
</tr>
<tr>
<td>Recovery %</td>
<td>101.9</td>
<td>109.3</td>
<td></td>
<td></td>
<td></td>
<td>111.3</td>
</tr>
</tbody>
</table>

Column Charge:

2nd MEC #2 & #3, 679 mg

The overall weight recovery of PGB\(_X\) in the 1st MEC was 88.5%. This suggests that 11.5% of the crude extract was either irreversibly adsorbed to the column, or adsorbed strongly to the column to elute outside the PGB\(_X\) range. The overall weight recovery of the 2nd and 3rd MEC was approximately quantitative, i.e., 95.7% and 101.9% respectively. This suggests that material not recovered in the 1st MEC is probably highly polymerized material tightly bound to the Sephadex LH-20 and probably not PGB\(_X\).

Chromatography of the crude PGB\(_X\) extract, 1st MEC, yields fractions varying in \(\bar{M}_n\) from 3049 to 372 as the retention time of the eluted material increased. Rechromatography of fractions 1-2 and 1-3 (2nd MEC) yielded fractions with \(\bar{M}_n\) varying from
2873 to 407. Even after 3rd MEC of fractions 2-2 and 2-3 the
Mn of the fractions varied from 2062-1466. Although the Mn
for fraction 3-7 could not be measured because of insufficient
quantity, it would be reasonable to assume that the Mn of
fraction 3-7 would be similar to that of fraction 2-7.

The dry weights of all fractions separated in the repetitive
MEC listed in Tables I, II and III were used to calculate the
% distribution of PGBX in each fraction in each separate MEC.
These results are listed in Table IV. The % distribution of

% DISTRIBUTION OF PGBX ON REPETITIVE
MEC ON SEPHADEX LH-20

<table>
<thead>
<tr>
<th>Fraction</th>
<th>1st MEC</th>
<th>2nd MEC</th>
<th>3rd MEC</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>13.1</td>
<td>10.7</td>
<td>14.2</td>
</tr>
<tr>
<td>2</td>
<td>18.9</td>
<td>23.8</td>
<td>30.2</td>
</tr>
<tr>
<td>3</td>
<td>14.1</td>
<td>27.5</td>
<td>28.9</td>
</tr>
<tr>
<td>4</td>
<td>12.1</td>
<td>20.1</td>
<td>16.7</td>
</tr>
<tr>
<td>5</td>
<td>18.9</td>
<td>9.7</td>
<td>6.3</td>
</tr>
<tr>
<td>6</td>
<td>16.4</td>
<td>6.7</td>
<td>3.3</td>
</tr>
<tr>
<td>7</td>
<td>6.6</td>
<td>1.5</td>
<td>0.4</td>
</tr>
</tbody>
</table>

PGBX in the 1st MEC is approximately evenly distributed be-
tween fractions 1 through 6. On rechromatography of fractions
1-2 and 1-3 over 70% of the PGBX chromatographed appeared in
fractions 2 through 4. On rechromatography of fractions 2-2
and 2-3 50% of the PGBX was found in fractions 3-2 and 3-3.

The in vitro PGBX assay data listed in Tables I, II and
III show that the Ka was highest in fractions 2, 3 and 4 of
the 1st MEC. Fraction 1-1 was about 80% pure while fractions
1-5, 1-6 and 1-7 were relatively impure. Rechromatography of fractions 1-2 and 1-3 (2nd MEC) showed that the K_a was equally spread throughout fractions 2-2 to 2-6 with fractions 2-1 and 2-7 exhibiting low values. When fractions 2-2 and 2-3 were rechromatographed (3rd MEC) only fraction 3-7 showed a low level of K_a. The results of the K_i distribution in the various fractions were similar to those found for the K_a distribution.

The UV absorption spectra, between λ200 nm to λ400 nm were measured for all fractions separated in this study. In general all fractions showed absorption maxima at λ243 nm and absorption shoulders at λ300-λ320 nm. The major difference between the UV absorption spectra of the separated fractions was the increase in the λ300-λ320 nm absorption shoulder with increasing retention time of the fractions. The results are listed in Table V in terms of the ratio of the absorbance at A_{243} to absorbance at A_{310} nm. A comparison of the

<table>
<thead>
<tr>
<th>Fraction</th>
<th>1st MEC</th>
<th>2nd MEC</th>
<th>3rd MEC</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6.20</td>
<td>10.42</td>
<td>10.22</td>
</tr>
<tr>
<td>2</td>
<td>5.05</td>
<td>9.50</td>
<td>9.00</td>
</tr>
<tr>
<td>3</td>
<td>4.27</td>
<td>8.08</td>
<td>9.89</td>
</tr>
<tr>
<td>4</td>
<td>3.79</td>
<td>7.67</td>
<td>8.60</td>
</tr>
<tr>
<td>5</td>
<td>3.28</td>
<td>6.20</td>
<td>7.33</td>
</tr>
<tr>
<td>6</td>
<td>3.38</td>
<td>5.05</td>
<td>6.23</td>
</tr>
<tr>
<td>7</td>
<td>----</td>
<td>4.33</td>
<td>4.78</td>
</tr>
</tbody>
</table>

λ243 nm to absorbance at λ310 nm. A comparison of the
retention time and the A_{243}/A_{310} shows a progressive decrease
(or increase in A_{310}) with increasing retention time. A
comparison on the A_{243}/A_{310} of fractions with the same
retention time but successive MEC, ie, fractions 1-2 and
fraction 2-2, shows a marked increase in the ratio (or a
marked decrease in A_{310}). However, the data for the 2nd
and 3rd MEC showed no change in the A_{243}/A_{310} for fractions
with the same retention time.

The results of repetitive MEC of PGB$_X$ on Sephadex LH-20
shows that this method does not yield homogeneous PGB$_X$
preparations as might have been expected. Instead the fractions
that were separated still appear to be heterogeneous even
after 3 MEC. These results suggest that possibly even after
additional MEC of fractions 3-2 and 3-3 homogeneous preparations
of PGB$_X$ would not be obtained. From these results it is obvious
that Type II PGB$_X$, the preparation currently supplied ONR
contractors for in vitro and in vivo animal studies, is a
highly complex mixture of oligomers varying in \bar{M}_n from over
2800 to below 400 daltons. It is interesting to note also
that the PGB$_X$ fractions separated did not show a significant
increase in the specific activity of the PGB$_X$, ie, K_a.

One benefit realized with the repetitive MEC is that the
PGB$_X$ fractions separated in MEC #3 must have a narrower range
of molecular weight components than that found in Type II
PGB$_X$. An additional advantage is the recovery of high K_a
activity in relatively low molecular weight fraction, e.g. fraction 3-6 that had the following analytical values; \(\bar{M}_n \), 1466; \(K_a \) 0.93; \(K_i \) 0.92. It is conceivable that such a low molecular weight preparation may be amenable to high resolution and/or field desorption mass spectral analysis.

B: Fractionation of PGB\(_X\) by a combination of dialysis and MEC.

In previous reports we showed that PGB\(_X\) preparations could be separated into 2 distinct molecular weight fractions by dialysis against dilute phosphate buffer at pH 6.85\(^3,4\) or by gel filtration on Sephadex G-100\(^5\). When the fractions that were separated by dialysis were analysed by gel filtration, each fraction showed two components. Thus, the dialysate fraction showed an increase in a more retentive fraction indicating low molecular weight, while the retentate showed an increase in a less retentive fraction or high molecular weight. From these experiments it appeared reasonable to combine the techniques of dialysis and gel filtration in order to fractionate PGB\(_X\) into mixtures of narrower molecular weight ranges. This report describes the separation of PGB\(_X\) into 5 fractions with markedly different molecular weight ranges. In addition, these fractions are characterized in terms of \textit{in vitro} PGB\(_X\) activity, UV absorption spectra, and molecular weight.
Fractionation of PGB\textsubscript{x} into Molecular Weight Groups:

1st step, aqueous dialysis: 2.3 g PGB\textsubscript{x}, Type III1 was converted to the sodium salt and dissolved in 10 ml of 0.05 M phosphate buffer pH 6.85. This solution was dialyzed against 1000 ml of the same buffer using tubing with a nominal molecular weight cut-off of 12,000. Dialysis was carried out at 4\textdegree \mathrm{C} for 24 hours with continual stirring of the external buffer. At the end of this time the dialysate was replaced with fresh buffer and dialysis continued for an additional 24 hours. The dialysates were then combined, acidified to pH 3.0 with dilute perchloric acid and shaken with 300 ml of ethyl acetate. The phases were separated and the aqueous layer extracted 2 more times with ethyl acetate. The combined ethyl acetate extracts were washed 3-4 times with water and the water layer discarded. The combined ethyl acetate phases were flash evaporated at 45\textdegree \mathrm{C} and the residue dissolved in ethanol. This fraction was then converted to the sodium salt (yield 0.540 g). The retentate was quantitatively removed from the dialysis tubing and converted to the free acid (yield 1.81 g).

2nd step, aqueous dialysis 8000: 540 mg of dialysate from step 1 was dissolved in 5 ml 0.05 M phosphate buffer pH 7.1 and dialyzed against 1000 ml of buffer using dialysis tubing with a nominal molecular weight cut-off of 8000. The dialysis and the recovery of fractions was carried out as described under

-43-
"1st dialysis". The dialysate, designated "Fraction 1" yielded 0.077 g while the retentate designated "Fraction 2" yielded 0.403 g.

3rd step, methanol dialysis 12000: The retentate from the 1st step (1.81 g) was dissolved in 10 ml of methanol and dialyzed against 1000 ml of methanol with one change of solvent after 24 hours. The dialysate and retentate were flash evaporated separately to yield 1.692 g of dialysate and 0.040 g retentate called "Fraction 5".

4th step, gel filtration: The dialysate from the 3rd step was converted to the sodium salt and dissolved in 5 ml of 0.05 M phosphate buffer, pH 6.85 and chromatographed on the preparative AcA54 column at the rate of 350 mg per charge. Two fractions were obtained as shown in Figure 3, which is a typical chromatogram of a preparative separation. The first peak was designated "Fraction 4" and the second, "Fraction 3". The contents of the fraction collector tubes comprising these fractions were combined and concentrated by extraction into ethyl acetate at acid pH. The ethyl acetate was flash evaporated and the residue dissolved in ethanol and stored for later analysis. Figure 4 shows the schematic flow sheet for the separation of PGBx as described above.

Properties of PGBx Fractions:

In vitro PGBx activity: All fractions separated in this study
were evaluated for \(\text{PGB}_X \) activity by methods reported previously.1,5

The results are listed in Table VI.

THE IN VITRO \(\text{PGB}_X \) ACTIVITY OF \(\text{PGB}_X \) FRACTIONS SEPARATED BY DIALYSIS AND GEL FILTRATION

<table>
<thead>
<tr>
<th>Fraction</th>
<th>Wt (g)</th>
<th>%</th>
<th>(X_a)</th>
<th>(K_i)</th>
<th>Total (K_a)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{PGB}_X) Type III</td>
<td>2.30</td>
<td>0.48</td>
<td>1.25</td>
<td>1.104</td>
<td></td>
</tr>
<tr>
<td>Separated Fractions</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0.077</td>
<td>3.35</td>
<td>0.23</td>
<td>0.25</td>
<td>0.018</td>
</tr>
<tr>
<td>2</td>
<td>0.403</td>
<td>17.52</td>
<td>0.64</td>
<td>0.67</td>
<td>0.258</td>
</tr>
<tr>
<td>3</td>
<td>0.460</td>
<td>20.00</td>
<td>0.95</td>
<td>1.08</td>
<td>0.437</td>
</tr>
<tr>
<td>4</td>
<td>1.190</td>
<td>51.74</td>
<td>0.56</td>
<td>1.21</td>
<td>0.666</td>
</tr>
<tr>
<td>5</td>
<td>0.040</td>
<td>1.74</td>
<td>0.57</td>
<td>0.61</td>
<td>0.023</td>
</tr>
</tbody>
</table>

Recovery 94% 125%

Molecular weights of \(\text{PGB}_X \) fractions: The Mn of each fraction separated in this study are listed in Table VII.
THE MOLECULAR WEIGHT AND POLYDISPERSITY OF PGB\textsubscript{X} FRACTIONS

<table>
<thead>
<tr>
<th>Type</th>
<th>Separated Fractions</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>(M_W) (VPO)</td>
<td>1749</td>
</tr>
<tr>
<td>HPMEC</td>
<td></td>
</tr>
<tr>
<td>(M_W \textsubscript{1})</td>
<td>21402</td>
</tr>
<tr>
<td>(M_W \textsubscript{2})</td>
<td>3041</td>
</tr>
<tr>
<td>% 1</td>
<td>10</td>
</tr>
<tr>
<td>% 2</td>
<td>90</td>
</tr>
<tr>
<td>(M_n)</td>
<td>4961</td>
</tr>
<tr>
<td>(M_w)</td>
<td>11323</td>
</tr>
<tr>
<td>(M_w/M_n)</td>
<td>2.28</td>
</tr>
</tbody>
</table>

The first line is the molecular weight of the PGB\textsubscript{X} free acid measured by vapor pressure osmometry. The next part of the table lists the molecular weight of sodium PGB\textsubscript{X} measured by HPMEC on Ultrogel AcA54 using sodium polystyrene sulfonates as standards for column calibration. Since a number of PGB\textsubscript{X} fractions showed 2 components on analytical gel filtration the molecular weight of each component of the mixture, the percent composition of the mixture, the number average molecular weight (\(M_n \)), the weight average molecular weight (\(M_w \)) and polydispersity ratio (\(M_w/M_n \)) are listed in Table VII. The data show that the VPO molecular weights of these fractions range from 718 to 2296. The lowest molecular weight fraction had passed through
8000 d and 12,000 d dialysis tubing during aqueous dialysis, while the highest molecular weight fraction was retained by the dialysis tubing during both aqueous and methanol dialysis. Intermediate separations were realized by gel filtration of the dialysate from methanol filtration. Analytical MEC of these fractions show that fractions 1 and 3 are homogeneous and fractions 2, 4, 5 and the starting preparation contained two chromatographically separable species.

UV absorption spectra: The PGB\textsubscript{x} fractions resolved in this study as well as the starting crude PGB\textsubscript{x} were analysed for UV absorption spectra at a concentration of 0.03 mg/ml. The spectra were similar for all fractions in that they showed an absorption maximum at \(\lambda 243\) nm and an absorption shoulder at \(\lambda 290-310\) nm. The absorbance \(\text{mg}^{-1}\ \text{cm}^{-1}\) was calculated for each PGB\textsubscript{x} fraction in the above characteristic spectral region and recorded in the Table below (VIII).

<table>
<thead>
<tr>
<th>Fraction</th>
<th>(A_{\lambda 243}^{\text{mg/ml}})</th>
<th>(A_{\lambda 300}^{\text{mg/ml}})</th>
<th>(A_{243}/A_{300})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crude PGB\textsubscript{x}</td>
<td>28.33</td>
<td>4.00</td>
<td>7.08</td>
</tr>
<tr>
<td>1</td>
<td>25.83</td>
<td>5.00</td>
<td>5.17</td>
</tr>
<tr>
<td>2</td>
<td>29.07</td>
<td>5.27</td>
<td>5.52</td>
</tr>
<tr>
<td>3</td>
<td>32.17</td>
<td>4.33</td>
<td>7.43</td>
</tr>
<tr>
<td>4</td>
<td>31.67</td>
<td>4.03</td>
<td>7.86</td>
</tr>
<tr>
<td>5</td>
<td>29.77</td>
<td>5.10</td>
<td>5.84</td>
</tr>
</tbody>
</table>
The separation of Type III PGBₙ described here yields a product that has a higher specific "in vitro activator" activity and a narrower molecular weight range than the starting preparation. Furthermore this purified fraction 3, is almost equivalent to Type II PGBₙ from Sephadex LH-20 MEC in terms of specific "activator" and "inhibitor" activity.

The differences in the molecular weight of PGBₙ fractions determined by VPO and MEC cannot be explained completely. One source of difference may be the lack of molecular weight standards of proper molecular structure similar to PGBₙ. However, with this type of MEC calibrated with polystyrene sulfonates one would expect differences only on the order of 10-20%, rather than the 4 to 10 fold differences shown in Table II. The fact that VPO is carried out with the free acid in methanol, and MEC is carried out with the salt form in aqueous media, suggests that the latter method is complicated by aggregation of PGBₙ to form larger molecules. Since all the fractions of PGBₙ separated in this study, were concentrated by conversion of the salt to the free acid and back to the salt form before MEC, suggests that the molecular aggregates are of constant molecular weight rather than a non-specific aggregation. This is further born out by the fact that fractions 1 and 3 are homogeneous. Attempts to measure the
molecular weight of PGB\textsubscript{x} salts by VPO measurement in aqueous media were unsuccessful because of experimental difficulties. It is important to note also that the biological effects of PGB\textsubscript{x}, both \textit{in vivo} and \textit{in vitro}, are carried out in aqueous media and that the specific molecular aggregation of PGB\textsubscript{x} may be important in its mode of biological action.

C: Newer Separation Procedures:

Chromatography on hydroxylapatite: Previous attempts in this and other laboratories to purify PGB\textsubscript{x} by adsorption chromatography or by reverse phase chromatography have been unsuccessful. One exception to this was silica TLC using acetonitrile:ethyl acetate:methanol:0.1 N NH\textsubscript{4}OH (14:6:2:5) solvent system that separated 3 distinct fractions.6 However, because of the high alkalinity of the solvent system this methodology could not be used for preparative purposes. In the course of studies at NAVAIRDEVcen that evaluated chromatographic adsorbents for use in the separation of PGB\textsubscript{x}, it was found that PGB\textsubscript{x} could be separated into a number of fractions by LC on hydroxylapatite using an increasing step concentration gradient of phosphate buffer. The chromatographic parameters were: hydroxylapatite (HTP) column 0.4 cm i.d. x 25 cm; flow rate, 1.0 ml per min.; column temperature, 40\degree; phosphate buffer pH 7.25 concentration gradient; 5 x 10-3M, 10 min; 5 x 10-2 M, 10 minutes; 0.1 M, 10 minutes; 0.5 M, 10 minutes
and 10^{-4} M NaN_3, 20 minutes. In this report 25\(\mu\text{g}\) of PGB\(_X\)-Na Type III was injected for quantitative LC. Figure 5 shows the chromatogram of buffer only that shows the chromatographic anomalies associated with this system. In addition the column parameters are listed. Figure 6 shows the chromatogram of Type III PGB\(_X\) with unresolved peaks at 4.87 minutes, and resolved peaks at 14.98, 22.11 and 32 minutes. A % under each peak is the area % calculated by the recording integrator, which is a measure of the concentration of each separated component.

Preparative LC was carried out on columns 1.27 cm i.d. x 30 cm long at a flow-rate of 1.0 - 2.0 ml. The column was first equilibrated with water and then charged with 250 mg of PGB\(_X\)-Na Type III per run. The effluent stream was monitored with a UV monitor and separated into fractions when each chromatographic peak returned to base line. At this time the phosphate buffer concentration was increased and the fraction collected. All separated fractions were concentrated by acid extraction into ethyl acetate and flash evaporated. The separated fractions were analysed by analytical LC, recovery of weight, molecular weight, and \textit{in vitro} mitochondrial activity to determine if this chromatography does indeed effect a separation of PGB\(_X\).

Figures 7, 8, 9, 10, and 11 are analytical LC HTP chromatograms of fractions 1 through 5. Although the preparative
chromatography did not completely resolve the components, the enrichment of 4.99' component in fraction 1, the enrichment of component 15.64' in fraction 2, the enrichment of component 22' in fraction 3, 4 and 5 attests to efficacy of this separation procedure. The preparative procedure is summarized in Figure 12 which also shows the component distribution in the unfractionated PGBx, the solvents used to elute the fractions and the distribution of components in each separated fraction. The results are summarized in Table IX.

HPLC - HYDROXYLAPATITE ANALYSIS OF PGBx FRACTIONS SEPARATED BY PREPARATIVE LC ON HYDROXYLAPATITE

<table>
<thead>
<tr>
<th>PGBx Fraction</th>
<th>Retention Time (Min)</th>
<th>4.9</th>
<th>15</th>
<th>22.3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type III</td>
<td></td>
<td>3.27*</td>
<td>23.68</td>
<td>73.05</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>43.03</td>
<td>26.56</td>
<td>30.42</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>7.50</td>
<td>56.39</td>
<td>35.56</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>5.04</td>
<td>43.03</td>
<td>51.92</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>1.33</td>
<td>20.14</td>
<td>78.53</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>1.97</td>
<td>17.63</td>
<td>80.40</td>
</tr>
</tbody>
</table>

*Data listed as "Area %" of the three peaks indicated.

The weight of PGBx recovery in each fraction and their corresponding molecular weights are listed in Table X.
Table X
THE WEIGHT AND MOLECULAR WEIGHT OF PGB\textsubscript{x} FRACTIONS SEPARATED BY PREPARATIVE LC ON HYDROXYLAPATITE

<table>
<thead>
<tr>
<th>PGB\textsubscript{x} Fraction</th>
<th>Weight (mg)</th>
<th>%</th>
<th>MW</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type III</td>
<td>250</td>
<td></td>
<td>1919</td>
</tr>
<tr>
<td>1</td>
<td>4.7</td>
<td>1.9</td>
<td>681</td>
</tr>
<tr>
<td>2</td>
<td>13.1</td>
<td>5.2</td>
<td>1490</td>
</tr>
<tr>
<td>3</td>
<td>60.1</td>
<td>24.0</td>
<td>1672</td>
</tr>
<tr>
<td>4</td>
<td>34.4</td>
<td>13.8</td>
<td>1847</td>
</tr>
<tr>
<td>5</td>
<td>89.9</td>
<td>36.0</td>
<td>2289</td>
</tr>
<tr>
<td>Recovery</td>
<td>202.2</td>
<td>80.9</td>
<td></td>
</tr>
</tbody>
</table>

Fractions 1 and 2 make up only a small amount of the total fraction while fractions 3 and 5 make up the majority of PGB\textsubscript{x} recovered. In this chromatography only about 81\% of starting PGB\textsubscript{x} was recovered. Since the column packing did not appear to have any color it must be assumed then that the loss of PGB\textsubscript{x} resulted during concentration and extraction steps. The molecular weight (\textit{Mn}) of each fraction showed a progressive increase with increasing retention time. This suggests that, not only is adsorption chromatography involved here, but also some form of molecular exclusion. The results of in vitro mitochondrial PGB\textsubscript{x} assay of each fraction is listed in Table XI.
Table XI

THE DISTRIBUTION OF PGB₅ IN VITRO MITOCHONDRIAL ACTIVITY IN FRACTIONS SEPARATED BY PREPARATIVE HYDROXYLAPATITE LC

<table>
<thead>
<tr>
<th>Fraction</th>
<th>Wt (mg)</th>
<th>Ka</th>
<th>Total Ka</th>
<th>Ki</th>
<th>Total Ki</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type III</td>
<td>250</td>
<td>.74</td>
<td>185</td>
<td>1.12</td>
<td>280</td>
</tr>
<tr>
<td>1</td>
<td>4.68</td>
<td>.23</td>
<td>1.08</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>2</td>
<td>13.09</td>
<td>.31</td>
<td>4.06</td>
<td>0.7</td>
<td>9.16</td>
</tr>
<tr>
<td>3</td>
<td>60.06</td>
<td>.71</td>
<td>42.6</td>
<td>0.79</td>
<td>47.45</td>
</tr>
<tr>
<td>4</td>
<td>34.33</td>
<td>.93</td>
<td>31.9</td>
<td>1.35</td>
<td>46.35</td>
</tr>
<tr>
<td>5</td>
<td>89.93</td>
<td>.78</td>
<td>70.1</td>
<td>1.45</td>
<td>130.40</td>
</tr>
<tr>
<td>Recovery (%)</td>
<td>80.8</td>
<td>80.8</td>
<td>83.3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

These results show that fraction 4 exhibited a significant increase in PGB₅ activity over the Type III starting material, while fractions 1 and 2 showed marked decreases in PGB₅ activity.

It may be concluded that the major application of hydroxylapatite chromatography will be in the assessment of purity of PGB₅ fraction obtained by various separation methods. However, its preparative use, although the results are not dramatic, is not without merit.
III - Structure:

To date the structure of the active principle of PGB\textsubscript{x} is still unknown even though this problem is being actively investigated in four different laboratories. From the repetitive chromatography and the molecular weight measurements it was concluded that PGB\textsubscript{x} is a mixture of closely related oligomers.

Molecular Weight of PGB\textsubscript{x}. Previously Polis14 reported that the molecular weight of PGB\textsubscript{x} was 1600 calculated by MEC, and on this basis he postulated a tetramer structure for PGB\textsubscript{x}. Since this M.W. value was calculated using standards structurally unrelated to PGB\textsubscript{x}, this value was subject to considerable error. With the acquisition of a vapor pressure osmometor the M.W. of PGB\textsubscript{x} could be determined more accurately and the value obtained for Type II PGB\textsubscript{x} was 2300 d. Studies in this laboratory have shown that in aqueous solutions PGB\textsubscript{x} aggregates to form high molecular weight polymers that could be separated from each other and to yield PGB\textsubscript{x} preparations with different in vitro biological activity.4 Since VPO measurements can only be made in organic solvents, this method gives the M.W. of free acid which apparently is unaggregated. In an attempt to gain corroborative evidence, the M.W. of PGB\textsubscript{x} was measured by another procedure, ie, light scattering. M.W. of PGB\textsubscript{x} Type II was measured with a laser beam low angle light scattering photometer and yielded a value of 9336 d. When this
sample was analysed by VPO the M.W. was 2418. Since the VPO method gives a number average M.W. (\(\bar{M}_n\)) and light scattering gives a weight average M.W. (\(\bar{M}_w\)), the ratio of these two values (\(\bar{M}_w/\bar{M}_n\)) gives a measure of polydispersity. In this case \(9336/2418 = 4.07\). If polydispersity ratio were unity then the \(\text{PGB}_x\) would be considered homogeneous. Any value larger than one implies heterogeneity. Since VPO measurements are weighted towards the lower M.W. while light scattering M.W. are weighted towards the higher M.W., then the values currently used must be considered as approximate values only. Obviously the true M.W. can only be reported for a homogeneous preparation.

Structural Studies by Physical Chemical Means:

\(\text{PGB}_x\) can be prepared by alkaline treatment of trans-\(\text{PGB}_1\) (1), cis-\(\text{PGB}_1\) (3), 13,14 dehydro-\(\text{PGB}_1\) (4), 15-keto \(\text{PGB}_1\) (2), PGE (5) and PGA\(_1\) (6). (See Figure 16 for chemical structures). Under the conditions required for \(\text{PGB}_x\) formation PGE\(_1\), PGA\(_1\) and cis-\(\text{PGB}_1\) are rapidly converted to \(\text{PGB}_1\) and then to \(\text{PGB}_x\). In contrast 13,14 dehydro \(\text{PGB}_1\) (4) appears to undergo initial reaction by a different route.\(^{12}\) In general PGB compounds without 13,14 unsaturation fail to oligomerize under the conditions for the formation of \(\text{PGB}_x\).

In further studies Type II \(\text{PGB}_x\) was converted to methyl ester by treatment with diazomethane. The resulting product was devoid of \(\text{PGB}_x\) in vitro mitochondrial activity. Evidence for methylation only at the carboxyl function was provided.
by 1H and 13C-NMR spectra. When the methyl ester was hydrolysed under mild alkaline conditions the PGB$_x$-free acid resulted and PGB$_x$ in vitro mitochondrial activity was restored.

The rapid disappearance of UV absorption at 296 nm, characteristic of the fully conjugated diendione system of 2,13 concurrent with the appearance of a new absorption at 243 nm, results from base treatment (Figure 21). The change in UV absorption is consistent with the loss of unsaturation at carbons 13-14 to give a fully substituted cyclopentenone chromophore similar to that of 13,14-dihydro-15-dehydro-PGB$_1$ (8), a convenient model compound.

The loss of the 13,14-unsaturation is indicated in the IR spectra of PGB$_x$ as either the free acid or methyl ester (Figure 22). The loss is particularly evident in the conjugated double-bond stretch absorption of PGB$_x$ at 1630 cm$^{-1}$ as compared to the absorption at 1585 cm$^{-1}$ for 15-dehydro-PGB$_1$ (Figure 22A). The absorption at 1640 cm$^{-1}$ in 13,14-dihydro-15-dehydro-PGB$_1$ (8), associated with the fully substituted cyclopentenone functionality, is consistent with this interpretation.

The loss of the 13,14-double bond of 2 in PGB$_x$ formation is confirmed in the 360 MHz proton NMR spectrum of both PGB$_x$ and PGB$_x$ methyl ester (Figure 23). The appearance of the overall spectrum resembles the 13,14-dihydro-PGB skeleton as indicated by the similarity to the spectrum of 13,14-dihydro-
15-dehydro-PGB_x (8). Integration of the -CH₃ and -OCH₃ absorption in PGB_x methyl ester reveals a 1:1 relation that further indicates retention of the intact PGB skeleton in PGB_x. The general lack of resolution observed throughout the entire spectrum is consistent with a mixture of closely related oligomers. Spectra virtually identical to that of fraction 2 of PGB_x were exhibited by all fractions with mitochondrial activity obtained by Sephadex LH-20 exclusion chromatography. The same characteristic features exhibited in the ¹H NMR spectrum of fraction 2 were evident in all PGB_x spectra regardless of the PGB precursor.

Further information concerning the general structural features of fraction 2 are provided by the ¹³C NMR spectra (Figure 27). The loss of 13,14-unsaturation, with retention of the general skeletal features of the PGB system, is evident upon comparison of the ¹³C spectrum of fraction 2 to the spectra of monomers 2 and 8. The unusual broadness of the absorptions of the sp² carbons associated with the cyclopentenone unsaturation is found in all fractions from Sephadex LH-20 chromatography exhibiting mitochondrial activity. This feature is also evident in the ¹³C spectra of all PGB_x regardless of precursor. However, fractions can be isolated having this type of feature in the ¹³C spectrum but without mitochondrial activity.

Attempts were made to obtain the mass spectrum of PGB_x,
whether in the form of the free acid, methyl ester, or other derivatives, by application of a variety of techniques including field desorption and chemical ionization. These efforts were unsuccessful because of lack of volatility. However, the mass spectra of monomers 2 and 8 as well as dimeric reaction intermediates were readily determined under the same conditions that proved unsuccessful for PGBX.

The detailed structural assignment is severely complicated by unavailability of a single pure component possessing mitochondrial activity even after extensive separation attempts. The problem is compounded by lack of exact molecular weight measurement and related information normally available from the mass spectrum.

Formation of the oligomers does appear to proceed through reaction at the 13,14-double bond of 2 with the retention of the fully substituted cyclopentenone system in the oligomer. Additional support is provided by the failure of compounds 7 and 8, which lack the 13,14-unsaturation, to undergo oligomerization under conditions of PGBX formation. Oligomer formation by addition to the 13,14-double bond would result in generation of a number of chiral centers. Because of this, PGBX in the molecular weight range of 2200-2800, containing oligomers with varying numbers of units, is probably further complicated by the presence of closely related stereoisomers. The general lack of resolution observed
in the 1H and 13C NMR spectra and the particular broadening observed for the sp2 carbons associated with the cyclopentenone conjugation appear to be most consistent with a complex oligomeric mixture of closely related compounds. The loss of activity resulting from methylation of PGB$_X$ might be evidence for the essential nature of the carboxyl functionality for mitochondrial activity. Methylation of PGB$_X$ results in no major change in functionality since no loss in activity or change in structure occurs when PGB$_X$ is converted to the methyl ester and then hydrolyzed back to the free acid.
References

Figure 1
Rechromatography of PGBx
Types on Sephadex LH-20
Figure 2

SCHEMATIC FOR REPETITIVE MEC OF PGBx ON SEPHADEX LH-20

NaHCO₃ Extract
6620 mg

(1)

1 767
2 1107
3 825
4 706
5 1107
6 959
7 386

Combination #2, #3
1385 mg

(2)

1 142
2 315
3 364
4 267
5 129
6 29
7 20

Combination #2, #3
679 mg

(3)

1 98
2 209
3 200
4 116
5 43
6 23
7 2.4

-63-
Figure 3:
Preparative MEC of PGB₅ Type III on Ultrogel AcA54. Chromatographic parameters: column size, 2.54 cm i.d. x 40 cm long; carrier buffer, 0.05 M phosphate buffer pH 6.85; flow-rate, 1.0 ml per minute; fraction collector, 4 minute fractions; detector attenuation, 1.86 AUFS; detector path length, 0.05 cm; temperature, room ambient; maximum PGB₅ sample, 250 mg; axis of ordinate, recorder chart scale divisions.
Figure 4
Schematic flow-sheet of separation procedure used in this study.
Figure 5:
HTP LC of buffer only.
Figure 5

Analytical HTP LC

Column: Biorad Hydroxylapatite HTP
(¼" o.d. x 25 cm L)
Detector: λ 254 nm
Sensitivity: 1.0
Integrator Attenuation: 16
Flow rate: 1.0 ml/min
Chart speed: 0.5 cm/min
Solvent: Phosphate Buffer, pH 7.25
(10^-4 M NaN₂)

Blank
Figure 6

ANALYTICAL HTP LC

PGBx, Type III

A8 = 73.0
A8 = 22.7
A8 = 3.3
Chemical structures of prostaglandins referred to in text: (1) PGB, (2) 15-dehydro-PGB, (3) cis-PGB, (4) 13, 14-dehydro-PGB, (5) PGE, (6) PGA, (7) 13, 14-dihydro-PGB, and (8) 13,14-dihydro-15-dehydro-PGB. The conventional numbering system for prostaglandins referred to in the text is illustrated in the example of cis-PGB, (3).
Figure 14:
Ultraviolet spectra of (A) 15-dehydro-PGB₁, (B) PGBₓ, and (C) 13,14-dihydro-15-dehydro-PGB₁. Wavelength of maximum absorption is indicated by number on the spectra. UV absorption of 243 nm for PGBₓ is characteristic of a fully substituted cyclopentenone system such as found in C, whereas λ max 296 nm of A indicated the fully conjugated system.
Figure 15:
Infrared spectra in the carbonyl and conjugated carbon double bond region for (A) 15-dehydro-PGB₁, (B) PGBₓ, (B') PGBₓ methyl ester, and (C) 13,14-dihydro-15-dehydro-PGB₁. The absorption at 1630 cm⁻¹ in B and B', and 1640 cm⁻¹ in C due to the conjugated C=C stretch, indicates lack of a double bond at the 13,14 position. The absorption at 1585 cm⁻¹ in A is characteristic of the fully conjugated system when the 13,14 double bond is present.
Figure 16:

360 MHz 1H NMR spectra of (A) 15-dehydro-PGB$_1$, (B) PGB$_x$,
(B'') PGB$_x$ methyl ester, and (C) 13,14-dihydro-15-dehydro-PGB$_1$.

Absorptions for the 13 and 14 vinyl protons of 15-dehydro-
PGB$_1$ at 7.65 and 6.59 ppm respectively as observed in A are
absent in the spectra of PGB$_x$ and PGB$_x$ methyl ester. The
general lack of resolution observed in the spectra of PGB$_x$
and PGB$_x$ methyl ester is compatible with a mixture of closely
related oligomers.
Figure 17:
20 MHz 13C NMR spectra of (A) 15-dehydro-PGB₁, (B) PGBₓ, (B') PGBₓ methyl ester, and (C) 13,14-dihydro-15-dehydro-PGB₁. Absorptions at 134.01 and 130.60 ppm for the 13 and 14 vinyl carbons of 15-dehydro-PGB₁ are not present in the spectra of PGBₓ and PGBₓ methyl ester and is particularly notable for those sp² carbons associated with the cyclopentenone system. Numbers above specific resonances refer to carbon assignments.
OFFICE OF NAVAL RESEARCH
BIOLOGICAL SCIENCES DIVISION
BIOPHYSICS PROGRAM, Code 444
DISTRIBUTION LIST FOR TECHNICAL, ANNUAL AND FINAL REPORTS

Number of Copies
(13) Administrator, Defense Documentation Center
Cameron Station
Alexandria, Virginia 22314

(6) Director, Naval Research Laboratory
Attention: Technical Information Division
Code 2627
Washington, D.C. 20375

(6) Office of Naval Research
Attention: Code 2627 (ONR 300)
800 N. Quincy Street
Arlington, Virginia 22217

(3) Office of Naval Research
Biophysics Program
Code 444
Arlington, Virginia 22217

1. Commanding Officer
Naval Medical Research and Development Command
National Naval Medical Center
Bethesda, Maryland 20014

1. Chief, Bureau of Medicine and Surgery
Department of the Navy
Washington, D.C. 20375

1. Technical Reference Library
Naval Medical Research Institute
National Naval Medical Center
Bethesda, Maryland 20014

1. Office of Naval Research Branch Office
Building 11, Section C
600 Sumner Street
Boston, Massachusetts 02210

1. Office of Naval Research Branch Office
516 South Clark Street
Chicago, Illinois 60613
Office of Naval Research Branch Office
1230 East Green Street
Pasadena, California 91106

Commanding Officer
Naval Medical Research Unit No. 2
Box 14
APC San Francisco 96262

Commanding Officer
Naval Medical Research Unit No. 2
FPO New York 96277

Officer in Charge
Submarine Medical Research Laboratory
Naval Submarine Base, New London
Groton, Connecticut 06340

Scientific Library
Naval Aerospace Medical Research Institute
Naval Aerospace Medical Center
Pensacola, Florida 32509

Commanding Officer
Naval Air Development Center
Naval Aerospace Medical Research Department
Wearmouth, Pennsylvania 15774

DIRECTOR
Naval Biosciences Laboratory
Building 66
Naval Supply Center
San Diego, California 92179

Commander, Army Research Office
P. O. Box 5666
Research Triangle Park
North Carolina 27709

DIRECTOR OF DOD SCIENCE
Air Force Office of Scientific Research
Bolling Air Force Base
Washington, D.C. 20311

Commanding General
Army Medical Research and Development Command
Fort Detrick Building
Washington, D.C. 20311
Department of the Army
U. S. Army Science and Technology Center - Far East
APO San Francisco 96128

Assistant Chief for Technology
Office of Naval Research, Code 200
300 N. Quincy Street
Arlington, Virginia 22217