PREDICTION OF THRUST-DEDUCTION AND WAKE FRACTIONS FOR TWIN-SCREW DESTROYERS

by

RAE B. HURWITZ

APPROVED FOR PUBLIC RELEASE: Distribution Unlimited

Ship Performance Department

NOVEMBER 1980

DTNSRDC/SPD-693-02
This work describes the development of a technique for predicting the propulsion coefficients from hull form parameters. The two propulsion coefficients used are the thrust deduction fraction (t) and the thrust-wake fraction (w). A prediction method has been derived from data of sixty-five experiments on model hulls representing a variety of twin-screw destroyers. Examples show that the prediction method provides fair results within the range of data represented. Additional work is recommended to develop an improved prediction method.

<table>
<thead>
<tr>
<th>KEYWORDS (CONTINUE ON REVERSE SIDE IF NECESSARY AND IDENTIFY BY BLOCK NUMBER)</th>
</tr>
</thead>
<tbody>
<tr>
<td>thrust-deduction fraction</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DISTRIBUTION STATEMENT (OF THIS REPORT)</th>
</tr>
</thead>
<tbody>
<tr>
<td>APPROVED FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DISTRIBUTION STATEMENT (OF THE ABSTRACT ENTERED IN BLOCK 20, IF DIFFERENT FROM REPORT)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DISTRIBUTION UNLIMITED</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>KEYWORDS (CONTINUE ON REVERSE SIDE IF NECESSARY AND IDENTIFY BY BLOCK NUMBER)</th>
</tr>
</thead>
<tbody>
<tr>
<td>thrust-deduction fraction</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ABSTRACT (CONTINUE ON REVERSE SIDE IF NECESSARY AND IDENTIFY BY BLOCK NUMBER)</th>
</tr>
</thead>
<tbody>
<tr>
<td>This work describes the development of a technique for predicting the propulsion coefficients from hull form parameters. The two propulsion coefficients used are the thrust deduction fraction (t) and the thrust-wake fraction (w). A prediction method has been derived from data of sixty-five experiments on model hulls representing a variety of twin-screw destroyers. Examples show that the prediction method provides fair results within the range of data represented. Additional work is recommended to develop an improved prediction method.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>UNCLASSIFIED</th>
</tr>
</thead>
<tbody>
<tr>
<td>DTNSRDC/SP-693-02</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PREDICTION OF THRUST-DEDUCTION AND THRUST-WAKE FRACTIONS FOR TWIN-SCREW DESTROYERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>David W. Taylor Naval Ship R&D Center</td>
</tr>
<tr>
<td>Bethesda, MD 20884</td>
</tr>
<tr>
<td>Naval Material Command</td>
</tr>
<tr>
<td>Washington, DC 20362</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>KEYWORDS (CONTINUE ON REVERSE SIDE IF NECESSARY AND IDENTIFY BY BLOCK NUMBER)</th>
</tr>
</thead>
<tbody>
<tr>
<td>thrust-deduction fraction</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>UNCLASSIFIED</th>
</tr>
</thead>
<tbody>
<tr>
<td>DTNSRDC/SP-693-02</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PREDICTION OF THRUST-DEDUCTION AND THRUST-WAKE FRACTIONS FOR TWIN-SCREW DESTROYERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>David W. Taylor Naval Ship R&D Center</td>
</tr>
<tr>
<td>Bethesda, MD 20884</td>
</tr>
<tr>
<td>Naval Material Command</td>
</tr>
<tr>
<td>Washington, DC 20362</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>KEYWORDS (CONTINUE ON REVERSE SIDE IF NECESSARY AND IDENTIFY BY BLOCK NUMBER)</th>
</tr>
</thead>
<tbody>
<tr>
<td>thrust-deduction fraction</td>
</tr>
</tbody>
</table>
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>LIST OF FIGURES</td>
<td>iv</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>viii</td>
</tr>
<tr>
<td>NOTATION</td>
<td>x</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>1</td>
</tr>
<tr>
<td>ADMINISTRATIVE INFORMATION</td>
<td>1</td>
</tr>
<tr>
<td>INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>DESCRIPTION OF DATA</td>
<td>3</td>
</tr>
<tr>
<td>DESCRIPTION OF COMPUTATIONAL TECHNIQUES</td>
<td>4</td>
</tr>
<tr>
<td>PRESENTATION OF RESULTS</td>
<td>5</td>
</tr>
<tr>
<td>DISCUSSION OF RESULTS</td>
<td>8</td>
</tr>
<tr>
<td>CONCLUSIONS AND RECOMMENDATIONS</td>
<td>9</td>
</tr>
<tr>
<td>REFERENCES</td>
<td>10</td>
</tr>
<tr>
<td>APPENDIX A - Description of Independent and Dependent Variables</td>
<td>23</td>
</tr>
<tr>
<td>APPENDIX B - Summary of Model Particulars and Basic Parameters</td>
<td>27</td>
</tr>
<tr>
<td>APPENDIX C - Frequency Distribution of Independent and Dependent Variables for Twin-Screw Destroyers</td>
<td>29</td>
</tr>
<tr>
<td>APPENDIX D - Variation of Independent Variables with Thrust-Deduction and Thrust-Wake Fractions</td>
<td>57</td>
</tr>
<tr>
<td>Figure</td>
<td>Description</td>
</tr>
<tr>
<td>--------</td>
<td>--</td>
</tr>
<tr>
<td>1</td>
<td>Variation of Thrust-Wake Fraction and Thrust-Deduction Fraction</td>
</tr>
<tr>
<td>2</td>
<td>Distribution of Error in Thrust-Deduction Fraction from Linear Regression and Taylor Models</td>
</tr>
<tr>
<td>3</td>
<td>Distribution of Error in Thrust-Deduction Fraction from Squared Regression and Taylor Models</td>
</tr>
<tr>
<td>4</td>
<td>Distribution of Error in Thrust-Wake Fraction from Linear Regression and Taylor Models</td>
</tr>
<tr>
<td>5</td>
<td>Distribution of Error in Thrust-Wake Fraction from Squared Regression and Taylor Models</td>
</tr>
<tr>
<td>C-1</td>
<td>Frequency Distribution of the Wetted Surface Coefficient for Twin-Screw Destroyers</td>
</tr>
<tr>
<td>C-2</td>
<td>Frequency Distribution of the Length-Beam Ratio for Twin-Screw Destroyers</td>
</tr>
<tr>
<td>C-3</td>
<td>Frequency Distribution of the Beam-Draft Ratio for Twin-Screw Destroyers</td>
</tr>
<tr>
<td>C-4</td>
<td>Frequency Distribution of the Prismatic Coefficient for Twin-Screw Destroyers</td>
</tr>
<tr>
<td>C-5</td>
<td>Frequency Distribution of the Half Angle of Entrance for Twin-Screw Destroyers</td>
</tr>
<tr>
<td>C-6</td>
<td>Frequency Distribution of the Longitudinal Center of Bucancy-Waterline Length Ratio for Twin-Screw Destroyers</td>
</tr>
<tr>
<td>C-7</td>
<td>Frequency Distribution of Taylor's 'f' for Twin-Screw Destroyers</td>
</tr>
<tr>
<td>C-8</td>
<td>Frequency Distribution of the Fatness Ratio for Twin-Screw Destroyers</td>
</tr>
<tr>
<td>C-9</td>
<td>Frequency Distribution of the Waterplane Coefficient for Twin-Screw Destroyers</td>
</tr>
<tr>
<td>C-10</td>
<td>Frequency Distribution of the Longitudinal Center of Flotation-Waterline Length Ratio for Twin-Screw Destroyers</td>
</tr>
<tr>
<td>C-11</td>
<td>Frequency Distribution of the Length of Parallel Middle-body-Waterline Length Ratio for Twin-Screw Destroyers</td>
</tr>
<tr>
<td>Figure</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>---</td>
</tr>
<tr>
<td>C-12</td>
<td>Frequency Distribution of the Length of Entrance-Waterline Length Ratio for Twin-Screw Destroyers</td>
</tr>
<tr>
<td>C-13</td>
<td>Frequency Distribution of the Afterbody Waterplane Coefficient for Twin-Screw Destroyers</td>
</tr>
<tr>
<td>C-14</td>
<td>Frequency Distribution of the Forebody Waterplane Coefficient for Twin-Screw Destroyers</td>
</tr>
<tr>
<td>C-15</td>
<td>Frequency Distribution of the Afterbody Prismatic Coefficient for Twin-Screw Destroyers</td>
</tr>
<tr>
<td>C-16</td>
<td>Frequency Distribution of the Forebody Prismatic Coefficient for Twin-Screw Destroyers</td>
</tr>
<tr>
<td>C-17</td>
<td>Frequency Distribution of the Entrance Prismatic Coefficient for Twin-Screw Destroyers</td>
</tr>
<tr>
<td>C-18</td>
<td>Frequency Distribution of the Run Prismatic Coefficient for Twin-Screw Destroyers</td>
</tr>
<tr>
<td>C-19</td>
<td>Frequency Distribution of the Scale Ratio for Twin-Screw Destroyers</td>
</tr>
<tr>
<td>C-20</td>
<td>Frequency Distribution of the Propeller Diameter-Draft Ratio for Twin-Screw Destroyers</td>
</tr>
<tr>
<td>C-21</td>
<td>Frequency Distribution of the Projected Area-Disk Area Ratio for Twin-Screw Destroyers</td>
</tr>
<tr>
<td>C-22</td>
<td>Frequency Distribution of the Pitch Ratio for Twin-Screw Destroyers</td>
</tr>
<tr>
<td>C-23</td>
<td>Frequency Distribution of the Ship Reynolds Number for Twin-Screw Destroyers</td>
</tr>
<tr>
<td>C-24</td>
<td>Frequency Distribution of the Design Froude Number for Twin-Screw Destroyers</td>
</tr>
<tr>
<td>C-25</td>
<td>Frequency Distribution of the Thrust-Deduction Fraction for Twin-Screw Destroyers</td>
</tr>
<tr>
<td>C-26</td>
<td>Frequency Distribution of the Thrust-Wake Fraction for Twin-Screw Destroyers</td>
</tr>
<tr>
<td>D-1</td>
<td>Variation of Froude's Wetted Surface Coefficient and Thrust-Deduction Fraction</td>
</tr>
<tr>
<td>Figure</td>
<td>Description</td>
</tr>
<tr>
<td>--------</td>
<td>---</td>
</tr>
<tr>
<td>D-2</td>
<td>Variation of Froude's Wetted Surface Coefficient and Thrust-Wake Fraction</td>
</tr>
<tr>
<td>D-3</td>
<td>Variation of Length-Beam Ratio and Thrust-Deduction Fraction</td>
</tr>
<tr>
<td>D-4</td>
<td>Variation of Length-Beam Ratio and Thrust-Wake Fraction</td>
</tr>
<tr>
<td>D-5</td>
<td>Variation of Beam-Draft Ratio and Thrust-Deduction Fraction</td>
</tr>
<tr>
<td>D-6</td>
<td>Variation of Beam-Draft Ratio and Thrust-Wake Fraction</td>
</tr>
<tr>
<td>D-7</td>
<td>Variation of Prismatic Coefficient and Thrust-Deduction Fraction</td>
</tr>
<tr>
<td>D-8</td>
<td>Variation of Prismatic Coefficient and Thrust-Wake Fraction</td>
</tr>
<tr>
<td>D-9</td>
<td>Variation of Half Angle of Entrance and Thrust-Deduction Fraction</td>
</tr>
<tr>
<td>D-10</td>
<td>Variation of Half Angle of Entrance and Thrust-Wake Fraction</td>
</tr>
<tr>
<td>D-11</td>
<td>Variation of Longitudinal Center of Buoyancy-Waterline Length Ratio and Thrust-Deduction Fraction</td>
</tr>
<tr>
<td>D-12</td>
<td>Variation of Longitudinal Center of Buoyancy-Waterline Length Ratio and Thrust-Wake Fraction</td>
</tr>
<tr>
<td>D-13</td>
<td>Variation of Taylor's 'f' and Thrust-Deduction Fraction</td>
</tr>
<tr>
<td>D-14</td>
<td>Variation of Taylor's 'f' and Thrust-Wake Fraction</td>
</tr>
<tr>
<td>D-15</td>
<td>Variation of Fatness Ratio and Thrust-Deduction Fraction</td>
</tr>
<tr>
<td>D-16</td>
<td>Variation of Fatness Ratio and Thrust-Wake Fraction</td>
</tr>
<tr>
<td>D-17</td>
<td>Variation of Waterplane Coefficient and Thrust-Deduction Fraction</td>
</tr>
<tr>
<td>D-18</td>
<td>Variation of Waterplane Coefficient and Thrust-Wake Fraction</td>
</tr>
<tr>
<td>D-19</td>
<td>Variation of Longitudinal Center of Flotation-Waterline Length Ratio and Thrust-Deduction Fraction</td>
</tr>
<tr>
<td>D-20</td>
<td>Variation of Longitudinal Center of Flotation-Waterline Length Ratio and Thrust-Wake Fraction</td>
</tr>
<tr>
<td>Figure</td>
<td>Title</td>
</tr>
<tr>
<td>--------</td>
<td>---</td>
</tr>
<tr>
<td>D-21</td>
<td>Variation of Length of Parallel Middlebody-Waterline Length Ratio and Thrust-Deduction Fraction</td>
</tr>
<tr>
<td>D-22</td>
<td>Variation of Length of Parallel Middlebody-Waterline Length Ratio and Thrust-Wake Fraction</td>
</tr>
<tr>
<td>D-23</td>
<td>Variation of Length of Entrance-Waterline Length Ratio and Thrust-Deduction Fraction</td>
</tr>
<tr>
<td>D-24</td>
<td>Variation of Length of Entrance-Waterline Length Ratio and Thrust-Wake Fraction</td>
</tr>
<tr>
<td>D-25</td>
<td>Variation of Afterbody Waterplane Coefficient and Thrust-Deduction Fraction</td>
</tr>
<tr>
<td>D-26</td>
<td>Variation of Afterbody Waterplane Coefficient and Thrust-Wake Fraction</td>
</tr>
<tr>
<td>D-27</td>
<td>Variation of Forebody Waterplane Coefficient and Thrust-Deduction Fraction</td>
</tr>
<tr>
<td>D-28</td>
<td>Variation of Forebody Waterplane Coefficient and Thrust-Wake Fraction</td>
</tr>
<tr>
<td>D-29</td>
<td>Variation of Afterbody Prismatic Coefficient and Thrust-Deduction Fraction</td>
</tr>
<tr>
<td>D-30</td>
<td>Variation of Afterbody Prismatic Coefficient and Thrust-Wake Fraction</td>
</tr>
<tr>
<td>D-31</td>
<td>Variation of Forebody Prismatic Coefficient and Thrust-Deduction Fraction</td>
</tr>
<tr>
<td>D-32</td>
<td>Variation of Forebody Prismatic Coefficient and Thrust-Wake Fraction</td>
</tr>
<tr>
<td>D-33</td>
<td>Variation of Entrance Prismatic Coefficient and Thrust-Deduction Fraction</td>
</tr>
<tr>
<td>D-34</td>
<td>Variation of Entrance Prismatic Coefficient and Thrust-Wake Fraction</td>
</tr>
<tr>
<td>D-35</td>
<td>Variation of Run Prismatic Coefficient and Thrust-Deduction Fraction</td>
</tr>
<tr>
<td>D-36</td>
<td>Variation of Run Prismatic Coefficient and Thrust-Wake Fraction</td>
</tr>
</tbody>
</table>
LIST OF FIGURES (CONTINUED)

D-37 - Variation of Scale Ratio and Thrust-Deduction Fraction 94
D-38 - Variation of Scale Ratio and Thrust-Wake Fraction 95
D-39 - Variation of Propeller Diameter-Draft Ratio and Thrust-Deduction Fraction 96
D-40 - Variation of Propeller Diameter-Draft Ratio and Thrust-Wake Fraction 97
D-41 - Variation of Projected Area-Disk Area Ratio and Thrust-Deduction Fraction 98
D-42 - Variation of Projected Area-Disk Area Ratio and Thrust-Wake Fraction 99
D-43 - Variation of Pitch Ratio and Thrust-Deduction Fraction 100
D-44 - Variation of Pitch Ratio and Thrust-Wake Fraction 101
D-45 - Variation of Ship Reynolds Number and Thrust-Deduction Fraction 102
D-46 - Variation of Ship Reynolds Number and Thrust-Wake Fraction 103
D-47 - Variation of Design Froude Number and Thrust-Deduction Fraction 104
D-48 - Variation of Design Froude Number and Thrust-Wake Fraction 105

LIST OF TABLES

1 - Statistical Parameters for Basic Variables Representing Twin-Screw Destroyers 14
2 - Correlation Coefficients for Linear Variables 15
3 - Correlation Coefficients for Squared Variables 16
4 - Listing of Coefficients for Linear Regression Model for Thrust-Deduction Fraction 17
<table>
<thead>
<tr>
<th></th>
<th>LIST OF TABLES (CONTINUED)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Listing of Coefficients for Linear Regression Model for Thrust-Wake Fraction</td>
<td>18</td>
</tr>
<tr>
<td>6</td>
<td>Listing of Coefficients for Squared Regression Model for Thrust-Deduction Fraction</td>
<td>19</td>
</tr>
<tr>
<td>7</td>
<td>Listing of Coefficients for Squared Regression Model for Thrust-Wake Fraction</td>
<td>20</td>
</tr>
<tr>
<td>8</td>
<td>Statistical Values for Error Distribution of Thrust-Deduction and Thrust-Wake Fractions</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td>Using Linear Regression Model</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Statistical Values for Error Distribution of Thrust-Deduction and Thrust-Wake Fractions</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td>Using Squared Regression Model</td>
<td></td>
</tr>
<tr>
<td>A-1</td>
<td>Description of Independent and Dependent Variables</td>
<td>23</td>
</tr>
<tr>
<td>B-1</td>
<td>Summary of Model Particulars and Basic Parameters</td>
<td>27</td>
</tr>
</tbody>
</table>
NOTATION

\(A_{BT} \) Sectional area at forward perpendicular

\(A_M \) Sectional area at midships

\(A_0 \) Disk area

\(A_P \) Projected blade area

\(A_P/A_0 \) Projected area-disk area ratio

\(A_{WA} \) Afterbody waterplane area

\(A_{WF} \) Forebody waterplane area

\(A_W \) Total area of waterplane

\(A_X \) Area of maximum transverse section

\(B \) Beam or breadth, molded of a ship

\(B_X \) Beam at the waterline at maximum transverse section

\(B_X/T_X \) Beam-draft ratio

\(C_P \) Longitudinal prismatic coefficient

\(C_{PA} \) Afterbody prismatic coefficient

\(C_{PE} \) Entrance prismatic coefficient

\(C_{PF} \) Forebody prismatic coefficient

\(C_{PR} \) Run prismatic coefficient

\(C_{WP} \) Waterplane coefficient

\(C_{WPA} \) Afterbody waterplane coefficient

\(C_{WPF} \) Forebody waterplane coefficient
<table>
<thead>
<tr>
<th>Notation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>D</td>
<td>Diameter of a propeller</td>
</tr>
<tr>
<td>D/T</td>
<td>Propeller diameter-draft ratio</td>
</tr>
<tr>
<td>FB</td>
<td>Distance of longitudinal center of buoyancy from forward perpendicular</td>
</tr>
<tr>
<td>FF</td>
<td>Distance of longitudinal center of flotation from forward perpendicular</td>
</tr>
<tr>
<td>(f_{BT})</td>
<td>Area ratio at bow; Taylor's "f" at forward perpendicular</td>
</tr>
<tr>
<td>g</td>
<td>Gravitational constant</td>
</tr>
<tr>
<td>(i_\ell)</td>
<td>Half angle of entrance</td>
</tr>
<tr>
<td>(J_T)</td>
<td>Advance coefficient</td>
</tr>
<tr>
<td>(J_V)</td>
<td>Ship speed advance coefficient</td>
</tr>
<tr>
<td>(K_T)</td>
<td>Thrust coefficient</td>
</tr>
<tr>
<td>L or LWL</td>
<td>Total length on waterline</td>
</tr>
<tr>
<td>(L_A)</td>
<td>Length of afterbody</td>
</tr>
<tr>
<td>(L_E)</td>
<td>Length of entrance</td>
</tr>
<tr>
<td>(L_F)</td>
<td>Length of forebody</td>
</tr>
<tr>
<td>(L_P)</td>
<td>Length of parallel middlebody</td>
</tr>
<tr>
<td>(L_R)</td>
<td>Length of run</td>
</tr>
<tr>
<td>(L_{WL}/B_X)</td>
<td>Length-beam ratio</td>
</tr>
<tr>
<td>P</td>
<td>Propeller pitch</td>
</tr>
<tr>
<td>P/D</td>
<td>Pitch ratio</td>
</tr>
<tr>
<td>R</td>
<td>Resistance</td>
</tr>
<tr>
<td>Symbol</td>
<td>Description</td>
</tr>
<tr>
<td>--------</td>
<td>-------------</td>
</tr>
<tr>
<td>R_n</td>
<td>Reynolds number based on ship length</td>
</tr>
<tr>
<td>S</td>
<td>Wetted surface</td>
</tr>
<tr>
<td>S</td>
<td>Froude's wetted surface coefficient</td>
</tr>
<tr>
<td>T</td>
<td>Draft, molded of a ship</td>
</tr>
<tr>
<td>TH</td>
<td>Thrust at propeller</td>
</tr>
<tr>
<td>TX</td>
<td>Draft at maximum transverse section</td>
</tr>
<tr>
<td>t</td>
<td>Thrust-deduction fraction</td>
</tr>
<tr>
<td>V</td>
<td>Speed of ship</td>
</tr>
<tr>
<td>V/\sqrt{gL}</td>
<td>Froude number</td>
</tr>
<tr>
<td>ω_T</td>
<td>Taylor wake fraction determined from thrust</td>
</tr>
<tr>
<td>Δ</td>
<td>Displacement weight</td>
</tr>
<tr>
<td>λ</td>
<td>Scale ratio, lambda</td>
</tr>
<tr>
<td>V or V_T</td>
<td>Total displaced volume</td>
</tr>
<tr>
<td>$V/(0.1L)^3$</td>
<td>Fatness Ratio</td>
</tr>
<tr>
<td>V_A</td>
<td>Volume of afterbody</td>
</tr>
<tr>
<td>V_E</td>
<td>Volume of entrance</td>
</tr>
<tr>
<td>V_F</td>
<td>Volume of forebody</td>
</tr>
<tr>
<td>V_R</td>
<td>Volume of run</td>
</tr>
<tr>
<td>v</td>
<td>Kinematic Viscosity</td>
</tr>
</tbody>
</table>
ABSTRACT

This work describes the development of a technique for predicting the propulsion coefficients from hull-form parameters. The two propulsive coefficients used at DTNSRDC and included in this study are the thrust-deduction fraction \(t \) and the thrust-wake fraction \(w_T \). A prediction method has been derived from data of sixty-five experiments on model hulls representing a variety of twin-screw destroyers. Examples show that the prediction models provide fair results within the range of data represented. Additional work is recommended to develop an improved prediction method.

ADMINISTRATIVE INFORMATION

The David Taylor Naval Ship R&D Center (DTNSRDC) was requested under the Ship Performance and Hydromechanics Program, sponsored by the Naval Material Command (NAVMAT 08T3), to develop a prediction method for estimating propulsor interaction coefficients. The work was funded under the Ship Performance and Hydromechanics Program and the Work Unit Number was 1500-103.

INTRODUCTION

The interaction between the hull and the propeller is characterized by the thrust-deduction fraction \(t \), and the thrust-wake fraction \(w_T \). It is desirable to have a reliable technique for estimating the thrust-deduction fraction and the thrust-wake fraction of twin-screw destroyers. The best method for determining these coefficients is to conduct resistance, propulsion, and open-water experiments. This is not always practical, and the naval architect must often resort to an empirical technique. This report presents a technique for estimating these interaction coefficients from hull-form parameters and propeller characteristics.

The thrust-deduction is defined as the fractional loss of thrust due to the propeller-hull interaction,

\[
t = \frac{TH - R}{TH}
\]

where \(TH \) is the thrust produced by the propeller and \(R \) is the towed resistance of the hull without the propeller. The thrust-deduction is usually determined by conducting conventional resistance and self-propulsion model experiments in a towing tank.
The thrust-wake fraction is the integrated velocity defect in way of the propeller. The Taylor wake fraction is deduced from experimental data obtained from an open-water experiment and a propulsion experiment with the same propeller in a towing tank. The wake fraction is determined by computing the thrust coefficient \(K_T \) and ship speed advance coefficient \(J_v \) from the propulsion experiment, and by using the open-water curve at the experimental value of \(K_T \) to get a value of advance coefficient \(J_T \). The thrust-wake fraction is then determined from:

\[
w_T = 1 - \left(\frac{J_T}{J_v} \right).
\]

The thrust-wake fraction and thrust-deduction fraction are dependent on many factors. Therefore, it is difficult to determine which parameters are significant. Wake is affected by hull shape, particularly just forward of the propeller location; propeller geometry, including diameter, pitch, rake, and loading; tip clearance between hull and propeller; distance of propeller tips below the free surface; size, shape, and location of appendages with respect to the propeller; and roughness of the hull surface. The variables which affect the thrust-deduction fraction are generally the same as those listed for the wake. In addition, the size and shape of the rudder and its proximity to the hull, and three propeller characteristics - diameter, radial distribution of loading, and axial position may have an effect on the thrust-deduction fraction.

In 1950, Harvald discussed techniques for estimating the thrust-wake fraction and thrust-deduction fraction of single-screw cargo ships. He evaluated twenty-one different methods used for conventional single-screw cargo ships. He determined that the methods of Taylor and Schoenherr were the best available at that time. He then presented his own method, and concluded that his method as accurate as the Schoenherr method, but easier to use. His final recommendation was to use the Taylor method if a simple technique was satisfactory, and to use his own method if more accuracy was needed.

Grant and Wilson studied the wake and thrust-deduction for 65 twin-screw destroyers. They drew no positive conclusions and did not develop any predictive methods.

References are listed on page 10.
DESCRIPTION OF DATA

Three types of hull-forms were considered as prototypes for this analysis. Data existed from model experiments at DTNSRDC for 150 models of conventional single-screw cargo ships, 65 twin-screw destroyers, and 19 single-screw destroyer escorts. It was decided to begin the analysis with the 65 twin-screw destroyers, since the predictions for this class of ships would be more relevant and useful to the naval architect designing naval combatants. Classes represented by the twin-screw destroyers included the SPRUANCE, FORREST SHERMAN, CHARLES F. ADAMS, and MITSCHER.

An analysis of existing experimental data on twin-screw destroyers was conducted to determine the effects of twenty-four parameters on the thrust-deduction and thrust-wake fractions. The choice of these parameters was dictated by their availability. The data were correlated with various hull and propeller parameters. The twenty-four independent variables chosen for the interaction prediction model were:

1. Froude's wetted surface coefficient (F_w),
2. length-beam ratio (L/Bx),
3. beam-draft ratio (Bx/Tx),
4. prismatic coefficient (C_p),
5. half angle of entrance (α_{E}),
6. longitudinal center of buoyancy-waterline length ratio (\overline{FB}/WL),
7. Taylor's 'f' (f_{BT}),
8. fatness ratio ($V/(0.1\text{OL})^3$),
9. waterplane coefficient (C_{WP}),
10. longitudinal center of flotation-waterline length ratio (\overline{FF}/WL),
11. length of parallel middlebody-waterline length ratio (L_{p}/WL),
12. length of entrance-waterline length ratio (L_{E}/WL),
13. afterbody waterplane coefficient (C_{WPA}),
14. forebody waterplane coefficient (C_{WPF}),
15. afterbody prismatic coefficient (C_{PA}),
16. forebody prismatic coefficient (C_{PF}),
17. entrance prismatic coefficient (C_{PP}),
18. run prismatic coefficient (C_{PR}),
19. scale ratio (λ),
20. propeller diameter-draft ratio (D/T).
(21) projected area-disk area ratio \((A_p/A_0)\),
(22) pitch ratio \((P/D)\),
(23) ship length Reynolds number \((R_n)\), and
(24) Froude number \((V/\sqrt{gL_w})\).

The two dependent variables were thrust-deduction fraction \((t)\) and thrust-wake fraction \((w_T)\). A complete description of the twenty-six variables is presented in Appendix A. The twenty-six parameters from the experiments on the sixty-five models are tabulated in Appendix B.

DESCRIPTION OF COMPUTATIONAL TECHNIQUES

Computer programs developed by the University of California for statistical analysis were used in the analysis of the twin-screw destroyer data. The means, standard deviations, maximum and minimum values were calculated for each of the twenty-six parameters for the sixty-five twin-screw destroyers. Histograms and graphs were also produced using these computer programs. Documentation of these programs is given by Dixon.

A correlation matrix was generated for the twenty-four independent variables with the thrust-deduction and wake fractions. The correlation among the hull-form parameters provides a starting point for a statistical evaluation. The values of the correlation coefficient lie between -1 and +1. The magnitude of the correlation coefficient indicates the extent to which the variation of the independent and dependent variables are interrelated. Thus, a correlation coefficient of 0.10 would show very little functional relationship between two variables, while a correlation coefficient of 0.80 would indicate a very strong functional relationship between two variables. The sign of the correlation coefficient indicates how the dependent variable shifts with changes in the independent variable. A positive correlation coefficient indicates that the dependent variable increases along with the independent variable. Conversely, a negative correlation coefficient indicates that the dependent variable decreases as the independent variable increases.

A numerical regression technique determined the significance of each independent variable in the mathematical model. A multiple stepwise regression analysis computer program was used to perform this analysis. This technique contains a built-in procedure for the elimination of redundant or superfluous independent variables from
the regression analysis.

At each stage of the stepwise procedure, the independent variable which yields the greatest improvement in the "goodness" of fit, as measured by the reduction in the standard error of the estimated dependent variable, is entered into the regression equation. Variables entered at earlier stages of the procedure are retested for significance whenever a new variable is entered. A variable may be found significant at an early stage, but may become insignificant after several other variables have entered the regression. Insignificant variables are removed at each stage, prior to the inclusion of the significant variable. Hence, the final form of the regression equation will include only those independent variables that make a significant contribution to the regression equation.

The index of determination gives an estimate of the percentage of "sum of square" variation in the dependent variable that is explained by the independent variables. The positive square root of this index of determination is called the multiple correlation coefficient.

PRESENTATION OF RESULTS

In general, a numerical model is built from a list of available parameters. Additional parameters can be formed by combining the basic parameters. Principal hull and propeller geometry variables were collected for this study. Originally, a linear model was used in the analysis. Other models, including the logarithmic, exponential, and squared functions of the original data were also investigated. The best results were obtained from the linear model for the thrust-deduction and from the squared model for the thrust-wake fraction.

The following statistics have been computed and tabulated for each of the 24 independent variables (hull-form coefficients) and 2 dependent variables (t and wT) for the linear model, where \(X_{ij} \) represents the \(i \) th case of the \(j \) th variable and \(n \) is the number of models:

1. Minimum value, \(\text{Min} \ X_{ij} \)
2. Maximum value, \(\text{Max} \ X_{ij} \)
3. Mean, \(\bar{X}_j = \frac{1}{n} \sum_{i=1}^{n} X_{ij} \)
4. Standard deviation, \(\sigma_j = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (X_{ij} - \bar{X}_j)^2} \)
The minimum and maximum values, means, and standard deviations of the twenty-six parameters are presented in Table 1.

Histograms of each variable, indicating the distribution of the data, are shown in Appendix C. This graphical representation of the frequency distribution consists of vertical rectangles whose widths correspond to a definite range of independent variables and whose heights correspond to the number of models with parameters occurring within the range. In general, the distribution of models on the histograms indicate a normal distribution of each of the variables. The variation of the thrust-wake with the thrust-deduction is shown in Figure 1. The fact that the data on this graph show a definite band-like pattern indicates that there is a high degree of correlation between t and w_T. This is confirmed by the fact that the correlation coefficient for these two variables is 0.707.

The variation of the twenty-four independent parameters versus the dependent variables, t and w_T, is shown in graphical form in Appendix D. Each one page graph has fifty units vertically and one hundred units horizontally. The data points are automatically scaled to conform to these dimensions. These figures are presented to show the variation of the basic parameters within the range of data represented. They are not meant to reveal the degree of correlation between each parameter and the experimental data, because the scatter can be due to either the variation of other parameters or due to a weak dependency between the parameter and the data.

Correlation coefficients, between the thrust-deduction (t) and thrust-wake (w_T) fractions and the individual independent parameters, can be compared to assess the relative association of each parameter with t and w_T, while ignoring the influence of the other parameters. The correlation coefficients for the linear model are shown in Table 2. Table 3 presents the correlation coefficients for the squared model.

Examples of highly correlated and poorly correlated variables of the linear model are illustrated graphically in Appendix D. For the linear and squared models, FB/LWL, CWP, $L{LW}/LWL$, C_{PA}, and $V/{V\sqrt{LWL}}$, indicate the highest correlation with t. The parameters, FB/LWL, CWP, and C_{WPA} show the highest correlation with w_T. Two of the twenty-four parameters, LWL/B_X and C_{PF}, are relatively statistically uncorrelated with t; and three parameters, Θ, f_{BT}, and C_{WPF}, are poorly correlated with w_T. Although there is certainly scatter among the data plotted on the figures in Appendix D, there is an obvious trend in the data on some of the figures. This indicates a high degree of correlation between the variables. The obvious "shotgun" effect on some of the plots
in Appendix D, on the other hand, indicates poor correlation.

Upon completion of the correlation studies, sample runs of the stepwise regression program were made to determine the quality of the least squares fit to the data which could be obtained using the twenty-four independent variables to fit t and w_T. After twenty-three steps (the addition of 23 variables), the program achieved maximum accuracy in predicting the thrust-deduction and thrust-wake fractions using the linear model. The resulting mathematical linear models for the thrust-deduction and thrust-wake fractions are given in Tables 4 and 5, respectively. These mathematical models for t and w_T are constructed as the sum of a constant and a number of terms composed of the product of a constant and one variable.

Scale ratio and Reynolds number are included in the regression models. These independent variables are arbitrary parameters whose values can be chosen at will. They indicate that there are probably some scale effects which should be studied further.

The determination indices for the linear model with the most significant parameters were 0.7068 for the thrust-deduction fraction and 0.6763 for the thrust-wake fraction. Parameters contributing to an increase in this index for the linear model for the thrust-deduction fraction were C_{WPA}, $V/\sqrt{E/LW}$, λ, L_e/LWL, i_E, R_n, C_p, D/I, and C_{WPF}; and for the thrust-wake fraction were C_{WP}, D/T, C_{PF}, R_n, P/D, λ, $V/\sqrt{E/LW}$, and L_p/LWL.

Due to the fair results obtained from the linear model, the square of the independent variables was used to construct a new mathematical model for predicting the wake and thrust-deduction factors. The stepwise regression program was again used to analyze the data. This squared model also produced fair results. After 23 steps, the program achieved maximum accuracy in predicting the thrust-deduction factor. Maximum accuracy in predicting the wake fraction was obtained after 23 steps. The resulting squared models for thrust-deduction and wake fraction are given in Tables 6 and 7, respectively.

The determination indices for the squared model with the most significant parameters were 0.6757 for the thrust-deduction fraction and 0.6961 for the thrust-wake fraction. The parameters contributing to an increase in the index of determination for the squared model for the thrust-deduction were $V/\sqrt{E/LW}$, C_{WP}, \bar{F}/LWL, L_p'/LWL, A_p/A_0, i_E, λ, and R_n; and for the thrust-wake fraction were C_{WP}, C_{PF}, D/T, and P/D.

7
DISCUSSION OF RESULTS

The mathematical models which have resulted from the use of stepwise regression are certainly more complex than the simple formulas given by Taylor. However, if use is made of the computer, the method is no more complex than Harvald's method.

The one thing which must be emphasized with regard to the formulas is that they are valid only for the range of independent variables for which they were derived. Any attempt to employ these formulas for a parameter value outside the domain of definition of these functions may result in erroneous and misleading results.

The question of the accuracy of the present method can only be considered by looking at the prediction errors obtained by using the method. In order to obtain such data, the regression models were used to predict the values of $l-t$ and $l-w_T$ for the 65 ships used in the analysis. Similar calculations were made using the simplified formula from Taylor. This was done in order that the performance of the regression method could be gauged relative to another method.

The results of the predictions of $l-t$ and $l-w_T$, using the regression models and Taylor's model, have been divided by the measured values of these parameters, and the resulting values have been plotted as histograms. The histograms for $l-t$ from the regression models and Taylor's formula are plotted on Figures 2 and 3. Similar data for $l-w_T$ are plotted on Figures 4 and 5. These figures show the number of predictions which fall within one percent intervals of error. Values less than 1.0 indicate that $l-t$ or $l-w_T$ are under-predicted and values greater than 1.0 indicate that $l-t$ and $l-w_T$ are over-predicted.

A comparison of the predictors of $l-t$ and $l-w_T$, using the regression equations and Taylor's formula given in Figures 2 through 5, shows that the regression model results resemble a normal distribution and are fairly narrow, while the results of Taylor's formula are of almost uniform height and distributed over a much wider range. Analysis of the means and standard deviations of these distributions, given in Tables 8 and 9 show that the means for all formulas, except Taylor's $l-t$ and $l-w_T$, are very close to one. This signifies that these formulas are on the average correct, except for Taylor's $l-t$ and $l-w_T$ formulas. The standard deviation of Taylor's formula is more than twice that of the regression formulas. This indicates that the probability of obtaining a given accuracy of prediction is twice as high for the regression models as for Taylor's formula (assuming the means are correct).
CONCLUSIONS AND RECOMMENDATIONS

This investigation attempted to develop a technique for estimating the thrust-deduction and thrust-wake fractions. Data for 65 ships representing a variety of twin-screw destroyers were assembled and used in the analysis. Results of this study obtained by statistical method demonstrated that the multiple regression analysis technique does not predict these interaction coefficients for twin-screw destroyers with reasonable accuracy.

The correlation of the thrust-deduction and thrust-wake fractions with the twenty-four independent variables was unsatisfactory. The analysis revealed a relatively low correlation - below 0.5 in the majority of the parameters and often a value close to zero. The thrust-wake fraction, however, was highly correlated with the thrust-deduction fraction.

One reason for the poor estimation from this method is possibly that the method does not contain a sufficient number or type of parameters to adequately describe the variations of ship and propeller geometry within the range of data represented. No parameters representing propeller loading distribution were used, as there was insufficient information of the loading distributions for the propeller in the data sample. Addition of parameters such as the propeller tip clearance, the location of the propeller centerline relative to the ship's baseline, the size of the propeller hub compared to the propeller diameter, the size of the rudders, and propeller-to-rudder clearance might improve the prediction technique. Deletion of some parameters might also be considered.

With the data available at DTNSRDC for other classes of ships, a reasonable technique might be developed utilizing common ship parameters as input to a regression analysis scheme. Further progress might be achieved by investigating other numerical models, such as the cross-products of the parameters. The results of predictions using other mathematical models or other classes of ships might satisfactorily estimate the thrust-deduction and thrust-wake fractions.

Careful statistical analysis of the data can yield significant insight into the importance of individual hull-form parameters and establish trends. Future efforts will be required to obtain a better prediction method to estimate the interaction coefficients.
REFERENCES

Figure 1 - Variation of Thrust-Wake Fraction and Thrust-Deduction Fraction
Figure 2 - Distribution of Error in Thrust-Deduction Fraction
From Linear Regression and Taylor Models

Figure 3 - Distribution of Error in Thrust-Deduction Fraction
From Squared Regression and Taylor Models
Figure 4 - Distribution of Error in Thrust-Wake Fraction
From Linear Regression and Taylor Models

Figure 5 - Distribution of Error in Thrust-Wake Fraction
From Squared Regression and Taylor Models
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Minimum</th>
<th>Maximum</th>
<th>Mean</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Φ</td>
<td>7.245</td>
<td>8.234</td>
<td>7.689</td>
<td>0.221</td>
</tr>
<tr>
<td>L_{WL}/B_X</td>
<td>8.313</td>
<td>10.460</td>
<td>9.538</td>
<td>0.466</td>
</tr>
<tr>
<td>B_X/T_X</td>
<td>2.717</td>
<td>3.650</td>
<td>3.171</td>
<td>0.192</td>
</tr>
<tr>
<td>C_P</td>
<td>0.560</td>
<td>0.672</td>
<td>0.614</td>
<td>0.026</td>
</tr>
<tr>
<td>i_E</td>
<td>4.000</td>
<td>12.000</td>
<td>8.126</td>
<td>1.967</td>
</tr>
<tr>
<td>\bar{FB}/L_{WL}</td>
<td>0.488</td>
<td>0.523</td>
<td>0.510</td>
<td>0.008</td>
</tr>
<tr>
<td>f_{BT}</td>
<td>0.000</td>
<td>0.600</td>
<td>0.120</td>
<td>0.166</td>
</tr>
<tr>
<td>$V/(0.1OL)^3$</td>
<td>1.358</td>
<td>2.154</td>
<td>1.756</td>
<td>0.222</td>
</tr>
<tr>
<td>C_{WP}</td>
<td>0.681</td>
<td>0.775</td>
<td>0.742</td>
<td>0.022</td>
</tr>
<tr>
<td>\bar{FF}/L_{WL}</td>
<td>0.514</td>
<td>0.588</td>
<td>0.559</td>
<td>0.015</td>
</tr>
<tr>
<td>L_P/L_{WL}</td>
<td>0.000</td>
<td>0.036</td>
<td>0.006</td>
<td>0.013</td>
</tr>
<tr>
<td>L_E/L_{WL}</td>
<td>0.498</td>
<td>0.555</td>
<td>0.533</td>
<td>0.017</td>
</tr>
<tr>
<td>C_{WPA}</td>
<td>0.713</td>
<td>0.962</td>
<td>0.875</td>
<td>0.047</td>
</tr>
<tr>
<td>C_{WFF}</td>
<td>0.559</td>
<td>0.694</td>
<td>0.618</td>
<td>0.032</td>
</tr>
<tr>
<td>C_{PA}</td>
<td>0.593</td>
<td>0.717</td>
<td>0.650</td>
<td>0.027</td>
</tr>
<tr>
<td>C_{PF}</td>
<td>0.531</td>
<td>0.660</td>
<td>0.587</td>
<td>0.030</td>
</tr>
<tr>
<td>C_{PE}</td>
<td>0.557</td>
<td>0.682</td>
<td>0.609</td>
<td>0.026</td>
</tr>
<tr>
<td>C_{PR}</td>
<td>0.541</td>
<td>0.693</td>
<td>0.616</td>
<td>0.029</td>
</tr>
<tr>
<td>λ</td>
<td>13.000</td>
<td>26.000</td>
<td>20.502</td>
<td>3.586</td>
</tr>
<tr>
<td>D/T</td>
<td>0.732</td>
<td>1.141</td>
<td>0.933</td>
<td>0.096</td>
</tr>
<tr>
<td>A_p/A_o</td>
<td>0.461</td>
<td>0.816</td>
<td>0.674</td>
<td>0.070</td>
</tr>
<tr>
<td>P/D</td>
<td>0.892</td>
<td>1.457</td>
<td>1.106</td>
<td>0.105</td>
</tr>
<tr>
<td>$R_n \times 10^{-9}$</td>
<td>0.948</td>
<td>2.291</td>
<td>1.817</td>
<td>0.331</td>
</tr>
<tr>
<td>$V/\sqrt{gI_{WL}}$</td>
<td>0.352</td>
<td>0.586</td>
<td>0.477</td>
<td>0.067</td>
</tr>
<tr>
<td>t</td>
<td>0.003</td>
<td>0.215</td>
<td>0.054</td>
<td>0.033</td>
</tr>
<tr>
<td>w_T</td>
<td>-0.049</td>
<td>0.121</td>
<td>0.009</td>
<td>0.028</td>
</tr>
<tr>
<td>Parameter</td>
<td>t</td>
<td>ω_T</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>-----</td>
<td>-----</td>
<td></td>
<td></td>
</tr>
<tr>
<td>\mathcal{C}</td>
<td>0.115</td>
<td>-0.000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L_{WL}/B_X</td>
<td>-0.007</td>
<td>0.198</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B_X/T_X</td>
<td>-0.082</td>
<td>-0.189</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C_p</td>
<td>-0.073</td>
<td>-0.025</td>
<td></td>
<td></td>
</tr>
<tr>
<td>f_E</td>
<td>-0.298</td>
<td>-0.189</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\frac{F_B}{L_{WL}}$</td>
<td>-0.375</td>
<td>-0.356</td>
<td></td>
<td></td>
</tr>
<tr>
<td>\bar{f}_{BT}</td>
<td>0.177</td>
<td>0.023</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\bar{V}/(0.10L)^3$</td>
<td>-0.050</td>
<td>-0.156</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C_{WP}</td>
<td>-0.355</td>
<td>-0.491</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\bar{F}F/L{WL}$</td>
<td>-0.138</td>
<td>-0.332</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L_{P}/L_{WL}</td>
<td>-0.210</td>
<td>-0.173</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L_{E}/L_{WL}</td>
<td>-0.402</td>
<td>-0.308</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C_{WPA}</td>
<td>-0.292</td>
<td>-0.479</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C_{WPF}</td>
<td>-0.111</td>
<td>0.014</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C_{PA}</td>
<td>-0.381</td>
<td>-0.313</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C_{PF}</td>
<td>0.135</td>
<td>0.188</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C_{PE}</td>
<td>-0.004</td>
<td>0.090</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C_{PR}</td>
<td>-0.062</td>
<td>-0.070</td>
<td></td>
<td></td>
</tr>
<tr>
<td>λ</td>
<td>0.320</td>
<td>0.095</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D/T</td>
<td>-0.330</td>
<td>-0.330</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A_p/A_o</td>
<td>-0.104</td>
<td>-0.189</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F/D</td>
<td>0.058</td>
<td>0.065</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$R_n \times 10^{-9}$</td>
<td>0.022</td>
<td>-0.106</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$V/\sqrt{R_{k_{WL}}}$</td>
<td>-0.405</td>
<td>-0.274</td>
<td></td>
<td></td>
</tr>
<tr>
<td>t</td>
<td>0.707</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parameter</td>
<td>t</td>
<td>(\omega_T)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>------</td>
<td>-----------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(S)</td>
<td>0.113</td>
<td>-0.003</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(L_{WL}/B_X)</td>
<td>0.002</td>
<td>0.202</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(B_X/T_X)</td>
<td>-0.078</td>
<td>-0.184</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(C_P)</td>
<td>-0.073</td>
<td>-0.025</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(i_E)</td>
<td>-0.277</td>
<td>-0.181</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(FB/L_{WL})</td>
<td>-0.377</td>
<td>-0.356</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(f_{BT})</td>
<td>0.089</td>
<td>-0.028</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(V/(0.1OL)^3)</td>
<td>-0.030</td>
<td>-0.149</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(C_{WP})</td>
<td>-0.347</td>
<td>-0.484</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(FF/L_{WL})</td>
<td>-0.124</td>
<td>-0.321</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(L_P/L_{WL})</td>
<td>-0.210</td>
<td>-0.173</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(L_{E}/L_{WL})</td>
<td>-0.401</td>
<td>-0.306</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(C_{WPA})</td>
<td>-0.264</td>
<td>-0.460</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(C_{WPF})</td>
<td>0.105</td>
<td>0.017</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(C_{PA})</td>
<td>-0.380</td>
<td>-0.313</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(C_{PF})</td>
<td>0.137</td>
<td>0.190</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(C_{PE})</td>
<td>-0.005</td>
<td>0.088</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(C_{PR})</td>
<td>-0.059</td>
<td>-0.068</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\lambda)</td>
<td>0.333</td>
<td>0.098</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(D/T)</td>
<td>-0.323</td>
<td>-0.321</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(A_P/A_0)</td>
<td>-0.107</td>
<td>-0.193</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(P/D)</td>
<td>0.064</td>
<td>0.073</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(R_n \times 10^{-18})</td>
<td>0.044</td>
<td>-0.075</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(V/\bar{gL}_{WL})</td>
<td>-0.398</td>
<td>0.276</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(t)</td>
<td></td>
<td>0.707</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
TABLE 4
LISTING OF COEFFICIENTS FOR LINEAR REGRESSION MODEL
FOR THRUST-DEDUCTION FRACTION
(Constant (4.62328))

<table>
<thead>
<tr>
<th>Step Number</th>
<th>Variable</th>
<th>Coefficient</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$v/\sqrt{gL_wL}$</td>
<td>-0.23790</td>
</tr>
<tr>
<td>2</td>
<td>C_{WPA}</td>
<td>-1.04237</td>
</tr>
<tr>
<td>3</td>
<td>λ</td>
<td>0.00935</td>
</tr>
<tr>
<td>4</td>
<td>R_n</td>
<td>-0.09146</td>
</tr>
<tr>
<td>5</td>
<td>C_p</td>
<td>-5.35383</td>
</tr>
<tr>
<td>6</td>
<td>i_E</td>
<td>-0.00507</td>
</tr>
<tr>
<td>7</td>
<td>D/T</td>
<td>-0.10526</td>
</tr>
<tr>
<td>8</td>
<td>$V/(0.10L)^3$</td>
<td>-0.18314</td>
</tr>
<tr>
<td>9</td>
<td>C_{WP}</td>
<td>3.26399</td>
</tr>
<tr>
<td>10</td>
<td>C_{WPF}</td>
<td>-2.10433</td>
</tr>
<tr>
<td>11</td>
<td>C_{PF}</td>
<td>-3.91022</td>
</tr>
<tr>
<td>12</td>
<td>f_{BT}</td>
<td>-0.08448</td>
</tr>
<tr>
<td>13</td>
<td>P/D</td>
<td>-0.01213</td>
</tr>
<tr>
<td>14</td>
<td>L_p/L_{WL}</td>
<td>0.19808</td>
</tr>
<tr>
<td>15</td>
<td>b_X/T_x</td>
<td>-0.01470</td>
</tr>
<tr>
<td>16</td>
<td>S</td>
<td>-0.06031</td>
</tr>
<tr>
<td>17</td>
<td>A_p/A_o</td>
<td>0.06016</td>
</tr>
<tr>
<td>18</td>
<td>FB/L_{WL}</td>
<td>0.14966</td>
</tr>
<tr>
<td>19</td>
<td>C_{PA}</td>
<td>3.09229</td>
</tr>
<tr>
<td>20</td>
<td>C_{PE}</td>
<td>7.10020</td>
</tr>
<tr>
<td>21</td>
<td>L_e/L_{WL}</td>
<td>-5.08389</td>
</tr>
<tr>
<td>22</td>
<td>L_{WL}/b_X</td>
<td>-0.03141</td>
</tr>
<tr>
<td>23</td>
<td>FF/L_{WL}</td>
<td>-2.80978</td>
</tr>
</tbody>
</table>
TABLE 5
LISTING OF COEFFICIENTS FOR LINEAR REGRESSION MODEL
FOR THRUST-WAKE FRACTION
(Constant (-2.00197))

<table>
<thead>
<tr>
<th>Step Number</th>
<th>Variable</th>
<th>Coefficient</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>C_{WP}</td>
<td>-1.94003</td>
</tr>
<tr>
<td>2</td>
<td>D/T</td>
<td>-0.12594</td>
</tr>
<tr>
<td>3</td>
<td>C_{FP}</td>
<td>-1.57986</td>
</tr>
<tr>
<td>4</td>
<td>R_n</td>
<td>-0.06369</td>
</tr>
<tr>
<td>5</td>
<td>P/D</td>
<td>0.04278</td>
</tr>
<tr>
<td>6</td>
<td>$V/\sqrt{E_{LWL}}$</td>
<td>-0.07447</td>
</tr>
<tr>
<td>7</td>
<td>L_{WL}/B_X</td>
<td>0.03678</td>
</tr>
<tr>
<td>8</td>
<td>λ</td>
<td>0.00482</td>
</tr>
<tr>
<td>9</td>
<td>L_p/L_{WL}</td>
<td>0.02936</td>
</tr>
<tr>
<td>10</td>
<td>C_{WPF}</td>
<td>1.83502</td>
</tr>
<tr>
<td>11</td>
<td>C_{PE}</td>
<td>1.72391</td>
</tr>
<tr>
<td>12</td>
<td>A_p/A_o</td>
<td>0.03560</td>
</tr>
<tr>
<td>13</td>
<td>L_{E}/L_{WL}</td>
<td>-0.83611</td>
</tr>
<tr>
<td>14</td>
<td>\bar{f}/L_{WL}</td>
<td>4.64832</td>
</tr>
<tr>
<td>15</td>
<td>C_{WPA}</td>
<td>-0.52694</td>
</tr>
<tr>
<td>16</td>
<td>C_{PA}</td>
<td>0.15639</td>
</tr>
<tr>
<td>17</td>
<td>f_{BT}</td>
<td>-0.01121</td>
</tr>
<tr>
<td>18</td>
<td>δ</td>
<td>0.02383</td>
</tr>
<tr>
<td>19</td>
<td>$V/(0.10L)^3$</td>
<td>0.06829</td>
</tr>
<tr>
<td>20</td>
<td>B_X/T_X</td>
<td>0.02339</td>
</tr>
<tr>
<td>21</td>
<td>\bar{F}/L_{WL}</td>
<td>-0.50293</td>
</tr>
<tr>
<td>22</td>
<td>n_E</td>
<td>-0.00018</td>
</tr>
<tr>
<td>23</td>
<td>C_{PR}</td>
<td>0.04754</td>
</tr>
</tbody>
</table>
TABLE 6
LISTING OF COEFFICIENTS FOR SQUARED REGRESSION MODEL
FOR THRUST-DEDUCTION FRACTION
(Constant (0.24509))

<table>
<thead>
<tr>
<th>Step Number</th>
<th>Variable</th>
<th>Coefficient</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$\frac{LE}{LWL}$</td>
<td>0.02958</td>
</tr>
<tr>
<td>2</td>
<td>i_E</td>
<td>-0.00022</td>
</tr>
<tr>
<td>3</td>
<td>$\frac{A_F}{A_0}$</td>
<td>0.01583</td>
</tr>
<tr>
<td>4</td>
<td>$\frac{V}{\sqrt{gLWL}}$</td>
<td>-0.21889</td>
</tr>
<tr>
<td>5</td>
<td>$\frac{FF}{LWL}$</td>
<td>-0.18688</td>
</tr>
<tr>
<td>6</td>
<td>Λ</td>
<td>0.00030</td>
</tr>
<tr>
<td>7</td>
<td>R_n</td>
<td>-0.03038</td>
</tr>
<tr>
<td>8</td>
<td>D/T</td>
<td>-0.05969</td>
</tr>
<tr>
<td>9</td>
<td>C_p</td>
<td>1.17300</td>
</tr>
<tr>
<td>10</td>
<td>$\frac{V}{(0.10L)^3}$</td>
<td>0.01372</td>
</tr>
<tr>
<td>11</td>
<td>$\frac{L_F}{LWL}$</td>
<td>7.67789</td>
</tr>
<tr>
<td>12</td>
<td>$\frac{B_X}{T_X}$</td>
<td>0.01268</td>
</tr>
<tr>
<td>13</td>
<td>$\frac{LWL}{B_X}$</td>
<td>0.00286</td>
</tr>
<tr>
<td>14</td>
<td>f_{BT}</td>
<td>-0.09411</td>
</tr>
<tr>
<td>15</td>
<td>C_{WPF}</td>
<td>0.02902</td>
</tr>
<tr>
<td>16</td>
<td>C_{PA}</td>
<td>-0.17861</td>
</tr>
<tr>
<td>17</td>
<td>C_{PF}</td>
<td>-0.86020</td>
</tr>
<tr>
<td>18</td>
<td>$\frac{FB}{LWL}$</td>
<td>-1.67830</td>
</tr>
<tr>
<td>19</td>
<td>P/D</td>
<td>-0.00631</td>
</tr>
<tr>
<td>20</td>
<td>Θ</td>
<td>-0.00090</td>
</tr>
<tr>
<td>21</td>
<td>C_{WP}</td>
<td>-0.07393</td>
</tr>
<tr>
<td>22</td>
<td>C_{WPA}</td>
<td>-0.03500</td>
</tr>
<tr>
<td>Step Number</td>
<td>Variable</td>
<td>Coefficient</td>
</tr>
<tr>
<td>-------------</td>
<td>----------</td>
<td>-------------</td>
</tr>
<tr>
<td>1</td>
<td>(C_{WP})</td>
<td>-0.67262</td>
</tr>
<tr>
<td>2</td>
<td>(C_{PF})</td>
<td>-5.32083</td>
</tr>
<tr>
<td>3</td>
<td>(D/T)</td>
<td>-0.06741</td>
</tr>
<tr>
<td>4</td>
<td>(R_n)</td>
<td>-0.01450</td>
</tr>
<tr>
<td>5</td>
<td>(P/D)</td>
<td>0.01381</td>
</tr>
<tr>
<td>6</td>
<td>(V/\sqrt{gWL})</td>
<td>-0.08095</td>
</tr>
<tr>
<td>7</td>
<td>(LWL/B_X)</td>
<td>0.00081</td>
</tr>
<tr>
<td>8</td>
<td>(\lambda)</td>
<td>0.00011</td>
</tr>
<tr>
<td>9</td>
<td>(f_{BT})</td>
<td>-0.07827</td>
</tr>
<tr>
<td>10</td>
<td>(C_{PE})</td>
<td>9.76818</td>
</tr>
<tr>
<td>11</td>
<td>(L_p/L_{WL})</td>
<td>-5.86386</td>
</tr>
<tr>
<td>12</td>
<td>(C_{WPF})</td>
<td>0.53347</td>
</tr>
<tr>
<td>13</td>
<td>(FF/L_{WL})</td>
<td>1.13789</td>
</tr>
<tr>
<td>14</td>
<td>(L_e/L_{WL})</td>
<td>-7.73494</td>
</tr>
<tr>
<td>15</td>
<td>(A_p/A_o)</td>
<td>0.03523</td>
</tr>
<tr>
<td>16</td>
<td>(V/(0.10L)^3)</td>
<td>0.00752</td>
</tr>
<tr>
<td>17</td>
<td>(S)</td>
<td>0.00107</td>
</tr>
<tr>
<td>18</td>
<td>(B_X/T_X)</td>
<td>-0.00023</td>
</tr>
<tr>
<td>19</td>
<td>(C_{WPA})</td>
<td>-0.09262</td>
</tr>
<tr>
<td>20</td>
<td>(C_p)</td>
<td>-7.91557</td>
</tr>
<tr>
<td>21</td>
<td>(C_{PA})</td>
<td>3.92659</td>
</tr>
<tr>
<td>22</td>
<td>(FB/L_{WL})</td>
<td>-1.52020</td>
</tr>
<tr>
<td>23</td>
<td>(t_e)</td>
<td>0.00003</td>
</tr>
<tr>
<td>PARAMETER</td>
<td>MEAN</td>
<td>STANDARD DEVIATION</td>
</tr>
<tr>
<td>------------------------</td>
<td>--------</td>
<td>--------------------</td>
</tr>
<tr>
<td>(1-t) Predicted</td>
<td>1.0004</td>
<td>0.0193</td>
</tr>
<tr>
<td>(1-t) Experimental</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(1-t) Taylor</td>
<td>0.9790</td>
<td>0.0449</td>
</tr>
<tr>
<td>(1-t) Experimental</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(1-w_t) Predicted</td>
<td>1.0003</td>
<td>0.0162</td>
</tr>
<tr>
<td>(1-w_t) Experimental</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(1-w_t) Taylor</td>
<td>0.9336</td>
<td>0.0350</td>
</tr>
<tr>
<td>(1-w_t) Experimental</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TABLE 8

STATISTICAL VALUES FOR ERROR DISTRIBUTION OF THRUST-DEDUCTION AND THRUST-WAKE FRACTIONS USING LINEAR REGRESSION MODEL
<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>MEAN</th>
<th>STANDARD DEVIATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1-t) Predicted</td>
<td>1.0000</td>
<td>0.0202</td>
</tr>
<tr>
<td>(1-t) Experimental</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(1-t) Taylor</td>
<td>0.9790</td>
<td>0.0449</td>
</tr>
<tr>
<td>(1-t) Experimental</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(1-w_T) Predicted</td>
<td>1.0010</td>
<td>0.0159</td>
</tr>
<tr>
<td>(1-w_T) Experimental</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(1-w_T) Taylor</td>
<td>0.9336</td>
<td>0.0350</td>
</tr>
<tr>
<td>(1-w_T) Experimental</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
TABLE A-1
DESCRIPTION OF INDEPENDENT AND DEPENDENT VARIABLES

1. \(\text{Froude’s Wetted Surface Coefficient} \)
 \(F = \frac{S}{V_T^{2/3}} \),
 where \(S \) is wetted surface and \(V_T \) is total displaced volume

2. \(\frac{L_{WL}}{B_X} \) Length-Beam Ratio,
 where \(L_{WL} \) is waterline length and \(B_X \) is maximum beam at waterline

3. \(\frac{B_X}{T_X} \) Beam-Draft Ratio,
 where \(B_X \) is maximum beam and \(T_X \) is maximum draft

4. \(C_p \) Prismatic Coefficient,
 \(C_p = \frac{V_T}{L_{WL} A_X} \)
 where \(V_T \) is total displacement volume, \(L_{WL} \) is waterline length, and \(A_X \) is maximum section area

5. \(i_E \) Half Angle of Entrance
 in degrees, of waterline at bow with reference to centerplane

6. \(\frac{FB}{L_{WL}} \) Ratio of longitudinal center of buoyancy from forward perpendicular to waterline length

7. \(f_{BT} \) Taylor sectional area coefficient for bulbous bow
 \(f_{BT} = \frac{A_{BT}}{A_X} \)
 Ratio of sectional area curve at FP to sectional area at maximum section
8. $\frac{V}{(0.1L)^3}$ Fatness Ratio

where displaced volume (V) is for salt water and length is on the waterline

9. C_{WP} Waterplane Coefficient

$$C_{WP} = \frac{A_W}{L_{WL} B_X}$$

where A_W is total waterplane area, L_{WL} is waterline length, and B_X is maximum beam at waterline

10. $\frac{FF}{L_{WL}}$

Longitudinal center of flotation aft of Forward Perpendicular, as fraction of length on waterline

11. L_P/L_{WL}

Length of parallel middlebody as fraction of waterline length

12. L_E/L_{WL}

Length of entrance as fraction of waterline length

13. C_{WPA} Afterbody Waterplane Coefficient

$$C_{WPA} = \frac{A_{WA}}{L_A B_X}$$

where A_{WA} is the waterplane area of the afterbody, L_A is one-half of L_{WL} or length of the afterbody, and B_X is maximum beam at the waterline

14. C_{WPF} Forebody Waterplane Coefficient

$$C_{WPF} = \frac{A_{WF}}{L_F B_X}$$
where A_W is the waterplane area of the forebody, L_F is one-half of L_{WL} or length of the forebody, and B_X is maximum beam at waterline.

15. C_{PA} Afterbody Prismatic Coefficient

$$C_{PA} = \frac{V_A}{L_A A_M}$$

where L_A is one-half of L_{WL} or length of the afterbody, V_A is volume of the afterbody and A_M is midship-section area

16. C_{PF} Forebody Prismatic Coefficient

$$C_{PF} = \frac{V_F}{L_F A_M}$$

where L_F is one-half of L_{WL} or length of the forebody, V_F is volume of the forebody, and A_M is midship-section area

17. C_{PE} Entrance Prismatic Coefficient

$$C_{PE} = \frac{V_E}{L_E A_X}$$

where L_E is the length of entrance, V_E is the volume of entrance, and A_X is maximum section area

18. C_{PR} Run Prismatic Coefficient

$$C_{PR} = \frac{V_R}{L_R A_X}$$

where L_R is the length of run, V_R is the volume of run, and A_X is maximum section area

19. A Scale Ratio

Length of ship to length of model scale ratio

20. D/T Propeller Diameter - Draft Ratio

Ratio of ship propeller diameter to ship draft
21. $\frac{A_p}{A_o}$ Projected Area - Disk Area Ratio

Projected area ratio of blades of propeller (outside of hub) to disk area

22. P/D Pitch Ratio

Ratio of propeller pitch to propeller diameter

23. R_n Ship Length Reynolds Number

$$R_n = \frac{V \cdot L_{WL}}{(\nu)}$$

where V is design speed, and L_{WL} is length of waterline, and ν is kinematic viscosity of salt water at 59°F.

24. $\frac{V}{\sqrt{gL_{WL}}}$ Froude number

Design speed divided by the square root of the gravitational acceleration and length on the waterline

25. t Thrust-deduction fraction

26. w_T Taylor wake fraction determined from thrust identity
<table>
<thead>
<tr>
<th>$C_{0.71}$</th>
<th>$C_{0.8}$</th>
<th>$C_{0.82}$</th>
<th>$C_{0.83}$</th>
<th>$C_{0.84}$</th>
<th>$C_{0.85}$</th>
<th>$C_{0.86}$</th>
<th>$C_{0.87}$</th>
<th>$C_{0.88}$</th>
<th>$C_{0.89}$</th>
<th>$C_{0.9}$</th>
<th>$C_{0.91}$</th>
<th>$C_{0.92}$</th>
<th>$C_{0.93}$</th>
<th>$C_{0.94}$</th>
<th>$C_{0.95}$</th>
<th>$C_{0.96}$</th>
<th>$C_{0.97}$</th>
<th>$C_{0.98}$</th>
<th>$C_{0.99}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.713</td>
<td>0.650</td>
<td>0.580</td>
<td>0.510</td>
<td>0.440</td>
<td>0.370</td>
<td>0.300</td>
<td>0.230</td>
<td>0.160</td>
<td>0.090</td>
<td>0.020</td>
<td>0.013</td>
<td>0.006</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>0.713</td>
<td>0.650</td>
<td>0.580</td>
<td>0.510</td>
<td>0.440</td>
<td>0.370</td>
<td>0.300</td>
<td>0.230</td>
<td>0.160</td>
<td>0.090</td>
<td>0.020</td>
<td>0.013</td>
<td>0.006</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>0.713</td>
<td>0.650</td>
<td>0.580</td>
<td>0.510</td>
<td>0.440</td>
<td>0.370</td>
<td>0.300</td>
<td>0.230</td>
<td>0.160</td>
<td>0.090</td>
<td>0.020</td>
<td>0.013</td>
<td>0.006</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>0.713</td>
<td>0.650</td>
<td>0.580</td>
<td>0.510</td>
<td>0.440</td>
<td>0.370</td>
<td>0.300</td>
<td>0.230</td>
<td>0.160</td>
<td>0.090</td>
<td>0.020</td>
<td>0.013</td>
<td>0.006</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
</tbody>
</table>

TABLE B-1

SUMMARY OF MODEL PARTICULARS AND BASIC PARAMETERS

<table>
<thead>
<tr>
<th>SCALE</th>
<th>B_T</th>
<th>B_{10}</th>
<th>P</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.13</td>
<td>0.9860</td>
<td>0.7670</td>
<td>1.192</td>
<td>2.876</td>
</tr>
</tbody>
</table>

Shear Velocity Number N_S

<table>
<thead>
<tr>
<th>S</th>
<th>V_{S_T}</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.8</td>
<td>2.182</td>
<td>0.831</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>T</th>
<th>V_{S_T}</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.8</td>
<td>2.182</td>
<td>0.831</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>T</th>
<th>V_{S_T}</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.8</td>
<td>2.182</td>
<td>0.831</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>T</th>
<th>V_{S_T}</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.8</td>
<td>2.182</td>
<td>0.831</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>T</th>
<th>V_{S_T}</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.8</td>
<td>2.182</td>
<td>0.831</td>
</tr>
<tr>
<td>Beam-Draft Ratio (d/D)</td>
<td>Frequency</td>
<td></td>
</tr>
<tr>
<td>------------------------</td>
<td>------------</td>
<td></td>
</tr>
<tr>
<td>34.0</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>33.0</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>32.0</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>31.0</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>30.0</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>29.0</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>28.0</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>27.0</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>26.0</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>25.0</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>24.0</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>23.0</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>22.0</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>21.0</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>20.0</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>19.0</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>18.0</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>17.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure C-3 - Frequency Distribution of the Beam-Draft Ratio for Twin-Screw Destroyers

2.72 2.78 2.84 2.90 2.96 3.02 3.08 3.14 3.20 3.26 3.32 3.38 3.44 3.50 3.56 3.62 3.68
2.75 2.81 2.87 2.93 3.05 3.11 3.17 3.23 3.29 3.35 3.41 3.47 3.53 3.59 3.65
Figure C-4 - Frequency Distribution of the Prismatic Coefficient for Twin-Screw Destroyers
Figure C-5 - Frequency Distribution of the Half Angle of Entrance for Twin-Screw Destroyers
Figure C-6 - Frequency Distribution of the Longitudinal Center of Buoyancy-Waterline Length Ratio for Twin-Screw Destroyers
Figure C-8 - Frequency Distribution of the Fatness Ratio for Twin-Screw Destroyers
Figure C-9 - Frequency Distribution of the Waterplane Coefficient for Twin-Screw Destroyers
Figure C-10 - Frequency Distribution of the Longitudinal Center of Flotation-Waterline Length Ratio for Twin-Screw Destroyers
<table>
<thead>
<tr>
<th>Length (in)</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>+ 80.0</td>
</tr>
<tr>
<td>6.0</td>
<td>78.0</td>
</tr>
<tr>
<td>12.0</td>
<td>76.0</td>
</tr>
<tr>
<td>18.0</td>
<td>74.0</td>
</tr>
<tr>
<td>24.0</td>
<td>72.0</td>
</tr>
<tr>
<td>30.0</td>
<td>70.0</td>
</tr>
<tr>
<td>36.0</td>
<td>68.0</td>
</tr>
<tr>
<td>42.0</td>
<td>66.0</td>
</tr>
<tr>
<td>48.0</td>
<td>64.0</td>
</tr>
<tr>
<td>54.0</td>
<td>62.0</td>
</tr>
<tr>
<td>60.0</td>
<td>60.0</td>
</tr>
<tr>
<td>66.0</td>
<td>58.0</td>
</tr>
<tr>
<td>72.0</td>
<td>56.0</td>
</tr>
<tr>
<td>78.0</td>
<td>54.0</td>
</tr>
<tr>
<td>84.0</td>
<td>52.0</td>
</tr>
<tr>
<td>90.0</td>
<td>50.0</td>
</tr>
<tr>
<td>96.0</td>
<td>48.0</td>
</tr>
<tr>
<td>102.0</td>
<td>46.0</td>
</tr>
<tr>
<td>108.0</td>
<td>44.0</td>
</tr>
<tr>
<td>114.0</td>
<td>42.0</td>
</tr>
<tr>
<td>120.0</td>
<td>40.0</td>
</tr>
<tr>
<td>126.0</td>
<td>38.0</td>
</tr>
<tr>
<td>132.0</td>
<td>36.0</td>
</tr>
<tr>
<td>138.0</td>
<td>34.0</td>
</tr>
<tr>
<td>144.0</td>
<td>32.0</td>
</tr>
<tr>
<td>150.0</td>
<td>30.0</td>
</tr>
<tr>
<td>156.0</td>
<td>28.0</td>
</tr>
<tr>
<td>162.0</td>
<td>26.0</td>
</tr>
<tr>
<td>168.0</td>
<td>24.0</td>
</tr>
<tr>
<td>174.0</td>
<td>22.0</td>
</tr>
<tr>
<td>180.0</td>
<td>20.0</td>
</tr>
<tr>
<td>186.0</td>
<td>18.0</td>
</tr>
<tr>
<td>192.0</td>
<td>16.0</td>
</tr>
<tr>
<td>198.0</td>
<td>14.0</td>
</tr>
<tr>
<td>204.0</td>
<td>12.0</td>
</tr>
<tr>
<td>210.0</td>
<td>10.0</td>
</tr>
<tr>
<td>216.0</td>
<td>8.0</td>
</tr>
<tr>
<td>222.0</td>
<td>6.0</td>
</tr>
<tr>
<td>228.0</td>
<td>4.0</td>
</tr>
<tr>
<td>234.0</td>
<td>2.0</td>
</tr>
</tbody>
</table>

Figure C-11 - Frequency Distribution of the Length of Parallel Middlebody-Waterline Length Ratio for Twin-Screw Destroyers
Figure C-13 - Frequency Distribution of the Afterbody Waterplane Coefficient for Twin-Screw Destroyers
Figure C-14 - Frequency Distribution of the Forebody Waterplane Coefficient for Twin-Screw Destroyers
Figure C-15 - Frequency Distribution of the Afterbody Prismatic Coefficient for Twin-Screw Destroyers
Figure C-16 - Frequency Distribution of the Forebody Prismatic Coefficient for Twin-Screw Destroyers
45.0	49.0
38.0	34.0
34.0	36.0
37.0	36.0
18.0	32.0
35.0	31.0
34.0	30.0
32.0	29.0
31.0	28.0
30.0	27.0
29.0	26.0
28.0	25.0
27.0	24.0
26.0	23.0
25.0	22.0
24.0	21.0
23.0	20.0
22.0	19.0
21.0	18.0
20.0	17.0
19.0	16.0
0.0	15.0
1.0	14.0
2.0	13.0
3.0	12.0
4.0	11.0
5.0	10.0
6.0	9.0
7.0	8.0
8.0	7.0
9.0	6.0
10.0	5.0
11.0	4.0
12.0	3.0
13.0	2.0
14.0	1.0

Figure C-17 - Frequency Distribution of the Entrance Prismatic Coefficient for Twin-Screw Destroyers
	0.0	1.0	2.0	3.0	4.0	5.0	6.0	7.0	8.0	9.0	10.0	11.0	12.0	13.0	14.0	15.0	16.0	17.0	18.0	19.0	20.0	21.0	22.0	23.0	24.0	25.0	26.0	27.0	28.0	29.0	30.0	31.0	32.0	33.0	34.0	35.0	36.0	37.0	38.0	39.0	40.0															

Figure C-18 - Frequency Distribution of the Run Prismatic Coefficient for Twin-Screw Destroyers
Figure C-19 - Frequency Distribution of the Scale Ratio for Twin-Screw Destroyers
<table>
<thead>
<tr>
<th>Diameter</th>
<th>Draft</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>1.11</td>
<td>1.0</td>
</tr>
<tr>
<td>2.0</td>
<td>1.11</td>
<td>1.11</td>
</tr>
<tr>
<td>3.0</td>
<td>1.11</td>
<td>1.11</td>
</tr>
<tr>
<td>4.0</td>
<td>1.11</td>
<td>1.11</td>
</tr>
<tr>
<td>5.0</td>
<td>1.11</td>
<td>1.11</td>
</tr>
<tr>
<td>6.0</td>
<td>1.11</td>
<td>1.11</td>
</tr>
<tr>
<td>7.0</td>
<td>1.11</td>
<td>1.11</td>
</tr>
<tr>
<td>8.0</td>
<td>1.11</td>
<td>1.11</td>
</tr>
<tr>
<td>9.0</td>
<td>1.11</td>
<td>1.11</td>
</tr>
<tr>
<td>10.0</td>
<td>1.11</td>
<td>1.11</td>
</tr>
<tr>
<td>11.0</td>
<td>1.11</td>
<td>1.11</td>
</tr>
<tr>
<td>12.0</td>
<td>1.11</td>
<td>1.11</td>
</tr>
<tr>
<td>13.0</td>
<td>1.11</td>
<td>1.11</td>
</tr>
<tr>
<td>14.0</td>
<td>1.11</td>
<td>1.11</td>
</tr>
<tr>
<td>15.0</td>
<td>1.11</td>
<td>1.11</td>
</tr>
<tr>
<td>16.0</td>
<td>1.11</td>
<td>1.11</td>
</tr>
<tr>
<td>17.0</td>
<td>1.11</td>
<td>1.11</td>
</tr>
<tr>
<td>18.0</td>
<td>1.11</td>
<td>1.11</td>
</tr>
<tr>
<td>19.0</td>
<td>1.11</td>
<td>1.11</td>
</tr>
<tr>
<td>20.0</td>
<td>1.11</td>
<td>1.11</td>
</tr>
<tr>
<td>21.0</td>
<td>1.11</td>
<td>1.11</td>
</tr>
<tr>
<td>22.0</td>
<td>1.11</td>
<td>1.11</td>
</tr>
<tr>
<td>23.0</td>
<td>1.11</td>
<td>1.11</td>
</tr>
<tr>
<td>24.0</td>
<td>1.11</td>
<td>1.11</td>
</tr>
<tr>
<td>25.0</td>
<td>1.11</td>
<td>1.11</td>
</tr>
<tr>
<td>26.0</td>
<td>1.11</td>
<td>1.11</td>
</tr>
<tr>
<td>27.0</td>
<td>1.11</td>
<td>1.11</td>
</tr>
<tr>
<td>28.0</td>
<td>1.11</td>
<td>1.11</td>
</tr>
<tr>
<td>29.0</td>
<td>1.11</td>
<td>1.11</td>
</tr>
<tr>
<td>30.0</td>
<td>1.11</td>
<td>1.11</td>
</tr>
<tr>
<td>31.0</td>
<td>1.11</td>
<td>1.11</td>
</tr>
<tr>
<td>32.0</td>
<td>1.11</td>
<td>1.11</td>
</tr>
<tr>
<td>33.0</td>
<td>1.11</td>
<td>1.11</td>
</tr>
<tr>
<td>34.0</td>
<td>1.11</td>
<td>1.11</td>
</tr>
<tr>
<td>35.0</td>
<td>1.11</td>
<td>1.11</td>
</tr>
</tbody>
</table>

Figure C-20 - Frequency Distribution of the Propeller Diameter-Draft Ratio for Twin-Screw Destroyers
Figure C-21 - Frequency Distribution of the Projected Area-Disk Area Ratio for Twin-Screw Destroyers
<table>
<thead>
<tr>
<th>Pitch Ratio</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.89</td>
<td>.91</td>
</tr>
<tr>
<td>0.93</td>
<td>.95</td>
</tr>
<tr>
<td>0.97</td>
<td>.99</td>
</tr>
<tr>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>1.05</td>
<td>1.05</td>
</tr>
<tr>
<td>1.09</td>
<td>1.09</td>
</tr>
<tr>
<td>1.13</td>
<td>1.13</td>
</tr>
<tr>
<td>1.17</td>
<td>1.17</td>
</tr>
<tr>
<td>1.21</td>
<td>1.21</td>
</tr>
<tr>
<td>1.23</td>
<td>1.23</td>
</tr>
<tr>
<td>1.29</td>
<td>1.29</td>
</tr>
<tr>
<td>1.32</td>
<td>1.32</td>
</tr>
<tr>
<td>1.37</td>
<td>1.37</td>
</tr>
<tr>
<td>1.41</td>
<td>1.41</td>
</tr>
<tr>
<td>1.45</td>
<td>1.45</td>
</tr>
<tr>
<td>1.49</td>
<td>1.49</td>
</tr>
<tr>
<td>1.53</td>
<td>1.53</td>
</tr>
</tbody>
</table>

Figure C-22 - Frequency Distribution of the Pitch Ratio for Twin-Screw Destroyers
<table>
<thead>
<tr>
<th>Reynolds Number</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>2.0</td>
<td>1.1</td>
</tr>
<tr>
<td>3.0</td>
<td>1.1</td>
</tr>
<tr>
<td>4.0</td>
<td>1.1</td>
</tr>
<tr>
<td>5.0</td>
<td>1.1</td>
</tr>
<tr>
<td>6.0</td>
<td>1.1</td>
</tr>
<tr>
<td>7.0</td>
<td>1.1</td>
</tr>
<tr>
<td>8.0</td>
<td>1.1</td>
</tr>
<tr>
<td>9.0</td>
<td>1.1</td>
</tr>
<tr>
<td>10.0</td>
<td>1.1</td>
</tr>
<tr>
<td>11.0</td>
<td>1.1</td>
</tr>
<tr>
<td>12.0</td>
<td>1.1</td>
</tr>
<tr>
<td>13.0</td>
<td>1.1</td>
</tr>
<tr>
<td>14.0</td>
<td>1.1</td>
</tr>
<tr>
<td>15.0</td>
<td>1.1</td>
</tr>
<tr>
<td>16.0</td>
<td>1.1</td>
</tr>
<tr>
<td>17.0</td>
<td>1.1</td>
</tr>
<tr>
<td>18.0</td>
<td>1.1</td>
</tr>
<tr>
<td>19.0</td>
<td>1.1</td>
</tr>
<tr>
<td>20.0</td>
<td>1.1</td>
</tr>
<tr>
<td>21.0</td>
<td>1.1</td>
</tr>
<tr>
<td>22.0</td>
<td>1.1</td>
</tr>
<tr>
<td>23.0</td>
<td>1.1</td>
</tr>
<tr>
<td>24.0</td>
<td>1.1</td>
</tr>
<tr>
<td>25.0</td>
<td>1.1</td>
</tr>
<tr>
<td>26.0</td>
<td>1.1</td>
</tr>
<tr>
<td>27.0</td>
<td>1.1</td>
</tr>
<tr>
<td>28.0</td>
<td>1.1</td>
</tr>
<tr>
<td>29.0</td>
<td>1.1</td>
</tr>
<tr>
<td>30.0</td>
<td>1.1</td>
</tr>
<tr>
<td>31.0</td>
<td>1.1</td>
</tr>
<tr>
<td>32.0</td>
<td>1.1</td>
</tr>
<tr>
<td>33.0</td>
<td>1.1</td>
</tr>
<tr>
<td>34.0</td>
<td>1.1</td>
</tr>
<tr>
<td>35.0</td>
<td>1.1</td>
</tr>
<tr>
<td>36.0</td>
<td>1.1</td>
</tr>
<tr>
<td>37.0</td>
<td>1.1</td>
</tr>
<tr>
<td>38.0</td>
<td>1.1</td>
</tr>
<tr>
<td>39.0</td>
<td>1.1</td>
</tr>
<tr>
<td>40.0</td>
<td>1.1</td>
</tr>
</tbody>
</table>

Figure C-23 - Frequency Distribution of the Ship Reynolds Number for Twin-Screw Destroyers
Figure C-25 - Frequency Distribution of the Thrust-Deduction Fraction for Twin-Screw Destroyers
APPENDIX D

VARIATION OF INDEPENDENT VARIABLES
WITH THRUST-DEDUCTION AND THRUST-WAKE FRACTIONS
Figure 3-1 - Variation of Froude's Wetted Surface Coefficient and Thrust-Deduction Fraction
Figure D-2 - Variation of Froude's Wetted Surface Coefficient and Thrust-Wake Fraction
Figure D-4 - Variation of Length-Beam Ratio and Thrust-Wake Fraction
Figure D-5 - Variation of Beam-Draft Ratio and Thrust-Deduction Fraction
Figure D-6 - Variation of Beam-Draft Ratio and Thrust-Wake Fraction
Figure D-8 - Variation of Prismatic Coefficient and Thrust-Wake Fraction
Figure D-9 - Variation of Half Angle of Entrance and Thrust-Deduction Fraction
LONGITUDINAL CENTER OF BUOYANCY-WATERLINE LENGTH RATIO

Figure D-11 - Variation of Longitudinal Center of Buoyancy-Waterline Length Ratio and Thrust-Deduction Fraction
LONGITUDINAL CENTER OF BUOYANCY-WATERLINE LENGTH RATIO

Figure D-12 - Variation of Longitudinal Center of Buoyancy-Waterline Length Ratio and Thrust-Wake Fraction

THRUST-WAKE FRACTION (Lm)
Figure D-13 - Variation of Taylor's r', and Thrust-Reduction Fraction
Figure D-15 - Variation of Fatness Ratio and Thrust-Deduction Fraction
Figure D-16 - Variation of Fatness Ratio and Thrust-Wake Fraction
Figure D-17 - Variation of Waterplane Coefficient and Thrust-Deduction Fraction
Figure D-18 - Variation of Waterplane Coefficient and Thrust-Wake Fraction

(\frac{C}{m}) vs. THRUST-WAKE FRACTION
LONGITUDINAL CENTER OF FLOTATION-WATERLINE LENGTH RATIO

Figure D-19 - Variation of Longitudinal Center of Flotation-Waterline Length Ratio and Thrust-Deduction Fraction
LONGITUDINAL CENTER OF FLOTTATION-WATERLINE LENGTH RATIO

Figure D-20 - Variation of Longitudinal Center of Flotation-Waterline Length Ratio and Thrust-Wake Fraction
Figure D-23 - Variation of Length of Entrance-Waterline Length Ratio and Thrust-Deduction Fraction
Figure D-24 - Variation of Length of Entrance-Waterline Length Ratio and Thrust-Wake Fraction

LENGTH OF ENTRANCE-WATERLINE LENGTH RATIO

- Thrust-Wake Fraction (ψ)

Values range from -0.048 to 0.132.
AFTERBODY WATERPLANE COEFFICIENT
Figure D-25 - Variation of Afterbody Waterplane Coefficient and Thrust-Deduction Fraction
Figure D-29 - Variation of Afterbody Prismatic Coefficient and Thrust-Deduction Fraction
Figure D-30 - Variation of Afterbody Prismatic Coefficient and Thrust-Wake Fraction
Figure D-31 - Variation of Forebody Prismatic Coefficient and Thrust-Deduction Fraction
Figure D-33 - Variation of Entrance Prismatic Coefficient and Thrust-Deduction Fraction
Figure D-40 - Variation of Propeller Diameter-Draft Ratio and Thrust-Wake Fraction
SHIP REYNOLDS NUMBER $\times 10^{-9}$

Figure D-46 - Variation of Ship Reynolds Number and Thrust-Wake Fraction
Figure D-47 - Variation of the Design Froude Number and Thrust-Deduction Fraction
Figure D-48 - Variation of the Design Froude Number and Thrust-Wake Fraction
DTNSRDC ISSUES THREE TYPES OF REPORTS

1. DTNSRDC REPORTS, A FORMAL SERIES, CONTAIN INFORMATION OF PERMANENT TECHNICAL VALUE. THEY CARRY A CONSECUTIVE NUMERICAL IDENTIFICATION REGARDLESS OF THEIR CLASSIFICATION OR THE ORIGINATING DEPARTMENT.

2. DEPARTMENTAL REPORTS, A SEMIFORMAL SERIES, CONTAIN INFORMATION OF A PRELIMINARY, TEMPORARY, OR PROPRIETARY NATURE OR OF LIMITED INTEREST OR SIGNIFICANCE. THEY CARRY A DEPARTMENTAL ALPHANUMERICAL IDENTIFICATION.

3. TECHNICAL MEMORANDA, AN INFORMAL SERIES, CONTAIN TECHNICAL DOCUMENTATION OF LIMITED USE AND INTEREST. THEY ARE PRIMARILY WORKING PAPERS INTENDED FOR INTERNAL USE. THEY CARRY AN IDENTIFYING NUMBER WHICH INDICATES THEIR TYPE AND THE NUMERICAL CODE OF THE ORIGINATING DEPARTMENT. ANY DISTRIBUTION OUTSIDE DTNSRDC MUST BE APPROVED BY THE HEAD OF THE ORIGINATING DEPARTMENT ON A CASE-BY-CASE BASIS.