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ABSTRACT

An analytical model was constructed to predict the

response of the ball obturator in a ball obturated, spin

stabilized tubular projectile (BOT). Torques acting on

the obturator were considered to be due to fluid and sliding

friction forces. An experimental apparatus was designed,

and built to simulate the BOT. Data obtained were the times

required for the obturator to nutate through a known angle

over a range of projectile angular velocities. Utilizing

published coefficient of sliding friction information and a

linear approximation of the exact solution, the trend in the

data to go through a minimum value was duplicated. A least

squares fit of the linear approximation to the data allowed

the formulation of a new sliding friction coefficient, ps"

Using this value of ps, a plot of the least squares fit,

values from the exact solution and the experimental data

was constructed. The correlation is extremely good so that

confidence in the predictive capabilities of the model was

gained.
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NOMENCLATURE

(Only primary symbols are listed. Intermediate quantities

are defined in the text.)

A major mass moment in inertia, N-m-s

C minor mass moment of inertia, N-m-s

G applied torque, N-m

h width of gap between ball and projectile, m

M magnitude of applied torque, N-m

rp radius of hole through projectile, m

r s  radius of hole through ball, m

R s radius of ball, m

Ssin -' (rs/Rs)

e,, Euler angles (see Fig. 7)

X (C/A)-l
fluid viscosity (Pa-s)

us  coefficient of sliding friction, dimensionless

Wangular velocity

Subscripts

cr refers to condition when 6=8cr=5 s

0 initial value

p projectile

r refers to relativ2 angular velocity

s sphere (ball obturator)

ii



x,y,z refers to inertial coordinate system

1,2,3 refers to body-fixed coordinate system

Superscripts

denotes differential with respect to time

,12
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I. INTRODUCTION

A. BACKGROUND

The tubular projectile is not a new concept. As early as

1858, the usefulness of tubular projectiles was recognized for

specific purposes. In that year, Joseph Whitworth (Whitworth

Threads) wrote about and included an illustration of the tubular

projectile in the section on Rifled Firearms of his Miscellaneous

Papers on Mechanical Subjects [1]1. The projectile pictured

was hexagonal with a circular hole. Whitworth noted its par-

ticular "...effectiveness in perforating elastic materials

which prevented them from closing up." The projectile utilized

a wooden sabot. Whitworth also said that the tubular projectile

penetrated deeper into masonry than any he was acquainted with.

The Krnka-Hebler projectile was the next projectile refer-

enced chronologically [2]. According to Charters and Thomas,

this projectile was reported in the Allgemeine Schweitzerische

Militarzeitung as having been so successful that the Ordnance

Department in the United States carried out firing tests of

caliber .30 tubular projectiles in 1894. A description of

those test firings and an updating of the results was performed

by I.E. Segal and included in Ref. 2. In the 1894 tests, a

vulcanized fiber sabot was used to push the projectile out the

barrel.

'Numbers appearing in brackets refer to the list of references.
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The purpose of the 1894 test was to compare trajectories

of standard and tubular projectiles. This was done by com-

paring the vertical drop on target at a given range.

Segal's report in Ref. 2 indicates that the drag co-

efficients computed from the 1894 results agree closely with

those of Charters and Thomas (21, even though their report

was published fifty years later (1944) and their experimental

apparatus was more sophisticated.

B. RECENT DEVELOPMENTAL STUDIES

The results obtained by independent researchers as to the

value of the tubular projectile as an alternative to the con-

ventional round are contradictory. It seems as if there was

as much research devoted to discrediting the tubular pro-

jectile as there was to investigating its merits. Frank and

McLaughlin [3] have accumulated a great deal of data from

various sources in an attempt to "objectively compare" the

merits of the tubular and "conventional shapes". The authors

concluded that the tubular has no particular advantages over

"well designed" conventional projectile shapes.

Their findings disagree with most of those discussed in

the following sections.

1. Range Tests

Winchenbach, Daniel and Edgar [41 conducted range

tests of six configurations of tubular projectiles and con-

cluded that the drag coefficients were significantly lower

16
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than the standard High Explosive Incendiary (HEI) projectile

of the same caliber. Only projectiles of the same bore size

were compared. The experimental models were constructed from

standard 20-mm ammunition by boring various hole sizes to

obtain ". . area ratios (At/Ai ) of 0.7, 0.8, 0.9 and 1.0."

Where At is the throat area and Ai is the inlet area of the

projectile. The drag coefficients of the projectiles with

area ratios of 0.8, 0.9 and 1.0 were less than half that of

the projectile with area ratio of 0.7. The higher drag co-

efficient was attributed to the underexpanded flow at the

exit resulting in high base drag.

Range tests conducted for the concept evaluation of

the 20-mm tubular projectile for the Vulcan Weapons System [5]

showed that the tubular projectile performed better than the

standard HEI round, with lower drag, shorter time of flight for

a given range (30 percent shorter at 1000 meters, 40 percent

shorter at 2000 meters) and similar dispersion characteristics

on target.

Recent tests at the Naval Weapons Center, China Lake,

California of the Ball Obturated Tubular Projectile (BOT)

have shown a definite advantage in that the low drag of the

tubular projectile means slower retardation of velocity and

hence a higher terminal kinetic energy [6]. (The BOT is the

object of this investigation and will be described in detail

in later sections of this thesis.)
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2. Target Impact Tests

The higher the energy delivered to the target, the

greater the damage. Since kinetic energy is directly propor-

tional to the first power of mass and to the square of the

velocity, the reduced mass of the tubular projectile is com-

pensated by a higher muzzle velocity and therefore a potential

for higher kinetic energy. However, due to the improved drag

characteristics, the reduction in mass to obtain the higher

muzzle velocities may not be necessary, depending upon the

imposed performance criteria.

Target impact studies have been carried out with

various projectile configurations and target types.

Rhethorst, et.al. [7] conducted impact studies of 7.62-mm

tubular projectiles on helmets. Tests showed that even with

the same energy, the tubular projectile penetrated further.

Kitchen and Keeser [8) conducted studies for the

Air Force on the impact effectiveness of tubular projectiles

on simulated aircraft fuel cells. These tests were conducted

with steel and depleted uranium (DU) tubular projectiles and

standard 20-mm HEI projectiles. The projectiles were fired

at double panels at varying degrees of obliquity. Of the

forty-seven tests of the steel tubular projectiles which im-

pacted the target, twenty breached the rear panel up to

angles of 700. The DU projectiles breached the rear panel

even at angles of 850 and fires were started in three of the

five DU tests. The standard M56 HEI projectiles failed to

18



breach the rear panel in each of the five firings even though

severe damage to the front panel and two fires occurred.

Brunsvold and Kalivretenos [9] conducted a program

to test the effectiveness of the tubular projectile against

a simulated cruise missile warhead. Tests were conducted

with 20 and 40-mm rounds. Results of those tests are

classified, and therefore not presented here. It was noted

(91 that due to the improved stability characteristics of

the tubular projectile, only half the spin rate need be im-

parted by the rifling in the barrel to obtain the same sta-

bility as a standard projectile, which indicates less barrel

wear.

3. Weapons System Capability

For the tubular projectile to be practical, it must

be able to interface with existing weapons systems. Refer-

ence 5 is a report of the 1978 tests conducted by the Army

to evaluate the tubular projectile in the Vulcan weapons

system.

Because the nose of the tubular projectile is flat

compared to the standard projectile (See Fig. 1), it ".

did not lend itself to chambering in the weapon." Personnel

safety required that the weapon be remotely operated and

therefore only the surface-to-surface performance comparison

was made.

The dispersion on target improved for the tubular

projectile from 700 to 2000 meters. The dispersion varied

,19
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Figure 1. 20-mm Ball Obturated Tubular Projectile (BOT),
components, and conventional 20-mm projectile.
(Photograph courtesy of NWC, China Lake).

-4

Figure 2a. Standard 20-mm projectile in flight with
detached bow shock. (Photograph courtesy
of NWC, China Lake).

20
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Figure 2b. BOT with passage blocked resulting in
detached bow shock. (Photograph
courtesy of NWC, China Lake).

Figure 2c. BOT with no blockage in passage, only attached
oblique shocks emanating from the lip of the

projectile. (Photograph courtesy of NW.C, China
Lake).
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on the average by only 0.2 mil over the entire range spectrum

between the tubular and conventional HEI projectile. However,

at 2000 meters, the tubular was better by 0.4 mil. The time

of flight to target was another impressive finding in Ref. 5.

The tubular projectile had a 30 percent shorter flight time

at 1000 meters and a 40 percent shorter flight time at 2000

meters than the conventional HEI projectile.

Results of firings of 25-mm and 30-mm tubular pro-

jectiles from the Oerlikin KBA and GAU-8/A respectively were

reported in part in Ref. 3. Figures comparing Line-of-Sight

Penetration Capability vs. Range for a conventional spinner

configuration based on AR-2 shape, a finner configuration

based on F10 shape, and a tubular projectile were shown. The

tubular projectile was shown to be inferior in both instances.

The report does not indicate the degree of compatibility the

tubular configuration has with the guns used.

4. Review Of Internal Shock Wave Considerations

From photographs of tubular projectiles in flight [4]

and during wind tunnel testing [7], various shock patterns

have been observed at the inlet region and in the wake. The

photographs of Figs. 2a-c show the BOT and the conventional

projectiles in flight. The sabots used in Refs. 4 and 7 were

of the pusher type similar to those illustrated in Fig. 3.

The detached bow shock seen in the photograph of the standard

projectile (Fig. 2a) is similar to that of the tubular pro-

jectile shown in Fig. 2b with passage closed (and in Ref. 4

22
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with the sabot attached). With no blockage of the internal

passage (Fig. 2c) there was no detached bow shock, with only

attached oblique shocks emanating from the lip of the pro-

jectile. This latter case allows the possibility of four

other internal flow/shock configurations.

(1) A normal shock standing at the entrance to the pro-

jectile;

(2) A normal shock standing at some intermediate position

in the channeli

(3) A system of oblique shocks present in the channel;

(4) The channel is devoid of shocks and the flow is shock-

free through the channel.

In each of the cases described, specific conditions

must exist:

a. The Detached Bow Shock

When the projectile passage is closed, such as

in the case of the attached sabot, the projectile acts as a

blunt-nosed body with the resultant detached normal shock [101

(see Figs. 2a and b). From oblique shock theory, there is a

maximum turning angle which the flow (supersonic) can nego-

tiate through an attached oblique shock. When this turning

angle is exceeded, the shock becomes normal and detaches.

There have been many studies as to the strength and location

of this detached bow shock, but here the internal flow is of

more interest and, therefore, those references are not in-

cluded in this discussion.
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b. Normal Shock At The Entrance

From one-dimensional frictionless flow theory,

for a given initial Mach number, M , the pressure ratio

across a normal shock is given by:

P (1 + yM2 )
2 _ 1 (1)

P (1 + yM2)
2

for a perfect gas with constant specific heats. P is the2

pressure downstream of the normal shock, P the pressure up-I

stream of the shock, M the downstream Mach number and y the
2

ratio of specific heats, Cp/Cv. This pressure ratio must

exist in order for a normal shock to be formed. Kantrowitz

and Donaldson (11) conducted experiments in which they con-

cluded that the contraction-ratio in the entrance of a super-

sonic diffuser was important in reducing the kinetic energy

losses. The studies done were on supersonic diffusers with

varying areas. The formation of a normal shock at the en-

trance is determined by the throat area and initial Mach

number such that the Mach number at the throat of the duct

is exactly 1.0. The maximum value of the ratio of the capture

(inlet) area, Ac, to throat area, At, reauired to allow the

bow shock to be swallowed is given in Ref. 9 as:

Y+l
Ac 1 2 1 + M2 2 (y-l)- [ 11 2+ (2)
At 2
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where M may be obtained from tabulated values for normal

shock waves for a given free stream Mach number, M or may

be calculated from

21

=2 2 l 
(3)

c. Normal Shock At An Intermediate Position

The formation and position of a normal shock at

an intermediate position in a constant area duct has been

theorized in the presence and absence of viscous effects.

In the absence of viscous effects, the normal shock tends

to grow from the interaction of oblique shocks and will be

discussed under "d" below.

In the presence of friction, the formation of

the boundary layer along the duct walls reduces the effective

area of the duct [12, 13, 141. This reduction has the effect

of decelerating a supersonic flow as in a diffuser. In a

constant area duct with friction, the location of a normal

shock in the duct may be determined by Fanno Line Flow Theory.

The length to diameter ratio, friction factor and initial

Mach number determine the range of back pressures for which

the duct will be "choked", or a normal shock set up [101.

For a given supersonic entrance Mach number, there

exists a maximum value of fL/D; f, being the Reynolds number-

dependent friction factor, L, the length of the duct and D,

the diameter of the duct. This maximum value, is the value

26



for which the duct will remain unchoked. If the actual value

of fL/D is less than the maximum, the flow will remain un-

choked if the back pressure is sufficiently low at the duct

exit.

In the case of the tubular projectile, assuming

a constant back pressure, L/D of (typically) 8.0 and Re in

the range from approximately 4x10 5 to 6x10 5, from Fig. 20.1

of Ref. 15, f is between 0.013 and 0.0125. Using an average

value of f of 0.01275,

fL/D = 0.102

From Ref. 10, Appendix E, this corresponds to M=1.41.

Iterating to obtain better values of f from a revised average

Re would increase the Mach number at which the projectile

would choke. After one iteration the Mach number increases

to M = 1.44. As L/D decreases, Re increases and f decreases

resulting in a lower value of the Mach number at which the

flow chokes.

d. System Of Oblique Shocks In The Duct

The formation of a system of oblique shocks in a

duct or channel is the most difficult to explain and analyze.

Ferri [16, 17] has developed an analytical solution for the

shock structure utilizing the Method of Characteristics.

The analysis becomes difficult if not impossible at the

centerline of the duct because, according to Ferri, the oblique

shock curves toward the centerline and becomes normal. The

extent of the normal shock is dependent upon geometry and flow
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conditions. The larger the wedge angle for a given Mach

number, the stronger and larger the normal shock at the

centerline. The constant area duct implies a zero internal

deflection angle. In this instance, Ferri's analysis, which

ignores viscous effects, implies that no normal shock is

formed (Fig. 13 of Ref. [16]). With no wedge angle, there

is no oblique shock formed.

Brunsvold and Kalivretenos [9] have modified a

Method of Characteristics computer code [18] developed for

supersonic inlets to account for the absence of a center-body

on the tubular projectile. This modified code was then

coupled with a subroutine to calculate the internal wave drag

coefficient based on Ac and used to obtain an optimum internal

geometry for the tubular projectile which would give minimum

internal wave drag. The computer code assumes inviscid,

supersonic flow throughout. Reference 9 states that some

inaccuracies are allowed in the computation due to the re-

laxation of the convergence of the characteristics equations

at the centerline, but that the inaccuracies do not have time

to propagate to the walls of the projectile before the exit

plane. Therefore, the inaccuracies do not affect the wall

pressure distribution.

Rhethorst, et.al. [19] has postulated another

method for determining the shock structure and the resultant

internal wave drag for a tubular projectile, using Prandtl-

Meyer wave theory. But again the initial oblique shock
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formation is dependent upon the wedge angle at the entrance

and therefore does not apply to the constant area duct case

where no internal wedge angle exists. Ferri [16, 17],

Brunsvold and Kalivretenos [91 and Rhethorst, et.al. [19]

have neglected boundary layer/shock wave interaction.

Fejer, et.al., [14] and Waltrup and Billig [151

have conducted experiments utilizing constant area ducts.

Fejer, et.al., performed experiments on constant area rec-

tangular ducts varying in lengths, whereas Waltrup and Billig

conducted their experiments on cylindrical ducts of varying

lengths and diameters. Other than the obvious geometry dif-

ferences, the procedures were very similar. The advantage

of the rectangular duct was the ability to visualize the shock

patterns through a viewing port, whereas the curvature of the

walls of the cylindrical duct precluded accurate visualization.

In both experiments, oblique shock systems were

formed in the ducts. -he location of the shock system in the

duct and the actual configuration of the shock system was con-

trolled by the pressure ratio. The pressure ratios were con-

trolled in different ways, but the effects were the same. As

back pressure increased, a shock system formed at the exit of

the duct. With further increases in back pressure the system

of shocks moved upstream and out of the duct and a detached

shock appeared. Shapiro [12] indicates that internal

oblique shocks may be the remnants of normal shocks "with
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bifurcated ends as a result of boundary layer separation."

He states that the normal portion grows shorter as the

boundary layer gets thicker until the normal portion dis-

appears completely leaving only the bifurcated portion. He

illustrates this in Fig. 28.27(c) of Ref. 12. This explains

the movement of the oblique system toward the entrance of the

duct in the experiments of Refs. 14 and 15. As back pressure

increases, the flow downstream of an internal shock has more

of a tendency to separate. Fejer also states that the

presence of a turbulent boundary layer had a stabilizing

effect on the shock system in the constant area rectangular

duct. In the experiments involving the cylindrical duct, the

shock structure again moved from exit toward entrance with

back pressure increases. They also report a breakdown in flow

downstream of the shock system as indicated by relatively

constant pressure movements in this region.

e. No Shocks Present In The Duct

It can be seen from previous discussion that

given an initial Mach number and inlet stagnation pressure,

a sufficiently high back pressure will cause a normal shock

or system of oblique shocks to be formed. If the cross-

sectional area of the duct is reduced in the direction of

flow, as in a supersonic diffuser, the incident flow may

cause an oblique compression wave to be formed. In the

absence of the requisite back pressure or area reduction,
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no explanations for internal shock formation have been found

other than those due to viscous effects noted in "d" above.

f. Summary

In a constant area duct with supersonic inlet

flow, there is a pressure rise caused by a reduction in the

effective flow area by boundary layer formation due to

friction. Depending upon the length-to-diameter ratio (L/D)

of the duct and the flow parameters, the increase in pressure

ratio (or reduction in Mach number) required to cause forma-

tion of a system of oblique shocks is less than that required

to set up a normal shock at the duct entrance. This difference

is explained by the boundary layer formation and/or interaction

with the shock waves.

In the case of the tubular projectile, the back

pressure at the exit in flight is affected by the complex wake

flow. There is no pressure difference in the surrounding

medium at large distances from the projectile. The formation

of shock waves inside the projectile with a constant cross

section is due to viscous effects and depends upon Mach number

and the length-to-diameter ratio.

5. Laboratory/Wind Tunnel Testing

From all indications, the Weapons System Concept Team

(WSCT) of ARRADCOM has done extensive wind tunnel

testing on various tubular projectile configurations. The

work of A. Flateau of the Weapons System Concept Office is

referenced often with regard to results obtained, however no
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publications from that office have been found. (The work

referenced in other publications is usually of the "private

communication" type.) Appendix D of Ref. 8 reports results

of a test conducted by the WSCT at the ARRADCOM facility.

The facility utilizes a variable Mach number tunnel which

may be used to simulate the deceleration of the projectile

in flight.

The results of Ref. 8 agree closely to those of

Ref. 7, in that the drag coefficient rises almost instan-

taneously at the Mach number at which the flow becomes

choked.

The Mach number at which this choking occurs is de-

pendent upon geometry. For the case of inviscid flow,

Brunsvold and Kalivretenos [9] give the following relation

for the area ratio corresponding to the free stream Mach

number at which the shock is "regurgitated" and the flow be-

comes choked:

Y+1
2 (y - 1)

Ac - 1 I_ M (4)

1L

C. PURPOSE OF STUDY

The results of tests and experiments previously mentioned

show for the most part definite advantages to the tubular

projectile over the conventional projectile primarily in the

area of lower drag (approximately 1/2 to 1/3 of conventional [81)

32



which allows a flatter trajectory and shorter time of flight

for a given range (5]. With the emphasis on Anti-Missile

Defense both from a Surface-to-Air and Air-to-Air standpoint,

these features are definitely worth further study.

The problem seen from the air platform is that of the

discarding sabot or pusher. The solid [4, 5, 7] or split [8]

disk is effective and reliable, however the possibility of

ingestion in the aircraft engines prohibits their use.

Rhethorst et.al. in Ref. 7 illustrates a number of sabot/

obturator designs for use with the tubular projectile, but

these are also of the discarding type. They also investigated

the possibility of using a consumable sabot [19] which would

be burned up as the projectile was transiting the barrel and

would be completely consumed as it exited the barrel. The

most recent development has been the BOT which was designed

at NWC China Lake, California [6]. The ball obturator has

been bored with a hole the same diameter as the hole through

the projectile. When loaded, the ball is supported inside

the projectile such that the axis through the hole in the ball

makes an angle of approximately 900 with the axis of the hole

through the projectile (see Fig. 4).

Gas pressure from the burning propellant holds the ball

obturator fixed with respect to the projectile as the rifling

in the barrel imparts spin to the projectile (as well as the

ball). Upon exiting the barrel, the propellant gas pressure
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is released. At that time a complex force distribution acts

on the ball to cause it to change position inside the pro-

jectile in such a way as to align the holes. Inertial forces

then dominate to maintain this alignment so that the pro-

jectile remains fully tubular. There are no separating parts

and the opening process is automatic.

The purpose of this research is to analytically predict

the motion of the ball obturator as a function of time. In

support of this purpose, an experimental apparatus was de-

signed and built to simulate the motion of the obturator in

order to gain physical evidence of the accuracy of the model.
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II. ANALYSIS

A. DEVELOPMENT AND SOLUTION OF THE EQUATIONS OF MOTION

The ball obturator may be thought of as a rigid body of

rotation with a system of coordinate axes fixed to the ball

having its origin at the mass center of the ball (Fig. 5).

These axes will be designated x, y, and z, where z is the

axis through the hole in the ball.

The motion of the ball must be described relative to the

projectile, and for this purpose an inertial frame of refer-

ence is defined with axes designated X, Y and Z with its

origin also at the mass center of the ball. For this analysis

it is assumed that the projectile has only a rotation about

the Z-axis and no translation or other rotation. Because only

the motion of the ball with respect to the projectile is de-

sired at this point, the relative velocities are the quantities

desired. The ball has only rotational components and thus the

values of angular velocity with respect to the X and Y axes

are also relative to the projectile, whereas the value with

respect to the Z-axis must account for the projectile spin.

By doing this, the motion may be described by Euler's

Modified Equations of Motion for a rigid body of revolution

about a fixed point. These are given in Thomson [20] as:
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Aw + (C-A)w w = G (5a)
1 23 1

A2 + (A-C)w w = G (5b)
2 13 2

Cc) = G (5c)
3 3

where

A = Mass moments of inertia about principal
axes perpendicular to the z-axis.

C = Mass moment of inertia about the prin-
cipal axis through the hole (z-axis).

S,2 , = Angular accelerations about the body
1 2 3 fixed axes x, y, z respectively.

w ,Iw ,w = Angular velocities about the body fixed
axes.

G ,G ,G = Moments acting about the body fixed axes.1 2 3

Since a body of revolution has only two distinct prin-

cipal axes, the mass moments of inertia about the x and y

axes are equal. The moments of inertia of the ball were

determined by first finding the inertia tensor. From

Refs. 21 and 22 the inertia tensor is found by starting with

the formulation for a hollow cylinder of inside radius r and

length 2h (Fig. 6) in which the inertia tensor in terms of

dyadics is

I = (U + ee)mr 2 /2 + (U-ee)mh2/3 (6)

In Eq. (6) m is the mass of the cylinder (ball), U is the

unit dyadic and ee is the referenced dyad. Using Fig. 6 as a

guide, the incremental value of the inertia tensor with respect

to the center of mass, dIG is given by:

38



h /R

d P,_t A-\
r

+ ot- e

R _

Figure 6. Dimensional relationships for calculating the
inertia tensor and moments of inertia.
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dIG = (U + ee)p 2/2 dm + (U - ee)h 2/3 dm (7)

where p is the radial distance to the incremental mass, dm.

The incremental mass is given by

dm = 4rp(R 2-p2) ydp (8)

From Eq. (7), since the origin and center of mass coincide,

I = f dI G  (9a)

therefore,

0 =f(U+ee)2p3nhydp + (U-ee) h-- 4rpydp (9b)

r r

which, after simplification leaves

R
I 27rY(U+ee) Q3 (R2-p2) dp +

0
r

(9c)

R 3/2
7y(U-ee) (R2-p2) pdp

--r

Solving Eq. (9c) gives

3/2iyf{2(U+ee)U.r2+ 2 R2(R2-r2) ] +

4 5/2 (9d)
7(U-ee) [7(Rz-r2 )  ]
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Eq. (9d) is the expression for the second order inertia

tensor of the ball obturator with outside radius R, hole

radius r and made of a material of density y. Diadics have

been used to describe this tens.or. In order to obtain the

moments of inertia about any axis, the diadic describing the

tensor need only be premultiplied and postmultiplied by scalar

multiplication by the unit vector along the axis about which

the moment of inertia is described. It may be seen in Fig. 6

that the e-direction vector is along the z-axis. The

e-direction may be chosen arbitrarily, however this choice

greatly simplifies the formulation of the integral. Thus

the moment of inertia about the z-axis, C, is given by

35/2

+ -(ii+jjj+ee-ee) [ry-(R -r2) } (10a)

Simplifying and using the subscript s to denote particular

values for the ball obturator:

3/2
47y(r2 +2 ) 2

Rs) (R 2 -rs ) (10b)

For the axes perpenducular to e through the mass center, the

Moment of Inertia is given by

A = B = G'1= -Is' (lla)

.41



Performing steps as in Eqs. (10) gives

3/2

A = j(ii+jj+ee+ee).j [21y(1r2+2R2 (R2-r2)

5/2
+ j(ii+jj+ee-ee)j [ryL(R2-r2) 5(1b)

15 (lb

After premultiplying and postmultiplying,

1 2 3/2 4 5/2
A = r y{2[rs2 + S (Rs2-rs2 ) ] + T(Rs 2 -rs 2 ) 1 (llc)

In order to simplify Eqs. (5), define a non-dimensional

X such that

X C-A (12)S- A

Thus Eqs. (5) becomes

+ Aw w = G /A (5a)1 2 3 1

+ Xw w = G /A (5b)
2 1 3 2

= G /C (5c)
3 3

The position of the ball at any time may be described by

three angles, 6, c and *. These are known as the Euler angles

and their relationships to the coordinate axes already de-

scribed may be seen in Fig. 7. Reference 20 defines w , 21 2

and w in terms of the Euler angles as
3
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= sinesin4 + ;cos4 (13a)1

2 = sinecosq - bsin (13b)

= + Cose (13c)
3

By differentiating Eqs. (13) with respect to time, 1 21 2

and 3 may be obtained as3

= isinesin + (6cosesin4 + $sinecos¢) + cos (14a)I

-6$sin

W = 4'sinecoso + p(Ocosecosp - $sinesinf) - esin4 (14b)

- ecoso
= + &cose - *esine (14c)

3

By substituting Eqs. (13) and Eqs. (14) into Eqs. (5),

the following expressions for G /A, G /A and G /C are found
1 2 3

to be

i sin~sinp + ,p(cosesino + $sinecosO) + gcos¢ - (15a)

&$sinP + X(sinecos - bsin )( cos8 + ) G/A

*sincos + i(6cosecos4 - $sinesino) - Usin, (15b)

6$cosO - X( sinesinO + bcosf)('cose + G) = G/A

cosO - ipsine + = G /C (15c)

3

Transforming this system of differential equations into the

matrix form [A) {X} = [B] leaves
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sin~sino 0 cosO G /A - jp(8cosesino + $sin~cos )

sin6coso 0 -sino = G /A - (0cos~coso - $sin6sino)

cose 1 0 { /C + $6sinO
G3

/

" 6$sino - X($sinecoso - 6sino)($cose +

+ btcoso + X(sinesino + bcoso)( cose + p) (16)

By premultiplying both sides of Eq. (16) by the inverse

of the coefficient matrix, we are left with

sinsi G /A - i(6cossinO + $sin~coso)
sine sine

= sin~cose -coscoso 1 G /A - P(Ocoscos - sinsinp)
sine sine 2

cosO -sin 0 G /C + 6sin
3

+ b$sin - X(sin6coso - 0sin)(icose +

+ b¢cos + X(isinesin + bcos )(icose + ) (17)

In order to solve this system of non-linear second order,

differential equations for e, and r, the following must be

known:

Initial Values (denoted by subscript o) of 6, p, p, e,

and 4 and the quantities, A, C, G , G and G 3
4 2 3
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Due to symmetry, 00 < 0 < 90 ° and since we are interested

in the performance of the ball away from 00, e0 > 0. Since

the ball is attached to the projectile initially (no slippage),

o = o = 0. 'o is equal to the spin rate of the projectile

as it exits the barrel. A and C are physical constants de-

pendent upon geometry and material properties [Eqs. (10) and

(11)] and therefore X is a constant. 0o' and *o are arbitrary

due to symmetry and the values of G , G and G must be de-S 2 3

termined from knowledge of forces acting on the ball.

The solution to the problem of the motion of an axi-

symmetric rigid body about a fixed point with no moments

applied is well known [20,21,22,23]. Under these conditions

there is no nutation and the precession rate ' is constant.

Thus

00

and

' ; (18)
(A-C) cose

The computer solution method was tested by substituting the

projectile spin velocity for ' in Eq. (18) and calculating

$ for the specified value of 0 < 0o < 900. By inserting

these values of 60, P and $ into the computer model, and

solving for 0 as a function of time, 6 was indeed found to

be zero. In addition, all other criteria for the test case,

i.e., constant angular momentum and constant ' and ; were met.
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The problem remaining is one of modeling the forces acting

on the ball in order to determine G , G and G
1 2 3

B. MODELING OF THE APPLIED TORQUES

1. Moments Due To Viscous Effects

Without the influence of applied forces or moments,

the angular momentum remains constant or, from first prin-

cipals:

M = h = 0 (19)

In order for the ball to nutate to the position in

which the holes are aligned, a moment must be applied. This

resultant torque is due to both viscous and sliding frictional

forces.

The first attempt was to model the torque on the ball

as that due to laminar Couette flow of a viscous fluid between

two flat plates where the shear stress is given by

= au (20)

The solution of the Navier-Stokes equations for this

flow is well known and given by

dP = pf d2u (21)
dx f d

where dP/dx is the pressure gradient in the direction of

flow and, for our calculations, is assumed to be zero. The
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governing partial differential equation is then

dyu 0 (22)
dy2

By considering the relative velocity, one plate is held

fixed while the other has velocity of magnitude wrY . Wr

is the relative angular velocity about the instantaneous

axis of rotation and F is the perpendicular distance from

the instantaneous axis to the point at which the velocity

is desired.

The boundary conditions are therefore given as

u = -WrY at y = 0

(23)
u= 0 at y = h

where y=0 is the surface of the ball and h is the gap width

between ball and projectile. Integrating Eq. (22) twice and

applying the boundary conditions Eq. (23) gives

u y) = -WrF (1-y/h) (24)

Thus from Eqs. (20) and (24), the viscous shear

stress at the surface of the ball, or at y=O becomes

To = f (25)
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The force due to viscous shear on the ball is given

by the integral over the surface area of the ball of the

shear stress Eq. (25), or

FV= I TodA. (26)

The differential area dA is given by

dA = 2irRs (Rssinda) (27)

which is shown in Fig. 8.

Substituting Eqs. (25) and (27) into Eq. (26) gives

FV = .r J sinda (28)
h

0

The value of T changes from 0 at the axis of rotation

to Rs at a=90
0 . Thus

r = RsSin (29)

Substituting this expression into Eq. (28)

7T

F = 2Uf Rs 3wr_ sin 2ada (30)FVh
h f

0

The torque imparted to the ball is the force given by

Eq. (30) multiplied by the moment arm at which it acts.

Again, the moment arm is a function of Rs and a and is given

by Rssina. Substituting this into Eq. (30) gives an ex-

pression for the torque acting on the ball obturator due to
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A Wr

Figure 8. Differential area, dA, orientation with r~spect

to the relative angular velocity vector, w
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the velocity of the ball relative to the projectile in a

viscous medium, or

7T

Q = s T rda (31)

0

Carrying out this integration gives

4
Q = 8 IRS r~f (32)

3 h

For a given geometry and constant fluid properties,

Wr is the only variable in Eq. (32), therefore that portion

of the expression which is multiplied by wr will be called

the shear constant, S, such that

Q = Swr  (33)

where

S = 8 (34)
3 E-f (34)

From the rigid body motion analysis, the relative

angular velocity is easily determined. It is

r= r ( w1- P 2 + ( 2- Wp)2 + (-W P3)2] (35)

where wp , Wp and w are the components of the projectile

angular velocity about the axes fixed in the ball. These

relationships are given in Thomson [20]
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= W sinpsine (36a)

wP2 = Wp cossine (36b)

W =w3pcose (36c)

Equations (36) are simplified by the fact that w

has only a component in the Z-direction of the inertial

frame of reference.

The moments G , G and G are obtained by applying1 2 3

Eq. (33) and resolving the moment vector into components

about the x, y and z-axes. The motion of the ball may then

be described fully by Eq. (17).

Figure 9 shows solutions for 8 as a function of time,

using the Couette flow model with the following inputs:

Rs  = 7.62 mm (0.3 in.)

r. = 4.7625 mm (0.1875 in.)

h = 0.0254 mm (0.001 in.)

p = 7800 Kg/m 3 (0.282 lbm/in ') (steel)

Pair = 1.92 10- 5 Pa-sec (4X10- 71bf-sec/ft 2 )

W = 12042.77 rad/sec (I.15xl05 RPM)

It appears that viscous effects alone are not suffi-

cient to cause the ball to nutate toward e=0 in a rapid

fashion. To check the model again, progressively larger

orders of magnitude of S were input into the model. The

effect, as expected, was to cause 8 to approach zero more
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rapidly (see Fig. 10). From firings conducted at NWC, China

Lake, on an indoor range, it is known that 0 reduces to a

value which allows light from behind the projectile to be

seen through the projectile by a camera aiming at the pro-

jectile image in a mirror down range. The length of the

range is such that, for this to occur, 6 must reach the value

s prior to impact on target, or in about 0.1 seconds. (see

Fig.ll for Ss). The viscous model described above does not

produce the moments required to c.use sufficient reduction of

e within this time of flight.

The viscous torques on the obturator were calculated

above assuming a solid sphere. The actual obturator has an

outside surface area less than that of a solid sphere of the

same radius. The surface under the influence of viscous

shearing stress is a very complicated function dependent upon

the angle e as shown by the cross-hatched portion of Fig. 11.

Calculations of the resulting moment are further complicated

by the relative effect of the missing areas (due to the

presence of holes) and their positions relative to the

instantaneous axis of rotation. The time-dependent angles

between the instantaneous axis of rotation and the z and

z-axes must be known in order to determine the limits of

integration for correct moment arm consideration.

Because the moment due to viscous effects is deoendent

upon the surface area involved and because the surface area

in the first calculation (assuming a solid sphere) is larger,
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it is to be expected that by taking the holes into account

the true moment due to viscous effects will be reduced. The

effects of these area variations will be "blurred" by the

high-speed relative motion and the additionil complications

necessary to account for them are not warranted in light of

the goals of this analysis. Therefore for further develop-

ment of viscous effects, the surface area of the obturator

will be considered that of a solid sphere.

Nakabayashi (24] has conducted experiments to de-

termine the viscous torque on rotating concentric spheres

with various fluids and gap widths. He gives the general

expression for the frictional moment on a sphere due to flow

in the gap as

= CmPRs sr 5  (37)

where p is the density of the fluid in the gap. For laminar

flow

8 (1+E)Cm  = -3- E Re- (38)

and for the turbulent flow

Re -0.25
C - 0.053 1+(7/4)E (39)i - (3/2)e

where e = h/R s .

The Reynolds number is defined as
R2 r

Re R R (40)
V
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in which v is the kinematic viscosity of the fluid in the

gap. For the narrow gap width assumed for the BOT, the

transition Reynolds number may be approximated by

Ret = 70E -1.6 (41)

(from Fig. 2a of Ref. 24.) In thc case of the BOT, the

relative angular velocities are insufficient to assume the

existence of turbulent flow in the gap. Thus the frictional

moment due to viscous flow in the gap is given by

8 ~ (1+)

Mv(i - y C fR s  W (42)r

For small values of E (as is the case here), Eqs. (42) and

(33) are identical.

2. Moments Due To Sliding Friction

It has been noted that the extreme propellant gas

pressures inside the barrel are assumed sufficient to hold

the obturator fixed to the projectile during launch. How-

ever upon exiting the barrel, the pressure distribution on

the projectile is due to the aerodynamic characteristics of

the projectile. Assuming the obturator is still blocking

the projectile duct, a detached bow shock is set up (see

Fig. 2b). The pressure, P , downstream of this shock is given2

by one-dimensional shock theory from Eq. (1). It is assumed

that P is sufficiently large to cause the obturator to con-2

tact the rear of the projectile socket housing the obturator.
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The forces involved depend upon the projected area

of the hole through the projectile and the contact point(s)

of the obturator and projectile. The force acting on the

obturator is assumed to be given by

F = r p2 Lp [see Eqs. (1) and (3)] (43)Fpp

where rp is the radius of the hole through the projectile

and

LP = P - P (44)
1 2

From sliding friction theory, the contact area is

not a consideration; only the magnitude of the force normal

to the contact surface and the coefficient of friction of

the materials in contact are important. In the case of the

obturator, the pressure force, Fp acts along the Z-axis.

The reaction force may be broken into a component tangent

to the obturator and a normal component acting through the

center of the obturator. The normal component, Fn, multi-

plied by the coefficient of friction vs, gives the sliding

friction force acting to oppose the motion of the obturator:

Fs = FnUs  (45a)

where

Fn = Fpcosa s  (45b)

so that

= Fp cosas s  (.46)
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This assumes the holes through the obturator and projectile

have the same diameter and that the point or points of contact

are on the locus of points described by the intersection of

the hole through the projectile and the spherical socket

housing the obturator in the projectile. This locus of points

is a circle of radius rp and each point is a distance R from

the center of the obturator. Gravity forces are neglected

since they are relatively small and act both on the obturator

and the projectile.

For a "perfect" fit between ball and projectile,

the sliding friction force is distributed over an infinite

number of points and, in the limit, the force at each point

vanishes. This situation has no significance in reality and,

therefore, engineering judgement dictates making some assump-

tions with regard to the point(s) of application of the

friction force Fs .

For the general case, a point of contact P may be

described relative to the inertial reference frame as being

at an angle $s from the inertial Z-axis, a distance Rs from

the center of the obturator and at an angle y from the

X-Z plane measured toward the positive Y-axis as shown in

Fig. 12. For this approximation, assume two contact points

in the X-Z plane, Pi and P2. P1 and P2 are 180 apart on

the circle of points so that y=0 and $=Ss .
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From the vector analysis, the projection of one vector

onto another is given by the scalar or dot product. The

vectors P and P are given by:1 2

P = Rs (sinai + cos~k)

4. (47)
P = R (-sinai + cosak)2 5 _--

Their projections onto the relative angular velocity

vector wr , with components wx, W y and wz, are

-I- -

P1 "r = Rs (Wx sina + w zcosa)

(48)
4. 4

P "*r = Rs (-W sinB + wzcosa)

The scalar dot product is also defined as

P, .Wr = P Wrcosrl (49)

where n is the angle between the vectors P and wr" Therefore

from Eqs. (48) and (49)

R sw sin$ + w cos8) = P w cosn
s x z i r

(50)

R s(-Wx sin + w zCOS) = P 2 rCOSQ

The magnitude of the vectors P and P is Rs? so solving

for r and Q gives
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= cos -1  - sina + - cosO
w

r r

(51)
c o w x w z

Cos- - - sin6 + L cosa
Wr Wr

The moment arms r and r from Fig. 12 are therefore given by
1 2

w w
r = Rssin [cos - (--sin8 + -IzosO) ]
I 1r Wr

w -. !oS$)2 (52)

I s [ r W r

* R sin [cos - I (- w--in + w--osz)I

(53)

r = R [1 - (--cos --- sinS) 2 ]

2 S r wr

The moment acting on the obturator due to the sliding

friction due to aerodynamic forces are given by

-* Fp

Msa = (r +r ) .±coe1s ... (54)
1 2 2- 5r

Substituting from Eqs. (52) and (53) into Eq. (54) leaves

X 2a Z 2 2 r
Msa - - cos[(1 - (-)2sins - )c

2 S S r r Cosr
(55)
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It should be noted that if there were n contact points that

the normal force at each point would be given by Fn/n.

Equation (54) indicates the case of two points of contact

discussed here.

As yet, there has been no attempt in the laboratory

to produce the aerodynamic forces present on the obturator

for an actual projectile in flight. The sliding friction

forces present on the obturator in the experiments (described

in section III) are due to gravity alone. The obturator is

supported by the projectile simulator (see Fig. 24). Because

the obturator is smaller than the housing in the projectile,

a point contact at the bottom of the housing is assumed.

This point has inertial coordinates of (-Rs, 0, 0). The

vector from the origin to the point is given by

PG = - Rsi (56)

Using a development similar to that for obtaining the moment

arm for the friction forces due to aerodynamic considerations,

the forces on the model due to gravity may be determined.

Again, the dot product is given by

PGwr = -RsWx (57)

which is the same as PGwrcosE

Therefore the angle (E) between the angular velocity

vector wr and PG is obtained from
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cos - 1 (58)
Wr

The moment arm r is found as in Eq. (55) fromg

r = R sin [cos -  (- )I (59)g s

or

x

rg = R [1- ()2 1  (60)

which means the slidinq friction moment due to the weight W is

M = UWRs [1 - (wx )2] wr (61)sgWr

The torques acting on the obturator are the

summation of the torques due to friction, both viscous and

sliding (aerodynamic or gravitational). The general form

of the torques acting to oppose the motion of the obturator

in terms of total moment Mt and the unit vector 1 along w r is

G = -Mtlr (62)

which, when broken into the various contributors becomes,

for the projectile in flight,

G= -(Mv+Msa)lr (63)
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TABLE I

COMMON VALUES

e0 = 87.250

po 0
-- 0

'o = 0

= 0

p = 7669.6 Kg/M
3

Rs  7.899 mm

rp =4.72 mm

C 3.125X10- 7 N-m-Sz

A = 2.216xi0 - 7 N-m-s 2

x = 0.41

Ilf = 1.917xi0 - s Pa-s

lis  = 0.35

h = 5.08x10 - m

S = 12.38x10- N-m-s

AERODYNAMIC MODEL GRAVITATIONAL MODEL

Rp = 9.96 mm W = 0.07987 N

Lp = 76.2 mm E(eoir/2) = 1.0063

m = 0.141 Kg = 200 sec--
p •p

I = 8.58x10
- 6 N-m-s

2

p
M =3.0

y =1.4

P = 0.099 MPa
I

= 12042 sec-
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and for the experimental model,

G =-(+M )lr (64)m -(v+sgr

These may easily be transformed into the body-fixed coor-

dinate system for solution of the equations of motion.

For solving Eq. (17), a numerical integration sub-

routine [25] was used and computer plots of e vs. time were

obtained. A copy of the calling program is included in

Appendix A. Figures 13 and 14 show plotted output for the

input parameters shown in Table 1.

C. DEVELOPMENT OF AN APPROXIMATE SOLUTION

Observations of the nature of the exact solution (Figs.

13 and 14) indicate that the response of the obturator orien-

tation (e) to the applied torques (determined from Table 1

parameters) is similar to that of a linear damped second-order

system with a combined step and ramp input. That is, the

relationship closely follows a relationship of the form

exp (-Cwt)
e = 60+D+ R_(w t-2 ) + p {-sin[w (i- 2 ) t +

Wn n (1-C2) Wn n R

- D sin[wn(l- 2) t + D]} (65)

in which the parameters are:

D = step height (negative)

R = ramp slope (negative)

Wn = natural frequency

= damping ratio

D, R = phase angles
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These may be determined by means of a solution to the

linearized equations of motion under the assumption of

small applied torques [(M/Cw P2)<<l]. This has been accom-

plished2 by a perturbation of the steady state solution aiven

by Eq. (18) for the case of no applied torques.

The first step in the approximation is to rewrite Eq. (18)

to read

X oSe + (X+l)4o = 0 (66)

where 0o, o and 8o are constants. The dependent variables

of the general form of the governing equations (Eq. 17) are

written as sums of the unforced values and the perturbation

values. Thus

= ; 0= 0

(67)

The general form for the applied torques on the obturator

in the experimental model (gravity-driven sliding friction)

is given by Eq. (64) in which the moment term is composed of

a fluid (Mv) and a sliding friction (Msg) term. When both

are expanded from Eqs. (42) and (61), Eq. (62) becomes

G - {Swr + 1sWRs [l-( 7 ) 2 ] } (68)
r r

2The theoretical development of the linear approximation
is not complete. The analysis presented here therefore
represents a preliminary report.
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The relative velocity wr from Eqs. (13, 35 and 36) has com-
r

ponents

ir = (°-w p )sinesin + ecos4

W2r = (*-wp)sincos - sin69)

w 3r (-wp)cose + $

To the first approximation, 'o= p ( O= p for the case of

no applied torques). With this approximation, and the

application of the perturbed variables, Eq. (67),

c= cosp °

= -sin
2r 0

w = 1c°Seo + o + p (70)

The only term of zeroeth order in Eqs. (70) is ;0 so

that, to the first approximation,

r = 3r L= o (71)

The modulus is taken in order to preserve the positive sense

of wr. Under the same approximations as above,

x = osin 0 sin 0  (72)

Substituting Eqs. (71 and 72) into Eq. (60) for the

sliding friction moment arm, rg/Rs becomes
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r 
2

R a= [Il-(sino0 sin) 2  (73)
R 

(3

s

For the purpose of the linear approximation, 
the mean value

of this moment arm is required. Integrating to find the

average moment arm gives

fT (rg/Rs ) dt 
(74)

0

where T is the period for one revolution. 
From the approxi-

mation, however,

T = IT - 2rt 
(75)

0 0

and because of symmetry, the average is 
valid over one-quarter

period, therefore

r -4 (1-sin 290sin2 -- ) dt (76)

By letting u = 27t/T and du = (2n/T)dt, Eq. (76) becomes

r/2

7- = f (l-sin 2  sin u) du 
(77)

0

71



Letting E(6 ) denote a Complete Elliptic Integral of the

Second Kind with modular angle 80, Eq. (77) may now be

written as

r 2R = 2 E(6) (78)

Solutions to Eq. (78) are tabulated for various values of

80.

The expression for the applied torque vector (Eq. 68)

may now be written as

G = -[SI + 11sWR 2 E(8 (79)sI,.

With these approximation-, the applied torque terms

appearing in Eq. (17) are given by

G G
1 2 -M
-sino + K-coso = A-( -wp)sin=0

r

G G
Los - -Lsinp = -

Xwr A1 'o0

G 3 -M [(- cs 1 -M 0--M %0
- 0((*-w )cos + (80)

c r P cl toI C 1$01

where M is given by

M = sIlI + vsWRs 3 E(O0 ) (81)

and w p is the projectile angular velocity.
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Equations (66), (67) and (80) are combined with Eq. (17).

After simplification, and retaining only the first order

(linear) terms, the results are:

il-( p.coteo)e (82)

Mocsceo0e 0 (83)

_ -M vosineo [;(l+X)-8eosin60 + Xcose O] (84)

These equations are then integrated under the following

initial conditions

IP(0) = o = Wp 0

;()= (O) = - O cose

0 a

0(0) = 8 8(0) = 0
0

b(o) = 0 6(o) = 0

Eq. (82) yields

-(tocot o ) e (85)

From Eq. (83)

* - (- c o s o ) + - t - , --- ( 8 6
C I oI (861

By substituting the expressions obtained in Eqs. (85) and (86)

into Eq. (84), the differential equation for 8 becomes

.73



-MO )(87)

AI~0I o 00 C

or, in a more familiar form,

6 •
L + - e + e= D + Rt (88)

Wn 2 " n

where w = *o = p' o/ °I = -1 and

M

2AI$oI 0 o

D s o = - 2sin2e o

(l+X) M MD
R =in0 = -To ts o c

Expansion of the expressions above, using Eq. (81) shows

that the damping coefficient is given by:

[SI~oj + 2sW~s3E(6o)1
2AI$0 1WE

or

= . [S + PsRsW 2 (0+) E(8o)]
2A T X o coseo0

and the ramp slope (rate of decay) becomes

7.4



R = 7(- Tosin20o)  (90)

The integral of Eq. (87) with the initial conditions

specified [8(0) = 6(0) = 01 is Eq. (65) where

R = 20 = 2tan- (i-r2 ) (91)
R D

For large values of 4wnt , the ramp decay dominates the

response and the solution may be further approximated by

8 = 8o + 8 = 60 + D + R_ (w nt-2C)
~ n

The time to nutate through a known angle 8 may be found

from

6-e -D (6 8
t O o D_ (92)

R Wn Wn R R

where r, R, D and "n are prescribed in Eqs. (88)-(90).

Figure 15 is a plot of 8 vs. time comparing the results

of the exact solution from Fig. 14 with those of the

approximation developed here. The physical constants and

initial conditions are identical for the two cases.

D. THE EFFECT OF GEOMETRY ON OBTURATOR RESPONSE

In the discussion to this point a primary consideration

has been to model the external forces acting on the obturator.
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The effect of geometry has not been discussed, but is a most

significant contributor to the response of the obturator.

C and A are functions of mass density and physical di-

mensions. By varying the material composition (density)

the response will vary. Utilizing the physical dimensions

of the obturator in Table 1, the obturator volume may be

calculated by subtracting the volumes of a right circular

cylinder of radius rp, length 2Rscos8 s and the two spherical

caps at the ends of the hole from the volume of a sphere [26].

Thus the volume of the obturator is given by

4 32 2 2
V Rs - (Rs-Rscos ) (2Rs + R Cosa) - 2 Tr 2R Cos8

Collecting terms gives

V = 2Rs Cosa[Rs 2 (l -Cos - rp 2

By knowing the mass density, the weight of the obturator

[for use in the torque expression, Eq, (61)] may be obtained.

Therefore as the density varies, the values of C, A and W

vary. Fig. 16 is a family of curves of e vs. t for varying

density with all other physical properties being those of

Table 1.

There is however a limiting case for the size of the

hole. If the hole becomes too large (assuming same size

17
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projectile hole), there may not be sufficient obturator

surface area to block the passage. The limiting relation-

ship is

R
r ~S

s 
Y 2

This limit is purely theoretical and is not a feasible design

parameter. Engineering judgement in the selection of realis-

tic values is required so that the projectile will meet the

ballistics criteria and retain its integrity while undergoing

the forces associated with the entire firing evolution from

chambering to target impact.

The effect on the obturator response due to increasing the

hole diameter is shown in Fig. 17. The inertial contribution

to the response (coupled term) is increased by increasing C/A

and therefore X; however the friction torque (Msg) contribution

is lessened by the reduction in the mass of the ball.
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III. EXPERIMENTATION

A. EXPERIMENTAL APPARATUS

An experimental system was designed to simulate the

spinning BOT. The apparatus consisted of a compressed-air-

driven spin-up rig, optical timing mechanism, air manifold

and associated piping, tubing and electronics.

The obturator was fabricated from a standard 5/8-in.

diameter chrome-steel (52100) bearing ball. The ball was

annealed to allow machining and then bored along a diametrical

axis (Fig. 18). The bored ball was then mounted in a bakelite

metalographic specimen mount. The mounted ball was placed in a

milling machine and a flat was machined in the bakelite at a

specified angle relative to the axis through the hole in the

ball (Figs. 19 and 20). This flat was then used as the

polishing plane for metalographic specimen preparation. A

small flat spot was polished on the obturator to provide a

highly reflective surface at a known orientation relative to

to the z-axis of the obturator (Fig. 21).

After removal from the bakelite mount, the obturator

was placed in a three-piece, lucite housing (Fig. 22). The

mating ends of the two hollow inner cylinders were each

machined with a 5/8-inch end mill to a depth of approximately

5/16-in-h. When mated, a spherical cavity was formed to

accomodate the obturator. The third cylinder was press fit

.81



Figure 18. Boring of hole along a diametrical axis of
the annealed bearing ball.

Figure 19. Machining of flat in metalographic specimen
mount.
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Figure 20. Machined specimen mounts with varying
angles (8o).

z

Figure 21. Polished soot orientation on obturator and
relationship to eo .
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Figure 22. Obturator and components of lucite obturator
housing with mating ends of inner cylinders
machined to house the obturator.

Figure 23. Assembled obturator housing with aluminum
end pieces.
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over the others after the obturator was inserted to insure

alignment of the inner pieces and provide rigidity (Fig. 23).

The ends of this lucite assembly were then press fit into

aluminum end-pieces similar to those in Fig. 23. These end-

pieces served as the shaft for the bearings and one also served

as the prime mover (bucket wheel) for the apparatus. The shaft

rotated in two ball bearings mounted in aluminum pillow blocks

aligned on a rigid pedestal. The prime mover was a bucket

wheel machined from a solid aluminun disk (vig. 24).

The bucket wheel was driven by compressed air supplied

from an installed system through an air filter to a manifold

and then through one of two Model-10 Kendall pressure regu-

lators. From the regulator, the air passed through a flexible

tube to a tee, each leg of which supplied a nozzle. These

nozzles were mounted opposite one another on the pillow block

in such a way as to allow the air jet to impinge upon the bucket

wheel to cause rotation (Fig. 25). The speed of rotation was

sensed by a Bentley Nevada Proximitor, Model 3100N, which was

mounted above the bucket wheel to detect the passage of each

point on the wheel. The sensor was supplied from a LAMBDA

Regulator Power Supply Model LP413FM by 18VDC. The pulses

generated by the sensor were counted, averaged and displayed

as a frequency by a Monsanto Programmable Counter-Timer Model

110B.

While the spin-up rig was being brought up to the desired

speed, an air jet from a nozzle mounted rigidly on the pedestal
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at the end opposite the bucket wheel held the obturator

fixed to the spinning rig. This jet was supplied from the

common air manifold and the other pressure regulator also

through flexible tubing. The air jet passed through a hole

in the plunger of a Rocker Solenoid, R.S. No. 10-207. This

hole was aligned with the hole through the "projectile" to

allow the jet to impinge upon the obturator (Fig. 26). When

the switch at the far right of Fig. 26 was activated, standard

115VAC was applied to the Rocker solenoid and removed from a

normally closed ASCO Solenoid Valve in the air supply line to

the jet. The plunger retracted from the position shown in

Fig. 26 and the solenoid valve closed. The retraction of the

plunger performed three functions. It first caused a pulse

to be generated by another Proximitor mounted next to the

nozzle and powered from the same 18VDC supply. This pulse

started the timer function of a second Model 110B Counter-Timer.

The plunger also covered the nozzle outlet by misaligning its

hole with that of the nozzle. This removed the restraining in-

fluence of the air jet on the obturator and prevented any air

remaining in the supply line from impinging on the obturator.

And lastly, in the fully retracted position, the machined and

polished end of the plunger was positioned opposite the pro-

jectile hole (Fig. 27). When the released obturator nutated

through enough of an angle, the beam of a SPECTRA PHYSICS MODEL

132 LASER, MODEL NO. 3187, passed through the projectile and

was reflected by the polished end of the plunger into a light
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sensitive diode (Fig. 28). The pulse emitted by the diode

triggered the stop channel (m the timer and the elapsed time

was displayed. Figure 29 shows the entire experimental set-up

with air flasks in the background.

B. EXPERIMENTAL PROCEDURE

The obturator was positioned in the spin-up rig in such

a way that the laser beam was reflected off the polished

spot back to the target mounted on the laser (Figs. 29 and

30). The center of the target is the location of the beam

and the obturator was adjusted to place the reflected spot

on the center of the target. Thus the orientation of the

z-axis through the obturator was known relative to the Z-axis

(laser beam) through the projectile. This is the initial

value e0 .

The solenoid plunger was checked in position with the

hole aligned with the nozzle (Fig. 26) and then air was

admitted to hold the obturator in place. The pressure was

then increased to the turbine to set the apparatus in motion.

Figure 31 illustrates the circle traced by the reflected spot

(Fig. 30) on the target. This circle facilitates alignment

of the laser to insure the beam was centered through the pro-

jectile. (It can be seen in Fig. 31 that the beam was slightly

off-center.) Alignment was accomplished by positioning the

beam from side to side for horizontal alignment, then raising

or lowering the spin-up rig's mounting platform with adjusting
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Figure 30. Laser reflection on the target from the
polished spot on the obturator.

Figure 31. Circle traced by the reflected laser while
the apparatus is spinning.
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screws for vertical alignment. When aligned, the circular

trace of the reflection exactly follows the circles of the

target.

Once the alignment had been checked and the obturator

positioned at the known 00, the pressure was increased to

the turbine nozzles until the desired spin rate was achieved.

The regulator was then adjusted so as to maintain the spin

rate at ±5 Hz on the digital display or approximately ±1.75

rad/sec. (The actual tubular projectile spin rate is

approximately 1.2x0 rad/sec). Once the desired rate was

achieved and noted, and the timer checked and reset if neces-

sary, the switch (Fig. 26) was activated. This secured the

air to the nozzle holding the obturator and retracted the

solenoid plunger (Fig. 27). The obturator was released and

began to move relative to the spin-up rig. When the angle

8 reached the value at which the laser beam could pass through

the obturator hole (e=Ocr=6), the beam struck the polished

plunger and was reflected into the light sensitive diode

housing (Fig. 28). The reflected beam striking the diode

caused the diode to emit a pulse which turned off the timer

gate. The elapsed time from plunger retraction to release

the obturator, to the obturator nutating to ecr was dis-

played on the timer display to the 0.0001 second. This time,

tcr, was recorded.
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C. DATA REDUCTION

The only data reduction required was the conversion from

Hz to Radians per second. The frequency read-out on the

digital display indicated the number of teeth on the bucket-

wheel passing the sensor in one second. Since there were

eighteen teeth on the bucket wheel, the conversion was

simply

fro fror
Wp -1 x 2,, = ro sec -

Appendix B is a listing of the raw data and the

corresponding values of P,
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IV. CORRELATION OF RESULTS

Figures 32 through 37 show e vs. time for various values

of Wp from 40 to 1000 sec-*. At high and low values of wp,

e approaches zero more slowly than at the intermediate values.

Figure 38 is a plot of Eq. (92) and the experimental data.

The plot of Eq. (92) uses the physical qualities from Table 1

and U s=0.35 over the range 100- 1 il000 sec 1 . It is clear

that the experimental data falls below the approximation curve

at high p and rises sharply above the curve at low w .

In order to determine what parameters may effect the

position of the approximate curve, sensitivity checks were

run on the quantities in which the most uncertainty existed,

namely Us and 60 (even though 80 could only vary by ±10).

Figures 39 and 40 indicate the sensitivity of tcr to variations

in )s and 60 respectively. Small variations in 60 are not

discernable within the range of scatter of the data (Fig. 41).

Variations in Us have a much more pronounced effect. From

Fig. 42 it may be seen that the data at higher values of w

correlate well for a ps=0.55.

It has been noted that the approximate solution is based

upon the assumption M/Cw p2<<l. At values of w p(<200 sec-1),

this assumption is no longer valid and therefore calculations

and correlation of the data to the approximate solution will

not be conducted for wp 200 sec -1 . Also at low values of wp,
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t appears to approach - almost assymptotically. Becausecr

60 =90
0 (87.250), the obturator may be near a metastable state

at low w such that the coupled terms in the equations of

motion have little effect. The amplitude of oscillation at

low W p is also relatively small.

In general, for large values of Wnt (Eq. 65) and

neglecting the effect of viscosity, t becomes

t + +i M + [o- Asin)] (93)

WA p 3cos8o Msineo

where M is the gravitational contribution from Eq. (81).

This may be written as

T
t =  TI + T p  (94)

p3 2 P

with T and T being constants determined from the known
1 2

physical parameters (Table 1). Utilizing values of

0 = 87.250, e = Ocr = sin-' (r/Rs ) = 36.7340 and the measured

weight of the obturator, W = 0.0798 N,

M is found to be

M = 6.34xl0- p N-m

Therefore,

T = 2.039x10s

and

T = 3.03x10 -
' / (95)

2

1i09



thus

t -2.039x.10
5 _ + 3. 03 X10-4 CA

But for large values of wo

3. 03 X I 4W
t = - (96)

A least squares fit of the data (cg,:235.97) to Eq. (96),

such that t w. gives

zt.2
T 1

Substituting in the data points (denoted by 1*1 in Appendix B),

Etz= 2.1046884 se C2

Z,2= 2.8413714xl0 6sec-2

Et 2* i2 = 2.430257xl03

there fore

7= 8.6603508SX10 '4 se C2

Since the standard deviation for ;F is given by

0T2  = t..i2

2 a f 10



where

a2  1 2 1

NP= T2  ipi

the following results are obtained:

a2 = 1.4659547x.10'

"T 2 = 3.9181053xi0 "1 0

aT = 1.97742x10-

T = 0.023

T2

The data therefore, deviates from the least squares value

by only 2.3 percent.

Using the value calculated for T in Eq. (95),
2

3.03 X104-= =.3l0 0.35

8.66xl0-, 
0

with E(87.250 ) = 1.00458,

F = 2 (1.00448) = 0.63954
R = 7•

thus
0.35

)s = .639T = 0.5473

ill



With this value of Ps values of tcr were obtained from

the exact solution over the range 12 5 iwp.700 sec - and

plotted with the approximation of tcr from Eq. 94 and the data

points (Fig. 43).
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V. CONCLUSIONS

The response of the obturator (0) as a function of time

to applied torques was found to be that of a rigid body of

revolution about its mass center. Euler's Modified Equations

of Motion in terms of Euler Angles describe the response to

these applied torques. The response is predictable and was

compared for various combinations of physical parameters. By

varying density, hole size and angular velocity, various re-

sponse times may be obtained. It was found that in each

case, a minimum response time was attainable for a given value

of Wp. For the case of the experimental apparatus, this mini-

mum occured at wp = 150 sec-

The analytical model and a linear approximation to this

model were used with the parameters of the experimental

apparatus and close agreement to the data was achieved at

wl,>200 sec-1 . Below wp = 200 sec -1 the exact solution appeared

to be higher and the approximate solution lower than the experi-

mentally observed values of tcr. This is explainable in the

approximation since it was based upon the assumption that

M/wp2C<<l. At low values of wp, this assumption does not hold.

The trend in the exact solution at low w. is to approach

tcr = - almost assymptotically. This trend is observable in

the experimental data as well and may be explained by the

metastable initial position of the obturator 0 =900 (8o=900 is
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a stable position). The effect of the coupled terms in the

equations of motion is small at low wp therefore the initial

effects are not as great and the amplitude of oscillation of

e is insufficient to cause departure from this metastable

position. Since the actual projectile operates at wp=12,000

sec -1 , high values of wp are of interest. The theory agrees

well with the data above wp=200 sec - 1 and therefore the

correlation to the data was made at these higher values.

Because the linear approximation agreed closely at higher

WpI a least squares fit of that approximate equation to the

experimental data (Wp-?235.97 sec - 1) lead to the calculation

of a higher sliding friction coefficient than had been used

previously. The assumed value was ps-0.35 for laminated

plastic on steel [271. This was found to be too low by the

least squares fit. A sensitivity check of the approximate

solution for tcr to variations in Ps also indicated that 0.35

was too low (Fig. 39). Therefore, a method for determining

the sliding friction coefficient from the experimental data

and the approximate solution was discovered.

By knowing initial orientation (6o), projectile spin rate

(Wp) and the physical dimensions and material properties of

the projectile, the response may be predicted in a gravity

environment with reasonable accuracy.

The aerodynamic model appears to give reasonable results

within the scope of this study. The complex forces acting on

115
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the obturator in flight are extremely difficult to model

theoretically and therefore they were simplified greatly.

The confidence gained in the gravity model, however, leads

to the conclusion that once the complex aerodynamic forces

are better understood, the motion of the ball within the

flight model will be predictable.
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VI. RECOMMENDATIONS

Further experimentation should be undertaken with

variation of other parameters (hole size, obturator material)

to obtain more confidence in the analytical model. Wind

tunnel tests of the BOT should be conducted in order to more

closely approximate the actual forces on the obturator in

flight, and to determine the position (9) at which the de-

tached bow shock is swallowed. This would greatly enhance

the predictive capabilities of the model and thus allow

coupling to a trajectory model for predicting flight char-

acteristics. This, in turn, could be coupled to a numerical

optimization routine for optimizing the BOT design for the

desired performance criteria.
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APPENDIX A - COMPUTER CODE

C *******I*******US*s**
*BALL OBTUPAT'-.) TU'ULAR PckOJf:CTILF

i BALL MITION ANALYSIS
C*

C LT Jo W. BLCOP4ER 119 USN
C
C

C(1)s (STN(FCTtflwI*2, Wl--qr 8S TA IS GIVEiN BY ARSINIPP/Rn)
H I LAMSCA z (C-Al/Ail tiCOYKNtMC OP GRWVTATIONAL 'ClIDING FRICTICN rNSTUf4T.

C C4)= TCTAL KIN; !!C SN~iC-Y OF C'CMBIND PROJICTIL7 AN-) rB'rURkTl.

MGPNT F ll !77 Cr A LL0'CW CIRCULAR CYLIN ',-
C APPROXIMAINGTHAT -F THE PROJ -CTILE.

C C(011
C
C****=**CALL INTEC2 SP'WULTAW:CUS 01FF. SON. SOLVER
C

C CALL INTLGZ(T,X,XDCTC)

C***$**O0tIN(L ELLEF ANGLCS TIt!*At PHI AND PSI AND IST OER [VAT! vrS

Ttl-X 11)
XOCTI)=X(2l
PS-X(3)
XDCT (3 )=X (4)
PH*X (5)
XCCTI5)sX(6)

C****S*Orl'FINf* TRIGCNCMSTRIC FUNCTION4S OF SULER ANGLES

C
STI-mSINI THI
CTI.xCDS( TI I
SPI--SIN( PHI
CPI=C')S IF FI )
SPS=SINI PS)
CPSZCJS(PSI

C
C*******Cr-FINr_ TIETA-COT9 PHI-CCTr AND PSI-DOT

TPC=X0GT(1Il
PSC=XDICT (3)
PhiDmXDOT ( 5)

&w1p*****CALCULATT AhGULAP V"L-rCITIES WITH RtSPECT TO BODY-
C FIXED AX;S 49 89 ANO) 1: qSP-CTIV'Lv.

OM ZaPSO*STl-0CFH=TH')-PH
Cl93xPSD*CT-+Pftt

C
C***a**CALCULAT- ANGULAR VC-LOCIYIFS ABOUT INERTIAL AXES X, Y, A.40
c- Z RZSPIECILY.

OtX0?41M* (CPHi~rPS-SPl4ar"H$JSPS )m2a(-SPH*CPS-dPH*CTH4ISPS)

OI'Y= MI ICPH'*SPS+SPHqcCTHqCPS lCMZ*(-SPHaSPSCPF*CTHOCPS)
**Clm3s(-STI-#CPS I
OFPZsCM1*5Th*5PH*CP2*STH4,C PH4CJI3*CTH

i **u****#CALCULATF T)-' B1NnULAq VLCCITY PF TH-- PROJECTILE
C FROM CChSZFVATITN OF -N;RC;y PRIPICIPLlS.
C



SPINmo.o

C********CALCULATk ANGULAR V-LOCITY flF SALL RELATIVE TO TH9 PROJI CTIL
WITH PESF.ZCT TO 83CY-FIXED AX S.

014IR w(JOI ISPI h-4S PH* STH
OI'2RaCP2-SF IN* CPI-41,TH
014M3R or., 3-SF I Kv'TH

C*******.CALCULT~r RaLATTV; ANGULAR V-.LOCITI -S WITH RESPIECT TO
C TH'.- IN:-87[AL P-.FI rtC:FZAMIE.

*+0103RtfSTHOSPS)
GfYks,)M1R$1CP .*3PS.SPH*CTH*CPS),OM2q*(-SPHSPSCPHCT4CPSI

*.CM3Rx4-ST)-uCFS)
OM4ZKsOMI~S-NP H nM2*57HwrPH,IH3RCT

& ********CALCULAT: IAGNIT'JO'! OF RIELATIV7 ANGULAR VIELOCITY V'CCTJM.

c QPP=SQRT ICI1 F*Cy1R.OPZ2ReCld2R4CM3R*OM3R)

E**8***CALCULATE TM' t4MOM4-:NT jO*4 AT WHICH THS FRICTIONAL FORCCS ACT,

C ARIA= M-34rNr ARM AND C(1l IS AS Df:FTN-D EXCEPT IN THS C='-' OF
C GRAVITY WMrR7 C(l) - .)
C FRICm CCMBIINEC FLUID AMO SLIDING FqlfTIJN CCNSTANTS.

FR ICsC 13 .1ARP
c AMCMCI8 )*CP.FRIC

C***aA-***w*CALCULAT,: MCW.NTS ACTING ON THS BALL ABOUT THM7 ROOY-FIXED
C AXLSe

G~s-AMOM*Z3PIR/CmR
0. G2s-AM:*Ck.2;/C4JR

C**********CALCULATS *7L2'6,;NTS 3% M4ATRIX OF C)EFFICIENTS, Y1, Y2 ANC Y3.
C

*(P DsSTb*CPH-Tt-kSl4,*f PSI*CIHPHfl,

Y3zG3/CI6i 4FSC*'-iO*.5;H
C
C******ACLT- ANGULAR .ACCMLRAT11N T=R14S FOR rNTSGRATION, rID
C DEFIVATIV7S OF 'UL7Q ANGL-S WRT TIMr:.
C

XDOT 12 =CPF-*Y1-SPH'-Y?
XCCT (6 -S *T/'r*l("r-CP-SHRZY

c XOCT(4JmSPH/ST4cY1,CPN/Sr.'*YZ

E ****AZP*CALCULATS- VsALUES FOR THE APPROXIMAT7 SOLUTION
C
C

THCR ITz. t411
IF(T.N -.C.CCc0ooa, G11 TO 25
THf-GTmX(I)
OMP=X(4).
rRTC=C 16)
AaC(51AMCAuC (2)Al0CAPmlACA*
EM&4C (3)*~.63-~
Do-AM0A/2.ASIN( 2.*THNOT)
R*-ACAP*Ar-SiN(-.HI.2T?/( :'PCO~mP)
TCRIT--l./It*1 THPCT-THCP!-)-O/R
WRITr-(692.,I TCR'T

20 FCPMArI5x.'ic;IT a* , :16.81
ZIEIAs4HOAP/(2.sVPA~lA*COFCMP*COS(THNOT) )*
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OZkiTA=SCKT Ii.-=VT1*Z'7rAl

TMPROX.1-407 /atP-( 2.* ZTA) +1. /ZETA* SIN (PHASE)

25 X=H.'1,l+4+/flMPNttMP*T-Z.IEZFTAI+1.I (EXPIZETA*OI4PT)*OZ-=TP)*
*Ih I0GMP*T CtA *PIA Sc I

26 Xf71xrMPRCX
XI q UUMZ
X(1 3 I=SP IN
GO TO 1
END

1-2 0



APPENDIX B - RAW DATA

READOUT T LIE W , READOUT TIME wP

[Hz] Isec] [sec- ] [Hz] [seci [se - ]

776 .274 270.880 880 .2717 307.2*

676 .213 235.97* 920 .3026 321.14*

679 .2181 237.024 920 .2847 321.14*

573 .2157 200.01 936 .2816 326.7*

570 .2079 198.97 983 .2699 343.1

574 .2009 200.36 1001 .306 349.4*

570 .197 198.97 994 .2972 346.97*

571 .2031 199.32 1055 .296 368.26*

475 .2099 165.8 1063 .2530 371.06*

479 .1833 167.2 1151 .315 401.77*

570 .2179 198.97 10.22 .369 356.7 *

475 .215 165.8 1175 .378 410.15*

479 .223 167.2 1258 .3348 439.12*

470 .230 164.1 1278 .3968 446.1 *

428 .1831 149.4 1255 .4268 438.08*

425 .1786 148.35 1221 .3088 426.2

430 .1659 150.1 1170 .284 408.4

367 .1896 128.1 1158 .281 404.2*

363 .2037 126.7
370 .1959 129.15
277 .2249 96.7
267 .2292 93.2
279 .2259 97.4
323 .230 112.7
323 .2149 112.7
225 .493 78.5
223 .658 77.8
223 .599 77.8
226 .3241 78.9
807 .2592 281.7*
810 .2339 282.7*
853 .2773 297.8*
853 .2631 297.8*
850 .2917 296.7*
854 .267 298.1*
921 .3022 321.49*
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