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ABSTRACT

An analytical model was constructed to predict the
response of the ball obturator in a ball obturated, spin
stabilized tubular projectile (BOT). Torques acting on
the obturator were considered to be due to fluid and sliding
friction forces. An experimental apparatus was designed,
and built to simulate the BOT. Data obtained were the times
required for the obturator to nutate through a known angle
over a range of projectile angular velocities. Utilizing
published coefficient of sliding friction information and a
linear approximation of the exact solution, the trend in the
data to go through a minimum value was duplicated. A least
squares fit of the linear approximation to the data allowed
the formulation of a new sliding friction coefficient, ug.
Using this value of ug, a plot of the least squares fit,
values from the exact solution and the experimental data
was constructed. The correlation is extremely good so that

confidence in the predictive capabilities of the model was

gained.




o T e ey

11203 AT, e BRI Bt 507 s L ks

.

II.

III.

Iv.

TABLE OF CONTENTS

INTRODUCTION =m=m=c=mmm e e e e m e m e m e 15
A. BACKGROUND ===-===m-eecceeec e e e mc e e e 15
B. RECENT DEVELOPMENTAL STUDIES ---=--—==—-—ccec----- 16
1. Range Tests ====--—cwemmreccmc e e 16
2. Target Impact Tests ==—=—==-ceecccccmcccccccax 18
3. Weapons System Capability -—==—-—-cec-eccca—a——a—- 19
4. Review Of Internal Shock Wave
Considerations ==—-=---cecmmcemccc e 22
5. Laboratory/Wind Tunnel Testing -=---==-=---- 31
C. PURPOSE OF STUDY —————=-m———mmmmmmmemecm e 32
ANALYSIS ===m=eeemm e a s e e e e —t e ——m e m - = 36
A. DEVELOPMENT AND SOLUTION OF THE EQUATIONS
OF MOTION ==m=m==me—ceccecececec—————e——e—e oo 36
B. MODELING OF THE APPLIED TORQUES ---=-=-—-=—meo——-- 47
1. Moments Due To Viscous Effects =======e==-—- 47
2. Moments Due To Sliding Friction ------cecece--- 57
C. DEVELOPMENT OF AN APPROXIMATE SOLUTION ========- 66

D. THE EFFECT OF GEOMETRY ON OBTURATOR RESPONSE --- 73

EXPERIMENTATION ~--====-- e 81
A. EXPERIMENTAL APPARATUS ----=-cc-e-mocmcemcccaa——- 81
B. EXPERIMENTAL PROCEDURE -—=-=~-eec—ceeccococmeoa- 91
C. DATA REDUCTION ======mmeccecmcmmmceccccccoen———— 96
CORRELATION OF RESULTS —==mee-ccsmcmmmm—ceccocceeeceaa 97
CONCLUSIONS ==----mm e e e mmmm e 114




RECOMMENDATIONS

APPENDIX A - COMPUTER CODE

APPENDIX B - RAW DATA

LIST OF REFERENCES

INITIAL DISTRIBUTION LIST

- e,

N T o




e b S e e ki

LIST OF FIGURES

Photograph of 20-mm Ball Obturated Tubular Projectile
(BOT), components and conventional 20-mm projectile.==—-- 20
a. Standard 20-mm projectile in flight with detached

bow shock. —========w=-=====- ittt i 20
b. BOT in flight with passage blocked resulting in

detached bow shock. ========----erccr e ccmeee 21
c. BOT with no blockage in passage. Only attached

oblique shocks emanating from the lip. =-==---==-=-=----- 21
Sketch of Split (a) and Solid (b) disk, pusher-type,
discarding sabots/obturators., ~===--=-c-=-ms-———cceoo——-- 23
Drawing of BOT with obturator oriented to block the

passage (loading position). ———e—ccm—cccmmmmccccme - 34
Drawing of BOT illustrating body-fixed and inertial
coordinate systems and angular velocity components
associated with each. ==~=—c oo 37
Drawing of the guide used in determining the inertia

tensor and moments of inertia of the obturator., -------- 39
Drawing of BOT illustrating relationship of Euler

angles to coordinate axesS. ==--mscecmemmecmc e eeee 43
Diagram of differential area of sphere utilized in
calculation of fluid friction. =-=-—mececmmccccceccecee- 50

8 vs. time for applied torques due to fluid friction

from Couette model (Eg. 32). =—mmemccmceccccccccccccaeae 53

J




lo.

11.

12.

13.

14.

15.

16.

18.
19.
20.

21.

22.

B vs. time for obturator with applied torques due to

fluid friction with increasing orders of magnitude of

Diagram showing area under the influence of viscous
shearing stresses developed from Couette flow theory.~-- 55
Diagram showing the geometric relationships for deter-~
mining moment arms r and r, for calculating sliding
friction torques due to aerodynamic forces. ———-—=—————=u- 60
Plot of 8 vs. time for BOT utilizing aerodynamic force
development. ==== = o 67
Plot of 8 vs. time for BOT utilizing gravitational force
development., ===—= == s oo o 68
Comparison plot of 6 vs. time for the (a) exact and (b)
approximate solutions. ====—=—==—m o 76
Comparison plot of 8 vs. time for obturator material
densities of (a) 6000 Kg/m® and (b) 10,000 Kg/m?,=====~=- 78

Comparison plot of 6 vs. time for obturator hole radii

of (a) 3.75 mm and (b) 5.58 mMM. =====-—=—ecmm—mmccc—c————a 80
Obturator boring process. =-——=—-———e - 82
Milling of obturator mount at a specified angle. =-=-=--~-- 82

Obturator mounts after being machined to desired angle

for polishing. =—=—=—=mm e 83
Illustration of polished spot orientation. ------—=-=--- 83
Photograph of obturator with three piece lucite housing

components. —-mm e s eo s e e e e e e e e e 84

[T

R




23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.
36.

37.

Photograph of assembled lucite housing and aluminum

end pieces. =c-— e e 84
Photcgraph of assembled spin-up rig showing obturator
supported by lucite housing. —==—cemommm 86
Photograph of spin-up rig showing bucket wheel, air

jet orientation and Proximitor mounted above bucket

Photograph of holding-jet nozzle, Proximitor and

solenoid plunger (extended) prior to obturator release.- g9
Photograph of holding-jet nozzle, Proximitor and solenoid
plunger retracted after obturator release. —-——ceceaaec—-- 90
Photograph of light sensitive diode housing (1) il-
luminated by reflected lawer beam from the polished

end of the solenoid plunger., ———— oo 92
Photograph of complete experimental apparatus layout.-- 93
Photograph of laser reflection on the target from the
polished spot on the obturator. ==—-eeeemmmmmm . 94

Photograph of circle traced by the reflected laser

(Fig. 30) while the apparatus is spinning. —e—eem-eoeo-- 94
6 vs. time for gravity model, wy = 40 sec e 98
® vs. time for gravity model, w, = 100 sec”! —cmmmeoo 99
6 vs. time for gravity model, wy = 200 sec™ ' -=---coomo 100
® vs. time for gravity model, wp = 500 sec™' —---oc--e- 101
® vs. time for gravity model, wp = 700 sec”™' ——-=-ooooo 102
® vs. time for gravity model, wy = 1000 sec ~ ' =--=---- 103




38.

39.

40.

41.

42.

43,

Plot of experimental data and t,, calculated from
approximate SOlutiGiie ememe oo mm oo 104

Plot of t  vs. w for various values of sliding friction

o

coefficient Mg. —eme oo 105

Plot of t_,. vs. wp for various values of 6. 106

Plot of experimental data showing the relative insensi-

tivity to small variations in 8 . oo ______ 107
Plot of experimental data on plot from Fig. 39 showing
close correlation for Wp 200 sec™! with curve for

Hg = 0.55 . s 108
Plot of experimental data, linear approximation from

least squares fit of data and values obtained from

exact solution for u, = 0.5437. 113

10




NOMENCLATURE

(Only primary symbols are listed. Intermediate guantities

are defined in the text.)

A major mass moment in inertia, N-m-s

C minor mass moment of inertia, N-m-s

G applied torgue, N-m

h width of gap between ball and projectile, m
M magnitude of applied torgque, N-m

rp radius of hole through projectile, m

rg radius of hole through ball, m

Rs radius of ball, m

3 sin™! (rs/Rg)

8,9,9 Euler angles (see Fig. 7)

A (c/a)-1

Uge fluid viscosity (Pa-s)

Ug coefficient of sliding friction, dimensionless
w angular velocity

Subscripts

cr refers to condition when 6=0,,=8g

o initial value

o) projectile

r refers to relativ: angular velocity

s sphere (ball obturator)

A1




X,Y:2 refers to inertial coordinate system

$1 1,2,3 refers to body-fixed coordinate system

Superscripts

. denotes differential with respect to time
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I. INTRODUCTION

A. BACKGROUND

The tubular projectile is not a new concept. As early as
1858, the usefulness of tubular projectiles was recognized for
specific purposes. In that year, Joseph Whitworth (Whitworth
Threads) wrote about and included an illustration of the tubular

projectile in the section on Rifled Firearms of his Miscellaneous

Papers on Mechanical Subjects [1]'. The projectile pictured

was hexagonal with a circular hole. Whitworth noted its par-

ticular "...effectiveness in perforating elastic materials

which prevented them from closing up." The projectile utilized

a wooden sabot. Whitworth also said that the tubular projectile

penetrated deeper into masonry than any he was acquainted with.
The Xrnka-Hebler projectile was the next projectile refer-

enced chronologically [2]. According to Charters and Thomas,

this projectile was reported in the Allgemeine Schweitzerische

Militarzeitung as having been so successful that the Ordnance

Department in the United States carried out firing tests of
caliber .30 tubular projectiles in 1894. A description of
those test firings and an updating of the results was performed
by I.E. Segal and included in Ref. 2. In the 1894 tests, a
vulcanized fiber sabot was used to push the projectile out the

barrel.

1 . . . .
Numbers appearing in brackets refer to the list of references.
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The purpose of the 1894 test was to compare trajectories
of standard and tubular projectiles. This was done by com-
paring the vertical drop on target at a given range.

Segal's report in Ref. 2 indicates that the drag co-
efficients computed from the 1894 results agree closely with
those of Charters and Thomas [2], even though their report
was published fifty years later (1944) and their experimental

apparatus was more sophisticated.

B. RECENT DEVELOPMENTAL STUDIES

The results obtained by independent researchers as to the
value of the tubular projectile as an alternative to the con-
ventional round are contradictory. It seems as if there was

as much research devoted to discrediting the tubular pro-

jectile as there was to investigating its merits. Frank and
McLaughlin [3] have accumulated a great deal of data from
various sources in an attempt to "objectively compare" the
merits of the tubular and "conventional shapes". The authors
concluded that the tubular has no particular advantages over
"well designed" conventional projectile shapes.

Their findings disagree with most of those discussed in
the following sections.

1. Range Tests

Winchenbach, Daniel and Edgar [4] conducted range
tests of six configurations of tubular projectiles and con-

cluded that the drag coefficients were significantly lower

16
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than the standard High Explosive Incendiary (HEI) projectile

of the same caliber. Only projectiles of the same bore size
were compared. The experimental models were constructed from
standard 20-mm ammunition by boring various hole sizes to
obtain ". . . area ratios (A /A;) of 0.7, 0.8, 0.9 and 1.0."
Where At is the throat area and Aj; is the inlet area of the
projectile. The drag coefficients of the projectiles with
area ratios of 0.8, 0.9 and 1.0 were less than half that of
the projectile with area ratio of 0.7. The higher drag co-
efficient was attributed to the underexpanded flow at the
exit resulting in high base drag.

Range tests conducted for the concept evaluation of
the 20-mm tubular projectile for the Vulcan Weapons System [5]
showed that the tubular projectile performed better than the
standard HEI round, with lower drag, shorter time of flight for
a given range (30 percent shorter at 1000 meters, 40 percent
shorter at 2000 meters) and similar dispersion characteristics
on target.

Recent tests at the Naval Weapons Center, China Lake,
California of the Ball Obturated Tubular Projectile (BOT)
have shown a definite advantage in that the low drag of the
tubular projectile means slower retardation of velocity and
hence a higher terminal kinetic energy [6]. (The BOT is the
object of this investigation and will be described in detail

in later sections of this thesis.)
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2. Target Impact Tests

The higher the energy delivered to the target, the
greater the damage. Since kinetic energy is directly propor-
tional to the first power of mass and to the square of the
velocity, the reduced mass of the tubular projectile is com-
pensated by a higher muzzle velocity and therefore a potential
for higher kinetic energy. However, due to the improved drag
characteristics, the reduction in mass to obtain the higher
muzzle velocities may not be necessary, depending upon the
imposed performance criteria.

Target impact studies have been carried out with
various projectile configurations and target types.
Rhethorst, et.al. [7] conducted impact studies of 7.62-mm
tubular projectiles on helmets. Tests showed that even with
the same energy, the tubular projectile penetrated further.

Kitchen and Keeser [8] conducted studies for the
Air Force on the impact effectiveness of tubular projectiles
on simulated aircraft fuel cells. These tests were conducted
with steel and depleted uranium (DU) tubular projectiles and
standard 20-mm HEI projectiles. The projectiles were fired
at double panels at varying degrees of obliquity. Of the
forty-seven tests of the steel tubular projectiles which im-
pacted the target, twenty breached the rear panel up to
angles of 70°. The DU projectiles breached the rear panel
even at angles of 85° and fires were started in three of the

five DU tests. The standard M56 HEI projectiles failed to
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breach the rear panel in each of the five firings even though
severe damage to the front panel and two fires occurred.

Brunsvold and Kalivretenos [9] conducted a program
to test the effectiveness of the tubular projectile against
a simulated cruise missile warhead. Tests were conducted
with 20 and 40-mm rounds. Results of those tests are
classified, and therefore not presented here. It was noted
[9] that due to the improved stability characteristics of
the tubular projectile, only half the spin rate need be im-
parted by the rifling in the barrel to obtain the same sta-
bility as a standard projectile, which indicates less barrel
wear.

3. Weapons System Capability

For the tubular projectile to be practical, it must
be able to interface with existing weapons systems. Refer-
ence 5 is a report of the 1978 tests conducted by the Army

to evaluate the tubular projectile in the Vulcan weapons

system.

Because the nose of the tubular projectile is flat
compared to the standard projectile (See Fig. 1), it ". . .
did not lend itself to chambering in the weapon." Personnel

safety required that the weapon be remotely operated and
therefore only the surface-to-surface performance comparison
was made.

The dispersion on target improved for the tubular

projectile from 700 to 2000 meters. The dispersion varied
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Figure 1. 20-mm Ball Obturated Tubular Projectile (BOT),
components, and conventional 20-mm projectile.
(Photograph courtesy of NWC, China Lake).

e

Figure 2a. Standard 20-mm projectile in flight with
detached bow shock. (Photograph courtesy
of NMWC, China Lake).
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Figure 2b.

Figure 2c.

BOT with passage blocked resulting in
detached bow shock. (Photograph
courtesy of NWC, China Lake).

BOT with no blockage in passage; only attached
oblique shocks emanating from the lip of the

projectile.
Lake) .

(Photograph courtesy of NWC, China

21




on the average by only 0.2 mil over the entire range spectrum
between the tubular and conventional HEI projectile. However,
at 2000 meters, the tubular was better by 0.4 mil. The time
of flight to target was another impressive finding in Ref. 5.

The tubular projectile had a 30 percent shorter flight time

at 1000 meters and a 40 percent shorter flight time at 2000
meters than the conventional HEI projectile.

Results of firings of 25-mm and 30-mm tubular pro-

jectiles from the Oerlikin KBA and GAU-8/A respectively were
reported in part in Ref. 3. Figures comparing Line-of-Sight
Penetration Capability vs. Range for a conventional spinner
configuration based on AR-2 shape, a finner configuration
based on F10 shape, and a tubular projectile were shown. The
tubular projectile was shown to be inferior in both instances.
The report does not indicate the degree of compatibility the
tubular configuration has with the guns used.

4. Review Of Internal Shock Wave Considerations

From photographs of tubular projectiles in flight [4]
and during wind tunnel testing [7], various shock patterns
have been observed at the inlet region and in the wake. The
photographs of Figs. 2a-c show the BOT and the conventional

projectiles in flight. The sabots used in Refs. 4 and 7 were

of the pusher type similar to those illustrated in Fig. 3.
The detached bow shock seen in the photograph of the standard
projectile (Fig. 2a) is similar to that of the tubular pro-

jectile shown in Fig. 2b with passage closed (and in Ref. 4
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with the sabot attached). With no blockage of the internal
passage (Fig. 2c) there was no detached bow shock, with only
attached obligque shocks emanating from the lip of the pro-
jectile. This latter case allows the possibility of four
other internal flow/shock configurations.
(1) A normal shock standing at the entrance to the pro-
jectile;
(2) A normal shock standing at some intermediate position
in the channel;
(3) A system of oblique shocks present in the channel;
(4) The channel is devoid of shocks and the flow is shock-
free through the channel.
In each of the cases described, specific conditions
must exist:
a. The Detached Bow Shock
When the projectile passage is closed, such as
in the case of the attached sabot, the projectile acts as a
blunt-nosed body with the resultant detached normal shock [10]
(see Figs. 2a and b). From oblique shock theory, there is a
maximum turning angle which the flow (supersonic) can nego-
tiate through an attached oblique shock. When this turning
angle is exceeded, the shock becomes normal and detaches.
There have been many studies as to the strength and location
of this detached bow shock, but here the internal flow is of
more interest and, therefore, those references are not in-

cluded in this discussion.
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b. Normal Shock At The Entrance
From one-dimensional frictionless flow theory,
for a given initial Mach number, Mx' the pressure ratio
across a normal shock is given by:
P (1 + YM?)

2= 1 (1)
P (1 + yM2)
2

for a perfect gas with constant specific heats. P2 is the
pressure downstream of the normal shock, P1 the pressure up-
stream of the shock, M2 the downstream Mach number and vy the
ratio of specific heats, CD/CV' This pressure ratio must
exist in order for a normal shock to be formed. Xantrowitz
and Donaldson [l11] conducted experiments in which they con-
cluded that the contraction-ratio in the entrance of a super-
sonic diffuser was important in reducing the kinetic energy
losses. The studies done were on supersonic diffusers with

varying areas. The formation of a normal shock at the en-

trance is determined by the throat area and initial Mach
number such that the Mach number at the throat of the duct
is exactly 1.0. The maximum value of the ratio of the capture

(inlet) area, A to throat area, Ay, required to allow the

cl

bow shock to be swallowed is given in Ref. 9 as:

v+l
Se =l 2 g4 xsloge, " (2)
Ay M2 Y+1 2 2
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where M2 may be obtained from tabulated values for normal ’
shock waves for a given free stream Mach number, M1 or may

be calculated from

2 2

M =D M
(3)

2 2Y_ w2 -1 :
D M |

c. Normal Shock At An Intermediate Position

The formation and position of a normal shock at
an intermediate position in a constant area duct has been
theorized in the presence and absence of viscous effects.
In the absence of viscous effects, the normal shock tends
to grow from the interaction of oblique shocks and will be
discussed under "d" below.

In the presence of friction, the formation of
the boundary layer along the duct walls reduces the effective

area of the duct [12, 13, 14]. This reduction has the effect

of decelerating a supersonic flow as in a diffuser. 1In a
constant area duct with friction, the location of a normal
shock in the duct may be determined by Fanno Line Flow Theory.
The length to diameter ra%io, friction factor and initial
Mach number determine the range of back pressures for which
the duct will be "choked", or a normal shock set up [10].

Por a given supersonic entrance Mach number, there
exists a maximum value of fL/D; £, being the Reynolds number-
dependent friction factor, L, the length of the duct and D,

the diameter of the duct. This maximum value, is the value i
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for which the duct will remain unchoked. If the actual value
of fL/D is less than the maximum, the flow will remain un-
choked if the back pressure is sufficiently low at the duct
exit.

In the case of the tubular projectile, assuming
a constant back pressure, L/D of (typically) 8.0 and Re in
the range from approximately 4x10° to 6x10°%, from Fig. 20.1
of Ref. 15, f is between 0.013 and 0.0125. Using an average

value of £ of 0.01275,

fL/D = 0.102
From Ref. 10, Appendix E, this corresponds to M=1.41.
Iterating to obtain better values of f from a revised average
Re would increase the Mach number at which the projectile
would choke. After one iteration the Mach number increases

to M = 1.44. As L/D decreases, Re increases and f decreases

resulting in a lower value of the Mach number at which the
flow chokes.
d. System Of Oblique Shocks In The Duct

The formation of a system of oblique shocks in a

duct or channel is the most difficult to explain and analy:ze.
Ferri [l6, 17] has developed an analytical solution for the
shock structure utilizing the Method of Characteristics.

The analysis becomes difficult if not impossible at the
centerline of the duct because, according to Ferri, the oblique
shock curves toward the centerline and becomes normal. The !

extent of the normal shock is dependent upon geometry and flow
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conditions. The larger the wedge angle for a given Mach
number, the stronger and larger the normal shock at the
centerline. The constant area duct implies a zero internal
deflection angle. In this instance, Ferri's analysis, which
ignores viscous effects, implies that no normal shock is
formed (Fig. 13 of Ref. [16]). With no wedge angle, there
is no oblique shock formed.

Brunsvold and Kalivretenos [9] have modified a
Method of Characteristics computer code [18] developed for
supersonic inlets to account for the absence of a center-body
on the tubular projectile. This modified code was then
coupled with a subroutine to calculate the internal wave drag
coefficient based on A, and used to obtain an optimum internal

geometry for the tubular projectile which would give minimum

internal wave drag. The computer code assumes inviscid,
supersonic flow throughout. Reference 9 states that some
inaccuracies are allowed in the computation due to the re-
laxation of the convergence of the characteristics equations
at the centerline, but that the inaccuracies do not have time
to propagate to the walls of the projectile before the exit
plane. Therefore, the inaccuracies do not affect the wall
pressure distribution.

Rhethorst, et.al. [19] has postulated another
method for determining the shock structure and the resultant

internal wave drag for a tubular projectile, using Prandtl-

Meyer wave theory. But again the initial oblique shock
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formation is dependent upon the wedge angle at the entrance
and therefore does not apply to the constant area duct case
where no internal wedge angle exists. Ferri [16, 17],
Brunsvold and Kalivretenos [9] and Rhethorst, et.al. [19]
have neglected boundary layer/shock wave interaction.

Fejer, et.al., [14] and Waltrup and Billig [15]
have conducted experiments utilizing constant area ducts.
Fejer, et.al., performed experiments on constant area rec-
tangular ducts varying in lengths, whereas Waltrup and Billig
conducted their experiments on cylindrical ducts of varying
lengths and diameters. Other than the obvious geometry dif-
ferences, the procedures were very similar. The advantage
of the rectangular duct was the ability to visualize the shock
patterns through a viewing port, whereas the curvature of the
walls of the cylindrical duct precluded accurate visualization.

In both experiments, oblique shock systems were
formed in the ducts. The location of the shock system in the
duct and the actual configuration of the shock system was con-
trolled by the pressure ratio. The pressure ratios were con-
trolled in different ways, but the effects were the same. As
back pressure increased, a shock system formed at the exit of
the duct. With further increases in back pressure the system
of shocks moved upstream and out of the duct and a detached
shock appeared. Shapiro [12] indicates that internal

oblique shocks may be the remnants of normal shocks "with
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bifurcated ends as a result of boundary layer separation."”
He states that the normal portion grows shorter as the
boundary layer gets thicker until the normal portion dis-
appears completely leaving only the bifurcated portion. He
illustrates this in Fig. 28.27(c) of Ref. 12. This explains

the movement of the oblique system toward the entrance of the

duct in the experiments of Refs. 14 and 15. As back pressure
increases, the flow downstream of an internal shock has more
of a tendency to separate. Fejer also states that the
presence of a turbulent boundary layer had a stabilizing
effect on the shock system in the constant area rectangular
duct. In the experiments involving the cylindrical duct, the
shock structure again moved from exit toward entrance with
back pressure increases. They also report a breakdown in flow

downstream of the shock system as indicated by relatively

constant pressure movements in this region.
e. No Shocks Present In The Duct
It can be seen from previous discussion that

given an initial Mach number and inlet stagnation pressure,

- oy

a sufficiently high back pressure will cause a normal shock

or system of oblique shocks to be formed. 1If the cross-

s ey

sectional area of the duct is reduced in the direction of
| flow, as in a supersonic diffuser, the incident flow may
cause an oblique compression wave to be formed. In the

absence of the requisite back pressure or area reduction,
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no explanations for internal shock formation have been found

other than those due to viscous effects noted in "d" above.
f. Summary

In a constant area duct with supersonic inlet
flow, there is a pressure rise caused by a reduction in the
effective flow area by boundary layer formation due to
friction. Depending upon the length-to-diameter ratio (L/D)
of the duct and the flow parameters, the increase in pressure
ratio (or reduction in Mach number) required to cause forma-
tion of a system of oblique shocks is less than that required
to set up a normal shock at the duct entrance. This difference
is explained by the boundary layer formation and/or interaction
with the shock waves.

In the case of the tubular projectile, the back
pressure at the exit in flight is affected by the complex wake
flow. There is no pressure difference in the surrounding
medium at large distances from the projectile. The formation
of shock waves inside the projectile with a constant cross
section is due to viscous effects and depends upon Mach number
and the length-to-diameter ratio.

5. Laboratory/Wind Tunnel Testing

From all indications, the Weapons System Concept Team
(WSCT) of ARRADCOM has done extensive wind tunnel
testing on various tubular projectile configurations. The
work of A. Flateau of the Weapons System Concept Office is

referenced often with regard to results obtained, however no
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publications from that office have been found. (The work
1 referenced in other publications is usually of the "private
E communication" type.) Appendix D of Ref. 8 reports results
E of a test conducted by the WSCT at the ARRADCOM facility.
The facility utilizes a variable Mach number tunnel which
may be used to simulate the deceleration of the projectile
in flight. l
The results of Ref. 8 agree <closely to those of ;
Ref. 7, in that the drag coefficient rises almost instan- i
taneously at the Mach number at which the flow becomes '
choked.
The Mach number at which this choking occurs is de-
pendent upon geometry. For the case of inviscid flow,

Brunsvold and Kalivretenos [9] give the following relation

for the area ratio corresponding to the free stream Mach

number at which the shock is "regurgitated"” and the flow be-

comes choked:

y+1

2(y-1)
| Be oL ) 2 (1, xlge (4)
; Ay M1 y+1 2 1

C. PURPOSE OF STUDY
The results of tests and experiments previously mentioned i

show for the most part definite advantages to the tubular

projectile over the conventional projectile primarily in the

area of lower drag (approximately 1/2 to 1/3 of conventional [8])
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which allows a flatter trajectory and shorter time of flight
for a given range [5]. With the emphasis on Anti-Missile
Defense both from a Surface-to-Air and Air-to-Air standpoint,
these features are definitely worth further study.

The problem seen from the air platform is that of the
discarding sabot or pusher. The solid [4, 5, 7] or split (8]
disk is effective and reliable, however the possibility of
ingestion in the aircraft engines prohibits their use.
Rhethorst et.al. in Ref. 7 illustrates a number of sabot/
obturator designs for use with the tubular projectile, but
these are also of the discarding type. They also investigated
the possibility of using a consumable sabot [19] which would

be burned up as the projectile was transiting the barrel and

would be completely consumed as it exited the barrel. The

most recent development has been the BOT which was designed

at NWC China Lake, California [6]. The ball obturator has
been bored with a hole the same diameter as the hole through

the projectile. When locaded, the ball is supported inside

the projectile such that the axis through the hole in the ball
makes an angle of approximately 90° with the axis of the hole s
through the projectile (see Fig. 4).

Gas pressure from the burning propellant holds the ball

obturator fixed with respect to the projectile as the rifling

in the barrel imparts spin to the projectile (as well as the

ball). Upon exiting the barrel, the propellant gas pressure
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is released. At that time a complex force distribution acts

on the ball to cause it to change position inside the pro-
jectile in such a way as to align the holes. Inertial forces
then dominate to maintain this alignment so that the pro-
jectile remains fully tubular. There are no separating parts
and the opening process is automatic.

The purpose of this research is to analytically predict
the motion of the ball obturator as a function of time. In
support of this purpose, an experimental apparatus was de-
signed and built to simulate the motion of the obturator in

order to gain physical evidence of the accuracy of the model.
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I1I. ANALYSIS o

A. DEVELOPMENT AND SOLUTION OF THE EQUATIONS OF MOTION

The ball obturator may be thought of as a rigid body of
rotation with a system of coordinate axes fixed to the ball
having its origin at the mass center of the ball (Fig. 5).
These axes will be designated x, y, and z, where z is the
axis through the hole in the ball.

The motion of the ball must be described relative to the
projectile, and for this purpose an inertial frame of refer-
ence is defined with axes designated X, Y and Z with its
origin also at the mass center of the ball. For this analysis
it is assumed that the projectile has only a rotation about
the Z-axis and no translation or other rotation. Because only
the motion of the ball with respect to the projectile is de-
sired at this point, the relative velocities are the quantities
desired. The ball has only rotational components and thus the
values of angular velocity with respect to the X and Y axes
are also relative to the projectile, whereas the value with
respect to the 2Z2-axis must account for the projectile spin.

By doing this, the motion may be described by Euler's
Modified Equations of Motion for a rigid body of revolution

about a fixed point. These are given in Thomson [20] as:

.36




- goXe 93PUTPIOOD JO UOTILIUSTIO putmoys Lod °G °Inbtd

37




lr'"'"fm" - - — — —mﬁ

] |
!
! Ao+ (C-A)w w = G (5a)
f 1 2 3 1
A + (A-Q)w w = G (5b) !
2 1 3 2 J
Co =G (5¢) :
E 3 ;
where
A = Mass moments of inertia about principal
axes perpendicular to the z-axis.
C = Mass moment of inertia about the prin-
cipal axis through the hole (z-axis).
® ,» ,® = Angular accelerations about the body
' 2 3 fixed axes X, y, z respectively.
w ,w ,w = Anqular velocities about the body fixed
1 2 3
axes.
G ,G ,G = Moments acting about the body fixed axes.

Since a body of revolution has only two distinct prin-
cipal axes, the mass moments of inertia about the x and y
axes are equal. The moments of inertia of the ball were
determined by first finding the inertia tensor. From
Refs. 21 and 22 the inertia tensor is found by starting with
the formulation for a hollow cylinder of inside radius r and
length 2h (Fig. 6) in which the inertia tensor in terms of
dyadics is

I = (U+ ee)mr?/2 + (U-ee)mh?/3 (6)

In Egq. (6) m is the mass of the cylinder (ball), U is the
unit dyadic and ee is the referenced dyad. Using Fig. 6 as a

guide, the incremental value of the inertia tensor with respect

to the center of mass, dIG is given by:
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Dimensional relationships for calculating the
inertia tensor and moments of inertia.
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g = (U + ee)p?/2 dm + (U - ee)h?/3 dm (7)

where p is the radial distance to the incremental mass, dm.

The incremental mass is given by
]
dm = 4mp(R%*-p?) vdp (8)

From Eq. (7), since the origin and center of mass coincide,

IO = deG (9a)

therefore,

R R 3
IO =f (U+g§_)293nhydp +[ (U~ee) 1'3‘_ 4mpydp {9b)
r r
which, after simplification leaves

R %
I = 2M(U+g§_)f o’ (R*-p?) dp +

o)
r
(9¢)
4 R 3/2
gﬂ‘Y(U-e_q)f (RZ-p?%)  pdp
r
Solving Eq. (9c) gives
1 2,2 n2,p2_.2 3/2
Io = ny{Z(U+gg)[gr +T§R (Ré~r*) ] +
5/2
%(U-gg)[é(Rz—rz) 1} (9d)
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Egq. (9d) is the expression for the second order inertia
tensor of the ball obturator with outside radius R, hole
radius r and made of a material of density y. Diadics have
been used to describe this tencor. In order to obtain the
moments of inertia about any axis, the diadic describing the
tensor need only be premultiplied and postmultiplied by scalar
multiplication by the unit vector along the axis about which
the moment of inertia is described. It may be seen in Fig. 6
that the e-direction vector is along the z-axis. The
e-direction may be chosen arbitrarily, however this choice
greatly simplifies the formulation of the integral. Thus

the moment of inertia about the z-axis, C, is given by

1,.2 3/2
C=e + [(ii+jj+ee)+ee)] * e {[2my(5r2+7gR?(R*-r?) ]
4 1 5/2
+ 3(iit+jj+ee-ee) [nyg(R*-r?) ]} (10a)

Simplifying and using the subscriwt s to denote particular

values for the ball obturator:
3/2
~ = 12,2 2 2_. 2
D = 4my(5rg” + JERg%) (Rg -rg”) (10b)

For the axes perpenducular to e through the mass center, the

Moment of Inertia is given by

A=B=j'I.j=41i1I51% (1la)
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Performing steps as in Egs. (l0) gives

1 2 3/2
A = j' (ii+i_j_+ee+ee) -j [ZHY(-E';rZ"' RZ (RZ__rZ) ]
. 5/2
+ - (ii+jj+ee-ee) "] [ﬂYig(Rz-rz) ] (11b)

After premultiplying and postmultiplying,

3/2 4 5/2

1 2
A= my{2[5rg? + TE5Rs*(Rg’-rs?) ] + T5(Rg*-rg?) Y110

In order to simplify Egs. (5), define a non~dimensional

X such that
A= SR (12)
Thus Egs. (5) becomes
&1 + szwa = G1/A (5a)
&)z *Aww =G /A (5b)
&3 =G /C (5¢)

The position of the ball at any time may be described by
three angles, 6, ¢ and YP. These are known as the Euler angles
and their relationships to the coordinate axes already de~
scribed may be seen in Fig. 7. Reference 20 defines w o,

2
and w, in terms of the Euler angles as
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w o= Psindsin¢ + Bcos¢ (13a)
w, = @sinecos¢ - ésin¢ (13b)
w3 = 5 + icose (13c)

By differentiating Egs. (13) with respect to time, él, W

’

and &3 may be obtained as

é; = {sinfsing¢ + $(écosesin¢ + &sinecos¢) + Bcosd {14a)
-é&sin¢

&2 = {sinBcosé + ¥ (fcosbcos¢ - $sinbsing) - Ssing (14b)
- @o¢cos¢

© = $ + Pcos8 - y8sind (14c)

By substituting Egs. (13) and Egs. (14) into Egs. (5),
the following expressions for G1/A' GZ/A and G3/C are found

to be

Ysinfsing + y(8cos@sing + ésinecos¢) + Bcosd - (15a)

ddsin¢ + A(ysin6cos¢d - ésin¢)(¢coss + ) = G1/A

sinfcos¢ + ¥ (8cosbcosd - ésinesin¢) ~ Hsing - (15b)

8dcosd - A(Psinbsing + Bcosd) (Ycos8 + ¢) = G, /A
fcos® - (6sind + § = Ga/c (15¢)

Transforming this system of differential equations into the

matrix form [A] {X} = [B] leaves

44
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sinfcos¢ 0 =-sin¢|{ $

cos8 1 0 B Ga/C + Yy6sin®

— — L

+ 8¢sing - A(Psinb6cos¢

8sing) (Ycose + §)

+ Bdcosd + A(Ysinbsin¢ + Hcosd) (Yycoso + $)

sinfsin¢ 0 cos¢l | P GI/A - i(écosesin¢ + $sinbcosé)

Gz/A - y(bcosbecosd - ésinesin¢)

(16)

By premultiplying both sides of Eq. (16) by the inverse

of the coefficient matrix, we are lef£ with

(w\ f s;n¢ cos¢ 0- i
siné siné6

< 3\ = sing¢cos8 -cosfcosd
f sin8 sin#®

-t b

+ Bdsine - A(ysinbBcosd - Hsing) (Pcoss + $)

+ Bdcosd + A(PsinBsing + Hcosd) (Ycoss + ¢)

=

B cos¢ -sin¢ 0 G /C + iésin¢
\ ) L 3

GI/A - ¥(6cosbsino + dsinbcose)

1 Gz/A - @(écosecos¢ - $sinBsine)

(17)

In order to solve this system of non-linear second order,

differential equations for 6, ¢ and Yy, the following must be

known:

Initial Values (denoted by subscript o) of 6, ¢, ¥,

and § and the guantities, A, C, G, G, and G_.
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Due to symmetry, 0° 86 =< 900, and since we are interested

‘I
s

"

in the performance of the ball away from 0°, 60 > 0. Since
the ball is attached to the projectile initially (no slippage),
éo = io = 0, &o is equal to the spin rate of the projectile

as it exits the barrel. A and C are physical constants de-
pendent upon geometry and material properties [Eqs. (10) and
{(11)] and therefore A is a constant. ¢o' and Y, are arbitrary
due to symmetry and the values of G1’ G2 and G3 must be de-
termined from knowledge of forces acting on the ball.

The solution to the problem of the motion of an axi-

symmetric rigid body about a fixed point with no moments

applied is well known [20,21,22,23]. Under these conditions

there is no nutation and the precession rate y is constant.
Thus

=0
and

- Co
(A-C)cos8 (18)

<
i

The computer solution method was tested by substituting the
projectile spin velocity for @ in Eq. (18) and calculating
. o , .

¢ for the specified value of 0 < 8, < 90 . By inserting

these values of 6., ¥ and ¢ into the computer model, and

ol
solving for 6 as a function of time, 8 was indeed found to
be zero. In addition, all other criteria for the test case,

i.e., constant angular momentum and constant Yy and ¢ were met.
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The problem remaining is one of modeling the forces acting

on the ball in order to determine GI, G2 and Ga'

B. MODELING OF THE APPLIED TORQUES

1. Moments Due To Viscous Effects

Without the influence of applied forces or moments,
the angular momentum remains constant or, from first prin-

cipals:

->

'

M=h=20 (19)

In order for the ball to nutate to the position in
which the holes are aligned, a moment must be applied. This
resultant torque is due to both viscous and sliding frictional
forces.

The first attempt was to model the torque on the ball
as that due to laminar Couette flow of a viscous fluid between

two flat plates where the shear stress is given by

du
oy

The solution of the Navier-Stokes equations for this

T =y (20)

flow is well known and given by

2
4 _ y,d%u (21)

where dP/dx is the pressure gradient in the direction of

flow and, for our calculations, is assumed to be zero. The




governing partial differential equation is then

== =0 (22)

By considering the relative velocity, one plate is held
fixed while the other has velocity of magnitude mr?. Wy
is the relative angular velocity about the instantaneous

axis of rotation and T is the perpendicular distance from
the instantaneous axis to the point at which the velocity

is desired.

The boundary conditions are therefore given as

(23)

]
=2

u=20 at y

where y=0 is the surface of the ball and h is the gap width
between ball and projectile. Integrating Eq. (22) twice and

applying the boundary conditions Eq. (23) gives
uly) = -w,¥ (l-y/h) (24)

Thus from Egs. (20) and (24), the viscous shear

stress at the surface of the ball, or at y=0 becomes

wr
uf—ﬁ— (25)
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The force due to viscous shear on the ball is given
by the integral over the surface area of the ball of the

shear stress Eq. (25), or

Fv = A/rrodA. (26)

The differential area dA is given by
da = 2sz(Rssinada) (27)

which is shown in Fig. g.
Substituting Egs. (25) and (27) into Eg. (26) gives

2 T
27Ty Rs W

Fy = ___EE___E_ j( Tsinada (28)

(@)

The value of ¥ changes from 0 at the axis of rotation

to Ry at a=90°. Thus

T = Rssina (29)

Substituting this expression into Eg. (28)

™

2ty R 3
FV = HeRg Oy -/‘sinzada (30)
h

o

The torque imparted to the ball is the force given by

Eq. (30) multiplied by the moment arm at which it acts.
Again, the moment arm is a function of R; and a and is given
by Rgsina. Substituting this into Eg. (30) gives an ex-

pression for the torque acting on the ball obturator due to
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Figure 8.

da R

Et

Differential area, dA, orientation with rgspect

to the relative angular velocity vector, Wy
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the velocity of the ball relative to the projectile in a

viscous medium, or

m
2mu R _‘w
Q=——£fs r rsin’ada (31)
)

)

Carrying out this integration gives

Y
TrRs WeHe
h

L o]
[}
w| o

(32)

For a given geometry and constant fluid properties,

W is the only variable in Eq. (32), therefore that portion

of the expression which is multiplied by w. will be called

r

the shear constant, S, such that

-

Q = Su, (33)

where
(34)

From the rigid body motion analysis, the relative

angular velocity is easily determined. It is

%

= _ 2 - 2 _ 2
wr - [(wl wa) * (wz sz) * (wa wPa) ] (35)

where w and wh are the components of the projectile
3

P’ “p:
angular velocity about the axes fixed in the ball. These

relationships are given in Thomson [20]
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mpl wp51n¢51n (36a)
wpz = wpcos¢51n6 (36b)
wp3 = wpcose (36c)

Equations (36) are simplified by the fact that Wy
has only a component in the 2-direction of the inertial
frame of reference.

The moments G1' G2 and G3 are obtained by applying
Eq. (33) and resolving the moment vector into components
about the x, y and z-axes. The motion of the ball may then
be described fully by Egq. (17).

Figure 9 shows solutions for 68 as a function of time,

using the Couette flow model with the following inputs:

o]
I

7.62 mm (0.3 in.)

S

rg = 4.7625 mm (0.1875 in.)

h = 0.0254 mm (0.001 in.)

0 = 7800 Kg/m® (0.282 lbm/in?) (steel)
Majr = 1.92 107° Pa-sec (4x10771bf-sec/ft?)
@y = 12042.77 rad/sec (1.15x10°RPM)

It appears that viscous effects alone are not suffi-
cient to cause the ball to nutate toward 6=0 in a rapid
fashion. To check the model again, progressively larger
orders of magnitude of S were input into the model. The

effect, as expected, was to cause 8 to approach zero more
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rapidly (see Fig. 10). From firings conducted at NWC, China
Lake, on an indoor range, it is known that & reduces to a
value which allows light from behind the projectile to be
seen through the projectile by a camera aiming at the pro-
jectile image in a mirror down range. The length of the
range 1s such that, for this to occur, 6 must reach the value
Bs prior to impact on target, or in about 0.1 seconds. (see
Fig.ll for BS). The viscous model described above does not
produce the moments required to cuuse sufficient reduction of
8 within this time of flight.

The viscous torgques on the obturator were calculated
above assuming a solid sphere. The actual obturator has an
outside surface area less than that of a solid sphere of the
same radius. The surface under the influence of viscous
shearing stress is a very complicated function dependent upon
the angle B as shown by the cross-hatched portion of Fig. 1l.
Calculations of the resulting moment are further complicated
by the relative effect of the missing areas (due to the
presence of holes) and their positions relative to the
instantaneous axis of rotation. The time-dependent angles
between the instantaneous axis of rotation and the z and
Zz~axes must be known in order to determine the limits of
integration for correct moment arm consideration.

Because the moment due to viscous effects is devendent
upon the surface area involved and because the surface area

in the first calculation (assuming a solid sphere) is larger,
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it is to be expected that by taking the holes into account

the true moment due to viscous effects will be reduced. The
effects of these area variations will be "blurred" by the
high-speed relative motion and the additional complications
necessary to account for them are not warranted in light of
the goals of this analysis. Therefore for further develop-
ment of viscous effects, the surface area of the obturator
will be considered that of a solid sphere.

Nakabayashi [24] has conducted experiments to de-
termine the viscous torque on rotating concentric spheres
with various fluids and gap widths. He gives the general
expression for the frictional moment on a sphere due to flow

in the gap as
= 5. 5
Mv = CmpRs w,. (37)

where p is the density of the fluid in the gap. For laminar

flow

C =37 —F  Re™’ (38)

and for the turbulent flow

0.053 1+(7/4) & 023
—- . €
Cm = = T7. (39)

where € = h/R4.

The Reynolds number is defined as

2
Rs w

Re = r (40)
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in which v is the kinematic viscosity of the fluid in the
gap. For the narrow gap width assumed for the BOT, the

transition Reynolds number may be approximated by

Re, = 70e~1.6 (41)

(from Fig. 2a of Ref. 24.) 1In thc case of the BOT, the
relative angular velocities are insufficient to assume the
existence of turbulent flow in the gap. Thus the frictional

moment due to viscous flow in the gap is given by

€ +

2]

For small values of ¢ (as is the case here), Egs. (42) and
(33) are identical.

2. Moments Due To Sliding Friction

It has been noted that the extreme propellant gas
pressures inside the barrel are assumed sufficient to hold
the obturator fixed to the projectile during launch. How-
ever upon exiting the barrel, the pressure distribution on
the projectile is due to the aerodynamic characteristics of
the projectile. Assuming the obturator is still blocking
the projectile duct, a detached bow shock is set up (see
Fig. 2b). The pressure, Pz, downstream of this shock is given
by one-dimensional shock theory from Eg. (l). It is assumed
that P2 is sufficiently large to cause the obturator to con-

tact the rear of the projectile socket housing the obturator.
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The forces involved depend upon the projected area

of the hole through the projectile and the contact point(s)
of the obturator and projectile. The force acting on the

obturator is assumed to be given by

F, = nrp2 AP [see Egs. (1) and (3)] (43)
where rp is the radius of the hole through the projectile
and

AP = P - P (44)

1 2

From sliding friction theory, the contact area is
not a consideration; only the magnitude of the force normal
to the contact surface and the coefficient of friction of
the materials in contact are important. In the case of the
obturator, the pressure force, Fp acts along the Z-axis.
The reaction force may be broken into a component tangent
to the obturator and a normal component acting through the
center of the obturator. The normal component, Fn' multi-
plied by the coefficient of friction ug, gives the sliding

friction force acting to oppose the motion of the obturator:

Fo = Fpug (45a)
where

Fn = chosBs (45b)
so that

F, = chosBSus (46)
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This assumes the holes through the obturator and projectile
have the same diameter and that the point or points of contact
are on the locus of points described by the intersection of
the hole through the projectile and the spherical socket
housing the obturator in the projectile. This locus of points
is a circle of radius rp and each point is a distance Ry from
the center of the obturator. Gravity forces are neglected
since they are relatively small and act both on the obturator
and the projectile.

For a "perfect" fit between ball and projectile,
the sliding friction force is distributed over an infinite
number of points and, in the limit, the force at each point
vanishes. This situation has no significance in reality and,
therefore, engineering judgement dictates making some assump-
tions with regard to the point(s) of application of the
friction force Fg.

For the general case, a point of contact P may be
described relative to the inertial reference frame as being
at an angle B, from the inertial Z-axis, a distance R, from
the center of the obturator and at an angle y from the
X-2 plane measured toward the positive Y-axis as shown in
Fig. 12. For this approximation, assume two contact points

in the X-~2 plane, P and P,. P, and P, are 180° apart on

1 1

the circle of points so that y=0 and B=Bg.
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From the vector analysis, the projection of one vector
onto another is given by the scalar or dot product. The

> >
vectors P1 and P2 are given by:

>
P

H

Ry (sinBi + cosBk)
1 1 hd

- (47)
P
2

Rs (-sinBi + cosBk)

Their projections onto the relative angular velocity

-
vector w,, With components w,, Wy and w,, are

- -
P twp = Rg (w,sin8 + w,cosB)
(48)
- -
P2~wr = Ry (-wx51n8 + wzcosB)
The scalar dot product is also defined as
> ->
P,'wr = lercosn (49)

-+ -
where n is the angle between the vectors P1 and wy. Therefore

from Egs. (48) and (49)

R (w sinB + w cosB) = P w cosn
s X z 1

(50)
Rs(-wx51n8 + w

4

cosB) = P w_cosf
2 X

-> ->
The magnitude of the vectors P1 and P2 is Ry, so solving

for n and Q gives
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-1 Wy Wy
Q = cos - —= sinB + —— cosB

wr ur

The moment arms r1 and r2 from Fig. 12 are therefore given by

w w
Rgsin [cos"(afsins + GECOSB) ]

r =
1 r r
W w (52)
r =R, [1 - (Xsinp + —2cosB)?]
1 W W
r r
. -1 mx . wZ
r2 = Rgsin (cos (- 5;51n8 + E;coss)]
(53)
— uZ mX . 2
r = Rg (1 (F—cos8 - ——sins) ]

r r

The moment acting on the obturator due to the sliding

friction due to aerodynamic forces are given by

->

> Fp wr
= + — =
Moo (r1 rz) 5 cosBuS e (54)

Substituting from Egs. (52) and (53) into Eq. (54) leaves

+ w w »
M= 2R FocosBu, [1 - (-2)*sin?8 - (—Z) 2cos28]* L
sa 2 8% ] mr wr mr

(55)
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It should be noted that if there were n contact points that
the normal force at each point would be given by F,/n.
Equation (54) indicates the case of two points of contact
discussed here. |

As yet, there has been no attempt in the laboratory
to produce the aerodynamic forces present on the obturator
for an actual projectile in flight. The sliding friction
forces present on the obturator in the experiments (described
in section III) are due to gravity alone. The obturator is
supported by the projectile simulator (see Fig. 24). Because
the obturator is smaller than the housing in the projectile,
a point contact at the bottom of the housing is assumed.
This point has inertial coordinates of (-Rg, 0, 0). The
vector from the origin to the poiﬁt is given by

>

PG = -RS.:;L. (56)
Using a development similar to that for obtaining the moment

arm for the friction forces due to aerodynamic considerations,

the forces on the model due to gravity may be determined.
Again, the dot product is given by

> >

PG-wr = -stx (57)
which is the same as PGwrcos£ .

Therefore the angle (£) between the angular velocity

> ->
vector w, and Pg is obtained from
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£ = cos o (58)

The moment arm rg is found as in Eg. (55) from

a]
]

_ W
Rssin [cos™! (- Ef)] (59)
or

_ Wy, 5
rg = Rs [1 - (E;) ] (60)

which means the sliding friction moment due to the weight W is

>
gsg = ugWRg [1 - (;i)zl ;5 (61)
r r
The torgques acting on the obturator are the

summation of the torques due to friction, both viscous and

sliding (aerodynamic or gravitational). The general form

of the torques acting to oppose the motion of the obturator
>

-
in terms of total moment M, and the unit vector 1 along w. is

=

1 (62)

-
G=-Ml,

which, when broken into the various contributors becomes,

for the projectile in flight,

Gp = = (My+Mga) 1, (63)
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TABLE I

COMMON VALUES

8, = 87.25°

bo =0

8, =0

%6 =0

bg =0

o = 7669.6 Kg/m’

Rg = 7.899 mm

rg = 4.72 mm

C = 3.125x1077 N-m-s?
A = 2.216x10"7 N-m-s?
A = 0.41

ueg = 1.917x107° Pa-s
g = 0.35

h = 5.08x10"° m

S = 12.38x107° N-m-s

AERODYNAMIC MODEL

Rp = 9.96 mm
L = 76.2
P mm
m =
o 0.141 Kg
I, = 8.58%x10" % N-m-s?
M = 3.0
1
Y = 1.4
P = 0.099 MPa
1
w = 12042 sec !
&

GRAVITATIONAL MODEL

W = 0.07987 N
E(85,7/2) = 1.0063
w = 200 sec !
P
65
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and for the experimental model,

- ' i

Gm = -(MV+Msg)lr (64)

These may easily be transformed into the body-fixed coor-
dinate system for solution of the equations of motion.
For solving Eq. {17), a numerical integration sub-

routine [25] was used and computer plots of 6 vs. time were

obtained. A copy of the calling program is included in i
Appendix A. Figures 13 and 14 show plotted output for the é

input parameters shown in Table 1.

C. DEVELOPMENT OF AN APPROXIMATE SOLUTION

Observations of the nature of the exact solution (Figs.
13 and 14) indicate that the response of the obturator orien- ?
tation (0) to the applied torques (determined from Table 1

parameters) is similar to that of a linear damped second-order

f
system with a combined step and ramp input. That is, the
r2lationship closely follows a relationship of the form é
| 8 = 0o+D+ R (w t-27) + EEEL:EEEEL {5—sin[w (1-z%) t + ¢_]
\ W, n (l—C2)5 Wr n R
- D sin[wn(l-cz)%t + ¢D]} (65) E
in which the parameters are: }
D = step height (negative) g
R = ramp slope (negative) 5
w, = natural frequency E
Z = damping ratio

¢D'¢R = phase angles
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These may be determined by means of a solution to the

linearized equations of motion under the assumption of
small applied torques [(M/prz)<<l]. This has been accom-

plished2 by a perturbation of the steady state solution given

by Eg. (18) for the case of no applied torques.

to read

h])ocoseo + (A+1) &>o =0 (66)

where wo’ ¢O and eo are constants. The dependent variables
of the general form of the governing equations (Eg. 17) are
written as sums of the unforced values and the perturbation

values. Thus

f ¢ = ¢o+?' b o= ¢o+§’ 8 = eo+9

(67)

The general form for the applied torques on the obturator

B P R e
¢

in the experimental model (gravity-driven sliding friction)
is given by Egq. (64) in which the moment term is composed of
a fluid (M) and a sliding friction (Msg) term. When both

are expanded from Egs. (42) and (61), Eg. (62) becomes

>

- w w
(. Xy2 _r

G = - {Sw, + ugWRg (1 (mr) 11 o,

(68)

2 . . .
The theoretical development of the linear approximation
is not complete. The analysis presented here therefore
represents a preliminary report.
69

The first step in the approximation is to rewrite Eg. (18)

PV,




: The relative velocity w, from Egs. (13, 35 and 36) has com-

ponents
| W= (w-up)51n651n¢ + Bcosd
F
' Wop = (w-wp)sinecos¢ - 8sing

(69)

W = (@—wp)cose + é

°p
no applied torques). With this approximation, and the

To the first approximation, Y_=w (@O=wp for the case of

application of the perturbed variables, Eq. (67),

w .= 9cos¢o
w = -ésin¢
2y o}
m3r = YCOSSO + ¢o + ? (70)

The only term of zeroeth order in Egs. (70) is éo so

that, to the first approximation,

LT Y

w_ = w = |¢Ol (71)

The modulus is taken in order to preserve the positive sense

of w,.. Under the same approximations as above,

Wy = ¢ sind sin¥_ (72)

Substituting Egs. (71 and 72) into Eqg. (60) for the

sliding friction moment arm, rg/Rs becomes

790




r
‘_‘i = [1-(sin® siny,) ] (73)

For the purpose of the linear approximation, the mean value
of this moment arm is required. Integrating to find the

average moment arm gives

T
-1
= T[ (rg/RS) dt (74)

o

|

where T is the period for one revolution. From the approxi-

mation, however,

T = 3L - 21t (75)
wo ‘po

and because of symmetry, the average is valid over one-quarter

period, therefore

/4

- X

%; = %.J[ (l-sinzeosin2 E%E ) dt (76)
)

By letting u = 2nt/T and du = (2n/T)dt, Eqg. (76) becomes

1T/2 ;5
. . _2
= ii j’ (l-sxn26051n u) du (77)
o




Letting E(eo) denote a Complete Elliptic Integral of the
Second Kind with modular angle 60, Egq. (77) may now be

written as

2
= % E(8,) (78)

wrﬂ
I

S

Solutions to Eq. (78) are tabulated for various values of
5-
The expression for the applied torque vector (Eg. 68)

may now be written as

<>

-> . w
G = =[S[¢| + ughrg % E(8o)—= (79)
Ky

With these approximations, the applied torque terms
appearing in Eg. (17) are given by

G G

Lsine + <2 = M (y-w_)sing=0

iy sing¢ X—cos¢ = A“r wp

G G . -

2cosy - Lsing = ZHp = 4P

a A Aw, alogl

G . . . ¢

2= 2 ((rwcose + 9] = M 4= M _o (80)

Cw P C|¢°| C ¢o|
where M is given by
= . 2
M= S|lo | + uWR, = E(8)) (81)

and wp is the projectile angular velocity.
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Equations (66), (67) and (80) are combined with Eq. (17).
After simplification, and retaining only the first order

(linear) terms, the results are:

@ = -(@ocoteo)é (82)
i : Lo 0
$ = (hyosch)8 - ¢ —— (83)
X
[
5= —M 6 - Josing, [$(1+#)) =8Ny sinby + YAcose,]  (84)
= Alegl” - - -

These equations are then integrated under the following

initial conditions

¥(0) =y, = Wy \ p =0
$(0) =0 > é(O) = —éo = X:);_Il'pocoseo
6(0) = 8 8(0) =0
8(0) = 0 ) 8(0) =0
f Eq. (82) yields
Y = - (Y cots )@ (85)
From Eq. (83) .
. . . ¢
M o
¢ = -¢. + (P.cos8.)9 - —teqg——
A N (86)

By substituting the expressions obtained in Egs. (85) and (86)

into Eq. (84), the differential equation for 6 becomes




Rl ™

*"""'"""""""-"-'!-!---------ugulllluq'

et e ol 4

= MOy sineg[P8 - (140) (4, + B t)] (87)
Al ool

or, in a more familiar form,

e . 3
- +2._ 9 +9=D+Rt (88)
“n “n
where w = ¥, = wg, 0o/ 180! = -1 and
p = —=

2A] g | g

D = il;lléosineo = = %sinZGO !
Yo _
e - UM My _ o MD |
C (e} .
Yo $oC

Expansion of the expressions above, using Eg. (81) shows

that the damping coefficient is given by:

1 ° 2
L = —=—— [S]o.]| + ugWRZE(8,)]
2A ¢o|wo o) s"Rgy~ Vo
or
2= —L [s+ urgw 2 A _p(e,)]
27y, T Apgcose,

and the ramp slope (rate of decay) becomes
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A .
R = (- TXTITwOSlnzeO)C (90)

o ol

The integral of Eq. (87) with the initial conditions

specified [8(0) = 8(0) = 0] is Eq. (65) where
, . X
= = -1 (1-g7)
¢R 2¢D 2tan : (91)

For large values of Lwyt, the ramp decay dominates the

response and the solution may be further approximated by

; = = R -
| 8 =6, + 08 =0y + D+ — (ut-27)

n

The time to nutate through a known angle 6 may be found

from
8-9 -D -
_ o) 2z _ 2g (eo ®) . D
t = o——_— 4+ £5 = £5 - R . (92)
R wn Wh

where g, R, D and w, are prescribed in Egs. (88)-(90).

Figure 15 is a plot of 6 vs. time comparing the results

; of the exact solution from Fig. 14 with those of the
approximation developed here. The physical constants and

initial conditions are identical for the two cases.

’ D. THE EFFECT OF GEOMETRY ON OBTURATOR RESPONSE
\ In the discussion to this point a primary consideration

has been to model the external forces acting on the obturator,
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The effect of geometry has not been discussed, but is a most

significant contributor to the response of the obturator.

I

C and A are functions of mass density and physical di-
mensions. By varying the material composition (density)
the response will vary. Utilizing the physical dimensions
of the obturator in Table 1, the obturator volume may be
calculated by subtracting the volumes of a right circular
cylinder of radius rp, length 2RgcosBg and the two spherical
caps at the ends of the hole from the volume of a sphere [2€].

Thus the volume of the obturator is given by

4 2
vV = §ﬂRs3~§ﬂ(Rs-RScosB)2(2RS + RscosB) - 271r 2RscosB

|

Collecting terms gives

cosza) 2]

- 2 _
VvV = 21rRscosB[Rs (1 3 r,

By knowing the mass density, the weight of the obturator
[for use in the torque expression, Eq, (61)] may be obtained.
Therefore as the density varies, the values of C, A and W
vary. Fig. 16 is a family of curves of 6 vs. t for varying
density with all other physical properties being those of
Table 1.

There is however a limiting case for the size of the

hole. 1If the hole becomes too large (assuming same size

37




T

ey

(W/BY 0000T(q) pue .w/BY 0009 (B) JO SOT3ITSULP
TeTI®3eW I0j3RIN3IGO I0J BMWIF °*sA g Jo 3oTd uostiedwo)d -9 a2anbig

{oes] Bswty

i s W
[S0s H A
b , I _
' ' _ d
. ' : |
g v RENRENNE
il o : S

T IR D R

T Tl T 0
1 | T 0 1 X T

e 1

% Ty N u«.jL,ﬁ
SRBSRERARD

P i ot )

N s Pr
T
an) NG
aask N

T
TN

f

o

i

-4

v
i

4~*§“h__;4-_“,
- '. .
p—— 4

)
-

s
VN

78




projectile hole), there may not be sufficient obturator

surface area to block the passage. The limiting relation-

ship is

This limit
parameter.
tic values
ballistics
the forces

chambering

The effect on the obturator response due to increasing the

Rg

/2

is purely theoretical and is not a feasible design
Engineering judgement in the selection of realis-
is required so that the projectile will meet the
criteria and retain its integrity while undergoing
associated with the entire firing evolution from

to target impact.

hole diameter is shown in Fig. 17. The inertial contribution

to the response (coupled term) is increased by increasing C/A

and therefore X; however the friction torgque (M.,) contribution
sg

is lessened by the reduction in the mass of the ball.
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I1I. EXPERIMENTATION

A. EXPERIMENTAL APPARATUS

An experimental system was designed to simulate the
spinning BOT. The apparatus consisted of a compressed-air-
driven spin-up rig, optical timing mechanism, air manifold
and asscciated piping, tubing and electronics.

The obturator was fabrica*ed from a standard 5/8-1in.
diameter chrome-steel (52100) bearing ball. The ball was
annealed to allow machining and then bored along a diametrical
axis (Fig. 18). The bored ball was then mounted in a bakelite
metalographic specimen mount. The mounted ball was placed in a
millinag machine and a flat was machined in the bakelite at a
specified angle relative to the axis through the hole in the
ball (Figs. 19 and 20). This flat was then used as the
polishing plane for metalographic specimen preparation. A
small flat spot was polished on the obturator to provide a
highly reflective surface at a known orientation relative to
to the z-axis of the obturator (Fig. 21).

After removal from the bakelite mount, the obturator
was placed in a three-piece, lucite housing (Fig. 22). The
mating ends of the two hollow inner cylinders were each
machined with a 5/8~inch end mill to a depth of approximately
5/16-irch. When mated, a spherical cavity was formed to

accomodate the obturator. The third cylinder was press fit




Figure 18. Boring of hole along a diametrical axis of
the annealed bearing ball.

-
-

gure 19. Machining of flat in metalographic specimen
mount.

,,
™




Figure 20. Machined specimen mounts with varying
angles (6,).

\

R

™

Figure 21. Polished spot orientation on obturator and
relationship to eo.
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Figure 22. Obturator and components of lucite obturator
housing with mating ends of inner cylinders
machined to house the obturator.

Figure 23. Assembled obturator housing with aluminum
end pieces.
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over the others after the obturator was inserted to insure
alignment of the inner pieces and provide rigidity (Fig. 23).
The ends of this lucite assembly were then press fit into
aluminum end-pieces similar to those in Fig. 23. These end-
pieces served as the shaft for the bearings and one also served
as the prime mover (bucket wheel) for the apparatus. The shaft
rotated in two ball bearings mounted in aluminum pillow blocks
aligned on a rigid pedestal. The prime mover was a bucket
wheel machined from a solid aluminum disk (Fig. 24).

The bucket wheel was driven by compressed air supplied
from an installed system through an air filter to a manifold
and then through one of two Model-10 Kendall pressure regu-
lators. From the regulator, the air passed through a flexible
tube to a tee, each leg of which supplied a nozzle. These
nozzles were mounted opposite one another on the pillow block
in such a way as to allow the air jet to impinge upon the bucket
wheel to cause rotation (Fig. 25). The speed of rotation was
sensed by a Bentley Nevada Proximitor, Model 3100N, which was
mounted above the bucket wheel to detect the passage of each
point on the wheel. The sensor was supplied from a LAMBDA
Regulator Power Supply Model LP413FM by 18VDC. The pulses
generated by the sensor were counted, averaged and displayed
as a frequency by a Monsanto Programmable Counter-Timer Model
110B.

While the spin-up rig was being brought up to the desired

speed, an air jet from a nozzle mounted rigidly on the pedestal
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at the end opposite the bucket wheel held the obturator

fixed to the spinning rig. This jet was supplied from the
common air manifold and the other pressure regulator also
through flexible tubing. The air jet passed through a hole

in the plunger of a Rocker Solenoid, R.S. No. 10-207. This
hole was aligned with the hole through the "projectile" to
allow the jet to impinge upon the obturator (Fig. 26). When
the switch at the far right of Fig. 26 was activated, standard
115VAC was applied to the Rocker solenoid and remcved from a
normally closed ASCO Solenoid Valve in the air supply line to
the jet. The plunger retracted from the position shown in

Fig. 26 and the solenoid valve closed. The retraction of the
plunger performed three functions. It first caused a pulse

to be generated by another Proximitor mounted next to the
nozzle and powered from the same 18VDC supply. This pulse
started the timer function of a second Model 110B Counter-Timer.
The plunger also covered the nozzle outlet by misaligning its
hole with that of the nozzle. This removed the restraining in-
fluence of the air jet on the obturator and prevented any air
remaining in the supply line from impinging on the obturator.
And lastly, in the fully retracted position, the machined and
polished end of the plunger was positioned opposite the pro-
jectile hole (Fig. 27). When the released obturator nutated
through enough of an angle, the beam of a SPECTRA PHYSICS MODEL
132 LASER, MODEL NO. 3187, passed through the projectile anad

was reflected by the polished end of the plunger into a light
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sensitive diode (Fig. 28). The pulse emitted by the diode
triggered the stop channel @ the timer and the elapsed time
was displayed. Figure 29 shows the entire experimental set-up

with air flasks in the background.

B. EXPERIMENTAL PROCEDURE
The obturator was positioned in the spin-up rig in such
a way that the laser beam was reflected off the polished i
spot back to the target mounted on the laser (Figs. 29 and ‘
30). The center of the target is the location of the beam
and the obturator was adjusted to place the reflected spot
on the center of the target. Thus the orientation of the
z—-axis through the obturator was known relative to the Z-axis !
(laser beam) through the projectile. This is the initial
value 8,. g
The solenocid plunger was checked in position with the
hole aligned with the nozzle (Fig. 26) and then air was
admitted to hold the obturator in place. The pressure was
then increased to the turbine to set the apparatus in motion.
Figure 31 illustrates the circle traced by the reflected spot
(Fig. 30) on the target. This circle facilitates alignment
of the laser to insure the beam was centered through the pro-
jectile. (It can be seen in Fig. 31 that the beam was slightly

off-center.) Alignment was accomplished by positioning the

beam from side to side for horizontal alignment, then raising

or lowering the spin-up rig's mounting platform with adjusting
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Figure 30. Laser reflection on the target from tha
polished spot on the obturator.

Figure 31. Circle traced by the reflected laser while
the apparatus is spinning.




screws for vertical alignment. When aligned, the circular
trace of the reflection exactly follows the circles of the
target.

Once the alignment had been checked and the obturator
positioned at the known 60, the pressure was increased to
the turbine nozzles until the desired spin rate was achieved.
The regulator was then adjusted so as to maintain the spin
rate at *5 Hz on the digital disvlay or approximately #1.75
rad/sec. (The actual tubular projectile spin rate is
approximately 1.2x10" rad/sec). Once the desired rate was
achieved and noted, and the timer checked and reset if neces-
sary, the switch (Fig. 26) was activated. This secured the
air to the nozzle holding the obturator and retracted the
solenoid plunger (Fig. 27). The obturator was released and
began to move relative to the spin-up rig. When the angle
8 reached the value at which the laser beam could pass through
the obturator hole (6=6,,=8), the beam struck the polished
plunger and was reflected into the licht sensitive diode
housing (Fig. 28). The reflected beam striking the diode
caused the diode to emit a pulse which turned coff the timer
gate. The elapsed time from plunger retraction to release
the obturator, to the obturator nutating to ecr was dis-
played on the timer display to the 0.000X second. This time,

tenr was recorded.

-
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C. DATA REDUCTION

The only data reduction required was the conversion from
Hz to Radians per second. The frequency read-out on the
digital display indicated the number of teeth on the bucket-
wheel passing the sensor in one second. Since there were
eighteen teeth on the bucket wheel, the conversion was

simply

sec”

Appendix B is a listing of the raw data and the

corresponding values of Wy
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IV. CORRELATION OF RESULTS

Figures 32 through 37 show 8 vs. time for various values
of w, from 40 to 1000 sec”!. At high and low values of wp
6 approaches zero more slowly than at the intermediate values.
Figure 38 is a plot of Eg. (92) and the experimental data.

The plot of Eq. (92) uses the physical gqualities from Table 1

and u_=0.35 over the range 1005w, <1000 sec”'. It is clear

P
that the experimental data falls below the approximation curve

at high w_ and rises sharply above the curve at low w_.

P p

In order to determine what parameters may effect the
position of the approximate curve, sensitivity checks were
run on the quantities in which the most uncertainty existed,
namely ug and 6, (even though 85 could only vary by +19).
Figures 39 and 40 indicate the sensitivity of top to variations

in u_ and 8o respectively. Small variations in 6 _ are not

=] o

discernable within the range of scatter of the data (Fig. 41).
Variations in ug have a much more pronounced effect. From
Fig. 42 it may be seen that the data at higher values of Wy
correlate well for a us=0.55.

It has been noted that the approximate solution is based
upon the assumption M/Cmp2<<l. At values of w,(<200 sec '),
this assumption is no longer valid and therefore calculations
and correlation of the data to the approximate solution will
not be conducted for w_ 200 sec”!. Also at low values of w

p p’
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tcr appears to approach «» almost assymptotically. Because
eo=900 (87.25°) , the obturator may be near a metastable state
at low wp such that the coupled terms in the equations of
motion have little effect. The amplitude of oscillation at
low wp is also relatively small.

In general, for large values of tw.t (Eqg. 65) and

neglecting the effect of viscosity, t becomes

Aw
e =21 M + B [(8,-0)- 2sine] (93)
Aupscoseo Msin8,

where M is the gravitational contribution from Egq. (81).

This may be written as

b= T 47y (94)

with T1 and T2 being constants determined from the known

physical parameters (Table 1l). Utilizing values of

8o = 87.259, 8 = 0_,. = sin™' (r/Rg) = 36.734° and the measured
weight of the obturator, W = 0.0798 N,
M is found to be

M= 6.34%x10""% U N-m

Therefore,

T
1

2.039x105 1

and

(95)

3.03x10 * / ®




- ——— e e e b . . - - ot A finnn - e < oo e

thus

t _ 2.039x10° 7, 3.03x107" vp
we 3 v
P
But for large values of wp,
3.03x10™ %
t = — E (96)
u

A least squares fit of the data (wp3235.97) to Eq. (96),
such that t = szp, gives

it,?
b3

2 Ztlmpl

T

Substituting in the data points (denoted by '*' in Appendix B),

it;? 2.1046884 sec?

Zwpi® 2.8413714%10%sec 2

Ztizwpiz 2.430257x10°

therefore

T = 8.6603508%x10 ' sec?

Since the standard deviation for T is given by

1 =

1
It ?
cfﬁz 1
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where

1l
02 = % (Zw -Wg;zt-w +)

.2
Pl

the following results are obtained:

0% = 1.4659547x10°3
op? = 3.9181053x107*°
Op = 1.97742x10° %

ag

L =o0.023

T

The data therefore, deviates from the least squares value
by only 2.3 percent.
Using the value calculated for Tz in Eq. (95),
- 3.03x107"

= 3:03x10 _ _ 4 35
M 8.66x10 "

with E(87.25°) = 1.00458,

T = 2 (1.00448) = 0.63954
R = 7
S
thus
0.35
Ug = 0.63957 = 0.5473
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With this value of us, values of tcr were obtained from
the exact solution over the range 125<w;<700 sec~! and
plotted with the approximation of t,, from Eq. 94 and the data

points (Fig. 43).
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V. CONCLUSIONS

] The response of the obturator (0) as a function of time

to applied torques was found to be that of a rigid body of

revolution about its mass center. Euler's Modified Equations
of Motion in terms of Euler Angles describe the response to
these applied torques. The response is predictable and was
compared for various combinations of physical parameters. By
varying density, hole size and angular velocity, various re-
sponse times may be obtained. It was found that in each
case, a minimum response time was attainable for a given value
of wp. For the case of the experimental apparatus, this mini-

mum occured at wy = 150 sec™!.

The analytical model and a linear approximation to this
model were used with the parameters of the experimental
apparatus and close agreement to the data was achieved at

’ w,>200 sec”!. Below wp = 200 sec™! the exact solution appeared

to be higher and the approximate solution lower than the experi-
mentally observed values of tcy. This is explainable in the

approximation since it was based upon the assumption that

M/mpzc<<l. At low values of Wp this assumption does not hold.

The trend in the exact solution at low Wp is to approach
tey = ® almost assymptotically. This trend is observable in
the experimental data as well and may be explained by the

metastable initial position of the obturator 6,=90° (85=90° is
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a stable position). The effect of the coupled terms in the
equations of motion is small at low wp, therefore the initial
effects are not as great and the amplitude of oscillation of
@ is insufficient to cause departure from this metastable
position. Since the actual projectile operates at wp=12,000

sec™!

,» high values of wp are of interest. The theory agrees
well with the data above wp=200 sec™! and therefore the
correlation to the data was made at these higher values.
Because the linear approximation agreed closely at higher
Wp, @ least squares fit of that approximate equation to the
experimental data (wp2235.97 sec”!) lead to the calculation
of a higher sliding friction coefficient than had been used
previously. The assumed value was ug=0.35 for laminated
plastic on steel [27]. This was found to be too low by the

least squares fit. A sensitivity check of the approximate

solution for tor to variations in pg also indicated that 0.35

was too low (Fig. 39). Therefore, a method for determining !
the sliding friction coefficient from the experimental data |
and the approximate solution was discovered.

By knowing initial orientation (6y5), projectile spin rate
(wp) and the physical dimensions and material properties of
the projectile, the response may be predicted in a gravity
environment with reasonable accuracy.

The aerodynamic model appears to give reasonable results

within the scope of this study. The complex forces acting on

115
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the obturator in flight are extremely difficult to model
theoretically and therefore they were simplified greatly.
The confidence gained in the gravity model, however, leads
to the conclusion that once the complex aerodynamic forces
are better understood, the motion of the ball within the

flight model will be predictable.
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VI. RECOMMENDATIONS

Further experimentation should be undertaken with
variation of other parameters (hole size, obturator material)
to obtain more confidence in the analytical model. Wind
tunnel tests of the BOT should be conducted in order to more
closely approximate the actual forces on the obturator in
flight, and to determine the position (8) at which the de-
tached bow shock is swallowed. This would greatly enhance
the predictive capabilities of the model and thus allow
coupling to a trajectory model for predicting flight char-
acteristics. This, in turn, could be coupled to a numerical

optimization routine for optimizing the BOT design for the

desired performance criteria.
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APPENDIX A - COMPUTER CODE

C SRECEPRZ AR WA NERERBNEEERBR NSRS R ERAEE ku &
g : BALL OBTURATLD TUBULAR PROJECTILE :
& : BALL MITION ANALYSIS :
C : LT Jo W, ALCOMER 11, USN :
8 ARRAE S PR ERAR NS AN ST D IS IR AT X g RN SRR
DIMENSICN »(20),XD0T{3C),C(15
Cel)= (SIN(EIT2)V»u2, WE-QF BETA IS GIVEN BY ARSIN(PP/RN)
g tsg)= LAMBGA = (C-A)/A
= L aCOYNZNMIC OR GRAV!TATIUN L_SLIDING FRICTICN CCTASYANT,
C Clad= TCTAL KIMNFTTIC SNERCGY NF CTMBINED PROJICTILE Al QBYURAT"?.
E CeS5)= MINIMLM MO¥W NT & TASCTIA, A,
CPP MAX [MUM MCM-NT € freqTIA, Co
C CC(7)s MCMENT CF iN7eTTA CF A FOLLOW CIRCULAR CYL IND:R
Cc APPROXIMATING THAT TF THE PROJZCTILE.
Cc Cta8)= FLUIC FRICTICN CONSTAMT, S.
C(loi=l.
% ‘«
E“‘*‘*‘CALL INTEGC2 SIMULTANECUS DIFF. EQN, SOLVER
Cc
E 1 CALL INTEG2(T %X ,X00T,C)
Crersxx2DFINS SULER ANGLTS THTTA, PNHI AND PSI ANL 1ST OERIVATIVES
TE=X (1)
X0CT(L)=X12)
PS=X(3)
X0CT(3)=X{4)
PH=X(5)
E XCCTHS5)=Xx(¢)
. ; .
E‘**"'*DEFINF TRIGCNCMSTRIC FUNCTIONS OF SULSR ANGLES
C
STH=SIN(TH)
CTH=COS(TH)
SPE=SIN{FK)
CPr=COSIFF)
SPS=SIN(PS)
CPE=CIS(PS)
CreexxssLEFINe THETA~CCT, PHI~CCT AND PSI~DOT
TEC=XDCT (1) ’ '
PSC=XDCT (3)
PHD=XDOT(S)
8"‘*‘***C4LCULATE ANGULAR VRLECLITIES WITH R=SPECT TO BIDY~
FIXED AXeS Ay By AND € RESPZCTIVTLY.
QH;SPSD'STP*SFH+THP*CPP
OM22PpSOSTHICFH-THN®"SPH
c CPI=PSOACTH+FHC
Craramdr»CALCULATSE ANGULAR VELDCIVI®S ABOUT INERTIAL AXES X4 Y, AND
E_ 1 RoSPECTIVELY,
OMX=OM1¥ (CPH»P3=-SPH=L TH*SPS)+OM2x(-SPH=(CPS-CPHRCTH2SPS)
*4CpI=(STERSES)
OFYaIM1= (CPHEEPSH+SPHeC THACPS)ICMN2x(-SPHSPS+CPH*CTHECPS)
*40M30(-STEPCPS )
OMZaCMIsSTh3SPHELN2ESTHeCPR4CMI=CTH
*3xaeexeCALCULATE TH™ ANGULAR VILCCITY 0OF TH= PROJECTILE
E ROM CCASERVATITN OF N RGY PRIMCIPLLS.
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PIN20.0
SPINSSO&T((Z C{4)=C(SIP(CML*#2+OM2#42)-C[5)90M2882) /C(T))

CoexsnesaasCALCULAT: ANGULAR VTLOCITY 0F BALL RELATIVE TO TH= PROJECTIL
WITH RESFZCT YO BIOCY-FIXED AXES.
OMIR sOM] ~SPIAASPHESTH
QM2RaCN2=SFINSCPEReSTH
OM3IRaCMI=SFIN TH
CosarexseCALCULATE RZULATIVE AMCULAR V- LOCITI=S WITH RESPSCT TO
TH: INZRTIAL R<F! ATCNC: FRAME,
OMXRaM] A% (CFFCCOS-SPHACTHh*SFS ) 40M2/%(~S PH*CPS—-CPH2CTH®SO S)
#+0M3IR=(STH2SPS)
QMYRaIMIR S (CPH25PS+SPHICTHRC PS ) $0M2R & (-SPHESPS+CPHEC THELC P S)
®4CMIR=(=STHECES)

OMZRsQMLR *STHaSPH4NM 2R *STHRC PH+IMIR 2C TH
E‘#"*""CALCULATE PAGNITUD™ OF RELATIVT ANGULAR VELCCITY VCCTIR.
OFRaSQRT (CMLR*CMIR+QM2R*CN2R4CM3ROMIR )
Cessrss2CALCULATE THT MOMINT 89M AT WHICH THE FRICTIGNAL FORCSS ACT.
c ARM= WIMENT ARN AND C(1) 1S AS DEFINSD EXCEPT IN THZ CAST OF -
4 GRAVITY WH=RT C(1) = 1.). _
% FRIC= CGMBINEC FLUID &MD SUIOING FRISTIIN CCNSTANTS.
ARF2SORT (1, ~C (L)% (TMXR/CHRI®$2=(1.~C (1)) #(OMIR/CMR}*+2)

FRIC=C(3)=
AHCM=C(&)'CVPOFRIC

c
ComenrxvumsCALCULATS MCMENTS ACTING ON THZ BALL ABOUT THT BODY-FIXTD
c
Gla-AMOMSGN 13 /CMR
G22-AMCKACMIR/CNR
- G33-AMCMACY¥In/CMR
Cesameax3x9CALCULATE “LEMENTS OF MATRIX OF CIEFFICIENTS, Y1, Y2 ANC Y3.
Y1sGL/C(S)-FSDE(THRECTHE SORERED SSTHACPH) $THDSPHL SPH-C(2) *
*(PSORSTHACPH=THTASOH ) * (D EN*C THEPHD
¥2252/7C(5)=FSC* (THI«STHeCODEZ0F)ASTHSPH) 4P HC*THCHCPH4C( 2) =
*{BEOLP SOACTE 1= (2D <<= SPHeTHOCPH)
c Y32G3/C16) +FSCHTENSTH
CowamremananCAlCULATE ANGULAR ACCELERATION TZRMS FOR INTZGRATION, 24D
¢ OERIVATIVES DF “ULTR ANGL=S WRT TIME,
XDOT (2)=CPE3Y1=SPH=Y2
XCCT(6)==SFHRCTH/STHRY 1=CTEACPH/STHRY2+Y3
c XOCT(4)=SPH/STHYL+CPH/STHRYZ
g****‘**CALCULATE VALUES FOR THE APPROXIMATZ SOLUTION
c &
THCRIT2.£411
IF(T.NZ,€.CCC0000) 6T TO 25
THAGT=X(1)
OMP2X( 4)
FRIC=2C(6) :
- Aac(5) ;
ArEARSABLas
E
En:Ctsi*,bzééa
Da-AMNA/2e3SIN(2,4THNOT)
Ra=ANCAP*:N=STN (THNIT)/ { “RTC2OMP)
TCRITa-1, 73+ { THNOT-THC RIT) =D /R
WRITR(642)) TCRIT .
20 ECRMATISX,*TCRIT = ¢,%16.8)
ZETA=AMDAP /(2o “AXAMDASC N F=CNPECOS(THNOT) 14N
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APPENDIX B - RAW DATA

READOUT TIME w READOUT TIME W

(5z] [sec] [see™'] 2] [sec] [see']
776 _274 270.88% 880 _2717  307.2%
676 213  235.97% 920 13026  321.14%
679 5181 237.02% 920 12847  321.14%
573 2157 200.01 936 2816  326.7%
570 02079 198.97 983 12699  343.1%
574 12009 200.36 1001 .306 349.4%
570 7197  198.97 994 72972 346.97%
571 2031 199.32 2055 .296 368.26 %

, 475 02099 165.8 1063 .2530 371.06%
479 11833 167.2 1151 .315 201.77%
570 72179 198.97 1022 .369 356.7 *
475 .215 165.8 1175 .378 410.15%
479 1223 167.2 1258 73348  439.12%
470 .230 164.1 1278 13968  446.1 %
428 11831 149.4 1255 14268 438.08%
425 71786 148.35 1221 3088  426.2 %
430 01659 150.1 1170 .284 408.4 %
367 11896 128.1 1158 .281 404.2 %
363 12037 126.7
370 01959 129.15
277 2249  96.7
267 02292 93.2
279 02259  97.4
323 1230 112.7
323 12149 112.7
225 .493 78.5
223 .658 77.8
223 .599 77.8

i 226 .3241  78.9

1 807 12592 281.7%

. 810 2339 282.7%
853 12773 297.8%

. 853 12631 297.8%

4 850 12917 296.7%

b 854 267 298.1%

' 921 13022 321.49%
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