RADC-TR-80-260
Final Technical Report
September 1980

SIGNAL PROCESSING CIRCUIT DEVELOPMENT

Northeastern University
B.L. Cochrun

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

ROME AIR DEVELOPMENT CENTER
Air Force Systems Command
Griffiss Air Force Base, New York 13441
This report has been reviewed by the RADC Public Affairs Office (PA) and is releasable to the National Technical Information Service (NTIS). At NTIS it will be releasable to the general public, including foreign nations.

RADC-TR-80-260 has been reviewed and is approved for publication.

APPROVED:
RICHARD W. TAYLOR
Project Engineer

APPROVED:
CLARENCE D. TURNER, Acting Director
Solid State Sciences Division

FOR THE COMMANDER:
JOHN P. RUSS
Acting Chief, Plans Office

SUBJECT TO EXPORT CONTROL LAWS

This document contains information for manufacturing or using munitions of war. Export of the information contained herein, or release to foreign nationals within the United States, without first obtaining an export license, is a violation of the International Traffic in Arms Regulations. Such violation is subject to a penalty of up to 2 years imprisonment and a fine of $100,000 under 22 U.S.C 2778.

Include this notice with any reproduced portion of this document.

If your address has changed or if you wish to be removed from the RADC mailing list, or if the addressee is no longer employed by your organization, please notify RADC (ESE) Hanscom AFB MA 01731. This will assist us in maintaining a current mailing list.

Do not return this copy. Retain or destroy.
This report covers the modification of an Air Force owned IR-CCD Scanning System for one-dimensional scans. The modifications provide electronic instrumentation for: two-dimensional scanning, X-Y sweep circuitry for oscilloscope and TV compatible circuitry for video display and correlated double sampling circuitry for reduction of noise and analog signal conditioning.
PREFACE

This technical report was prepared by Northeastern University, Boston, Massachusetts, under contract No. F19628-77-0087. It describes work performed at the Dana Research Center, Electronics Research Laboratory, from 22 December, 1976 to 21 December, 1979. The principal investigator was B. L. Cochrun.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>I INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>II 2D OPERATION</td>
<td>6</td>
</tr>
<tr>
<td>A. Overview</td>
<td>6</td>
</tr>
<tr>
<td>B. Function Partitioning</td>
<td>8</td>
</tr>
<tr>
<td>1. Module 2AC</td>
<td>8</td>
</tr>
<tr>
<td>2. Module 3AC</td>
<td>17</td>
</tr>
<tr>
<td>3. Module 2AB</td>
<td>17</td>
</tr>
<tr>
<td>4. Module 3AB</td>
<td>29</td>
</tr>
<tr>
<td>III VIDEO DISPLAY</td>
<td>33</td>
</tr>
<tr>
<td>A. INTRODUCTION</td>
<td>33</td>
</tr>
<tr>
<td>1. Horizontal Sweep Circuitry</td>
<td>33</td>
</tr>
<tr>
<td>2. Vertical Sweep Circuitry</td>
<td>33</td>
</tr>
<tr>
<td>3. Multiplex Circuitry</td>
<td>38</td>
</tr>
<tr>
<td>IV PERIPHERAL CIRCUITRY FOR SIGNAL PROCESSING</td>
<td>42</td>
</tr>
<tr>
<td>A. INTRODUCTION</td>
<td>43</td>
</tr>
<tr>
<td>1. Preamplifier and S-H Circuitry</td>
<td>43</td>
</tr>
<tr>
<td>2. Background Processing Circuitry</td>
<td>43</td>
</tr>
<tr>
<td>3. TV Compatible Circuitry</td>
<td>48</td>
</tr>
<tr>
<td>V CORRELATED DOUBLE SAMPLING SYSTEM CDSS-1</td>
<td>51</td>
</tr>
<tr>
<td>A. INTRODUCTION</td>
<td>51</td>
</tr>
<tr>
<td>1. Digital Timing Circuitry</td>
<td>51</td>
</tr>
<tr>
<td>2. Analog Circuit Details</td>
<td>54</td>
</tr>
<tr>
<td>VI CONCLUSIONS</td>
<td>60</td>
</tr>
<tr>
<td>VII REFERENCES</td>
<td>61</td>
</tr>
</tbody>
</table>
LIST OF ILLUSTRATIONS

Figure Page

1.0 Block diagram for capability (a), See RADC-TR-77-105 2
1.1 Block diagram for capability (b), 1D Operation 3
1.2 Block diagram for capability (c), C register only. 3
1.3 Block diagram for capability (d), 2D operation 4
2.0 Basic four-phase encoding circuitry for C and B registers. 7
2.1 Module 2AC diagram. 9-10
2.2 Module 1AC diagram 11
2.3 Waveforms for Module 2AC 13-16
 (a) H Blank, J₁, J₂ and Source
 (b) H Blank, C-Ck(T), φ₁c(T) and φ₂c(T)
 (c) φ₁c(T), φ₂c(T), φ₃c(T) and φ₄c(T)
 (d) H Blank, J₁, J₂, and G₂
 (e) J₂, φ₁c(T), φ₂c(T) and Source
 (f) J₂, φ₂c(T), Source and Reset
 (g) J₂, J₁, Source and Reset
2.4 Module 3A-3AC diagram 18-20
2.5 Module 3A-3AC Waveforms 21
 J₂, φ₁c, φ₂c and φ₃c
2.6 Module 2AB diagram 22-24
2.7 Waveforms for Module 2AB 26-28
 (a) J₂, 7493F(Pin 9), Transfer and V Blank
 (b) Reset pulse for counters, Pin 8 of 7493F
 (c) J₁, J₂, 74S124 Pin 10 and B Ck(T)
<table>
<thead>
<tr>
<th>Figure</th>
</tr>
</thead>
<tbody>
<tr>
<td>(d) J_1, $B\ Ck(T)$, $\phi_{1b}(T)$ and $\phi_{2b}(T)$</td>
</tr>
<tr>
<td>(e) $\phi_{1b}(T)$, $\phi_{2b}(T)$, $\phi_{3b}(T)$ and $\phi_{4b}(T)$</td>
</tr>
<tr>
<td>2.8 Module 3AB diagram</td>
</tr>
<tr>
<td>2.9 Waveforms for Module 3AB, Top to bottom</td>
</tr>
<tr>
<td>ϕ_{1b}, ϕ_{2b}, ϕ_{3b} and ϕ_{4b}</td>
</tr>
<tr>
<td>3.1 Block diagram of Video display circuitry</td>
</tr>
<tr>
<td>3.2 Horizontal Sweep Circuitry diagram</td>
</tr>
<tr>
<td>3.3 Waveforms for H Sweep, Top to bottom</td>
</tr>
<tr>
<td>J_2, H Sweep and z_{axis} output</td>
</tr>
<tr>
<td>3.4 Waveforms for H Sweep</td>
</tr>
<tr>
<td>3.5 Vertical Sweep circuitry diagram</td>
</tr>
<tr>
<td>3.6 Waveforms for V Sweep</td>
</tr>
<tr>
<td>V Blank and V Sweep</td>
</tr>
<tr>
<td>3.7 Waveforms for V Sweep</td>
</tr>
<tr>
<td>V Blank and V Sweep</td>
</tr>
<tr>
<td>3.8 Multiplexing Circuitry</td>
</tr>
<tr>
<td>3.9 Image of a hand using an X-Y oscilloscope monitor</td>
</tr>
<tr>
<td>4.0 IRCCD output preamplifier</td>
</tr>
<tr>
<td>4.1 Digital control circuitry for SHA-2A S-H circuit</td>
</tr>
<tr>
<td>4.2 Timing diagram for SHA-2A S-H circuit</td>
</tr>
<tr>
<td>4.3 Block diagram of uprocessor system for processing IRCCD video output</td>
</tr>
<tr>
<td>Figure</td>
</tr>
<tr>
<td>--------</td>
</tr>
<tr>
<td>4.4</td>
</tr>
<tr>
<td>4.5</td>
</tr>
<tr>
<td>5.0</td>
</tr>
<tr>
<td>5.1</td>
</tr>
<tr>
<td>5.2</td>
</tr>
<tr>
<td>5.3</td>
</tr>
<tr>
<td>5.4</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>5.5</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
EVALUATION

This effort has produced several state-of-the-art circuit designs in support of the RADC/ESE IR focal plane program. All the instrumentation described in this report is presently in use in the laboratory. Furthermore, these instruments perform at near theoretical levels and are outstanding in all aspects of design.

Richard W. Taylor
RICHARD W. TAYLOR
Project Engineer
SECTION 1
INTRODUCTION

This report covers the modification of an Air Force owned IRDSS scanning system previously reported on in report RADC TR-77-105 Section IV, and additional peripheral circuitry to enhance the signal processing capability. The primary change involves the requirement for two four-phase clocking systems each controlled by a single master clock.

The modifications extend the initial system capability of single-line, or 1D, scanning to two-dimensional, 2D, scanning with provisions for a video display. The flexibility of the original system, achieved by modular construction with access to numerous test points, was incorporated in the modified system which will be referred to as IRDSS-2D Scanning System.

The IRDSS-2D system provides the following capabilities:

(a) Retention of the original system reported on in report RADC-TR-77-105.
(b) 1D operation of a test CCD register on the 2D chip.
(c) 1D operation of the C register of the 2D chip by deactivating the B register.
(d) 2D operation
(e) X and Y sweep voltages multiplexed with a video output for Z axis modulation.

The physical system consists of three modular cabinets and a variety of modules. The listed capabilities are achieved by an appropriate combination of these modules. Figures 1.0 through 1.3 illustrate, in block form, the various modes of operation.
Figure 1.0 Block diagram for capability (a). See RADC-TR-77-105 Section IV
Cabinet \(1 \text{AC} \)

\[
\begin{array}{|c|c|c|c|}
\hline
1 \text{AC} & 2 \text{A} & 3 \text{A-3AC} & * \\
\hline
\end{array}
\]

* Internal "1D-2D" switch set for "1D"

Figure 1.1 Block diagram for capability (b), 1D operation

Cabinet \(1 \text{AC} \)

\[
\begin{array}{|c|c|c|c|}
\hline
1 \text{AC} & 2 \text{AC} & 3 \text{A-3AC} & * \\
\hline
\end{array}
\]

\[j_1 \]
\[j_2 \]

Cabinet \(1 \text{AB} \)

\[
\begin{array}{|c|c|c|c|}
\hline
1 \text{AB} & 2 \text{AB} & 3 \text{AB} & * \\
\hline
\end{array}
\]

* Internal switch set to "2D"

\# External "Frame-line" switch set to "Line"

Figure 1.2 Block diagram for capability (c), 6 register operation only.
Figure 1.3 Block diagram for capability (d), 2D operation

Cabinet 1AC

<table>
<thead>
<tr>
<th>1AC</th>
<th>2AC</th>
<th>3A-3AC</th>
</tr>
</thead>
<tbody>
<tr>
<td>J₁</td>
<td>J₂</td>
<td>*</td>
</tr>
</tbody>
</table>

Cabinet 1AB

<table>
<thead>
<tr>
<th>1AB</th>
<th>2AB</th>
<th>3AB *#</th>
</tr>
</thead>
<tbody>
<tr>
<td>J₁</td>
<td>J₂</td>
<td></td>
</tr>
</tbody>
</table>

* Reset output used only
** Sweep circuitry
* Internal switch set to "2D"
**# External "Frame-line" switch set to "Frame"
Figure 1.0 indicates the setup for the original system. Figure 4.1 in the report referred to earlier is a photograph of the IRDSS and the IRDET Aux units. For operation in this mode refer to the earlier report. Figures 1.1 through 1.3 indicate the required modules for capabilities (b), (c) and (d).
SECTION 11
2D OPERATION

A. OVERVIEW

2D operation requires two four mouse CCD registers, one for the columns and one for rows. The column register will be referred to as the B register, and the row register will be referred to as the C register.

A master clock, MC, synchronizes the operation of the B and C registers by means of a horizontal blanking pulse, H Blank. The MC runs continuously with the H Blank pulses being counted for the purpose of controlling the staring time for the detectors, and synchronizing the shutdown of the B clock. The desired number of H Blank pulses is determined by a front panel switch which controls the reset timing for the bank of counters.

Two start-stop VCO's, SN748124, provide the initial B and C clock signals. These run only when the input to the enabling gate is held at a TTL low level. The B clock runs only for a time interval dictated by the pulse width of the negative H Blank pulse. During this interval, the B clock output is encoded to produce only a single set of four phase B clock voltages. The C clock runs continuously in the absence of the H blank pulse, i.e., when the H Blank pulse output is at a TTL high level. The output of the C clock is encoded to provide the four phase C clock voltages. See Figure 2.0 for the basic encoding circuitry.

The contents of one complete row of the B register is loaded into the initial wells of the C register during the time interval equal to the H Blank pulse width. Then, between the relatively long intervals
FIGURE 2.6

BASIC FOUR PHASE ENCODING CIRCUITRY FOR BOTH C C D REGISTERS
of the H Blank pulses the signal in the C register is read out serially. Total readout requires 50 B to C transfers plus readout time for each row. After 50 H Blank pulses the B clock is shut down. The C clock continues to run for a number of H Blank pulses depending upon the setting of the counter switch control.

The counter operates for \((2^n + 4)\) H Blank pulses. Minimum count is for a switch setting of \(n = 6\), or 68 H Blank pulses. Thus, minimum starting time for the detectors is for \(n = 6\). The additional four H blank pulses are used to generate a vertical blanking pulse, V Blank. During the V blank pulse a transfer pulse is generated which allows the input wells of the B register to be loaded by the detectors. The counters are reset at the end of the V blank pulse and the readout sequence is initiated again.

B. FUNCTION PARTITIONING

In the interest of flexibility and numerous front panel test points the various functions required for each register are allocated to two modular cabinets, each with individual power supplies. Cabinet 1AC contains the modules for the C register with the B register modules located in cabinet 1AB. Only two shielded interconnections between the cabinets are required for synchronization.

1. Module 2AC

Circuitry in Module 2AC provides the following functions at TTL levels: MC, H Blank, \(J_1\), \(J_2\), C clock, \(\Phi_{1c}(T)\) through \(\Phi_{4c}(T)\), \(C_2\) and Source pulses. \(C_2\) and Source pulse driver amplifiers using MB0026 IC's with controllable amplitude and bias offsets are also in this module.

The two outputs \(J_1\) and \(J_2\) link the two registers. \(J_1 = \overline{J_2}\) with \(J_2 = \)
FIGURE 2.1 (CONTINUED)

MODULE 2 A C DIAGRAM
FIGURE 2.2

MUTLI T-A-C DIAGRAM
n Blank. All further discussion will be limited to referencing \(J_1 \) and \(J_2 \).

Circuit details for Module 2AC are shown in Figure 2.1. An asymmetric MC signal is obtained using an NE555 as an astable multivibrator. A buffered H Blank pulse is obtained by cascading two inverters. Two other inverters are used to obtain \(J_1 \) and \(J_2 \). The output of the first inverter is \(J_1 \) while the output of the second inverter gives \(J_2 = \overline{J_1} \). See Figure 2.3a for waveforms.

With \(J_1 \) low the C clock is enabled. Its output is the CK input for the two 7474 D type flip flops. \(J_2 \) is the Pr input for these flip flops, and since \(J_2 \) is high when \(J_1 \) is low the flip flops are enabled during the interval between H Blank pulses. The divide down operation of the D type flip flops generates \(\phi_{1c}(T) \) through \(\phi_{4c}(T) \) as indicated in Figures 2.3b and 2.3c.

The toggling action of the Cl and Pr inputs of a D type flip flop is used to generate the \(G_2 \) pulse. \(\overline{Q} \) goes high when Cl goes low and low when Pr goes low. \(\phi_{1c}(T) \) serves as the Pr input with the Cl input being \(J_2 \). Thus, \(\overline{Q} \) goes high on the falling edge of \(J_2 \) and remains high until the first falling edge of \(\phi_{1c}(T) \). This positive pulse, slightly wider than \(J_2 \), is inverted by the MH0026 driver amplifier to give a negative pulse, \(G_2 \), as indicated in Figure 2.3d.

The Reset and Source pulses originate at the output of the three input Nand gate 7410A. This output, a negative pulse, is generated by the high level coincidence of the \(\phi_{3c}(T) \), \(\phi_{4c}(T) \) and C clock inputs. The resultant pulse width is one half of the C clock period. This pulse from the 7410A is the active input to Nand gates 7410B and 7410C. The remain-
Figure 2.3a Top to bottom: H Blank, J_1, J_2 and Source

Figure 2.3b Top to bottom: H Blank, C-Ck(T), $\phi_{1c}(T)$ and $\phi_{2c}(T)$.
Figure 2.3c Top to bottom: $\phi_1^c(T)$, $\phi_2^c(T)$, $\phi_3^c(T)$ and $\phi_4^c(T)$.

Figure 2.3d Top to bottom: H Blank, J_1, J_2 and G_2
Figure 2.3e Top to bottom: J_2, $\phi_{1c}(T)$, $\phi_{2c}(T)$ and Source.

Figure 2.3f Top to bottom: J_2, $\phi_{2c}(T)$, Source and Reset.
Figure 2.3g Top to bottom: J_2, J_1, Source and Reset

Figure 2.3 Waveforms for Module 2AC
The inputs are held high at 5 volts. Consequently, their outputs go high when the output of 74108 becomes low. The positive pulse at the output of 74108 is inverted by the 7406 driver amplifier giving the negative source pulse.

The positive pulse at the output of 74108 and \(J_1 \) are the inputs for a NOR circuit. Since \(J_1 \) is always low when the clock is enabled a negative pulse is obtained at the output of the NOR gate. This pulse is inverted by an ECL driver amplifier, located in Module 1AC, giving the desired positive reset pulse. See Figures 2.3a, 2.3c, 2.3f and 2.3g for the reset and negative pulse waveforms.

Module 1A contains the four pulse ECL driver amplifiers, 740626's, amplifiers and upset circuitry for the drivers, dc bias supplies for the ECL circuits.

Each driver is positive coupled, coupling for \(V_\text{dc} \) and \(V_\text{dc} \), and is biased for operation by a switch located on the module card. Circuit details are shown in figure 2.6. Waveforms for \(J_2, V_\text{dc}, \phi_\text{dc} \), and \(J_3 \) are shown.

Module 1C contains the necessary circuitry for generating the four pulses. When either at all level, the channel for controlling the 500 Hz repetition rate, and the pulse and reset pulse for the detectors, as seen in figure 2.6.

A 500 Hz square wave is used for both DC and AC operation.
- 19 -
FIGURE 2.4 (CONTINUED)

MODULE IA - DAC DIAGRAM

© FRONT PANEL BNC © CARD TERMINAL
Figure 2.5 Module 3A-3AC waveforms, top to bottom:
J_2, ϕ_{1c}, ϕ_{2c} and ϕ_{3c}.
FIGURE 2.6 (CONTINUED)
MODULE 2AB DIAGRAM
TRANSFER

TO PIN 9
OF 7493F

74123

1.8

14 15

TRANSFER WIDTH

+5

TRANSFER OF 7493F

3IA

74123

6 -BIAS

TRANSFERTRANSFER

AMP

VGN

WIDTH

+5V@~

-15V

GND

+15

-15

30V

GND

+15

-10

DH3725

IN759A

DH3467

IN759A

+10

-10

+30V

GND

+5V

5VGND

15

+15V

10

-15V

30

15V GND

20

+30V

65

30V GND

60

O CARD TERMINAL O BNC

FIGURE 5.6 (CONTINUED)

MODEL 202 DIAGRAM
The B clock, an SN74S124, operates when the enabling input gate at pin 11 is low. This enabling signal is obtained at the output of Nand gate 7400A. The inputs to 7400A are J1 and Q of D type flip flop 7474B. 7474B is operated in a toggle mode with the Cl input obtained at the output of the three input Nand gate 7410A and the Pr input obtained at the inverted output of counter 7493F. J1 pulses are counted by counters 7493 A, B, C, D, G and F. For 50 J1 pulses Q of 7474B is high. Consequently, the B clock will run continuously during each J1 pulse interval for 50 J1 pulses. After the 50th J1 pulse a Cl signal from Nand gate 7410A will toggle 7474B and shut down the B clock. B clock will remain off until the next PR input from counter 7493F toggles 7474B again.

The interval between Pr inputs to 7474B is determined by the setting of the counter switch. With this switch set for 2^N, counter 7493F will count, after the Nth pulse, an additional four J1 pulses, or (2^N+4), and then reset all counters. At the end of the Nth pulse the output of counter 7493G goes high, initiating the V Blank pulse with a width of four J1 pulses. During this interval a 74123 monostable multivibrator generates the transfer pulse which connects the detectors to the input wells of the B CCD shift register. See Figure 2.7a and 2.7b for waveform details.

The B clock runs continuously during the first 50 J1 pulse intervals, however, only one set of four phase B voltages are obtained for each of the 50 J1 pulses. The B clock enabling signal is inverted to obtain the Pr inputs for the encoding D type flip flops 7474A. Ck inputs for the 7474A are the inverted output of the Nand gate 4400B. The inputs for the 7400B are the B clock output and the inverted output of the counter 7493F. The input to the counter is the direct output of the 7400B. Therefore
Figure 2.7a Top to bottom: J_2, 7493F (Pin 9), Transfer and V Blank.

Figure 2.7b Reset pulse for counters, Pin 8 of 7493F.
Figure 2.7c Top to bottom: J_1, J_2, 74s124 Pin 10 and B Ck(T).

Figure 2.7d Top to bottom: J_1, B Ck(T), $\phi_{1b}(T)$ and $\phi_{2b}(T)$.
Figure 2.7e Top to bottom: $\phi_{1b}(T)$, $\phi_{2b}(T)$, $\phi_{3b}(T)$ and $\phi_{4b}(T)$.

Figure 2.7 Waveforms for Module 2AB.
there will be a Ck input to the encoding 7474A only until the output of the 7493E goes high. This time interval is sufficient to generate one complete set of four phase B voltages at TTL levels. The counter is reset by the J pulse. See Figures 2.7c through 2.7e for operating waveforms.

4. Module JAB

Module JAB contains the four phase B clock gate driver circuits, amplitude control and offset bias circuitry, DVM monitoring circuitry and provisions for either ID or 2D operation. The latter provision is controlled by the frame-line switch. In the line switch position G_2 is connected to a fixed input of -10 volts. In the frame position G_2 is driven by Φ_{4b}. Circuit details are shown in Figure 2.8. See Figure 2.9 for the four phase B driver waveforms.
FIGURE 2.8 (CONTINUED)

MODULE 3AB DIAGRAM
Figure 2.9 Waveforms for Module 3AB, Top to bottom:
\(\phi_{1b}, \phi_{2b}, \phi_{3b} \) and \(\phi_{4b} \).
SECTION III
VIDEO DISPLAY

A. INTRODUCTION

The Video Display circuitry provides Horizontal and Vertical sweep voltages and a multiplexing circuit for Z-axis modulation. The design was based upon the requirements for a monitor oscilloscope with the following sensitivities:

Horizontal and Vertical: 0.1 volt/inch
Z-axis: +1 volt for full blanking
-1 volt for full intensity

A block diagram of the entire system is shown in Figure 3.1. A Horizontal sweep is generated for each \(J_2 \) pulse and synchronized with the \(J_2 \) pulse. \(2^N \) horizontal sweeps are generated for each vertical sweep which is synchronized by the V Blank pulse. The multiplex circuit, synchronized by the \(J_2 \) pulse, provides the necessary gain and timing for blanking and analog signal intensity modulation at the Z-axis output.

1. Horizontal Sweep Circuitry

Circuit details of the H Sweep circuitry are shown in Figure 3.2. The basic circuit consists of an inverting integrator with the ramp output terminated by an active switch. This active switch, consisting of the 2N3905 and 2N3903 connected as shown, essentially shunts the integrating capacitor \(C_6 \). A narrow trigger pulse, synchronized with \(J_2 \), turns on the active switch thereby terminating the ramp and discharging \(C_6 \). See Figures 3.3 and 3.4 for operating waveforms.

2. Vertical Sweep Circuitry

Circuit details of the V Sweep circuitry are shown in Figure 3.5. \(J_2 \) is the input to counter 7493A. Counter 7493B is driven by \(Q_0 \) - divide...
Figure 3.1

Block Diagram of Video Display Circuitry

* Trigger occurs at trailing edge of H-blank pulse.
FIGURE 3.2
HORIZONTAL SWEEP CIRCUITRY DIAGRAM

* CERAMIC DISC
SINGLE GROUND POINT NEAR PIN 3 WITH LEADS AS SHORT AS POSSIBLE.
Figure 3.3 Waveforms for H Sweep. Top to bottom: J₂, H Sweep and Z-axis output.

Figure 3.4 Waveforms for H Sweep. Top, Z-axis output, Bottom, H Sweep.
by 16 - of the 7493A. The six outputs from the two counters are the inputs to a multiplying A/D converter, AD7520. The vertical sweep, the output from the AD7520, is 2^N steps. After $2^N J_2$ pulses the V sweep is terminated by the V Blank pulse which resets the counters. The overall amplitude of the V sweep voltage is controlled by the amplitude of the individual steps. Operating waveforms for the V sweep voltage are shown in Figures 3.6 and 3.7.

3. Multiplex Circuitry

Circuit details of the multiplex circuitry are shown in Figure 3.8. The basic operation of this circuit takes advantage of the unique characteristics of Operational Transconductance Amplifiers, or OTA's. These amplifiers have an additional input current control which may be used for gating the amplifier off or on.

Two CA3080's, OTA's, are used, one for the analog input signal and the other for the blanking pulse during the H Sweep retrace time. The two outputs from the OTA's are summed at the input of a buffer output amplifier using amplifier 531C. CA3080A, the analog OTA, must be on for the duration of the interval between J_2 pulses. CA3080B, the blanking OTA, is on only for the time interval given by the J_2 pulse width.

The J_2 pulse voltage levels are not suitable for directly controlling the OTA's. Consequently, d-c voltage level shifting must occur between the J_2 pulse and the control input to the OTA's. This is accomplished by means of operational amplifiers 531A and 531B. The inverter, 7040A, at the inputs of 531A and CA3080B is necessary to satisfy two requirements. One is the difference in timing for the two
Figure 3.6 Waveforms for V Sweep. Top, V Blank, Bottom, V Sweep

Figure 3.7 Waveforms for V Sweep. Top, V Blank, Bottom, V Sweep
OTA's. The second is the necessary polarity of the blanking pulse at the Z-axis output, i.e., +1 volt for full blanking. Thus, the control pulse for CA3080A is a -5 volt pulse referenced to 0 volts with a pulse width of \(J_2 \). The control pulse for CA3080B is a 5 volt pulse referenced to -5 volts with the pulse width of \(J_2 \). See Figures 3.3 and 3.4 for operating waveforms at the Z-axis output for a sinusoidal analog input signal to CA3080A.

The video signal initially was displayed on an X-Y oscilloscope monitor. Figure 3.9 is an example of the resultant display of a hand. The white blotches represent defects in the schottky diode matrix. The lack of grey scale eventually lead to the design of a TV compatible system which will be discussed in Section IV.
Figure 3.9 Image of a hand using an X-Y oscilloscope monitor.
SECTION IV
PERIPHERAL CIRCUITRY FOR SIGNAL PROCESSING

A. INTRODUCTION

A number of difficulties arose in processing the 2d chip out-in signal. One of these was a dc offset of about 10 volts. This offset resulted from the bias of the on-chip source-follower when terminated in its optimum external load. A second problem was encountered when an attempt was made to incorporate a background subtraction scheme to enhance the video presentation and minimize the effects of matrix defects. A third major processing difficulty involved the attempt to convert the original ICCD system to a TV compatible system. These difficulties will be discussed briefly in the ensuing sections.

1. Preamplifier and X-Y Circuitry

A preamplifier circuit was designed for the external load with provisions for eliminating the line amplifier offset. The circuit is shown in Figure 4.0.

A capacitance is used at the output of the preamplifier to reduce the noise and transients. The digital control circuitry for the SHA-2A S-H circuit is shown in Figure 4.1. As will be noted in the circuitry as well as the timing diagram of Figure 4.2 the SHA-2A is digitally synchronized to the RESET pulse. Construction of the C register on the 2D chip requires the complexity of this circuitry. The C register would normally be only 15 "live" sections, however, C data is passed through the "dummy" sections. Consequently, provision has been made to synchronized on either the "dummy" readout or the "live" sections.

2. Background Processing Circuitry

An investigation was made into the feasibility of using a microprocessor to enhance the video when using the X-Y oscilloscope monitor. The basic approach in block diagram form is shown in Figure 4.3. Difficulty was encountered with the microprocessor programming. The priority assigned to a TV compatible system precluded the resolution of this problem.
FIGURE 4.0
IRCCD OUTPUT PREAMPLIFIER
FIGURE 4.3

BLOCK DIAGRAM OF UPRECESSOR SYSTEM FOR PROCESSING IRCCD VIDEO OUTPUT
3. TV Compatible Circuitry

As mentioned earlier the lack of grey scale is a drawback when presenting video data on an X-Y oscilloscope monitor. A standard TV monitor would be more suitable for the video display, however, the IRCDD circuitry is not designed to run at TV sweep speeds. Furthermore, since all diodes must be read at the same time, the video signal is a non-interlaced single field per frame.

Dr. Ewing of RADC/ESE initiated a solution to these difficulties which involve time compressing the IRCCD video signal in a Reticon SAM-64, a slow in/fast out BBD. The block diagram of Figure 4.4 illustrates the basic approach.

The crystal controlled master clock signal, MCK at a frequency of 1.4175 MHz, originates on the sync generator board. The C clock is obtained by means of a phase lock loop, CD4046, at a frequency of 850.5 KHz. The same circuitry as in the original IRCCD is used to obtain the C register phase drivers at a frequency of 212 KHz.

The digital timing board, by means of the equalizing and H Blank pulses from the sync generator board, generates the H Blank and Transfer pulses required for operation of the IRCCD test facility. It also supplies the Start In and Start Out pulses required by the BBD circuit.

The H Blank and C Ck inputs to the CCD driver board generates the ϕ_B and ϕ_C phase driver signals and the source and reset driver amplifier outputs using the circuitry of the original IRCCD.

The SAM-64 BBD uses a delayed ϕ_{4C} input at 212 KHz as the Read In clock signal, and the MCK signal at 1.4175 MHz as the Read Out clock signal. As a result, the full readout of the IRCCD video occurs in 300 useconds, whereas a full readout of the BBD requires only 45 μ seconds.

The log amplifier between the S-H output and the BBD signal input is used to enhance low contrast signals while maintaining a high TV dynamic range display. Figure 4.5 is an example of real time imagery for the 2D IRCCD system. This photograph was taken directly from the TV display. The image is a facial profile of a man smoking a pipe. The hot pipe is the bright area in the lower left, whereas the dark area nearer the center shows the contrasting coldness of the subject's nose.
FIGURE 4-1

BLOCK DIAGRAM OF SYNCHRONIZATION SYSTEM
Figure 4-5. Human profile showing the contrast between hot pipe and subject's cold nose.
SECTION V
CORRELATED DOUBLE SAMPLING SYSTEM
CDS-1

INTRODUCTION

The basic operation of the CDS circuitry can be illustrated using the simplified circuit of Figure 5.1a and the input waveform of Figure 5.2a. Switch SL1 is closed during the interval of the reset pedestal. Assume for the moment that the reference voltage, V_R, is zero. Then C_1 is charged to the pedestal voltage level V_p. After switch SL1 opens, the input to the noninverting node of the input voltage follower is $-V_p$. As V_p drops to the signal voltage level V_x, C_1 must discharge and sample the signal to the input of the voltage follower. Since V_x represents an undesired offset level, it can be eliminated by means of the reference voltage V_R but not any noise accompanying it, or V_p.

Switch SL2 is used during the signal time interval and samples the output of the signal circuitry (Figure 5.2a). If the time interval between the closures of switch SL2 is sufficiently short, the noise for each sample time will be integrated and the original signal less noise appears at V_x.

Another switch SL2 is used for SL1 and SL2. These operate at 1 Hz voltage levels, and since the timing sequence is synchronized to the RESEI pulse, the required digital input is RESST, a negative pulse referenced to +5 volts.

1. DIGITAL TIMING CIRCUITRY

The basic approach to generating the analog switch gates is illustrated in the simplified diagram of Figure 5.1a. The corresponding timing of the various gates, not to scale, is shown in Figure 5.1b.
FIGURE 5.0a BASIC CDS CIRCUIT

FIGURE 5.0b INPUT SIGNAL WAVEFORM

FIGURE 5.0

BASIC CDS CIRCUIT (a) AND INPUT WAVEFORM (b)
FIGURE 5.1a SIMPLIFIED DIGITAL GATE CIRCUITRY

FIGURE 5.1b TIMING DIAGRAM FOR GATES IN FIGURE 2a
The four monostable multivibrators, MV1 through MV4, consist of 2 SN74121 IC's, dual monostable MW's with Schmidt trigger inputs. They have provision for operating on either the leading or trailing edge of the input trigger. "A" inputs trigger on the leading edge, whereas, "B" inputs trigger on the trailing edge.

Outputs D1, D1 and D2 are synchronized with the leading edge of the digital input RESET pulse. These outputs are used as "B" inputs to MV2, MV3 and MV4 respectively.

Gate S1, controlling the operation of analog switch SW1, is initiated on the trailing edge of D1. Since the pulse width of D1 is variable, this pulse controls the location of S1 following the RESET pulse.

Gate S2, controlling the operation of the analog switch SW2, is initiated on the trailing edge of D2. Since the pulse width of D2 is variable, this pulse controls the location of S2 following the RESET pulse.

Potentiometers are used to vary the pulse widths of D1 and D2. As indicated in Figure 5.1a it is such that S1 and S2 cannot overlap. These widths may be varied with screw driver adjustable potentiometers on the front panel adjacent to the D1 and D2 ten turn controls.

The maximum pulse width of 4.6sec for both S1 and S2.

Circuit details

Figure 5.1 shows the details of the analog circuity, LF156 operational amplifiers are used for the input voltage follower, VFI, and the sample-hold switch follower, VF2. This configuration results in unity gain between the input and output nodes, however, VF2 could be modified easily to obtain a different gain should this prove desirable.

The reference voltage V_R is obtained from a dc voltage follower using a pair of operational amplifiers. A ten turn potentiometer connected as a voltage divider between the -15 volts and the +15 volts provides a variation
in V_R of approximately -3 to +3 volts. Additional variation can be obtained by reducing the two fixed 20K resistors.

A complete schematic for the CDSS-I is shown in Figure 5.3.

Figures 5.4 and 5.5 indicate the noise reduction capability of this CDS system. Figure 5.5 is an expanded version of Figure 5.4. The top signal in each figure is the output video signal into the CDS unit. The bottom signal in each figure is in the output from the CDS unit.
Figure 5-4. Noise reduction by means of the CDS system. Top signal is input to the CDS, the bottom signal is the output of the CDS.
Figure 5-5. Noise reduction by means of the CDS system. An expanded version of Figure 5-4.
SECTION VI
CONCLUSIONS

The IRCCD-2D system was tested and found to function satisfactorily. The flexibility built into the system proved to be as useful as anticipated in that modifications suggested by subsequent evaluation of the 2D array were incorporated with minor difficulties. The TV compatible system has proven the usefulness of the 2D array for infrared imaging and pointed the way towards more complex arrays. Significant reduction of noise has been demonstrated by means of double correlated sampling techniques.

It should be anticipated that larger more useful 2D arrays will become available in the near future. These undoubtedly will involve more complex drive and control circuitry. Future investigations will involve not only modifications of the present circuitry, but also take into consideration the application of L processors to aid in controlling stare time and analog signal conditioning.
REFERENCES

MISSION
of
Rome Air Development Center

RAOC plans and executes research, development, test and selected acquisition programs in support of Command, Control Communications and Intelligence (C3I) activities. Technical and engineering support within areas of technical competence is provided to ESP Program Offices (POs) and other ESD elements. The principal technical mission areas are communications, electromagnetic guidance and control, surveillance of ground and aerospace objects, intelligence data collection and handling, information system technology, ionospheric propagation, solid state sciences, microwave physics and electronic reliability, maintainability and compatibility.