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\ ABSTRACT
’;E;AThis thesis describes the detailed design of a
distributed operating system for a real-time, microcomputer
tased multiprocessor system.

Process structuring and segmented address Spaces
comprise the central concepts around which this system 1is
built. The system particularly supports applications whrere
procegging is partitioned into a set of multiple oprocesses.
One such area is that of digital signal processing for which
this system has been specifically developed.

The operating system 1is hierarchically structured to
logically distribute its functions in each process. This axnd
loop-free properties of the design allow for the physical
distribution of sysiem code and data amongst the
microcormputers., In a multiprercessor configuration, this

physical distritution minimizes system bus contention and

lays the foundation for dynamic reconfiguration.
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I. INTRODUCTION

A. TISCUSSION

The topic of this thesis is the detailed desien of the
xernel of a real-time microcomputer based multiprocessor
eperatineg system. The kernel comprises a complete, alteit
primitive, cperating system providing support for a large
number of asynchronous processes.

The kernel manages all physical processor resources
therebv providing the wuser with an execution envirorment
relatively free from concern about the underlyine hardware
configuration., The system 1is <capatle of performing in a
real-time envirommeat through the use of preemptive
scheduling to ensure expeditious handline of tire-critical
processing requirements.

Despite the rapidly expandine capabilities of rmodern
microcomputer systems, they still prove to be limited by the
relatively slow execution speeds of their microprocessors.
These <svstems generally do not provide the pcwer and
flexibility required to address complex and demardinge
applications. One such area is that o¢f real-time digital
image processing. This is @ particularly demarnding
applicaticn area characterized by the requirement to arply

significant processing power to a nigh input data rate.

11




A natural answer to the 1inadequacies of the 1lone
microcorputer 1is to provide for multiple micreoccmputer
systems. Such systems could provide the processing power to
adequately handle applications which are presently addressed
only within the domain of minicomputers and mainframe
systems. Fowever, the peneral purpose microcomputer
operating system which would control such a system does rot
exist today. Most of today’s microcomputer operatiang systerns
deal only with wunipreccessors and, in fact, could nct
adequately manage multiple processors.

The integration of large nurhers of relatively
inexpensive microcomputers into powerful computer syvstems
has teen the sudbject o2 intensive research in wuniversities
and industry for <ceverdal years. As a result, a nurder of
multiple microcomputer systems such as Carnegie-Mellon’s Cm*
(18] nave been built and even mere such as the varied
architectures of Anderson and Jensen (1] have teen
suegeested, The Cm* is an ambitious system with 5S¢ processors
and a complex, custom designed and duilt bus structure [if].
Most of the proposed systems require this tvpe of
specialized hardware. The primary thrust ¢f this thesis is
towards a general control structure which can be applied to
hardware systems that are commercially aveilatle today with
only very minor or no hardware development. Thus no serious
attempt is made to consider alternative hardware

architectures as a topic in this research.
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A complete high 1level operating system design was
provided by 0°’Connell and Richardson [11] in their farily of
secure multiprocessor operating systems. This thesis
concerns itself with the detailine of one member of their
family, a modified real-time subset. The mcdificationr
consists of the inclusion of a more general svnchronization
mechanism, eventcounts and sequencers described by Reed arnd
Kanodia ([13] which replace the more traditional Signal/W¥ait
and Block/Wakeup used in the orizinal desien.

The system supports multiple asvachronous processes
usine the concept of two-level traffic coatrol to accorplish
processor multiplexiﬁg amongst a greater number of eligible
processes, This dval-level processor multiplexing design
allows the system to treat the two primary scheduline
decisions, viz., the scheduling of processes and the
management of processors at two separate levels of

atstraction.

B. STRUCTURE OF TEE THESIS

Chapter II describdes the coverall design philesophy cf
the operatinge system, how multiple processes are
synchronized and how their multiplexing on a smaller set of
processors is accomplished. Chapter 3 describes the hardware
architecture of the multiprocessor system in terms of the
particular hardware suite chosen for this system. Chapnter iV

discusses the details of the kernel desien. The finel
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chapter presents conclusions and observations that resulted

from this effort and suggestions for further research. Two
apperdices are also provided, an explanaticn of programmine
methodology for this system and & detailed description of

the kernel modules in their present form.




II. FUNDAMENTAL DESIGN CONCEFTS

A. TESIGN PEILOSOFHY

Multiple processor systems are intrinsically more
complex then the familiar uniprocessor. Their complexity has
proven to bYe the major ©barrier to realizing the fuvll
potential of the inherent parallelism availabtle in such a
system.

One of the most important components of any computer
system is the operating system. The operating system manages
the system’s resources. Thus system performance is
critically dependent wupon 1its effectiveness. However,
performance 1is not just raw computational speed, but is in
reality the sum—total of numerous attributes. Seme of these
system attridbutes such as ease of programming, correct
operation, and the atility to address diverse applications
are as important as speed and efficiency, tut too often are
overlooked, Becauvse of this potentially very large set of
requirements, adequate performance can only be assured if
the behavior of the system 1is well understood Yy the
designer. Of necessity, this imposes a strict requirerent
far simplicity.

In this design, the requirement for simplicity |is
satisfied bty wutilizing & model ©based on the notion of

multiple asynchronous processes with sepgmented address

15




spaces. This is the central unifying concept which provides

a straightforward view of both static and dynaric system
behavior [4]. The principles of structured system desien are
also applied to logically organize the operating system into
a hierarchically structured set of easily uvanderstood rodules
whose interactions are clearly specified and strictly

enforced.

The result is a modular, layered operating sytem which
is ©both smaller and easier to analyze. This, in turn mekes
it easier to ensure correct operation and provides better
opportunity for improving performance through tuning.
Certain other benefits accrue from simplificaton as well.
Because the sytem 1s smaller, 1less memory 1is used for
operating system code and less processor time s sgpent in

its executiorn.

E. SEQUENTIAL PROCFSSES

1. Definition of a Process

The concept of a process has proven to te a
furdamental anéd powerful one in the orgarization ¢f computer
systems, The rather abstract idea of a process has teen
defined in numerous ways, btut perhaps the sirplest is
offered bty J. Saltzer as:

"...basically a proeram in execution on a processor. [17]

In considering the above definitior, 1t ‘tecomes

apparent that there are two elements which together

16
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completely characterize a ziven process. They are 1) the
program, consisting of any sequentially executed machine
instructions and data which can be associated wit* the
program (usually termed the process’ address space) and, 2)
the execution state of the proces<s which is characterized ty
the contents of certain processor registers.

2. The Process Address Space !

The address space, simplistically, proviies for the
encapsulation of a process such that it has no kncwledge of
any other process and no other process has knowledge of {t.
This eliminates the possidility of inter-process
interference simply tecause processes are unable to "escape’

the cornfines of thelr defined address spaces.

Bowever, this is rather restrictive in that
processes which are totally ignorant of each otter have ne
hope of co-operating tOwgrds the accomplishrent of sore
greater soal. In order to mediate this constraint, one
desires teo allow some restricted (contrelled) forr of

address space overlap (viz., sharing) suvch that co-operation

A is allowed while still retaininz the benefits of protection
) offered bSy 1isolaticen. Snaring requires S ome way cf
) distineuishing the shared portions of the cddress spece.

This 1s greatly facilitated dy 4introducing the ncticr of

memory segmentation.




{ a. Virtval Memory and Seprentation
' Virtual memory is used to implement the concept
of a per process address space., In Multics [2], each process
is provided with its own virtwel memory for an address
space. These virtual memories are completely independent of
one another,
A virtual memory consists of a set of seepments.
Segments are distinct variadle <size memory objects which
contain information. Associated with a seement is a set of
logical attridbutes used to uniquely identify the segment amd
to control access to it.
; . In specifying the set of segments that comprise
a virtual memory, one may include Seements that are part of
other virtual memories as well. Thus segments can be shared
in a controlied manner to provide for inter-process
communication and co-opera}ion.
By wusing <egmentation to provide a wvirtual
memory environment, the user is presented with a
configuratior independent system in that ne "sees a process
- address space that he can consider his own and is not
a dependent on the assignment of physical addresses.
) b. Addressing in a Segmented System
Addressire in a segmented memory system {is

two-dimensional. That 1s, a complete address consists of twe

parts. The first is the seesment nrumbdber. This identifies the

* particular segmert of interest. One attribute of the segmexut

18
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1< the physical address of the segment’s bYase. Thue the
seement can bYe located anywhere in physical merory by
changing the base address. The second dimension of the
address 1is an offset relative to the segment’s tase (the

beginning of the segment). This serves to access specific

locations within the segment.

C. INTER-PROCESS SYNCHRONIZATION ANZ COMMUNICATION

Utilizine the parallelism afforded by ruitiple
Processors requires a mechanism for inter-procecs
communication and synchronizatior. It is used for
controlling the execution of processes and coordirating the
sharing of data. _

The most widely used synchreonization primitives are
Dijkstra’s semaphores [3] or Saltzer’s Elocx and Wakeup [17]
which were used in O°Connell ard Richardson’s origiral

design [11]. However, the design decision was made to use a

different mechanism which addresses the questions of
confinement 1in & secure system. This is the svnchronization

mechanism based on the eventcounts and sSequencers of Feed

and Kanodia [13].
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D. PROCESSO® MILTIPIZXING

1. Tefinition of Processor Multiplexing

Frocessor multiplexine {s a technique for sharirne
scarce precessor resourceés among an arbitrarily large number
of processes. It is accomplished bty simulating the existence
of a larger number cf virtual processors. This techrnique |is
widely used in conventional uniprocessor systems where it is
commonly called multiprogramming. It seeks tec maximize the
use of the availatle hardware ty avtomating control of
process loading and execution. It also greatly increases the
flexibtility of a syc<tem allewing it to be effective in more
complex and dermanding applications.

J. K. Saltzer [17]) presented one of the fundamerteal
werks on the subject of processor multiplexing. Eis thesis
provides an excellent treatise of the salient issves.

2. Frocessor Virtualization

In order to effect processor nrnrultiplexing, tke
physical processor resources fthose hardware devices that
erecute macrine inrstructions) are virtualized by creatire
abstract processors called virtual processors.

a. Virtual Frocessors

Fach phvsical processor pocsseses some interral
memory (reeisters) whose contents descride the [processor’s
state. As part of the processar state, there 1is a
specification of the accessible address spare which contaics

the instructicns and data used dy the processor.
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Virtual processors are simulations of
processors. They can be viewed in essentially the same way
as physical processors in that they execute the <ame
instructions. However, the instruction set c¢f a virtual
processor has been expanded to includ2 some irnstructions
which the physical processors do not directly have. These
include “instructions” to “load” a process, certain
synchronication primitives, system service calls, etc.

Virtual ’ precessors exist enly as adstract
processors represented by a data structure. They are used as
the vehicle for the control and manipulation of processor

resources.,

3. Two-level FProcessor Multiplexicg

In this design, there é&re two levels of procecsor
multiplexing. This design arose from the existence of
multiple physical processors. Each of the levels address a
distinct requirement. Cne level supports virtual processor
management, that is, the prevision of inter-grocess
synchronization., The other supports the management af
pnysical rescurces ty the operating system.

This divides the requirements for multirplexiny
mecharisms 1into two parts. One of these addresses
multiplexing virtual precessors among processes ané tke
other multiplexine physical proressors among virtual

processors.

21
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a. The Traffic Controller
The Traffic Controller reprecents the upper level
of processor multiplexing (termed Ievel 2) and provides the
mechanism for multiplexing virtual Processors arcng

processes. Thus it is responsible for inter-yrocess

synchronization.

As an example, consider that & process, callec 4,
will wish to synchronize its actions with another process.
called B, such tahat process F will zave to complete sore
task before 4 can continue execution. Thus A will execute to
the point where it canrot proceed further and wishes to
signal process B. When process R has finished its tack, it
must notify process A of its completion so that process A
m&y then proceed.

This inter-process synchronization is handled at
the 1level of the Traffic Controller. When process A
discovered that it could not proceed further. it "pave away
its virtual processor to some process that could run. The
Traffic Controller svspended the execution of process A a&nd
a new process was bound to the virtual processor. In the
same way, when B completes, viz., it has no more work to )
perferm, it will also eive its virtual processor away.

b. The Inner Traffic Controller

The 1Inner fTraffic Controller corprises the
lower level of processor multiplexing (Ievel 1) and provides

the second set of multiplexing functions. It multiplexes the

b3
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physical processcr amone one or mrore virtual ©processors.
While the wvirtual processors nave identical capariliiies,
the physical processors may differ in their cepablilities,
viz., they may have different attacred I/C devices,

different 1local memory sizes, etc. The Inner Traffic

Controller must manage the physical resources in such a way

that the wuser 1is unaware of these differences. In
particular, the system’s interrupt system is rasaged ty tke
Inner Traffic Controller.

If a user process calls upon some svstem service,
such as disk I/0 or I/0 for a real-time sensor, it must wait
for that service to te completed tefore it can proceed. Tiae
performance of a system service is considered to be part cf
the requesting processes. However, it may actually be
supported ty another wvirtual ©[processor. To control this
interaction the Inner Traffic <Contreller oreovides the
required inter-virtual processor synchronization mechanism.
In particular, a physical system interrupt is directly
transformed into a synchronization signal to a waiting
virtual processor. This structure is particularly impcrtant
for the support of real-time processing.

4. Processor Multiplexing Strategy

a. Process State Transitions
Figure 1 illustrates the state trensitions of &
set of processes as a virtual processor is multirlexed arone

them. Some eligitle process (oae which 1is in the ready
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state) 1is scheduled to run a&and 1is dound to the virtuvel
processor. At this time, thne prccess makes the transition to
the running state. As far << the process is concerrned, oace
it enters the running state, it is executing.

At some point in its executior, the preocess may
desire to block itself or signal another process. If it
blocks itself (enters the bdlocked state), it will pive up
the virtual processor to which it 1is precently Dbound and
will e out of contention for processor resovrces. It will
remain in the blocked state until some nther process sigrals
it (thus rakine the transition tack to the ready ctate)., If
the process signals other processes, it will tranmsition from
the running state tacx to the ready state from whichk it may
be scheduled to run aeain. In doing so., it allows the
Traffic Centroller to possibly give the virtual processor to
some higher priority process which may te ready to run.

b. Virtual Freccessor State Transitions

Figure 2 illustrates the state trancitions race 1

by virtual processors as a physical Processor is

E A multiplexed. This dicgram is very similar to that of Figure
’ ) 1. However, these transitions are not directly observeadle
l

S by oprocesses (except as differences in executior times) as
}

|
g
E
|

virtual processor state transitions result from trLe

management of physical rescurces by the operating system.
In Figure 2, 1t <car be seen that a running

‘ . virtual processor can transition to the waitine state or the
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ready state, The transition to the waiting state occurs when

a virtual processor must wait for completion of some system
service (analogous to the ©blocking of process A in the
example eiven in paragraph a). While in the waitine state,
the virtual processor 1is out of contention for processor
resources until another wvirtual processor signels it to
continue, While in the ready state, the virtual processor is
in contention for processor resources and <o may te

scheduled to run on the pnysical processor.,
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ITI. MIJLTIFROCESSOR ARCEITICTURE

A. FARDWAPY RIQUIRTMENTS

One of the principal desizn soals of the syster desiun
was to provide for configuration 1irndependence. Therefore,
the operatineg system 1imposes tut a few constraints on the
hardware that are noted here.

1. Shnared Global Memory

™he operating system maintains system-wide cortrol
data accessible to each of the processors via shared
cegments., The communication path utilized for sharing this
data is shared memory. Thus some Shared memory must te made
avallable to each microcomputer in such a way as to allow
independent access at the level of single memory references,

2. Multiprocessor Synchronizatior Support

There must exist some hardware-stvpported
multiprocessor syachronization primitive. This can be aay
form of &n indivisitle read-alter-rewrite memcry refererce.
This capadbility is required to 1implemernt pglodal 1locks on
shared data to prevent race conditions as the physical
processors attempt to asynchronously manipulate c<hared deta.

3., Inter~-Processor Comrunication

Some method of communication tetween phrsical
processors must te provided. This is satisfied by an ability

to generate interrupts tetween the physical processors. This
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capadbllity 1is required for the implementation of preemptive

scheduling.

B. HARTLWARE CONFIGURATION

1. System Configuration

‘The hardware sub~-system is confizured as a
multiprocessor [1]. The svstem consists of a rumter of
single board microcomputers and a elotal memory module
connected yy a single saared btus. The syster differs from
conventional multiprocessors in that each of the
microcomputers possesses its own local remory. The #lobal
memory module is connected directly to the system dus an? is
the only physical merory resource which is shared by &all of
the processors. The general configuratior {s shown
échematically in Fieure Z.

2. Specific Hardware Employed

The particular hardware selected for this
implementation 1is ‘tased on the INTTL E£6/124 sinele btoard
microcomputer [6)]. This microcomputer wutilizes the INTEL
E¢e6, a 1€-~bit peeneral-purpose microprocessor capable of
directly addressing a total of 1 mega-byte o¢f ©physical
memory.

a. The E€86 Microprocessor

The EC&E6 does not support the notion of explicit
cegmentation. In the g@s8, addressing 1s segment-like ir

that base and offset addressines 1s used. The offsets are
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formed relative to cre of the four segment base registers of
the 8286: 1) the Ccde Segmenrt Refister, used for addressing
a pure seszment coontaining executable code, 2) tle Iata
Segment Register, used for prccess local data, 3) the Stack
Seesment Fegicter, used for the per process <stacks, and 4)
and the Txtra Seement Register, typically used for external
or shared data.

In the €¢E6, a segment can range anywhere up to
6¢ kxilo-tytes in length. Segments can te placed anywhere
within the 1 meea-byte address Space of the ECES as lomg as
the segment bYase 1is placed on an even hexadecimal merory
address. Seement access and bounds checking are not
supported. Although there 1is 1no zeneral segrerntation
hardware, this desigrn effects & seegmented address <pace
through a comdinatior of operating system support and systerm
initialization <conventions described in a companion thesis
by Ross [18].

b. The 86/12A Single Board Microcomputer

The £€6/12A is a complete <computer capable of
stand-alone operaticn wused as the tasic processing ncde of
the multiprocessor. It 1is a commercial product which
satisfies the three bYasic hardware requirerents for tais
operating system,., First, possessing @ system tvs 1interfece,
earh microcomputer 1is capable of independently accessine a

glotal shared memory via the system buvs. Secondly, the F@Z€

CFU supports multiprocessor synckronizaton directly with an




indivisitle test-and-set <emaphore instrvction performed

under bdus locx. Lock semaphores reside in the shared elobal
memory since the system tus must te locked to ensvre taat
this instruction operates correctly. Thirdly, preempt
irterrupts can be generated dy using the parallel I/0 Gguerts
provided on each microcomputer. This requires conrecting the
microcomputer”s parallel I/0 perts to tne system interrupt
structure.
c. Ffreempt Interrupt Fardware Connection

As with most microprocessors, the &8C8€ 1itself
does not possess the <capability to directly =ezernerate
interrupts destined for other devices (tne devices of
interest here are other processors). The syster interrupt
lines are accessible through a jumper matrix [6] located on
the microcomputers. The parallel 1I/C port output of each
ISBC &56/12A is connerted to this interrupt jumper matrix,
Preempt interrupts &ére then generated simply by ovtpviting a
single word throush the paraliel port onto the system
interrupt lines. Tkhe connection is shown in Figure 4.

Note tkat only & single interrupt 1line is
actually required to implement system=wide preempt
interrupts. In this implementation, four lines are wuced.
This provides four unigue interrupt lines. If more than four
processors are used in the system, tnern these lines are
multiplexed {(viz., several processors share an 1interrupt

line).
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4. The System Bus
The Intel MUITIBUS (€] 1s utilized as the system

bus. It is a widely used commercial product with a published
set of <tandards., Thls ©bus {1s <cpecifically designed to
support rultiple processors and is fully compatidle with the

microcomputers used., It is vtilized without modificetion.

C. FARTWARE ASSFSSMENT

Tne cemmercially availabdle E6/128 single board
microcomputer was chosen because it wes specifically
designed to provide support for multiple processor systems.
In vsing the operating system described in the next chapter
to manace the microcomputer’s physizal resources, this
microcomputer 1s entirely suitadle for use as a tasic

processine node of an effective multiprocessor system.




IV, DETAILED SYSTE™ LESIGN

A. CSTRUCTURE OF TET OPERATING SYSTEWM

This cperatine system provides a multiproerarmed
multiprocessor system with segmented process addresc spaces
using the hardware described in Chapter III. The operatire
system 1s structured as a hierarchy of taree levels [1i], as
follows:

Ievel 3: Supervisor

level 2: Traffic Controller 1
Ievel 1: 1Inner Traffic Contreller

The Inner Traffic Controller (level 1) forrs the
bottom level of the nierarchy. It is “clecsest” to the
hardware and encompasses the major machine-dependent acspects
of the system. The Inner Traffic Cocntrclier multiplexes the
physical oprncessor amongst & pool of more numerous virtual
processors.

Peciding at the next level (Ievel 2) i¢ the Traffic
Controller, which 1is respoasitle for multiplexine virtual
processors among a larger number of user processes corpeting
for resources. The user-accessible inter-process
communication and synchronization primitives (Advance, Await
and Ticket) provided at tals level &llow the vser to easilyr
address complex system-wide Iinter-pre~ess synchronization

requi remente,
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The Supervisor resides at the touvmost level {level
2). The Supervisor’s purpose is to provide common <services
for user processes. In this implementation, it orly rrovides
a simple higher order languafe interface to the kernel by

havine a single entry point into the kernel.

3. TISTPIBUTING TRE OPIZRATING SYSTEM

Cze c¢f the primary concerns in any multiple computer
system 1is the issue of performarce. In tais type of systerm,
a multiprocessor with a single shared system bdus, the rmwost
glarlneg potential Ddottleneck is the system tus. It then
tecores highly desiradle to mirnimize accesses to this
resource that must be chared by &1l of the microcomputers.

In terms of the desien, the described sysStem is a
distributed cperating syster patterned after Multics [12].
In particular, the segments of the operating system kernel
are distri®uted as part of the adiress Spare of eaczt
proress. In terms cf the irplementationr of this system, the
performance issue 15 addressed ty physically distributine
coples o0f the Xkernel in the local merories of each of the
micrncorputers, This allows high-speed accecs to xernel
functiors without nrecessitatine wuse of the system bus for
code fetches,

Thus each comﬁuting node carn te reparded as
semi-autonomous in that each of the procecsors schedule

themselves dut are still centrally controlled by the set of

. ]



system-wide data tadles. There 1is no corncept of a
master~slave relatiorship amone irdividual microcorputers,
nor are individuval kernel functions céivided up arong ther as

is more often done. Ratler the entire kernel is distritutec.

C. REAI-TIME PROCESSING

Real-time processing involves tae perferrance of
time-critical processinz often related to the control of
external devices. This application requires that scre
mechanism te employved to ensure that time-critical
processine is eiven immediate attention.

The hardware-supported process opreemptinr mecharnism
emplcyed 12 the system provides the ripid response required
for real-time processiprge. The prisrity-driven preermptive
scheduline technique used provides for =sxpediticus handlirce
of processes which perform tire-critical functiors. These
processes are assigned high prinrities <o that the «<syvetem
will preempt otner processes of lower priority that ray te

running. Thus wheén ore of these higsh-priority gprececces e

[

sizrnalled, 1{t car te irmediately scheduled and Fairn contro

0f processor rescurces,

D. FROCTSS ADDREISS SPACTS

Trhe address space ¢® a precess 1s a set of FL/¥-E6

\
O

'Y

segmente: procedures (code), locel wvaristlecs (dat




external data (shared data), and stack ([12,12]. Thysical
memory 1is allocated to tae segments of a process ir such a
way as te lirit system bus contention, as discussed ty Eoss
(16]. In this system, the stack is a key element in the
management of processes.

1. The PI/M-86 Stack

Intel’s high order lansuage PL/M-E6 [5, 1] utilizes
stacx segrents to imolement per process stacks. Addressing
of stacks 1is accomplisheé bty wusing three of the ECE6°s
registers as shown in Figure 5. The Stack Seemert (SS)
Resister <contains tke dase location of the stack seegment in
memory. The Stack Pointer (SF) 3Register addresses the
current top of the stack as ap offset from the tase of the
stacx sesrent, (the value in the SS Reeister). The Ease
Pointer (BF) TRegister also holds an offset from the SS
Reeister and {is wused to establish procedure activaticn
records [7, &, 3].

2. The Stack as the Address Sgace Tescriptor

In this system, the per nrocess stacks are used to
maintain process state information. This includes tre
current executiot poiat (when the process is not actually
renning), the tvpe of return from the Yernel required for
the process (mormal or iaterrupt) and the locations of the
code and data segments. This allows the syster to swap in a

new address <pace (viz., do a context switch) tv chanscine
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the value in the SS Register, which is thus used in a manner

somewhat analogous to the Multics Jescriptor Ease Register
[12]).

Figure 6 shows how this information is ctored in the
stack while a process is not actually runanine on a physical
processor. The Base Pointer, Stack Pointer and Return Type
Indicator are stored in reserved 1locations at the very
beginning of the stack segment.

In order to identify the stack seegment, and thus
access the address space of a process, the stack segrent
tase address is wvsed in a dual role., First, a unique base
address is assiened to the stack of each process which
provides a unique segment for each stack. This tase address
i{s used for addressing locations within the steck. Secondly,
the base address serves as a descriptor for the address
space of each process. Thus the bdinding of & processor is
changzed from one process to another 'merely by chaneine the
base address, viz., changing the value in the Stack Segment

(2S) Zeeister.

E. SYSTEM PROCESSES

System processes make up the non-distrituted kernel.
Non=-distridbuted refers to the fact that these processes are
not distrituted as part of each process’ address space.

Rather they represent various system services. System

processes are used for the management of narfware resources
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and execute asynchronouvsly with respect to ucser processes.
In this desiesn, all system processes are permanently bound
to dedicated virtual processors.

1. The Idle Virtual Processor

The 1idle virtual processor provides tne physical
processor with a consistent state when no other virtusl
processor 1s ready to be run., The i4dle virtual preccessor
assures that physical processors a4always have some wvalid
process address space to execute in, althoueh in this case
it is only an idle process that performs no useful work.

This 1is assumed by creatine for each physical
processor a dedicated 1idle virtual processor. The idle
virtual processors act as default” that will only e run

when no other runnable virtual processors are fourd.

F. SYNCFRCNIZATION

Synchrornization 1is required at two 1levels in this
system: between processes (at the Traffic Controller level)
and betweern virtual ©processors (at the 1Inner Traffic

N Controller 1level). Both 1levels use the eventcount ard
sequencer mechanisms [13] described below.

. 1. ZIZventcounts

Bventcounts are used in this syster to allow

processes to arbitrate access to sharecé resouvrces,
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An eventcount is defined by Reed to bde:

"an object in the system that represents a class of events
that will eventually occur.” [14]
Each eventcount represents a distinct class of events. An
eventcount is associated with scme type of -event of
interest, e.g., occurrence of a real-time interrupt, a
buffer becoming full, a data segrent being read or written
into, etc. Eventcounts are implemented as sets of positive
integers from € to infinity (tae 1imit is actuelly 65,536
using P1/M-86 "word” variables which is "adequate” for the
avplications anticipated) and are used to xeep track of the
total number of such events that have occurred.

Three operations are defined on eventcounts. The
value of an eventcount may bYe obtained by the READ
operdation. This returns the present value of the eventcount
as a positive integer k. From this value, one may infer that
events @ to k have already occurred.

The AWAIT operation allows a process to susSpend its
own execution (enter the blocked state) until a specified
event has occurred, viz., the eventcount reaches the value

) specified. The effect 1s the same as the cornventional PRlock
| operation or Dijkstra’s "P" operator.

An  ADVANCE operation is performed by a process when
an event has occurred. It 1increments the valve of the

evantcount by one to reflect the occurrence of the event,

" . This has the effect of signalling the event’s cccurrence to




other processes which were waiting for it by virtue of
having previously performed an AWAIT operation. The effect
of an ADVANCE operation is essentially the same as a Wakeup
operation or Dijkstra’s "V  operator.

The eventcount signalling mechanism has an eutomatic
broadcast effect which offers an advantage 1ir parallel
processing, This broadcast capability allows the
simultaneous signalline of several processes which otherwise
would would have to be signalled sequentially-

2. Sequencers

There are many situations where accesses tc shared
resources must be totally ordered. Eventcounts alone are not
sufficient to accomplish this. To provide the capability for
mutual exclusion, another type of otject called & sequencer
[12) is employed. A sequencer is implerented as a pecsitive
interser ranging in value from & to infinitv (as with
eventcounts, the lirit is 65,328). Fowever, a Sequencer |{is
used to provide total order to tae occurrence of events.
initially a sequencer has a value of €. The value increeses
by one each time a TICYET operatior is performed cn it.
TICKET is the only operation defined on a sequencer. TICKET
returns a unique monotonically increasing value witlr each
call. Thus, a set of events can be totally ordered bty the

TICKFT operation.
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3. Inter-Process Syncaronization

Access to shared resources is easily controlled by
using eventcounts and sequencers in concert, as shown in the
following "producer/consumer” example [13].

Consider that some hypothetical <consumer -process
called Printer uses a single invut duffer in which it fincs

information to be processed (output to the oprinter). There

are also an unknown number of producer processes called
PFOT1, PFOD2, etc., which have informationm that they want
Printer to output for them. Obviously, with a sinele dbuffer,
onlv one of the processes can use the dbuffer at any one
time. The solution uses one sequencer and two eventcounts to
properly mediate access to the buffer using mutval
exclusion.

The séquencer Turn is used by the producer processes
to synchronize their use of the 1input bduffer. The
eventcounts Full and Empty are used to synchronize with
Printer. TFach of the producer processes will execute the

program shown below.

' PFOD1, PRCI2, etc. /* Froducer proerems */
.
Do; ” ”
} T = TICKET(TURN); /* Get a ticket (turn) =/
/* for the tuffer */
v AWATT(EMETY,T);  /* Wait for buffer ready */
v .
i . /% drite into the tuffer */
ADVANCE(FULL); /% Siegnal Printer that */
/* there is work to do */

IND; /% DO */

44




Each of the producer processes fir<t performs a
TICKET operation on the sequencer Turn to obtain a “ticket™
for the bduffer. Each time TICKET is called, the variabdle T
of the calling producer process will receive a unique value.
This value 1is then used by the producer process as an
argument for the call to AWAIT. It is the event (value of
the eventcount EMPTY) for which the process will wait. When
that event does occur (the value of FTmpty, which is advarced
by Printer, reaches the wvalue specified in the call to
AWAIT) the process will te unblocxed and may then proceed to
use the %btuffer. Wwhen it has finished, the process will
perform an ARVANCE operation on the eventcount TFull to
signal Printer that there 1is 1information in tae irput
buffer. Since each producer process uses the same sequencer,
only one of them at a time will access the buffer.
™he consumer process Printer 1is programmed as
follows.
PRINTER /* Consumer program x/
DO I =1 TO 655363 /* Essentlally forever x/
AVAIT(FULL,I): /* Wait for a messarse to be */
/% deposited in the tuffer x/

/* Perform output functior %/

ADVANCE(EMPTT); /* Notify waiting processes */
/* that the bduffer is rnow ®/
/% availabdle */
END; /* DO */
The Printer process synchronizes on the eventcount
Full (1t waits until TFull 1is advanced by scme producer

process that has firlshed using the dbuffer). After Frinter




finishes with the buffer, it performs ar ADVANCZ operation
on the eventcount Empty. Thils notifies the producer process
that 1s "next in line” that the duffer is now availadle for

its use.

G. TFE INNER TRAFFIC CONTROLLER

1. General Description

The Inner Traffic Controller is the physical
resource manager. It is responsible for physical processer
multiplexing. Its principal data tase is & table known as
the Virtual Processor Map.

Fach physical processor has ite own fixed set of
virtual processors used in multiplexing. The Inrer Traffic
Controller is primarily concerned only with this set of
virtual processors. However, the performance of system-wide
svnchronization requires access to the rest of the virtual
processors as well, so that sienals may be sent to other
physical processors. This is accomplished by maintairing tne
Virtual Processor Map as a central data bdase containing
ertries for all of the virtual processors ir the system.

Making 1t glodbally availadle facilitates communication

! betweelt virtual processors on a system—wide scale. The
a Virtual Processor Map fields are dlagrammed in Figure 7,
The State field reflects the present state of the

virtval processor end can te any of ready, ruaning, waiting,

or idle. A ready virtual processor is bdbound to a process and
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{s 1in contertion for the physical processor. The running

virtual processor 1is that wvirtval processor which is
acguglly executing a process on the physical processor. The
waiting state reflects physical rescurce management. The
idle state 1s assumed ty a virtual processor which has no
process bound to it. The idle state prevents the assisnrent
of useless (idle) work to & physical proacessor.

The Priority field of the virtval processor is used
in scheduline. The highest priority runnable virtual
processor is selected to run. This priority 1s deterrined by
the pricrity of the process bound to the virtual precessor.

The System Eventcount Identifier and System Event
Awalted fields are used in system level syrchronization.

The Stagk Segment Register Velue field defines the
address space of the ‘tound process. It holds the process
address space descriptor. The execution state of the rrocess
is stored in the stack when the process s not actually
running. This is the value which is requireld to access the
address space of the process, viz., it is changed to swap
processes.

The Preempt Pendine TFlag s wused for preerptive
scheduling. It serves to virtualize a hardware irnterrupt
sent to the phyvsical processor.

2. Virtual Frocessor Scheduler (Vp_Scheduler)

This module 1s responsitle for maging the scheduvling

decisions for wvirtual processors. 1t selects the highest




prierity wvirtual ©processor from arong the physical
processor’s assigned set of virtual processors and schedules
it. Note that there are two distirct entry opoeirts to
Vp_Scheduler.

The normal call eantry poiot is used by other Irnner
Trafflc Controller modules to activate Vp_Scheduler whern a
virtual processor gives up the physical processor on 1its
own, The preempt interrupt ertry poirt is used in response
to a hardware preempt interrupt_ from another physicsl
processor,

For a normal call, Vp_Srheduler sets the
Vp_Scheduler return type flag to 1indicate that a normal
call-return sequence 1c¢ to be followed for the executing
process. The Vp_Scheduler return type flae is used to keep

track of the mode of entry 1into Vp_Scheduler for tae

process.

Vp_scheduler next searches through the fixed set of
virtual processors for the hieghest priority ready virtucl
processor. In this design, the definition of reedy includes
the comdbination of arn idle state and & pending virtual
preempt interrupt. This allows an idle virtual processor tc
run so that it may field the interrupt and tind to & new
process. The idle process that was bound to the virtual
processor was essentially wuseless vp until this point. It
now provides an address space for the virtual processor to

execute in whken btinding to a new process.




Taving selected <ome eligible wvirtual procecsor,
7p_Scheduler proceeds to bind the selected virtual processor
to the phvsicel jprocessor. It ‘tesine tv wndinding tne
currently rurnnine wvirtual processcr. In doine so. the
Vp_Scheduler returr type flaz, the Stack Poirter Fegister
value, and the TFase Folnter Reegister value are saved in
xnown locations con the oprocess” stack. The rrocess’
executior state had elready teen caved.

Zindine the selected virtual processor is tesun by
chanfing the Stack Segment (SS) Rerlicter value to that cf
the selected virtual processor. Once this change has teern
made, execution has actually swapoed to tne rew proress
address <pace. EBindirg 15 corpleted tv retrievine the
previously saved Vp_Scheduler return type “lae for the new
process, the Stack Fointer Register value, ard the Zase
Pointer Teeister value from the newly acquired stack.

The last step is to actually checg the Vp_Scheduler
return tvoe flag to determine the proper tvpe of returr to
execute from Vo_Scheduler for tails process. If 3 rnerral
call-return is¢ indicated, a normal returr will te erecute?d
back throust the calline module. Otherwise, {f a preempt
interrupt return 1is indicated, an i{nterrupt returr will te
executed and Checx_Preempt will see if a wvirtuvsl —creerpt
interrupt 1is pending. If a preempt irterrupt is found to e
pending, the Traffic Cortroller”s vpreempt handler will te

invoked.




a. Internal Modvles

There is ore intarral rodule for the Virtual
Processor Scheduler (Vp_Schedulier). It is wuveed for the
geaeration ¢f rardware preempt interrupts.

(1) Hdwr_Int

This module is called by the Irncer Traffic

Centroller’s irterface mocdules Itc_Advarce and fernd_Freempt.
It is «called with one argument, & physicel ©processor
identifier. It ther generates the required hardware
interrupt.

X, Irner Trafrfic Controller Interface Modules

a. load_Vg

Tais medule performs the bdinding of a new
process to a virtual processor., It is called tv the Treaffic
Controller Screduler when a process has been selected for
th= virtual processor. load _Vp requires two varameters, the
priority nf the new prncess and the address <pace descriptor
(the Stark Segment %egister value). It then swaps in the new
process onto the wvirtual oprocessor which 1i¢ currently
ruanine. Load Vp only operates on the virtual processor
, which {s running on the physical processor.
) Findings 1s accomplished by updating the Virtual
Processor Map. The Inner Traffic Ccntroller utility furction
Itc_Ret _Vp 1< vused to ottain the identity of the runnine
virtual prorcessor. Wwhen complete, the virtual processcr will

have A rew oricrity and precess addrese space descripter.
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Load_Vp completes tvy <calling Vp_Scheduler to schedule the
virtual processor.
b. ldle_Vp

This furction is load _Vp’s counterpart. It is
called tv the Traffic Controller Scheduler in the event that
a runnatle process is not found for the virtual prccessor,
In this case the virtual processor will be idled (enter the
idle state) and the Idle Process will be dbound to it. In the
Virtual Frocessor Map, the virtual processcr’s state will be
marked as idle, the gddress space descriptor for the Idle
Process will be entered in the Address Space of Bound
Process field, and the virtual processor will te given a
high priority. The idle sState ensures that the idle gprocess
is not actually run (the virtual processor now has a high
priority) by taking the virtual processor entirely out of
contentior for the physical processor.

At some later point, the virtuval processor may
be placed back ir centention for resources. This will occur
when the virtual processor is preempted. Wwita the
comdination of an idle state and a pendine preerpt, the
virtual processor 1is treated as a high opricrity reacdy
virtual processor. This aliows the virtual processor to ¥eep
busy by expediting its bindinrg tc a process.

Tastly Idle_Vp calls Vp_Scheduler in oréer to

give up the physical processor.
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c. Itc_PRet Vp

This is a ‘utility function which is used by
Inner Traffic Controller and Traffic Contrcller medules.
[tc_Pet_Vp searches the Virtual Processor Map and determines
the 1identity of the virtual oprocessor that is currently
running on the physical pfbcessor. It simply checks for the
virtual processor among the virtual processors assigned to
the physical processor which 1is in the running state.
Itc_Ret_Vp then returns its result as a fuactiorn vailue,
(viz., as in PL/M) ir the AX (accumulatcr) register. It will
return either the identity of the wvirtual oprocesscr {the
virtual processor”s index in ta= Virtual Frocessor Map) or a
"not found” error codle.

d. Check_Freempt

This module is called by Vp_Scheduler during the
execution of an interrupt return. It checxs for a perdiuge
preempt interrupt meant for the virtval processor, which has
been selected tc run by Vp Scheduler, bdy checkine the
virtual processor’s Preempt Fending TFlag 1irn the Virtual
Processor Map. If the Preempt Pending Flae is seti,
Check_Preempt will reset it and call the Traffic Contreller
module Tc_Pe_Fandler.

The module continuously 1loops as lone as it
finds the FPreempt Pendineg Flag set. This is to ensure that a
new preeppt interrupt which mieght arrive before servicine of

the last preempt is not lost.
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e. Send_Preempt

This module is respensitle for actually serndiang
preempt interrupts. It is called by the Traffic Contrcller
Advance nodule, Send_Preempt requires two &arguments, the
identity of the virtual processor which is to bte preerpted
and the physicel processor to which that virtual processeor
is assigned.

Send_Freempt sets the virtuval processor”’s
Preempt Pendine Fles and calls Fdwr_Int to generate &
hardware interrupt for the physical processor. GhHdlwr_Int 1is
not <called if the virtual oprocessor to te preemnted is
assigned tec the physical oprocessor which 1is executine
Send_Preempt, (viz., a pnysical processor will rot issve a
hardware preempt interrupt to itself),

f. TItc_Await

Itc_Await is onz of two functions which
implements inter-virtual ©processor <cvnchronization within
the xernel, It is not accessidle to user processas, tut is
used by the syvstem in the manazerent of physical rescurces.
It allows a virtuval processor tos wait for the occurrence of
a system event.

It expects two input arsuments, the irdex of the
eventcount in the System ZIventcount Table and the value of
the event to be awaited.

Upon being invoked, Itc_Await locks the Virtual

®Processor Map. It then checks the current valve of the




eventcount, obtained from the System ZIventcount Tatle,
against the value eiven in the call. If the present value of
the eventcount is found to be less than the value of the
input argument, then the virtual processor will enter the
waiting state and give up the physical processor.

The wvirtual oprocessor’s entry into the waiting
state will be reflected in the Virtual Frocessor Map. The
input arguments will te entered 1in the Identity of
Eventcount Awaited and the Value of Eventcount Awaited
fields. TFirally, the virtual processor will relinquish the
physical processor by calling Vp_Scheduler. TUpon a return
from Vp_Scheduler, the Virtual Processcr Map will be
unlocked.

g. Itc_Advance

Itc_Advance is used within the kernel to signal
the occurrence of system events. It is used withk Itc_Await
for svnchronization tetween virtual processors. It accepts
one input aresument. This is the 1index 1imn the System
Eventcount Table of the eventcount to te advanced.

Tpon being invoked, the Virtual Processor Map is
locked. The System Eventcount Table is then accessed and the
indicated eventcount’s value 1is incremented vy one. The
resultant value is then compared against the events waited
for by other virtual processors which are synchronizirg on

the same eventcount. Those virtual processors whose Value of
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vent Awaited <fields are less tnan or equal tc the current

value of the eventcount are made ready.
Itc_Advance thern calls Vp_Scheduler to schedule
the virtval processor. The Virtual Processor Map will te

unlocked uron a return from Vp_Scheduler.

H. THE TRAFFIC CONTROLLER

1. Ceneral Description

The Traffic Controller manages the execution of user
processes. It presents to the user a system of one rmore
virtval processors on which to execute his processec.

The Traffic Controller’s primary data base is the
Active Process Table, shown in Figure 2. The entry for each
process in the Active Process Table contains sufficiert
information adout the process to enable a virtual oprocessor
to bte bdound to and execute it. The fields of the Active
Process Tabdle are explained telow,

The State of a process can be either ready, runrirg
or blocked. A ready process 1s one which is not yet bound to
a virtual processor dut is ready to 2o so. A rurning prccess
is one which is bound to a virtual processor and, as far as
the process is concerned, executine. The Tlocked state
reflects inter-process synchronization. A process enters the
blocked state when it realizes that it can no loneer proceed
and wishes to give up its virtual prccesser te wait until

another process awakens it.
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State Identity Friority loaded
of Pound List
Virtual Thread
Processor
Value Block Address
of List Space
Eventcount Thread Tescriptor
Awaited

TEE ACTIVE PROCESS TABLE

Fipure €




The Affinity field specifies the pnysical processer

that the process must execute on. In this system, this field
indicates the specific microcomputer on which the preccess is
currentlv loaded.

The Identity Of Bound Virtual Frocessor serves to
identify the virtual precessor, if any, that the process 1is
currently bound to.

The Priority specifies the priority of the process.
In this system, priorities ranee in value from € to 25%,
with a priority of & being the higlest.

The loaded List Thread field serves to implemert the
Loaded 1Iist of ready and running processes. It contains a
pointer to the next process ir the &Active Process Tatle
which 1is 1loaded on the same microcomputer as this process.
The 1loaded 1list 1is ordered by the priorities of the
processes. Thus this field contains either a poirnter to a
process whose priority is less than or equal te that of this
process or a nil pointer (viz., the 1last process on the
Loaded list).

The Value Of Eventcount Awaited reflects the event
fer which the process has blocked itself. It conteins the
valve that the process 1s waiting for the eventcornt to
reach,

The Block List Thread is used to 4implerent the
BElocked 1Iist. This 1is a per eventcount list of yrccesses

which are waiting on the eventcount.
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The Address Space Descripter ~field <contairs tre
process’ address space descriptor. This is the identity of
the process’ stack which contains execution point
information. The value wused here is the base location in
memory of the stack segment, viz., the Stack Seement (SS)
Register value.

2. Process Scheduler (Scheduler)

Scheduler works in essentially the same way that the
Inner Traffic Controller’s Vp_Scheduler does. Fowever,
Scheduler worxs with preccesses. Scheduler can te called by
Advance, Await, Tc_Pe_Fapndler, Create_Fvc, Create_Seq, and
Create_frocess.

It selects the highest prinrity ready precess from
the microcomputer’s Loaded List to be tound to an available
virtuval processor. Scheduler works only with the ©processes
which are runnable on its own pkysical pror~essor usine the
fixed set of virtual processors for that physical prccesscr.

If Scheduler finds a runnadle process, the Inner
Traffic Cecntroller module Load _Vp is callsd to tind the
selected process to the running virtval ProCessor.
Alternatively, if a runnable process is not found, the
virtual pvrocessor will be idled (dbdound to tne Idle Process
and placed in the idle state) ty a call to the Inrer Traffic
Controller module Idle_Vp.

In 1its present form, Scheduler has oanly one entry

point, a call entry poiant. There is no interrupt eatry point
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as there is in Vp_Scheduler. This was done as an expedient

in this desien effort. It 1is dJesireatle to provide the
second ertry poipt so that the two schedulers have parallel
structures. Because there is no interrupt entry point, there
{s a 1loop bYetween the TInner Traffic Controller arnd the
Traffic Controller for the handling of preempt Iirnterrupts.
This 1is due to the call from the Inmer Traffic Controller’s
preempt handler Check_Pre_Zmpt tc the Traffic Controller’s
preempt handler Tc_Pe_Fandler.
a. Intermal Modules

There a&are two "utility” modules internal to the
Scheduler that are used only by Traffic Corntroller wmodules.
They are used to <implify the hendling of eventcournts aad
sequencers.

(1) Iocate_Evc. This “utility” returnc the index
of an eventcount in the ZFventcount Table. It s ~called Dby
Advance, Await and Ticket with (a peinter to) the rname of
the eventcount. locate_¥yc then attempts to match the name
givern to it with one in the Zventcount Tadle. If a mater is
found, it returns the index to the <celler 1in the aX
(Accumulator) HReeister as a function value (viz., as in

! PI/M).

(2) 1locate_Seq. This 1is the second Traf®fic

Controller “utility” function. It works in exactly the came

way that TLocate_Zvc does except that it searches for

sequencers in the Sequencer Table rather than eventccurnts,
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&. Traffic Controller Interface Modules

a, Awelit

Await allows a process to suspend its executiox
pending the occurrence of a specified event. AVAIT ic called
with two arsuments, (a pointer to) the name of the
eventcourt and the value (of tne evert) to be awaited.

"pon invokation, Await locks the Active Frocess
Table and then calls the Inner Traffic Contreller wutility
function Itc_Ret_Vp to obtain the identity of the running
virtual processor. This is used in a searck of the Active
Process Table to iderntify the calling process.

OCnce Ehe calling process has teen identified,
the current value of the eventcount 1is <¢cmrared t¢ the
awaited value <specified 1in the call. If the event has not
yet occurred, (viz., the current value 1is 1less than the
value to be awaited), then the process will enter tae
blocked state. The Talue of Fventcount Awaited field in the
Active Proeocess Table 1s wupdated wita the value awaited
areurent and the process {5 pléced on the eventcount’s

Blocked List. If the event has already occurred, {viz., tle

) current value 1s greater than or equsl to the valve awaited
) ' argument), then the process 1s not dlocked but is made
ready.

Await next calls Scheduler. The Active Process

Tadle is unlocked upon the return from Scheduler,




t. Advance

Advance allows a process to sigsnal tke occurrence
of arn event. It vpdates the eventcount ard signals those
processes which had bdlocked themselves for this event. Thus
Advance is respornsitle for preemption.

Advance 1is <called with one arsument, (& pointer
to) the rame of the eventcount being advanced.

It first locks the Active Process Tatle. Then the
current value of the eveatcourt is incremernted. The
eventcount’s Blocked List is searched for processes which
had previously blocked themselves for this wvalue. As
processes are founrd that should be awakened, they are made
ready. An entry in & temporary array of phvsical processors
is new made to flag the physical processor, in whkose local
memory the newly awakened process is loaded, for preemption.
The awakened process is then removed from the eventcount’s
Blocked List.

Once all of the processes to be awaxened have
been found, Advance determines which virtual processcrs must
be preempted. This is AQdone for each of the opreviously
flagged physical processors by first assuming that all cf
the physical processor’s virtual processors should te
preempted. Then the decision is made as to which ones will
not be preempted. This method egreatly <implifies the
algorithm. First a temporary list (array) of virtuel

processors is initialized to indicate a virtual preempt for
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each of the virtual processors. The lLoaded List is then
searched to find those processes which shouldéd Ye rurning.
The processes which should ©be runnine are those with the
highest priorities that are in either the reacy or the
runnine states. Assuming there are 2 virtual processors per
physical processor used for multiplexing, the 2 highest
priority readvy or running processes in the Ioaded Iist
should te running. Any 1lower priority processes that
actually are running should de preempted. Advance determines
which of the ©processes that should be running already are
running and deletes their virtual precessors from the
preemption list (resets the preempt flae in the arrey). What
will remain at the end are those virtual processors that are
to be preempted.

The next step 1is to actually issue the preemgpt
interrupts. The temporary preempt list is checked and {f =&

preempt is indicated for a virtual processor, the Inner

Traffic Controller module Send_Preempt is called to actually
issue the preempt.
) Advance next readies the calling process and
calls Scheduler. Upon the return from the call to Scheduler ﬁ
| the Active Process Table is unlocked.

c. Ticket

Ticket returns a unique sequencer value with

every invokation. The value returned will always e one more

than the last value returned.




It 1s called with one areument, ‘a poiater to)

the sequercer name. When invoked, Ticket asserts the global
lock on the Active Process Tatle, effectively lockire the
Sequencer Table. Ticket then <calls ILocate_Seq with the
pointer to the sequencer name given to it as an irput
arzument and gets back the index of the sequencer 1in the
Sequencer Ta®le. It then odbtains the sequencer’s value which
is to be returned to the <calling module in the AX
(Accurulator) Register following standard FI/M ~onverntions.
Refore returning, ticket increments the value ¢f tne
sequencer and vnlocks the Active Process Tatle.

Note that Ticket does nct call Scheduler like the
other synchronization primitives Advance and twait. Tictet
returns immediately from a call.

d. Read

Read returns the current value of an eventccunt.
It is called with one argument, (a pointer to) the nare of
the evertcount.

#hen called, Kead locks the Active Frocess Tatle,
so as to lock the Eventcount Tadle. It then calls Locate_Evce
to obdtain the 1index of the eventcount in the Zventcount
Table. With this irndex, Read obtains the wvalue of the
eventcount and retvras the value in the AX (Accvrulator)

Reeister following normal PL/M conventions. Prior to

returning, Read unlocks the Active Prccess Tabdle.




e, Tc_Pe_Kandler

This mecdule serves as the virtual jreempt
interrupt entry point into Scheduier. It is «called ty the
Inner Traffic rontroller’s Vp_ Scheduler in the course of
handling preempt interrupts.

Tc_tve_Fandler callis Scheduler to find the highest
priority ready process to tind to the pra-erpted virtual
processor.

f. Create_Evc

This moduvie creates an eventcount feor a user
process, Crecte_Evc is called with one argument, (a poirter
to) the nare of the eventcount to be created.

Uporn beirg 1Inveoked, Create_Zvc locks the Active
Process Tatle, which effectivelv locks the Zventccunt Tatle.
It then calls locate_Evc to determire whether or ot the
eventcount had already been created. This i< to avoid ma%ing
duplicate entries (since each —crocess which wili use the
eventcount rust declare at leest the mnare). If tze
eventcovat had not previously Yeen created (viz., no entry
is fcund in the Zventcount Table with the same nare as eiver
in the input argument) then an entrv 1ic¢ prade in tre
Event-ount Tadble. The namre 1is copied inteo the Tvewutcount
Table and the eventcount’s current value is initialized to
€. Otherwise, Lo entry 1{is made., lastly, it unlocks the

Active Process Table pricr to returning.




€. Create_=Seq
This module <creates a sequencer fcr a Uuser
process. (reate_Seq performs in exactly the sare way as
Create_Evc (paragraph f) except that it creates seguerncers
rather than eventcounts,
h. Create_FPrecess
Create_Process provides the capabdbility to
dynamically create processes. It is call=ed with one
argument, a4 pointer to a process parameter Ytiock ccnteinize
all the information recessary te initialize the prccess’s
stack and enter the newly created process intn the Active
Process Table. All of the process’s Sesmeants had previously

181.

~

been loaded into memory ty the csvstem loader, Focss
Create_Process first 1locks the Active Preccess

Tatle. It thenvaféthS'tbeninigializaton stackx frare. The
——

—

process parameter tlock contains all of the ipTttal Tesister
values (viz., iritial values fcr all of the EPSE’s
registers) for the oprocess. These are <stored in the
initialization stack fremey; the 1locaticn of the stacx is
specified in the Process Parameter Block. The next step is
to create the Active Process Table entry for the rrocess.
The affinity, priority end Stacx Segment (SS) Register velue
are then entered in the Active Trocess Tatle, lastly,
Create_rrocess determines where this process should dbe
in<erted 1into the Loaéd 1ist tased on ite prinrity.

Create_Frocess inserts the process into the Load Iist (viz.,

L .



sets the Load Thread 1in the Active Process Tatle)
immediately ahead of the first process it finds in seerching
down the Load5list whose priority is less than or egqual to
the newly created process. rinally, the Active Trocecs Table
is unlocked and execution returns to the caller. Note that

the Scheduler is nct called.
I. THE SUPFRVISOR

In a general-purpose operating system the Sup.rvisor
provides common cervices such as litrary routines, lirnkers,
various development tools and a file sytem. It alsc acts as
the interface between user programs and the xernel.

1. General Tescription

At this state of the design, only orne module resides
at this level, a hrigher order lanesuage interface to the
operating system kerrel. This module {called tke Zate® is

constructed such that it is the only operating csvstem rodule

that tHhe wuser must link to his processes to access kernel
functions,

The Gate contains tne actual linkages (viz., ~elotal
procedure declarations) for all of the kernel frnctions.
This allows the user to directly call on various kernel
services without using atsolute addresses that car crange es
the kerrel continues to be developed. This structure allows
the users and the operating systerm developers to cortinue

their work independently without requiring the users to




continually chanee their proazrams to accommodate charzes 1ir

the kernel.

2. Superviscr Invocation (Tae Gate)

The CGate 1is actually a set of glodel (viz., PL/M
FUBLIC) procedure declarations which the user proerams -rac

call directly. Each of the user accessible kernel fvnctions

is represented by one of these “procedures”. In reality,
they simply set up the required pearameters ard use a trap
feature to effect the call to the 'real” gpraocedure of the
same pamre residing ir tne kernel.

The Gate is written in assembtly languege tecaucse of
the stack maripulation that must be done to enable the trap
handler to 1) determine the correct xernel procedure to
call, and 2) properly pass parameters to the kernel
procedures. The trap handler in the kernel is an assemrbly
lansuaze module as well. If the trap rarndler were writter in
PL/M, parameters would have to e scmehow given to it
explicitly prior to 1its <callinf on the xernel prncedure.
Since the trap handler is reached by an ianterrupt rather

v than a call, this is not possible. Instead, the parameters

are moved on the stack to a position where they ‘berore
parareters for the call by the trap handler to the kernel

procedure.

Thic has the effect of de-coupling the user #r~m all

0f the operatine system modules below the level of the

Supervisor.
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V. CONCLUSIONS

A, STUMMARY OF RESULTS

The principal eo0al of this effort is the developrent of
a multiple processor system. A paraliel development effort
in secure systems, Reitz [18], utilized the C’Conrell and
Richardson design as the basis for the kernel of a secure
computer system utilizing the Ziloe Z£€CC microprocessor.
The detailed designs of the xernels of both of these systems
i< nearly identical, at lea<t at the level of kernel module
interfaces. In both developrent efforts, no conceptual
problems were encountered. Thus the O 'Connell end Richardson
desien has been fournd to be consistent for multiple
processcrs and secure computer systems.

System initialization [16), introduced & numder of
design changes. Fowever, tnese had nc adverse effect on the
desien or the system. Their integration 1s¢ not a simple
matter as they impact on the stack format, and the desien of
the prncess cscheduler and virtual processor scheduler in
that the accormmodation of preempt interrupts is sorewhat
more difficult.

Another of the objectives is to test thé viaetility of
utilizirg eeneral-purpose, commercial microcomputer systers
as the basic building blocks of multiple computer systems.
It has teen found that sufficiently developed microcorgputer

svetems are availatle in industry. Further, it was
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determined that enoughk hardware support (busses, 1/0
i devices, peripherals) is available to <construct multiple
computer systems without major hardware development efforts.
The state of the art in microcomputer software
development was found to be less amenatle. Such useful tools
as high level languages, assemblers, etc. are availadble Dbut
they are generally 1limited to use with uniprocessor
developméntal systems. Additionally, most cemmercially
available software development tools are highkly machine
dependent. Specifically, they require low-level monitors or
special hardware that are ornly availatle on a development
system. Thus there is little hope of easily modifyling these
tools to rum on a different system than was interded Yty the
vendor, particularly since details of their structure and
operation are proprietary.
A. FURTFER RESTARCF
Further development worx is still required. This
includes the final construction of the Gate and the
inclusion c¢f two non-distributed kernel precesses for I/0
v and memory management. These kernel processes provide for
the virtualizaticn of memory and I/0 resources with which to
achieve the goal of configuration independence.
The present design utilizes the test-and-set seraplore
operation to implement glotal locks on xernel data bdases
(viz., the Active DProcess Table and the Virtual Frocessor

Map). This mechanism (supported by the PL/Y Dduilt-in
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procedure lockset” [S]) is 4 spin-lock witu votentiallw
sienificant impact on system bus traffic. This rerhanisr
should be replaced by the Inner Traffic Ccrntroller
synchronization primitives wherever possitle to avoid the
overhead of “busy-waiting .

This detalled design 1is considered to be only a first
step in the develoomert of a general-purpose rultiple
microcomputer system. O‘Connell and Richarédson’s design
offers some excitineg opportunities to pursue developmert
efforts in the areas of <ecure computer systems and fault

tolerance.




ATPINDIX A - TROGRAMMING

A. INTRCLUCTION

This appendix is designed to e a practical introduction
to programming methodology for this system.

Lecause there are multiple processors. a nupher of
concepts and methodologies will necassarily te introduced
which may at first be uacomfortatle., This is especlially true
i® cne 1is firmly ertrenched in the traditicral concepts cf
the monolithic, sequentiel program structure. Fcwever, as
one makes the transition to the concepts ¢ process
structuring, it will be <een to be a ratuvrel approack to the
development of complex software systems. Additionally, it is
essential to the effective use of multiple processor
systems,

Parallelism immediately presents the proesramrer with dn
entirely rew set of corplexities. Fe is not lirnited tc tae
strictly <equential execution of prorram stateméants in ¢
single program. Exercising control over the order and tivine
of execvtion of multiple processes tecomes & major part of
the proesramrine effort. Inter-process syachrcaization, the
mechanism by which processes are cortrolled, 1is tae riost

difficult concept whkich the user will te required toc ceal
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with, Fowever, tke synchrorization primitives tuilt into the
operating system are designed tc make this as sirple and
straightforward es possitle.

It is assumed tkat the primary proerammine lanzuarse for
this system will bYe Intel”s FI/M-3€ [Z, 12}. Thic is a
powerful, block structured high level lansuaece desiened for
srestems oprogramming. This apvenédir is written assuming that
the reader will program in PL/M-86 and is familiar with {ts
terminology and notation. All of tae examples make use of an

informal PI/M notation.

E. THE PROCESS STRUCTURE

Consider the rether typical FL/™ progrem module of
Fizure 9. It contains three procedure declarations and some
mainline statements. Zaca of the procedures will ezecute
when called from the mainline and, vupon completion, will
return contrcl back te the mainlire.

4 sinele program is what most users are fariliar with
and i< a structure which can be dealt with easily. Eowever,
as the computing task zrows to any real size and complexity,
this single program grows equally large and complex. Tae
result is a hure program with a myriad of procedurezs that
can orly bYe «called sequentially to perform recessary
functions. Taus this structure dces not allew taking
advantarse of the performance ~&in that parallel processinae

can cffer.




Proesram Module A: Tos

Al: PRIOCTLURE /* Declaraticnr */;
ol

.

TND;
END; /* Procedure 41 */

A2: PROCETURE; /* Declaration */

[

0
ND
’

[ W]

N

t=1

’
/% Trocedure A2 %/
E

a=

Z: PEOCETIRE; /* Teclaration */
DO3

TIND;
TND; /* Procedure AZ */
D07 /% Begin Mainline */
CALL Al
CALI A2,
CALL A3;
ENT; /% Mainline %/

INT; /% Program Moldule A */

EXAMPLE PI/M-26 TROGRAM

Fizure 9
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Start
Trocessine

l .

FTQCESS Process Freccess
Al A2 AZ
Loop tack
to start

TFRTE FROCESSES ZIXECUTING SEQUINTIAILLY

Fisure 1¢

DECIAPT NAMEL1(6) EYTE TDATA (“NAMELIX );

Eyte array of String constant
length € to hold name defined by
the name the user

DECLARATION OF EVENTCOUNT AND SECTENCER NAMES

£YDLS

,f Ficgure 11
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The priancipal advantages of the process structrre
the ability to utilize multiple proecesses ard te
independently construct 1irdividuval <components of <oftware
subsysters, viz., processes. DRather than usicg a sirnele
process to accomplish th2 entire job as ir Figure 3, thre
overall task can be partitioned and accomplished ty & numder
of smaller cooperating processes. Tach of these ©processes
can he smaller than the single monolithic program arnd so is
eacier to de<ien, implement and test. This allows entire
processes (each a distiact program) tc be daveloped and
tested semi-independently in a manner similar to tne
developrent and testine of individual procedures in & single
PL/M program,

Control over processing {functions 1s alsc much more
flexivle. One is not forced inte a strictly sequential
series of procedure calls. Many processes can re allcecwed to
execute in parallel, which can bring about draratic efaias ic
overall performance.

Fleure 1€ is a simple example of the flow c¢f erecution
in a syvstem with three processes, The three processes
perform exactly the same functiors as the “*three prcceduras
of Figure 2 ard so bear the same rames. In this exarple the
processes execute sequentially, one after tae other in a set
ocrder. Processing goes on forever ir this "lcop . Frccess AZ
will onlvy tegir erxecutine after it hées ‘teen csomehow

"signalled” by process Al. The same is irue of process AR




whose execution is syvncaronized with process 842, Obviously,
there must be sore control mechanism that &llows these

precesses to do this.

C. INTFR-PRCCTSS SYNCERONIZATICN MECFANISMS

The ability to synchronize the execution o¢f processes
thkroughout the system, (irrespective of wiich microcomputer
they are loaded on), i1s the cornerstone of the power ard
flexibility of this system. To accomplish this, rrocess
svnchronization is tased on the notion of events.

1. ZTvents

An event is anything that one considers <siernificant
and can direct, in some fashion, the computer to respond to.
A< example, consiler a clock which indicates a time of
twelve 0 clock. The computer has no inkerent conception of
time, 4s far as it is concerned, tims may be netnirs
than a valuve ir sore register. In some way. thea,
be defined for the computer. This 1is acrerpld

translating the occurreace of twelve o’clock int~ ar evernt.

¥hen the event occurs, the computer recognizes that it is to

respond in some specified manner.

Zvents are defined so a5 to Ye very eeneral iz
nature, They can be vsed to represent the cempletinn of a
prosram, as in the completion of process Al in FTieure 1¢
which started tne execution of process 42. They

represert virtuelly anything of interest to the prograrrer,
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e.
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Frocesses
know how m

eventcounts

required when, for example, 2 single process is partitioned

into severa

new proce

with each other somewhat indirectlyr. Tc
directly, a process would have tc screhow
e other processes with which it is svrchrenizing
licitly <ignal a vprocess bty name). This would’
raming of individual processes or sore sirilar
ion scheme,
her thaen using & process naming schere, the
processes agree , in a sense, to <Ccoaperate Ly
mmon set cf memory objects calied eventccunts acnd
In this way, even though the processes mus* Xnow
f the eventcounts and sequenzers that thsy vuse,
not required to xnow anything at all atcut each
ntities. In fact, a process need 1not even Xnow
cther processes will the syachronizirg with it.
s <come advantages in parallel processing.
trat synchronize with eventcounts do not have to
any other oprocesses will aleo wuse the <carme

. This means that fewer coding ~hanees will te

1 processes all executine in parallel. All of thre
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sses will syncnronize cn tne sare eventtcournt sc
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that no changes are required in tue proc=sss that originslly
synchronized with the single process.
Tvertcounts are used tc xeep tracxk of tze occurrance

cf specific events. They are manaesed for the user by tae

system, Iverntcounts are implemznted as FI M-E€C werd
variables ranging in value from ¢ to £EZ33. Sequencers are

also implemented as FL/M=E5 word variadbles rauneice in value

7
-y

from @ to €553, Hewever, saquencers can he us2d te  impese
an order on the occurrenze of eveails, They ére thus used
with eventccounts to provide for rmutual exciusicn.

tiogns

[¢Y]

X. Fventcount «nd Sequencer Teclar

a. Teclaring ZTventcount and Seguencer Aares

Tventcounts anc sequencers are nparedé ucsine &

-

byte array c¢f alprnanumeric characters. The forrat fcr

declarine an eventcount or sejuencer name ls givern in
ii. Note that the narmes are cornstants, not variatles.
declared, a rare mrst not chanse, Svantceunt an? sequéncer

nares consist of & characters foliow

-
¥

D
fu

J & wer Lent s

(%¥). Note in Tigure 11 tzat the name of thne Yrite array rust

Lad
A
bt
-
a
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-
j=1
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te the same as the <trines constan

Inttiailization. Tris allows the user (o refer=suc> the

w

eventcount or sequencer ty rane and allowe the operatirs
system to identify it.

Rerember that the names o7 eventcornte  aund

sequencers rust be Jdeclared {n exactly the sere way {n gacl
ri/v=838 redule irn wnich they will »e used.
T
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assing “ventcount ané Sequencer Néves
Whern callins tne cperating s
synchronization priritives, eventcount ané <equencer némes

-~

are always passed as rl/M-88 leccation references vsins the
"f" operator. As an example, considsr that a Yyte array
called °“NAMF1" holds the strine "NAVE1Z" ’note that ths "%

symbel is conly a delimiter and is not considered *tc Ye jart

of the =zare). To pass the name in & 281l t0 &n CouEratise
system synchrenizatiorn priritive, then, the parireter
GNAMIL i¢ u<ed. with the pointer so fiven, the o;erating

system carn read the nare directly from the array.
¢c. Creeting Zventcounts and Sequencers

Iefore an eventcount or a segquencer is usad, the
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operating system must be informed cof its

accerplished by a call to tha onerating syster procedures

t,

CRTATISEVC (for eventcournrts) and CATATTSSTE ‘fer

segjuencers), The format 9of these opsratione is chown inp

Figures 12 and 13&. Trere is ouly one aresugent for eitbtar  of

the calls, the pointer to the previously declared nars. Whan
created, an eventcount or a sequancer wWwill alweys te

ab]

initialized witnh a starting valus of
4, Synchronization

Fventcounts and sequencers are utillzed *y means c¢f

o

a set of operations which may te rerformed orn the~., The uvsser

cannot directly rperform operaticrs on either eventcocerunts or




CALL CRSATISETC(ANAMTLY;
Yernel Peinter to
functicn the head of the
name opre-declared
tyte array holding
the sitriaos nare
CEZATING AN EZVENTCOUNT
Tieure 12
CALL CRTATESSEC{ENAVEL )
Kernel sinter to
furction he head of the
rnLame declared
array nolidireg
trineg nare
+COR

s esntesesuneitoetl
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sequencers, tut rather «calls on certain cperating systerm
primitives tc¢ 4o these for nhim.
a. Operations on Zventcounts

There are three operations that one can perforr

A3 ]

on eventcounts. They are ADVANCE, AWAIT and RTAD. AETVANT
and AWAIT are untyped procedures. FEZAD is a value returnine
typed procedure (function call) that returns a FL/M-E3 word
value to tne calling process.

An example of a RZIAT operation 1is siven in
Figure 14. The READ operation allows tze user tc ottairn tre
current value of a specified eventcount. FEZIAT returns tke
eventccunt’s value 1in tae AX Register (in accordence with
rormal PL/M-£6 conventions). Thus & process calls FTAT with
the rame of the eventcount as the aresument and =ets bacx the
eventcount’s current value. WNote in TFigure 14 tzat thae
“NT 1s retuvrned to the

curreat value of eveatcount

user-diefined word variable "WOEDSVARIABIE .

m

Ay,
DU

[N

Tne AWAIT operation, Fisgure 13, is vs

ry

process to tlock itself {suspend its executicn, wurLtil the
eventcount reaches the value cspecified in the call. A4WiIT
requires two aresuments, the eventrount name and the event
(actually the wvelue of the eventcount) to wait for. Tre

value for which the process will wait rust e a FI/V-EF world

value. This allows trne process tc synchronize itself witn




WCRISVARIARLT = FTAT(QIVINT;

TEX XEAD OPZRATION

rigure 14

CALI AWAIT(QEVENT,VALUESTOSAWAIT);

THET AWAIT OPZRATICN

FiFure 15

CALL ADVANCE(GRTENT);

THE ADVANCE OPERATION

rieure 18

WORLDSVARIABLE = TICKTET(GNAMIL);

THE TICKET OPERATION

Fiepure 17

3 9]
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cther processes by waiting, for instance, urtil a set of
data is ready for it to use.

The ALVANCEZ operation, Tigure 18, is used to
signal the occurrence of ac event. ATLVANCE onlv requires one
argurent, the name of the eventcount tc te advansced. When it
is called, it will cause the value of the eventcouvnt to bte
incremented bty one. The operating system will then jroceed
tc unbklock those processes that were waitizng for the
eventco&ht to reach the current value (by virtue of havire
previously called AWAIT).

b. Operations on Sequencers

o)
D

There 1is only one cperatior that can te
performed on <sequencers, It 1s celled TICKTT, Fifure 17.
TICKZT is a value returning typed gprocedure (functicn call)
similar to the READ operation fer eventcounts. EHowever,
TICKET returns to the caller & unique sequencer value, ThLe
current value of the sequencer is returred to the caller ard
trer the sequencer is incremented ty one for the next caller
time a TICXIT operation is performed on it. This will be
true irrespective of how many different ©processes perforr
the TICYFT operations. Ia this way TICFET provides the
tetally ordered set of values for use by multiole processes

in effectine mutual exclusion.

m
N
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€. Synchrcnization Examples
a. Sequential Processine Zxample

Figure 1& yprevides a detalledé example of how a
process would be programmed to actually create ard use
eventcounts for synchronization. The proeram shcwh here is
actually process A1 of Figure 12.

Referrirng to the flow of control in TFieure 1€,
it can bYe seen that process A2 will beglr execution whern
signalled by Al., Similarly process A3 will <tegirn when
signalled by AZ2. Finally, when A3 signals its completion,
the "loop” starts over again with process Al. This is
reflected in the sample program for process Al, Fiegure 1icC.
Here two eventcounts are declared ard created, ENLAL" and
"ENDAZ". Eventcount ENDA1 is used to svnchronize with 1

process A2, Specifically, ENDA1l refers to the evecrt

corresponding to the completion of A1l s processing task. The
occurrence of this event is signalled to process A2 through
the Advance operation performed or eventcount ENDALl (located
at the end of the "o Forever  loop). The result of the
Advarce s to start the execution of process A2. After the
call to Advance, process Al will loop back to the <call to

Await with an awaited value of 1 this time and (if process

V- AZ has not yet advanced INTA3) will wait there.
Process A2 is proerammed as shown in Fiesure 1%,
Note that it first calls Await with the eventcount ZINIALl and

an awaited vaiue of 1. This is in contrast to the awaited
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FROGRAM MODULE Ai: DO;

/% Teclare Eventcouvnts */
DECLARE ENDA1(6) BYTE DATA ( ENDA1%");
DECLARE ENDA3(6, EYTE DATA (“ENDA3%);

/* Teclare a local word veriable */
DECLARE A1$AGAIN WORD;

/* Beclare Synchronization Primitives */
CREATESEVC: PROCEDURE(EVENTCOUNT) EXTERNAL;
END DECIARE FVINTCOUNT FOINTER;

NTS

AWAIT: PROCEDURE(ETENTCOUNT, VAIUZ) EXTFANAL;
CTCLARF FVENTCOUNT POINTER,
VALUE WORD;
END;
ATVANCE: PROC®TURFE(EVINTCOUNT) EXTERNAL;
DECLARE EVENTCOUNT POINTER;
ENDS

/%* Pegin Mainline */

ALSAGAIN = @5 /* To start execution immediately */
CALL CRFATESEVC(QENTAL); /*
CALL CREATEZSEYC(GENDAZ);

DO WEILE 1; /* Do Forever */
/* Check to see if processing should tegin */
CAIL AWAIT(GENTAZ,A132GAIN);

/* Processing completed so notify process A2 */
CAIT ATVANCE(GEINDALl);

_ /% Increrment the value to await %=/

v A15AGAIN = A1S5AGAIN + 13

' END; /% Of Do Forever */

END; /% Module */

EXAMPLE COLE FOR PROGEREAM a1

Fieure 1E

; £6
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PROG®AM 'MODULE A2: DOJ

/% Teclare ETventcounts */
DECIARE ENDA1(6) EYTE LATA (“ENTA1Z )7
DECIARE ENDA2(6) EYTE DATA (“INDA2%°);

/% Teclare a local word variadble */
DECIARE A23AGAIN WORT;

/* Declare Synchronization Primitives */
CREATESEVC: PROCETURE(EVENTCOUNT) EXTERNAL;
DECLARE EVENTCOUNT POINTTER;
ENTS
AWAIT: PROCEDTRE(EVENTCCUNT,VALTE) EXTFENAL;
DECIARE EVENTCOUMT POINTER,
VALUZ WORT S
END;S
ADVANCE: PROCEDURE(EVENTCOUNT) EXTERNAL;
PECLARE ETVENTCOUNT POINTER;
END;

/% Feosin Mainline */

A25ACAIN = 1; /* To start execution after processc A1 */

CALL CREATESEVC(GENDALl); /*
CAI1 CFFATISEVC(GENDA2);

D) WFILE 1; /* Lo Forever #*/
/% Check to see if processing should beein */
CAIT AWAIT(GENTA1,A25AGAIN);

3

.

/* Processing completed so notify process A3 */
CALL ADTANCE(QENTAZ2);
/% Increment jvhe value to await */
A25AGAIN = A25AGAIN + 13
ENT; /* Cf Do Forever */

END; /% Module */

TIAMPLE COLE FOR PROGRAM A2
Figure 13
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PFOGRAM MODULE A3: ICj

/% Declare EIventcounts %/
TECLARF FNDA2(6) EYTF DATA (’ENDA2%°);
DECLARE ENDA3(6) 3YTZ DATA (“ENDAZY’);

/% Teclare a local word variable */
DECIARE A3%AGAIN WCRT;

/* Declare Synchronization Primitives */
CREATZSTVC: PROCETUREZ(ZVENTCOUNT) EXTEZENAL;
DECILARE ZVENTCOUNT POINTER;
END;S
AWAIT: PROCTDURE(EVENTCOUNT,VALUE) EXTZRNALj
DECILARE EVENTCOUNT POINTER,
VALUE WORDS
FNTS
ADVANCE: PROCEDURE(ZVENTCOUNT) EXTERNALS
DECLARE EVENTCOUNT POINTER;
ENTS

/* Begin Mainlire */

AZSAGAIN = 17 /* To start execution after process A2 */
CALI CREATESZIVC(CENDAZ2); /*
CALI CREATESZITC(GENDLI);

DC WFILF 1; /* Do Forever */
/* Chec¥ to see if processing should begin */
CAIL AWAIT(QRENTA2,A3SAGAIN);

/* Processing completed so notify process Al */
CALL ADVANCE(CGENTAZ):
/* Increment the value to await */
AZSAGAIN = A3SAGAIN + 1;
END; /% Cf Do FTorever %/

ENDS /% Module */

EXAMPLE COT® FOR PROGRAV AZ

Figure 2¢




value of @ used bdy preocess 41 in its initial call to Await.
Thus process A2 will wait at this point until <igfpalled 1ty
process Al (if process A2 bezins executing before process
Al). After Al performs an Advance on eventcount ENDAL, 42
will perform 1its processine and when complete will sienal
process AZ to begin via ar Advance operation on tie
eventcount ENTAZ. As with process Al, it will then loop track
tc the Awalt operation and will te suspended until Al once
again signals it to continue.

Figure 2¢ shows the ©program for ©process AZ.
Frocess A3 performs a8n initial Await as the others 4i? and
when its processine tasx Dnas been completed, it sienals
process Al to bezin the “loecpr  again via an Advance
operation on eventcount ENTAZ.

These three processes are intended to
demonstrate the mechanics of syvnchronizing witlh eventcounts.
As can Ye seen, the operations used in all three of the

processes are very similar. The real differences 1ie oniv ir

the specific eventcounts that each process uses in the cells
N to Awalt ard Advance. MNote, however tnat each process
! performs the Await operation a4t a point that ensures the
‘» process will be synchronized with 1its companior ©processes
even if the process bteesins "out of order”. This is required
to avoid confusion since there {s 2a¢ ~euarantee that the

irst of the three processes to tescin exz2cuting will te twe

m
w




one intended by the proerammer t¢ execute first {viz., Al in
this example).
b. Parallel Processine Example

Suppose that instead of tae sirple sequerntial
execution of processes, as$ in the atove exemrple, cne wishes
to execute processes in parallel., The eventcount mechaniser
provides the capabtility to synchronize parallel processes in
(mechanically) the same way taat sequential ©preccessine is
accompiished.

Consider again tne trhree precesses Al, A2, arnd
AZ from tke previous erxample, This time the progremmer notes
that processes A2 and A3 toth deperd or input data (a set of
filter coefficients, for example) from process Al. However,
he also notes that neither process A2 nor AZ alters the
input data (they only read it). Taus processes A2 and A2
tecome candidates for perallel execution since they toth
nave a corren event unon waich to besin e2xecution (the zoint
where the input data tecomee availatle) and thev do not
depend orn each other. Note, howsver, they rust reside in
differeprt ricroccmputers fcr their execution to actually
occur in parallel.

The desired flow of execution i{s shcwr in FTieure
21. Implementineg the parallel execution of processes AZ ang
AZ is actrvally a3 simple task. OCnlv process AZ need be
chanzel, Trocesses AZ and A3 awailt tae same value c¢f a

common eveatcount rather than different oues. Thus the
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FLOY OF CONTROL IN PARALLEL PROCESSING

Tigure 21
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PEOGRAM MODYTLE AZ: IC?

/% Declare eventcounts */
/¥ Eventcounts ENDA1, FNDA2 and ENTAR x/

/% Declare a local word variable */
TECLART AZSAGAIN WCRDS

DECLARE ENDA1(€) BYTE DATA ( ENTA1%");
DTCLART ENLA2(6) BYTF DATA ( “SNDA2X7)s
TECLAPFT FNDA3(6) BYTZ TCATA (“ENTA3ZY);

/% Declare syncarcnization primitives */
/* Advance and Await */

/* Begin Mainline */
/* Create the eventcounts */
AZSAGAIN = 13
DO WFILF 17 /* To forever */
CAIL AWAIT{CGENDAL,AZSAGAINY;
/% Perfor; processine */
H /% Processiﬁg of both A2 and A3 ccmplete */
CAIL AVAIT(QGENTA2,A35ACAINYS
CALL ADVANCF(QINDA3);

/% Increment the value to await */
AZSAGAIN = AZSAGAIN + 1;

INDS /% Of Do Forever */

INT; /% 0f Module */

FARALLEL PROCESSING EZXAVYPLY PRCCESS Al

Fieure 22
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dvarce on tne  aveatcoeount will e 1<
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result ot a2 sirg
simultanaoucly sifual processés A2 and A3,

The operations perforrsed bty pro-~ess A2 is shown
ir Fisure 22, FTrecess ALl {s still required to verfoerr  its
processing  first ta provide irpput data for processes A2 and
AT, Thus precess Al jperforms an initial Await creraticr cor

the eventcovnt ZNDAZ wilth an awaited valve of &, &and since

the eventcount is ifnitialiized to a value of C uvpon creation,

ey

rocessas A
pverferr their initial Awailt operaticons on the eveéentocunt
TADAL usins the same awaiteld value (they each wish tco  ‘tegirn
processins when the <cet ¢f input Jate tecomees avallatrie’,

Towever, process AR will advan~e the wvalu2 07 INTAZT onl

a®ter botx A2 ard AZ nave completed. Thnis allews Al

for the *wn  evensts ta  occur Ivisz., tre completion of
. LA B, .3 io- [ ol N N
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TEOGEAM MCDULT TRINTTR PRQOCTSS: IC5
/* Teclare eventcounts FULLB and IVPTY, usel *=/
/* tv all of the procecses */
DECLARE FULIR(8) BYTE DATA (FULIRL"):
DTCLART *METY(6) =YTT DATA (“SMETYX');
/% Declare a local word variable */
TFCLARY AGAIN WORD,
/* Declare svnchronization priritives %/
/= Advance and Await "/
/¥ Tegin Mainline */
/* Create the eventcounts ¥/
DO WEILIY 137 /* Tc forever /
CATL AWAIT(PFULIE,AGAIN)
s Perform processine w/
/* FTrocessine corplet2, nctify others =/
/% that tuffer i¢ availaltle */
CALL ADVANCFR(QTMDTIY);
/% Increment the valu2 to await */
4GAIN = AGAIN + 13
NI /% 0fF To Torever */
DY /% Qf Medule ¥/

TRINTTR PRCCTSS FOR MUTUAL ENCITSION FYAMEIT
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PROGRAM MODULES A1 TFROUGE Ak: DOj

/* Declare eventcounts FULLE and a sequencer */
/* used by all of the processes. Sequencer */
/% by all of the processes. Sequencer 1s %/
LECIARF FUILB(6) BYTE DATA (‘FULLBX');
DECLARE EMPTY(6; BYTE DATA (“EMPTYZ )3
DECLARE TURNA(6) BYITE DATA (“TURNAZ )3

/* Declare some local variables among which is T */
DECLARE T WORD)

/* Teclare synchronization primitives */

/* Advance ard Await as before »nlus Ticket */

TICZET: PROCEDURE(SEQUFNCER) WORD EXTERNALS
DECLARE SZQUENCER POINTEF;

END3

/* Pegin Mainline ¥/

/% At this point process needs to print data %/
/* so create the eventcounts as usual ané create */

/* the sequencer %/
CALL CRFATESSEQ(QTUFNA);

/% Obtain a "turn” for tne duffer */
T = TICKET(GTUFNA)?}

/% Wait for "turn” to come up ¥
CALL AWAIT(GEMFTY,T);

/* When avakened, prgcess may use the */
/% buffer (its ~turn has come up) ®/

/% Finished with the buffer so notify */
/* Trinter Process that there 1s output ¥/
CALI ATVANCE(QFTULLE)j

END; /* 0f Module */

PROCESSES A1 ~ Ak FOR MUTUAL EXCLUSION FXAVPLE

Fieure 25
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Sequencers are used in conjunction with 2ventcovnts to solve
these types cf prodlems. i

To illustrate mutual exclusion, <consider the

flow of control in Figure 23. Eere an urcknown nupbder of
processes (Al throvgh Ak) require s&ccess to a single
resource (usel by A3). Frinter Process 1{is scme ,rinter
service and the single shared resource is its input ‘tuffer.
Obviously only one of the processes requestine printer
services can Ye allowed to write into the input bduvffer at a
time and no process can write into the duffer while Zrinter
Process 1s trying to transfer the informetion to the
printer. !

The solution is shown in Figures 24 and 25.
Figure 24 shows the programming of Printer Frocess and
Figure 25 shows how eaca of the processes requiring printer
services are programmed.

: In Figure 16, Printer Process only requires tae
i use of eventcounts (since it does not alter the data in the
input bduffer). It only needs to krow when to ‘tezin
v transferringe the data &and to sifnal that the tuffer is free
upon completion of the transfer. Thus Printer ?ZPrccess only
uses two eventcounts, FULL and ETMPTIY correspording to tae
buffer’s containineg data from a prncess (FULI) and its teing
erptied »y Printer Process (EMPTY). Tiaus Frinter Prcress

; performs an Await operation on FIJLL and waits for an input

process to give it some data. ¥hen a process perforrs an




Advance or FULL, Printer Process will Ye awalkened to ocutput
it. ¥hen Printer Process finishes outputting the dcata, it
will perform an Advance on the eventcount IMPFTY and loop
tack to the AWAIT.

The other processes, Figure 25, are to use the
same eventcounts, performinge Awaits on the eventcounts EMPTY
(waitine for the bduffer to bdecome availabtle) and FUII
(sigralling Printer Process tahat there is date tc print
out). Fowever, the awaited value is derived from a TICKET
operation on the sequencer TURN. Note that each c¢f these
processes will perform TICKET operations on tke <ame
sequencer (TTAN) and so will all receive’ unique awaited
valves [“turns”, as in takine a numdber from & ticket machine
at a department Store, [{13]) for the buffer. These TICXET
operations will return a unique value for the sequercer
every time it is called irrespective of which process calls
TICXET (provided the same sequencer 1is used as the
arpument). Then the processes simply walt for their "turns”
to come up. 3ince each process will walt fer its “tura”,
ttere will only te one process writing into the tuffer at a
time.

This example demonstrates the use of <cequerncers
in mutual exclusien problems. AS can te seen, the use of
sequencers provides a very simple way to medlate access tc
shared resources, particularly wuseful when the numter of

processes irvolved is not krown in advance or mray charnze.




D. THE OJPERATING SYSTEZM GATE

Somehow there must exist a 1linkage bYetween the user
processes and the operating system to use the functions
outlined in the preceeding pararraphs. This is provided ty
linking to each user process one operating system mocdule
known as a GATE. The GATE contains the Pullic declarations
for the synchrenizatior procedures which the user may
access. The GATE, then, allows the user to <call operating
system procedures in exactly the same way that any EXTERNAL
procedure would be called., The advantage is that only the
GATE (which 1s very small) must be linked and loaded with
each user process, not the entire operating system.
Additionally, durine system generation (18], the Gate is
located (FL/M termirology for the assigrment of absolute
addresses) 1in exactly the same place in memorv for all of
the processes. The result is that the Gate <sepments loaded
ir with each process will be cverlayed. Thus all of tae
processes on a single microcomputer will share the séame copv
of the Gate code. This minimizes the amount of physical
memory used ty the Cate.

Figure 26 tadulates the required format for all of the
external procedure declarations that must te incluvéed in
each user module makine use of operatine system functions.
Note that only the functions actually wused need to be

declared.
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Creatirg an Eventcount:

CREATFESEVC: PROCEDURE(EVENTCOUNT) EXTWRNALS

DECLARE EVENTCOUNT POINTER;
EIND;

Creating a Sequencer:
CREATE$ST®0: PROCEDURE(SEQUENCER) EXTERNAL;
CECI ARE SEQUENCER POINTER;
END;
The Advance Operation:
ADVANCE: PROCEDMNMRE(EVENTCOUNT) EXTERNAL;

DECLARE EVENTCOUNT FOINTER;
ENTS

The Await Operation:

AWAIT: PROCECURF(FVENTCOUNT,VALUE) EXTEENAL;
DECLARZ EVENTCOJUNT POINTER,
VALUZ WORD;

END 3
The Ticket Operation:

TICKET: PROCEDURE(SEQUENCTR) BYTE EXTERNAIL;
0 DECLARE SEQUENCER POINTER;
ENDS )

The Read Operation:

READ: PROCEDURE(EVENTCOUNT) BYTE EYTERNAILS
DECLARE EVENTCOUNT EFOINTER;
END;}

KERANEL CALI EXTERNAL PROCEDURE DECLARATIONS
Figure 26
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E. SEARED PROGRAM CODE

Frocesses can be made to share code as long as they are
all loaded on the same microcomputer and the shared modules
all have the ‘REENTRANT® attribute. This places all variabdle
storace on the stack so that there is no confusion when two
processes try to invokxe the module at the same tire.

Because the system 1is bus-oriented (all of tine
microcomputers share a single system ‘tus), ccde sharing
should rot usually %e forced for vrocesses whnich reside 1in
differert microcomputers. This requires access to the syectem
bus for instruction fetches maxing this technique less
efficient. Therefore, glotal sharing of code is not not the
expected convention during system generation, althousgh it is
not prevented outright [1€)}. In fact the programrer will not
be in 4irect command as the system generdation operator will
maxe this decisicn,

Cne rule of thumt that quite often applies to attempts
at optimization 1s that the memory that is saved is paid for
with a loss of speed. Suite often one can speed execution up
drastically if he 1s pot overly concerned atout usine
memory.

In summary, the sharing of code segments to save merory
is & technique that 1is discouraged in this system 1f the
processes which share them reside oz different
microcomputers. It will “work , of course, but has a very

detrimental effect on performance.
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F. SEARTD TATA

Sharing of data between processes is tiehtly-coupled ik
that the data is not explicitly transmitted from one process
to another. Father, data sharing is accomplished by using
shared PL/M data segments. These shared data segments can
reside in glodal memory where they are directly accessidie
to the processes concerned.

TL/M allows one to develop programs modularly ty
providireg dat; declarations with FPUELIC and EXTZRNAL
attributes. When the modvles are linked, all of the declared
variables (such as bdyte, word and pointer quantities,
arrays, structures, etc.) are collected into a single data
segment for the program. Thus PI/M-E6 expects that -each
program will have its own local data segment.

In modules where a variatle 1is declared with the
EXTIRNAL attridbute, it is understcod that the variabdle may
actually reside in 4 non-local deta segment. The intention
is that eventually, when all of these modules are linked
together intn one program the PU3LIC and EXTERNAL references
will be resolved.

Frocesses, though are not 1linked together. They are
altogether independent PI1/M proerams. Fowever, one can share
data in much the same way as the modules ir a single TFL/VM
program by declaring all shared data in the processes with
the EXTERNAL attritute. Thus each process will be aware of

the existence of a separate data segment. The cshared data
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seement is thean separately created as a FI/M module

containing only shared data declared with the PUERLIC
attridute -- no local data or code is ever f{included. This
medule is then compiled separately and linxed to each of the
processes sharing the data as if it were simply another
program module. The only difference is that this module will
only have a meaningfuvl data segment. The code segment will
be empty.

It must ©be emphasized that such datsa segments are the
only means of communication between processes. In
particular, a reference to an abdsolute address {(including
constant or computed pointer values) is NIVER allowed. To do
so will destroy the integrity of tals operatinp system

design.

G. PRIVILIEGED INSTRUCTIONS

3ecause the operating system controls tae ©physical

resources of the system, certain instructions which are

valid ir either the high level language FL1/M or the ECES

assembly language ASM~86 may not te used. The reason for

this s that their use will interfere with the correct
operation of the system.
1. Interrupt Maskine

The operating cystem uses the interrupt structure of

the system for its own purposes. Because of this, the wuser

must never, repeat NEVEPR, mask interrupts using the assemtly
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languaze CLI/STI instructions or the PL/M~€6 TISABLE/ZINAELE
instructlons.

The nperating system uses interrupts systerm-wide
during normal operation and requires that interrupts be
unmasked at all times while user processesS are executine.

This is not to de confused with the use of interrupt
handler routines which are required for certain software
packages, notadly tte P1L/M-85 real nurber lidrary rcutines.
Trese will not interfere with system operation.

2. Input/Cutput Operations

Direct access to Input/Output facilities is also
the purview of the operatiug system. Thus the user i{s also
prohivited from usicg the PL/M and ASM~-8€ I/0 instructions.
Instead, a system service 1is provided to perform I/0

functions for the user.
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APPENDIX B - KERNZEL MODULZES

This section contains the detail "pseudo-code”
for the kerrel modules. These have not been
fully tested and should only be considered an
aid to understanding and not filnal code.

/728 g e e ie desis sl e e esle e e sfe el e aede s e et e e ke e e el e e se e e e e e e e el ke eke /
/* TEE INNER TRAFFIC CONTROILER */
[ ek s e e e Aele e e s e e e e e e e e e e sl e e e el e Resle e s e e e e sealesle e e e el e /

/*************#****** ¢ e e e e e e o ek e e e she oo o e Koo ale e ig e e sl e e e e eoeofe e ek ek sie f

VIRTUAL PROCESS0R SCEEDULER %/
/********#***m¢*************************** Aok e et ook e ek e e

; External FPI1/M-86 procedures called by this module

EXTRN GETWORK: FAR,
RUNTHISVP: FAR,
RDYTHISVP: FAR,
LOCKVPM: FAR,
UNIOCKVEM: FAR

SCEFTULER SEGMENT
PURLIC VPSCHEDULER
VESCHEDULER FPRCC FAR
ASSUME CS:SCEEDULER
ASSUME DS:NOTEING
ASSUME SS:NOTRING
ASSUMZ FES:NOTHING
Tntry point for a call to VpScheduler

¥statlish activation record, save registers that
TpScheduler will use.

we we ‘e

PUSH TS

PUSH AX

FUSH CX

PUSHE PP

CAILL IOCEVYPM
CAIL ATITHISVE
MOV BP,SP

es




-e ov

o Ve wo We W ws

MOV CX,@h ; "PE" indicates normal return

Entry point for a preempt interrupt. Reached by a jump
from ITC_PREEMPT_FANDIER procedure.

INT_ENTRY:

PUSH CX " -
CALL GETWORK Returns new TLBR 1in the

AX reeister

POF CX

Swap virtual processors. This is accomplished by savine
the SP and EP registers in kxnown locations at the tase
of the stacik along with the VpScheduler return type
flag. The process bournd to the selected virtual
is accessible viea the address space descriptor,
the SS register value.

MOV SS:WORD PTR ¢,SP

MOV SS:WORD PTR 2,2F

MOV SS:wORD PTR 4,CX ; Return type flag

MOV SS,AX 3 New addrecss space desc.

Swap is complete at this point since the SS rezister
now holds the new stack segment value

MOV SP,SS:WORD FTR @
¥0V LP,SS:WORD PTR 2
PUSH AX

CALL RUNTFISVP

MO0V CX,SS:WORL PTR 4

Check VpScheduler return type flag to determine the type
of return required for the process.

CMP CX,77E ; neturn type flat = Interrupt?
JNE NOPM_RET 3 If not, d0 a normel return
JMP INT _RET i If so, do an interrupt return
NORM_RET: CALL UNLOCKVPM

P0r BF

PO0P CX

POP AX

POF DS

RET

VPSCHEDUIER ZINIP

ITC_PREEMET_FANTLFR FROC FAR

ASSUME CS:SCHEDULER
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ASSUME TS:NOTHING
ASSUME SS:NOTHING
ASSUME ES:NOTEING

INT_VEC: CLI

PUSH ES

PUSF DS

PUSE AX

PUSH CX

PUSE IX

PUSE EX

PUSE SI

PUSE DI

CALL LOCKVEM

CALL RDYTRISVP

JMF INT_ENTRY
INT_RET: CALL GNIOCKVEM

CALL CEECKPREEMPT

POF DI

POP SI

POP BX

PO? DX

PCP CX

POP AX

FOP DS

POP ES

IRET

ITC_PRFEIMFT _FANDLER ENDEP

SCFECUIER ENTS
/****#**** Resie 2 Xesle oje % e Ke e oo oo e s Aeoje e eak =‘.:=€=***************************/
/* Virtuel Processor Scheduler Internal Modules */
/*****************=:==:ﬂ’.‘-=1=*=’.ﬂk**#***********=:==1==:==:==:==:=*3.‘:***** **8:=!2=$*=.‘=/
/* Externally Lefined Variable Teclarations */
N DZCLARE VEM(1) STRUCTURE

(VPSSTATE BYTE,

' YPSPRIORITY  2YTE,

_ : EVCSAVNSID BYTE,
TVCSAYSVALUT  WORL,
SSSREG WORD,

’ FZ4PEND BYTE) EXTERNAIL;

DECLAPE VPMSLCCK EYT® EXTERNALS



DECLARE(CPUSNUMBER,VPS$START,VPSEND,VPSSPERSCPU)
BYTE EXTERNAL;

DECLARE IDIESDBR WORD EXTERNAL;
DECIARE CPUSINTSVECTOR(16) BYTE EXTERNAL;

/% Literal constants %*/
DIZCLARE FAISE LITZRALILY ‘a’,

RZADY LITERALLY ‘17,

PUINNING TITEFALLY ‘37,

WAITING LITEZRALLY 7,

IDIE LITERALLIY ‘157,

TRIUE LITERALLY “113°;
/* External Procedure Declarations */

TCSPESHANDLER: PROCEDURE EXTERNALS
END;

/%62 e e o sle e e dede ok afeade o ik e e sfe e e e s ole afeode ol e e e e s Rese et sje ok o sk sfesle e slede e e s e sheshesfe e dle sk

/* GETWORX PFrocedure %/
/* e *®/
/* Function call. Searches the Virtual Processor Map */
/% the nighest priority runnabdle virtual processecr X/
/% (state is either realy or idle with the Preempt */
/* Pending Flag cet). Returns the DBR value (SS */
/* Reeister value) of the bdound process in the Ax */
/% Feegister. *®/

[/ R siede v e e e dlavle e slesle 2 e e e e o ole e e sl leaie e ey seale ale ie ofa e e e e e e e e ek e feadeoente e deslesesfe sk 4

GFRTWCEY: PRCCEDURE WCRL REENTRANT FUPRLICH

DCECLARE (PRI,I) BYTE;
DECLARE SELECTEDSDBR WORD;
/* Bezin search of the Virtual Processor Map uvcsine the */
/* priorities. Initially set to the lowest possible. ®/
PRI = 2£5;
DO /* Search Virtual Processor Map for the hiehest w/
/* priority ready virtual prncessor to run. */

I = VPSSTART TO VPSEND;

IF /* The virtual processor can be selected, it is */
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/% is either the ready state, or the idle state */
/* with a virtual preempt pending. */
((VEM(I).VPSPRINRITY < FRI) AND
(TEM(I).VPSSTATE = READY OR
(VPM(I).VPSSTATE = ITLE AND
VPM(I).PESPEND = TRUE))) THEN
D07 /* Select the virtual processor. */
SELECTEZDSIBR = VFM(I).SS$REG;
PRI = VFM(I).VPSPRIORITY;
END; /* Do. Select the virtual processor. */
END; /* DO loop search of the Virtual Processor Map. */
/* Feturn the SSSREG value of the selected virtual */

/% processor in the AX (Accumulator) Register.
RETURN SELECTEDSIBR;

END; /* GETWORX Procedure. */

/e este 3 o e e ofe e sheode o ek e e leafe e e s e e e e e ale aesde a3k ofe e siesie e sede s sfeslesle sl e ek e ek sie e ke e Ne e

/% RUNTHISYP Procedure */
P - . et e = e 4 */
¥ Sets the selected virtual processor to runnine. */

/% Searches the Virtual Processor Map with the */

/* process”’s SEITCTEDS$CER. */

/% el el e o sle e olesfe ole Sheolk sfe oo s s Re e e o e afe ofeg ol dleoje e e dfe s esfe sle sk e sesfedle sk A e esle desle sk e Aedeshesk 4

RUNTEISVE: PROCELURE(VESDBR) AREENTRANT PUBLIC;
CECIAFE VPS$DER wlRD,
VP 3YTZ;
VE = VFSEND;

DC WEILE /* Look for the VP with this SSSREG valve. */
(TPM(VE).SSSREG <> VPSDER);

VP = VF - 1,
END; /* Do Waile */
VEM(VP).VPSSTATE = RUNNING:

RETIRN;
FND; /* RUNTHISYF Procedure. */

/Bt ek ol e s s s e ofe s e s sl e ol e il e s e leie sk s e s skt le sk e et e e e RO o
/% RLYTEISVE Frocedure *y
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/* - D R e e —-—— D e e G I G e S SRp */
/* Sets the currently running virtual processor’s */
/* state to ready. %/

/ﬂ:**:ﬁt***!ﬂt****x:****x:*#*****#*******x:***#******#*#* ****3::**:::*/
RDYTEISVP: PFOCELURE REENTRANT PUELICS
VPM(ITCSRETSVP).VPSSTATE = READY;

RETUIRN;
ENT; /* RDYTHISVP Procedure */

/e e e e e ale R afe e fee e lels e e Ao oo e Xa e Neaye sle sleale e e e e ek Ao e afe sk e e el ok e ste e ole i e

/* LOCEKVPM Procedure ¥/
/% - - ———mme X/
/* Iocks the Virtual Processor Map. */

/el et et el sl se sl s fefe el e e st s e e e et e teode s el e e e et e e nle e
LOCEVFM: PROCEDURE RTENTRANT PUZLIC;

/* PL/¥-86 tullt-in spin-lock procedure. */

DODWHIIE LOCKSET(GVPMSLOCK,113);

ENT;

RETURN;
END; /* LOCKVPM Frocedure, */

/e e e e e e e ek st sesle ol el et s afeafe e ole sfeoe e sfee s e e e el o sfe ke el feste slelesfe oo sl e e e e etk

/% GNIOCKVFM Procedure %/
/% - s e e e e o e e */
/% Unlocks the Virtual Processor Map. ®/

/ ee e siete esoloole el ook e el sleateats e et e siele s sfols stesfe e e et s sele e e e oot e Resleste sl Besde e e e
UNLOCKVPM: PROCELURE REENTRANT FURLICH
VPMSLOCK = 23

RETURN;
END; /* UNLOCKVPM Procedure, */

/***ﬁk***#*#*************************#****************!ﬁ:**** /

/% FTWFSINT Procedure Y
/% Geperates a hardware preempt interrupt. */

/% 3% 3 e e e e e deie ok ofesle s o e e e e 2 sfe sfe ok e ok aevie 53z o e s e ol e e sfe ik s e et o ek e eoe e e e e e sk oe

HDYRSINT: PROCEIDURE(CPFU) REEINTRANT FUBLIC;
LTCLARE CPU PYTE,
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FORTA LITRRAILY ‘CCEH’;
OUTPUT (FORTA) = CPUSINTSVICTOR(CPU);

RETUAN
END; /* EDWRSINT Procedure. */

/******************************************##********#*#**/

Vi Inner Traffic Controller Interface Modules */
/e deoletededeote el e il e ek ookt oot e st e ek el st e ol e ol el el s ok e e ek o

/**************************$******************************/

/% ICLE$TP Procedure */
/* ——mem—meeee— =/
/* Sets the state of the virtual processor now */
/% running to idle, binds the Idle DUBR , sets a */
/* kigh priority and calls Vp Scheduler. */

/e deteot sttt fe et e ek e s b e sl s e T et ol deole s o e e ook s ok o

IDLESVP: PROCEDURE RFENTRANT PU3LIC;
DECLARE VPSTOSITLIE BYTF;

VPATOSIDIE = ITCSRETSVE;
VPM(VPSTOSITLE).VPSSTATE = IDLE;
VPM(VPSTNSIDLE ). VPSPRIORITY = 1¢;
VYPM(VFSTOSIDLE).SS4REG = ICLESDERS
CAIL VPSCEEDULER)
RETTRN;

END; /* ILLESYP Procedure. */

/%R e e sjeale e s leale o ool ok s e e s o e e e o e sl afesle S e e ke el o Sfeale e el ofe el e s e e e sl ade e sk

/* ITCSLOADSVP Procedure %/
/* ———=%/
/% Performs a Swap Virtual IBR". Binds the virtual */
/* processor to the new process, updates VPSFRIORITY =/
/% and SSSREG, &and sets state to ready. */

/#***###**#****#****#*****#**#*****#*#**#*#*#********#****/

ITCSTOATS$VP: PROCEIURE(PRISPARM,DERSFARM) RFENTPRANT PUELIC;

DECLARE PRISPARM BYTE,
DBRSPARM WORD,
LOATSVP BPYTE;}




/* ldentify runuine virtual processor. */
LOADSVP = ITCSRETSVP;

/% Bind the virtuval processor. %/
VPM(LOADSVP ). VPSSTATT = READY;
VPM(IOADSVP).VP??PIORITY = PRISPARM;
VPM{LOADSVPY.SSSREG = DEBER4PARM;

/* Schedule the virtual processor. */
CALL VPSCFEDULER;

RETTRNS
END; /* ITCSLOADSVP Procedure. */

/*********##**************##*************#*****##*#****#*#*/

/% ITCSRETS$VE Procedure : ®/
/% — ——————— i/
/* Function call which returns the identity of the */
/" virtual processor which is ncw running on the */
/* 2hysica1 processor, */
/Pt e dete i et e s e e e ol ok st e oo e e e e o e ot e e e ok e o et e e e e ek /

ITCSRETSVF: PROCEDURFE BYTE REENTRANT FUBLIC;

/* Search through the set of virtval processors assigned */
/* to the ghsyical processor. ®/
RUNNINGSVPSID = VPSSTART;

DO WHILE /* Fave not found the running virtual precessor %/
(YP(RUNNINGSVPSIT).VPSSTATE <> RUNNING);

/* Search next entry, */
RUNNINGSVFPSID = RUNNINGSVESID + 1;

END; /* ¥While loop <earch for running VP. RUNNINGSVESIT */
/* points to the rumning virtual processor. ®/

/®* Return the identity of the virtual processer %/
/* in the AX (Accumulator) Regzister ®y/
RETURN RUNNINGSVPSIT;

END; /* ITCSRETSVE Procedure. */

/8 ok 3 2 o e 9 3 e 3 3 e e 3 3 afeafe % 2t 3 % ade 2 ale o ae e o o e o 3¢ o e o e e o obe e e o ofe e e e ale e ade e e o /

/* CPECKPREEMPT Frocedure */
/% - -—— - */
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/* Checks for a virtual preempt pending. If there */
/* is one, calls the Traffic Controller Preempt */
/* Fandler. %/

/2% e e e e e e el 4z e o e afe e 3 ok o 2 e e ok e e el e e o ol af ofe s s e o o o ok e e e el o ek o o sk ko sk /

CFECKPREESMFT: PROCETURE REENTRANT PUELIC;
DECLARE RUNNINGSVP BYTE;

/* Fied the identity of the runnirg virtual precessor %/
RUNNINGSVD® = ITCSRETSVP;

DO WFILE /* Preerpt Tending Flag of the virtual */
/* processor is on. */
VPM{(RUNNINGSVP).PESPENT = TRUE;

/¥ Reset Freempt Pendine Flae. */
VPM(RINNINGSVP).PESPENT = FALSTS

/% and call Traffic Controller Preerpt Fandler. */
CALL TCS$PESFANTLER;

2UNNINGSVE = ITCSRETSVES

t=3
P-4
=
-e
~

#*

While loop handling of the virtual preempt. x/

=4
4
-3
[=]
=
=

3]
=
L]
-e
~

*

CFECYPREIMFT Procedure. ™/

/R ¥R e e o e e e e dlesle A Koo e e e ale e e sl ok et e e e e ofe e e e ofe e e e o e ofe Y e sle ende e e adeale e Nz ke f

/* ITCSSFNCSPEEEMPT Procedure ®/
[ — e ————— - - e e e e e e e e ®/
/% Issues virtual preerpts (preempt interrupts to %/
/% virtual processors) tv setting the appropriate */
/% Freempt Pending Flag in the Virtual Processor Map */
/* ani then i{ssuine a hardware interrupt {¢ the */
/* Erocessor is on a different physical processor. */
/%% e e o e e o et e e o et o el e e e e e o e e ok e ofe el e e eate el o/

ITCSSENDSPRFEMPT: PRCCETMRE(TGTSCEFT,VPSID) REENTRANT PUrIIIC:

DECLARE TGTSCPJ WORD,
VESIL W4CRTS

/* SET THE FPRE-ZMPT PENDING FLAG */
VEM(TGTSCPU * VPSSFERSCPU + VPSIT).PESEINT = TRUI:




IF (TGTS$CPT <> CPUSNUMBER) THEN
CALL BDWRS$ INT(TGTSCPU)Y;

RETURN;
END? /* ITCSSENDSFREEMPT Froceldure. */

/e ke 2 e o e e e e sfee ol el e e ol sl sl e o 3k o e s akole o e e ofe sl oo e e e o e ool el e ok e sk sk e sledeadeoe /

/% ITCSAWAIT Procedure %/
/* - —— — ——  ——— ——— - v, - ' */
/% Eventcount synchronizatior mechanism for use by the */
/= Inner Traffic Cortroller in the management of %/
/% system resources. %/

/e e e e e ok KR 8 e 38 e e st e e e ol age ol o it ek e e st el e ek ek ok e ek e sk /

ITCSAWAIT: PROCELURE(EVCSID,AVAITEDSVALUR) REENTRANT PUELICS
DECLARE EVCSID BYTE,
AWAITEDSVALUE YORD,
RUNNINGSVP BYTE,
I BYTE;

/* lock the Tirtual Frocessor Map */
DO WHILE IOCXSET(CVPM$1OCK,119);
END;

70;
/* ldentify the running virtual processor ¥/
RUNNINGSVP = ITCSRETSVE;

IFT SYS$ETCSTABLE(EVCSID) < AWAITEDSVALJIEZ TIEN

DO}
VPM(RUNNINGSVP) . VPSSTATE = WAITINGS
VYPM(RINNINGSVP) .EVCSAWSID = ITVCSIDS
VPM(RUNNINGSVP) . EVCSANSTVALUE = AVAITEDSVALUE:
END;
EISE
VPM(RUNNINGSVP).VPSSTATE = READY;
END;

/% Schedule the virtual processor. */
CALL VPSCFEDTLER;S

/% Inlock the Virtual Prccessor Map. */
VPMSLOCK = @3
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RETURN;
END} /* ITCSAWAIT Procedure. */

/e e el s o e o e sfeslesk o dleofe s o ol S e g ale de ol e e s e s e ok ole el e e e sl e ofesfe o e ko e e skl ok /

/% ITCSADVANCE Procedure ®/
[ == — ——————— = e e e e e e e e e %/
/% Eventcount signalling mechanism. Used by the Irner %/
/* Traffic Controller in managinz resources. ®/

/***********************************#***********************/

ITCSADVANCE: PROCEDURE(EVC4ID) REENTRANT PUELIZ
DFCIARE %VCSIC BYTE,
I BYTE;

/* Lock the Virtual Processor Map */
noDwHILE IOCKSET(CVPMSLCCK,119);
END;

5 SYSSEVCSTABLE(EVCAID) = SYS4EVCSTABLE(EVCAID) + 13

DOI = ¢ TO (NRSVPS - 1);

IF VPM(I).EVCSAWSID = EVCSIT THIN
‘ IF VPM(I).EVCSAWSVALUE <= SYSSEVCSTAEIT(FVCSIT) TFEN
4 L0;

VPM(I).VP4STATE = REALY;

VPM(I).EVC$AW§ID = 285;

YPM(I) bVCéAd VALJE = @3

IF (I < VESSTART) OR (I > vrs ur)

CALL ETWRSINT(I/VPSSEIRSCED

END;

FND;
CALI VPSCFETCULER)

/* Urleck the Virtual Processor Map */
VEMSLOCY = @;

RETUPN;

IND; /% ITCSADVANCE Procedure. */ 1
/***************#*************#*****#********************#**‘

7% mPAFFIC CONTROLIE® Ly

/%6 ok s o o e o o e e stede e o e o v e e e 3 s o o feake s o e 3 leafe o ol e o e e e e ke e ee e e e ok e e e e akeofe e

/#******#*#**#ﬂ**#****ﬁ#*#**##**$**#******#**ﬂ#**#*ﬁ*#*#t***/

/* Extercal Global Tata Teciarations */
. /7B e e e e ol e et e ook ot e el el e et e o fole e sttt e e et o e e e e PR
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DECLARE

DECLAEE
DECLARE
DECLARE

APT(1) STRUCTURE

(STATE BYTE,
AFFINITY BYTE,
vesIr BYTE,
PRIORITY BYTE,

LCADSTEREAD BYTE,
EVCSVALUESAW wORD,

THREAD 3YTE,
DER WORD) EXTERNAIL;
APT$LOCK BYTT =IXTERNAL;

PROCESSES BYTE EXTERNAL;
LOALSLIIST(16) BYTE EXTERNALS

DECLARE EVCS$TABLE(1) STRUCTURS
(EVCSNAMZ(6)  BITE,
i EVCSVALUE WORT,
APTSPTR BYTE) ESXTIRNAL;

DECLARE EVENTS BYTE EXTTRNAIL;

DECLAPE SEC?TABLE(I) STRUCTIRE
(SECSNAME(6) BYTE,
SEQSVALUF WORL) EXTRRNALS
DECLARE SZGQUENCERS BYTE EXTERNALS

DECLART (CPUSNUMEER,VP$START ,TPSTNT,VPSSPERSCEY)
BYTE EXTTANAL;

DECLARE (NR$FEPS,NESVPS) EYTE EXTEINALS
DECLARE CPUSINTSVECTOR(16) BYTE EXTERNAL;
DECLARE PFO$PARAM STEUCTURE

(FLAGS WORD,
cs WORD,
IP WORT,
ES WORD,
DS WORD,
AY %ORT,
cx WORD,
X WORD,
EX WORT,
51 WORE, )
LI 403D,

1i€ 1




§S WCRD,
FRIORITY BYTE,
AFFINITY BYTE) EXTERNAL;

/* Literal Constant Declarations ) »*/
DECLARE FAISE LITERALLY ‘e,

READY LITERALLY ‘17,

RUNNING  LITERALLY  °3°7,

BLOCKED LITERALLY 77,

TRUGE LITERALLY ‘1137,

NOTSFOUND LITERALLY ‘25857,

NIL LITERAILY “2557;
/* External Procédure Declarations */

ITCSRET$VP: PROCEDURE BYTE EXTERNAL;
END;

ITCSIOALSVP: PROCEDUFE(PRISPARM,TERSPARM) FXTTRNALS
DECLARE PRISPARM BYTE,
DBRSFARM VORL;
END;

ITLESVP: PROCEDURE FYTERNAL;
ENDj

ITC4SENDSPREEMPT: PEOCETURI(TGTSCPU,VPSID) EXTFRNAL;
DECLARE TGTSCPU WORL,
VESID  WORL;
END;

/% % 3 e o e e e 2ieale o eke e 3 e siee s e ne oo Re e HeReRe ReKe e e eke o Ao Ao e oo fesefe ooz Kefe degenepfeAr e dex f

/* THE PROCESS SCEELUIER */
/e e e e o el sl sl o s e s s et el s sk o ol el s skl s sfe e et e teoteale sl s sl st e e e

/% % 3 Re e e e de e e s o e e e e e e e s 2o e s e ey e e e veafe e oo e sfesie esfe esiesiese feslenese veafe e sleofe dede e/

/% TCSSCHEDULXER Frocedure *;
/ 3 e o e s o e e s s e P e e e S - Y —— - - — - —— - - b3

/* Process Sscheduler. Searches for the highest %/
/¥ priority runnabdle process to load onto thre */
/* virtual processor. If no runnable process is u/
/% found, will idle the virtual processor. */

/¥ Ko K2 o 3 e Xe e e o a2 sl e o X e 2 e e e e 3 e e ale e ek e e e e s Aok ol e e sekedesfesieskeae e e s

TC5SCFEDULER: PRCCETURE REENTRANT PUELICS
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DECLARZ PROCESS B
SELECT$PPOCFESS B

PROCESS = LOADSLIST(CPUSNUMBER);

33

vT
4 ady
YTES

»

SELECTSPFROCESS = FALSE;

/* Search down LoadSlist for thne highest priority %/
/* ready process runnable on this physical processor. */
DO WHILZ /* Have pot found & runnable process. */

(SELECTSPROCESS = FALSE);

IF /* Faven’t reached the end of the load$List */ :
(PROCESS <> NIL) TFEN

T0; /* Check process. */

IF /* Process is ready. */
(APT(PROCESS).STATE = RTADY) THIN

/% Select the process to run. */
SELECTSPROCESS = TRUE;

ELSE

/% Check the next process. */
PROC?SS = APT(PROCESS).ILCATSTEREAL;

END} /% If then else, */ .
ENC; /* While loop search for next ready process. */

IF /* Bave found a ready process to run, */
(SELECT$PROCESS = TRUE) THEN i

DO; /* Give away the virtual precessor. */
APT(PROCESS).STATE = RUNNING;
APT(PROCESS ) ,VBSID = ITCSRETSVES
CAIL ITCSLOADSVP(APT(PROCESS).PRIORITY,APT(PROCESS).TER)}
END; /* Give away the virtual processor. *

BISE
/* No runnadble process has been found so idle tte w/
/* virtual processor. */

CAIL IDIESVP;
RETURNS
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IND; /* TCSSCHEDULER Procedure.*/

% % v e e e e e e el o el de e e e e e e e o o o e e e e ofe e e e st ofe deale e ke ool o oo ek e e e e e sl ke e e e e /

/% PROCESS SCEEPULZR INTERNAL MODULES */
/ Feseseatede e skt ot st s o e s s e s e b e seote s el e e et e e e el e e sk ol e e

/***************************************************$****$**/

/* TCSI0CATESEVC Procedure. */
/% e e o o e e o e e e e e e ———————————— %/
/% Function call. Returns the identity of the */
/% eventcount (the index of the eventcount ir the */
/* Eventcount Table) in the AX (Accumulator) */
/% Register. Input argument is a pointer tc the ¥/
/% byte array in the user process holding the name */
/% of the eventcount. */

/et sedeotc b sl ol e el sl e s e sk el o ol e e el el st e sl el e e ook sl s st e e e s e e e e ek

TC$LOCATESEVC : PROCEDURE(ESNAMESPTR) EYTZ REENTRANT PUELIC;

DECLARE ESNAMESPTR EOINTFR;
DECLARE CHAR BASED ZSNAMESFTR (5) BYT
DECLARE I BYTZ,

EVCSITD BYTE,

MATCH BYTE;

=3

-
?

I =@
EVCSID = ¢35
MATCH = FALSES

/* Search down the eventcount table to locate the */
/* desired eventcount by matching the names */

DN WEILE /* haven’t found the eventcount anéd */
/* haven’t reached ead of tabdle %/
(MATCH = FALSE) AND (EVCSID < EVENTS):

IF /* the two characters match */
(CPAR(1) = EVCSTABLE(EVCSIL).EVCSNAME(I)) TETN

DO; /* Check for end of strings */

IF /* Reached the end of the strings */
CHAR(I) = ‘%" TEEN

. /* Fave located the desired eventcount */
MATCH = TRUES
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ELS

]

/* look at the next character */
I =1+ 1,

END; /* Check for end of strings */
EISE
DO; /* Ready for check next entry */
I1=2e;
EVC$IT = EVCSIT + 1;
END; /* Ready for check next entry */
ENL; /* While locp search for desireéd eventcount */

IF /* Fave found the eventcount */
(MATCF = TRUT) TEEN

/¥ Return its ircdex in the EBVCSTARIE */
RETURN EVCSID;

ELSE

/* Return NOTSFOUND error code */
RETURN NOTSFOUNIS

END; /% TCSIOCATESEVC Procedure. %/

/%% 3 e e e 3 3 e el e ede 90 e e Re e oo e ok sk e ojele sk el e e s e ek e sle e slesle e sl el lestedle sl slesle st e sle desle e sle sk

/% TCSLOCATI$SEC Procedure */
/* - ——————— o ——— —— %*/
/* Function call, PReturns the index in the %/
/* sequercer tatle of the sequencer name &iven *®/
/* to it. Input arguament is & vointer to the */
/= strirg name of the sequencer in the application /
/% roeram, %/

/et g s e e ok e sl e Ao e e e e o e el e ook ook e e e e e ot e ok slesle et
TCS5LOCAT=5SEC: PROCETURE(SSNAMTSPTR) BYTE REENTRANT FUSLIC;

TECLAEE SSNAMESPTE POINTER
DECIARS CHAR BASED SSNAMES
DECLAFE I BYTE,
SEQSID FYTE,
MATCHE EYTE;

L d
1
PTR (8) ITTE;
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I = ¢
SEQSID = €3
MATCF = FAISE;

/¥ Search down the sequencer table to locate the */
/* desired sequencer by matching the names. e

DO WHILE /* Kaven’ ot found the sequencer and */
/% naven’t exhausted the list. =/
(MATCK = FTALSE) AND (SECS$ID < SECUENCIRS);

IF /* The two characters match. */
(CHAR(I) = SEQSTARLE(SEGSID).SECSNAMI(I)) THTN

DO; /* Check for end of strings. */

e

IF /* Reached the end of the strines. */
CHAR(I) = “%° THEN

/* Bave located the desired sequencer. ¥/
MATCF = TRUE;

ELSE

/* look at the next character. */
I =1+1;

END; /% Check for end of strings. =/

Lo |
(@]
-e
~N
3+
=4 ]
D
Y
<%
L)
)
(>}
"y
O
P
1]
O
1
o
la}
=
1]
L]
-
1]
B
o
o]
e
*
~

'
D = SECS5ID + 1;
ENL}; /% Ready for check of next entry. */

END} /® While loop searcn for desired sequencer. */

IF /* Rave found the sequencer. ¥/
(MATCE = TRUZ) THEN

/* Return its index in the SEQSTAELEL., */
RETTRN SEC3ID;

; ELSE
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/* Return NQTSFOUND error code. */
RETURN NOTSFOUND;

END; /* TC$LOCATESSEC Procedure. */
/Hese stk sl st atedok stk delooleote ol sl el sl it ootk seete el ek ok /
/% TRAFFIC CONTROLLER INTERFACZ MOLULZES */

/*******$*********************************************#**#*/

/%3 e el seoe o sjeste st deie e e e e et e sesde e el ook sfesfe ok ook sdesiesleak e skl sesle e deale e dleskokok sk %/

/% AVAIT Procedure */
/% _— ————————— e */
/% Inter-process synchronizatior primitive. */
/% Suspends execution of the calling preccess until w/
/% the event specified in tha input areument */
/% “ETCSVALSPARM has occurred (the eventcount */
/% reaches this value). The result is that tke %/
/% process will give away the virtual processor */
/% tc whicah it is bound. */

/B e e e el sk sk Ao e o o sk s e i seafe ok et e st sl skl sl e et s oo e ek e e ek f
AYAIT: PROCEDURZ(ZVENTCOUNT,VALTE) REENTRANT PURLIC;

DECLARE TVENTCOUNT FOINTZR,

TAIUT WORT,
TTCSID BYTE,
CTFRENTSVE FYTE,
PROCESS EYTE;

/% Assert glcbal lock on the Active Process Table. */
DO WHILE IOCKSET(@APT$LOCK.119);

END;

/% Get identity of the virtual processor running on o
/* physical processor. * )
CGRRENTSVP = ITCSRETSVE;

/* Search the Active Process Tabdble (by the load Iist */
/¥ to find the process bdound to the runuine virtual )
/¥ processor. */

PROCESS = IOADSLIST(CPUSNUMBER);S

DO WHILFE /* Yaven’t found the process tound to this vp. */
(APT(PROCESS).VPSID <> CTTRRENTSVP);

/* look at the next entry in the loadslist. */
PPOCESS = APT(PROCESS).LOADSTEREAD;




ENC? /% While loop search of Load5Iist. */

/* Get the EVCSTABLE index for this eventcount. */
EVCSID = TCSLOCATESEVC(EVENTCOUNT)

IF /* This process is to enter the blocked state. */
EVCSTAFIT(EVCSID).EVCSVALUE < VAIUZ TEEN

DO; /% Set the required APT values. */
APT(PROCESS ).STATE FLCCKELD)

APT(PROCESS).VP$ID NILS
APT(PROCESS ).EVCSVALUESAW = VALUE;

/* Add btlocked process to head of blockxed list. */
APT(PROCESS ) .TEREAD = =RVCATAELE(IVCSID).AFTSETRS

/* Feset table pointer to the current process. */
EVCSTABLE(SVCSIL) . APTSPTR = CURRENTSVP;

END; /% Do. Place process in the tlocked state. */
EISE

/¥ If the event has already occurred, process will */

/* enter the ready state -- it will not te blocked. */

APT(PEOQOCESS).STATY = REALY;

AP™(PROCESS).VP5IT = NIL;

CAIL TCS$SCFETCLEERS

/* Unlock global Active Process Table Locx. */
APTSLOCK = €5

RETORN
END; /® AWNAIT Procedure, */

Y /********#*************************#**************** Seesesesedlesk /

i /% ADVANCE Procedure )
" /% e e e e e o e e %/
: /% Used to signal the occurrence of a specified */

/¥ event. Ircrements the current value of the */
/* eventcount. Also signals all processes which */
/* are in the blocked state waliting for this event. =/
‘ * /Aot de el gt deoe e e et e ol sl e el ok et Rt ek stk el e e R e e el /
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ADVANCE: PROCEDURE(EVENTCOUNT) REENTRANT FUELIC;
DECIARE EVFNTCOUNT PCINTZER,

EVCSID BYTE,
PROCESS BYTE,
PREV 3YTE,
FEP BITT,
VP BYTE,
RHISFRI BYTE,
PESTOSSEND BYTE,
PESSENT BYTES

DECLARE PE5PHP(16) BYTE,
PESVP(4) 3YTE;

/* Assert global lock on the Active Process Tabdle. */
DO WEILE LOCKSET(QGAPTSLOCK,119);
END;

/* Increment the value of the eventcourt by one. */
EVC$TABLE(EVC$ID;.EVC$VALUE =
EVCSTABLE(EVCSID).EVCSVALUE + 13

/* Search Elocked List associated with the eventcount
/* and unblock those processes waitirg for thkis

/* event. Set PROCESS to the first memder of the

/* Blocked List.

PROCESS = EVCSTABLE(EVCAID).AFTSFTR;

PPEV = PFQOCESSS

/* Initialize PESPHF array. */

DO PHEP = @ TO NRSEFFS;
PESPRF(FFP) = FALSF;

END;

DO WHILE /* Not end of Blocked List. */
PROCESS <> NIL;

IF /* The event has already occured. */
(EVCSTABLF(EVCSID).EVCSVALUE >=
APT(PROCESS ).EVCSVALUZSAW) THEN

DO; /* Undlock process (set state to ready), zero
/* Eventcount Value Awaited entry of APT and
/* £lag the physical processor for preerption.
APT(PROCESS).STATE = REALYS
APT(PROCESS).ZVCSVALUZSAW = 23
PESPEP(AFT(PROCESS ) .AFFINITY) = TRUZ;
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/* Remove process from the Blocked List. */
IF /* First memder of the Blocked List. */
(PREY = NIL) THEN

/% Reset pointer around the deleted memter. */
EVCSTABLE(SVCSIL).AFTSETR =
APT(PROCESS).THREAD;

EISE
/* Set previous member’s pointer arouné the :/

/* deleted process.
APT (PREV).TEREAL = APT(PROCESS).TFRFAT;

END; /* Do. Remove process froem 2locked List. */

/* SEARCE NEXT ENTRY */
PREY = PROCESS;
PROCESS = APT(PROCESS).THRZAD;

END; /* While loop search of Blocked List. */

DO /* Look for the PEP's with VP’s to preempt. */
PFP = @ TO PFPSy

IF /* FFP is flagged for a preempt. */
PESPFP(PEP) = TRUE THENWN

PO0; /* Find VP’s to preempt. */

IO /* Flag all VP’s for preemption. */
YP = ¢ TO VPSSFERSCPU;

PESVP(VP) = TRUEL;
END; /* Initialize PESVP array. */

H12P31= "]
PESTOSSEND = @3
FROCESS = LOADSLIST(EHP);

TO WEILE /* Search down Load IList to find those */
/¥ processes which should be running. ¥/
/* Tetermine which VPs rnot to preempt. */
(PPOCESS <> NII) AND
(FISFRI < VPSSEERSCEU);




IT /* Found a process which should te running */
/* that actually is runnirg. %/
APT(PROCESSY.STATE = RUNNING TFEN

DO; /* Increment nurder found and do rot */
/* preempt its VP. */

EISPRI = FISPRI + 1;
FESVP(AFT(FROCESS).VP$ID) = FAISE;

END;
BLST
IF /* Found a process which should te running */

/% but is in the ready state. %/
APT(PROCFSS).STATE = REACT THEN

DO /% Increment number found and indicate */
/* that a preempt will have to te seat */
/¥ to get it running. */

FISPRI = RISFRI + 1;
PESTOSSEND = PESTOSSEND + 13

END;
END; /* While loop search of load List. */
PESSENT = @; /* Used to kxeep track of the */
/% rurber of preempts sent.
YP = ¢ /* Begin at first VP on the PFP. */

DN WEILE /* There are more preempts te send. */
(PESSENT <= PESTOSSEND);

IF /* A preerpt is to be sent to this VP. *¥/
PESVP(VE) = TRUE TEREN

DO; /* Issue the preempt and tally it. */

CALL ITCSSENDSPRFEMPT(FFP,VP);
PESSENT = PESSENT + 13

END} /* Issue preempt. */

/* Check the next VP, */
VP = VP + 13
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END; /* While loop send preempts. */
END; /* While loop determine VPs to preempt. */
END; /* Determine PHPs to preempt. %/
END3
/* Ready the calling process. */

/* Get identity of running VP, */
VP = ITCSRETSVPS

/* Search load List Thread to find VPSID match. */
PROCESS = IOADSLIST(CPUSNUMEER);

DO WEILE /* Have not found process dound to this VP, */
(APT(PROCESS).VPSID <> VP);

/* loox at next ertry in load list. */
. PROCESS = APT(PROCESS).LOADSTEREAD;

END; /* While loop search of Load List. */
/* Ready the calling process. */

APT(PROCESSB.STATE REALY;
APT(FROCESS).VPSID = NIL;

CALL TCSSCFEDULER;

/* Unlock Active Process Tadle. */
AFTSLOCK = @3

RETURN;
END; /* ADVANCE Procedure. */

/% e e o e s o oo ok ook e 3 o e e ok e o e e o o o eoje o o 3k e e o o s ae 3 o e afe e afeale e o afeae o sk ke ole e sk /

/% TICEET Procedure ®/
/* - - - - - - - - - #/
/% Function call. Returns a unique sequencer value. */

/%% e v e e s e g e e e300 Ke Ko e e e ol e e el Ko aleage e e slese e ey e pajeale Nesde e dexe e ool deajeene dealesk /

TICKET: PRCCEPURE(SFQUENCER) BYTE REENTRANT PUPRLIC;
DECLARE SEQUENCER POINTER,
SEQSID EYTE,
VALUF WORD$
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/* lock the Active Process Table. %/
DO WEILE TOCKSET(QRAPTS$LOCK,119);
END;

/* ldentify the sequencer. */
SEQSID = LOCATTSSEQ(SEQUENCER);

/* First obtain value to de returred tc the caller %/
VAILUE = SEQSTAEIE(SEQSID).SEQSVALUE;

/% Then increment the value of the sequencer */
SEQSTAPIF(SEGSID).SECSVALUE =
SEQSTABLE(SEQSID).SEQSVALUE + 1

/¥ Unlock the Active Frocess Table */
APTSLOCE = @3

/% Return the value to the caller. */
RETURN VAIUE;
END; /* TICEET Procedure, */

/30 3 e e s 2 e %6 e e eslc 39 e 3 8 g g e e 2p a6 Ko e e Qe e o B e e s e stesle sje e e e e e e desle seste e e desfesiesfeoke s/

/* READ Procedure */
* - %/
/* Function call. PReturns the current value of the */
/* eventcount specified in the call. */

/************#******#*****#*****#************#************#/

READ: PROCEDTRE(EVENTCOUNT) BYTE REEZNTRANT PUBLIC:
DECLARE EVENTCOUNT POINTER,
EVCSID EYTE,
TALUE WORD;

/% Llock the Active Process Tadble. ¥/
DO WEILE LOCESET(CAPTSLOCK,119);
END;

/* ldentify the eventcount. */
EVCSID = LOCATESEVC(EVENTCOUNT);

/* "Pead” the current value of the eventcount. */
VALUE = EVCSTABLE(EVCSID).EVCSVALVE;

/% Unlock the Active Frocess Table. %/
APTSLOCK = @3

/% Returs the current value to the caller. */
RETURN VALUR;
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END; /* READ Procedure. */

/%% e e e ol o a e el e jeole e oo st e o e ol 2 aesie e dee s e e e e o oo e ol oo ae e e e e ool o e sl e ek /

/* CREATESEVC Procedure %/
/* et ®/
/% “Creates” an eventcount by making an entry for it */
/% in the eventcount tadble EVCSTABLE and setting %/
/* the inttial value of the eventcount to €. */

e 3k v 2 oo e ok sieale ae ajesic o e oo e e e ol ade o o e o ok e el e ok o e ok ol sl ok e e e sk ok ook ek kol dle ek ek /

CREATESEVC: FROCEDURF(EVENTCCUNT) REENTRANT FUELIC;
DECLARE FVENTCOUNT POCINTFES
DECLARE CHAR BASED NAME (6) BYTE;
DPECLARE I BYTE;

/* Lock tne Active Process Table */
DO WEILE LOCXS=T(QAPTSLOCK,119);
END;

IF /* The eventcount had not already deen created */
LOCATESEVC(EVENTCOUNT) = NOTSFOUND TEIN

D03
I =
DO /* Copy the name into EVCSTABLE */
WEILE (CHAR(I) <& “%¥°) AND (I < 5);

/* Copy the character into the table. */
EVCSTABLE(EVENTS).EVCSNAME(I) = CFAR(I);

END; /% While loop. */

/* Insert the delimiter ‘%’ in the tabdle entry. */
EVCSTABLE(EVENTS).EVCSNAME(I) = %75

/* Increment EVENTS to indicate a new addition. */
EVENTS = EVENTS + 13

END; /* Create the eventcount. */

/* Unlock the Active Prccess Tadle. ¥/
APTSLOCK = €3

RETTRN;
END; /* CREATESEIVC Procedure, */

/et e e el e el i e e e e ot e el et ek e e i et e R e ek e e ek e
/% CREATESSEC Procedure w/
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/% _ e %/
/™ "Creates a sequencer by establishing an eatry in */
/* the sequencer tatle SEQSTABIT and cets tlLe */
/% initial value to 2. »/

/%6 %8 e o e e e 3k ke o o e s s 2 o e e ot 02k A ol el e o e e o e e et e o e e ol e sk ek ok oo ak e de e e/

CPEATESSEC: PROCELURE(SECTUENCER) RIENTRANT PUBLIC;
DECLARE SECUENCER FOINTER;
CECLARE CFAF EASED NAME (6) BYTE;
DECLARE I BYTE;

/% lLock the Active Process Table */
DO WHRILE LOCKSET(GAPTSLOCK,113);
END;

IF /* The sequencer had not already been creeted */
LACATESSEG(SEQUENCER) = NOTS$FOUND TEEN

D03
I =23
DO /% Copy the name into SEQSTABLE */
WEILT (CPAR(I) <> “%°) ANT (I < 53

/* Copy the character into the tabdle. */
SECSTAELF(SEQUENCERS).SECSNAME(I) = CPAR(I);

END; /* While loop. */

/* Insert the delimiter ¥ in the table entry. */
SEQSTABIE(SEQUENCERS) .SEQSNAME(I) = “%°;

~

/* Increment SEQUENCERS to indicate a new addition. */
SEQUENCERS = SLQUENCERS + 13

END; /* Create the sequencer. */

/* Tnlock the Active Process Table, */
APTSIOCK = ¢;

RETUBN; '
END; /* CREATESSEC Procedure, */

/%2 Xede e ol e o s ool e g e e el oo ole ok e e e et e ofeafe o e e e o e oo e e e ke el e ok e koo e ke e ok /

/* CREATESPROCESS Procedure */

/* O G D e T D G S = S s e - S - - */

/% “Creates” a process by initializine its stack and */

/* initializing an entry for it in the Active Process %/

/* Tabdle, %/
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CREATE$PROCESS: PROCEDURE(PPB$FTR) RITENTRANT PURLIC;
TECLARE PPE$PTE POINTER;
DECLARE INITS$STACKSFRAME STRUCTURE

(FL  WORD,
CS  WORD,
IP  WORD,
ES  WORD,
DS  WORD,
AX  WORD,
CX WORD,
IX  WORD,
BX  WORD,
SI  WORD,
II  WORL,
RET WORD,
BEP  WORD,
SP  WORD);

DECIARE INTERIUFT IITERALLY "1197;
/* Lock the Active Process Table. */
%ODWHILE LOCESET (RGAPTSIOCK,118);
NDj

/* Set up initialization stack frame, */

INITSSTACKSFRAME.FL = PROSPARAM.FL;
INITSSTACKSFRAME.CS = PRCSPARAM.CS;
INITSSTACKSFRAME.IP = PROSPARAM.IP;
INITSSTACESFRAME.TS = PROSPARAM.FS;
INIT$STACKSFRAME.DS = PROSPARAM.IDS;
INITSSTACKSFRAME.AX = PROSPARAM.AX;
INITSSTACKSFRAME.CY = PROSPARAM.CX;
INITSSTACKSFRAME.DX = PROSPARAM.IX;
INITSSTACESFRAME.BX = PROSPARAM.EX;
INITSSTACKSFRAME.SI = PROSPARAM.SI;
INITSSTACKSFRAME.DI = PROSPARAM.DI;

INITSSTACKSFRAME.RET = INTERRUPT;
INITSSTACKSFRAME.RP = ¢;
INITSSTACESFRAME.SP = 63

/* Move initialization stack frame into memory. */
MOVB(RINITSSTACKSFFAME, PPB.DBR,28);

/* Enter process in Active Process Table. */

APT(PROCESSES;.ST&TE = PPE.STATES
APT(PROCESSES ) JAFFINITY = ©PB.AFFINITY;
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APT(PROCESSES).VPSID = NIL;
APT{PROCESSES ) .PRIORITY = PPB.PRIOJRITY;
APT(PROCESSES ) .EVCSVALUESAW = 23
APT(PROCESSES ) .THREAD = NIL;
APT(FROCESSES ).DBR = PFB.DEBR;

/* Enter process in the Loaded list ty priority */
PREV = NIL;
NEXT = LOADSLIST(CPUSNUMEER);
DO WHILE PPB.PRIORITY > APT(NEXT).PRIORITTY;

PREV = NZXT;

NEXT = APT(NEXT).LOAD$THEREAD;
END;

IF NEXT = NIL TFEN
APT(PREEV).LCATSTEFEAD = ENTRY;

ELSE
IF NEXT = LOALSLIST(CPUSNUMZER) THIN
103
APT(ENTRY).LOADSTHREAD =
LOADSLIST(CPUSNUMBER);
1O0ADSIIST(CPUSNUMBER) = ENTRY;
ELSE
DO;
APT(PFEV).LOADSTEREAT = ENTRY;
APT(ENTRY).LOADSTHEREAD = NEXT;
END;

/* Unlock the Active Process Table. */
APTSIOCK = @3

EETURNS
END; /* CPTATESPROCTSS Procedure. */

/*****#*******#********************************************/

;* TC$PESFANILER Procedure */
% — - —————— - ———— */
/% Fandles preempt interrupts. Called ty the */
/* Traffic Controller in response to & virtual */
/¥ preempt interrupt. Tals module serves as the %/
/* virtual interrupt entry point into the Traffic ®/
/% Controller. ®/
/* =========)> (Constitutes a loop. {========= %=/

/2% o 2 3 2 o o e o e e ol e o e e e e e s o o ade ke ol eale ot ok e afe e ol e sk e e s e e e s sfeole slesfe e e de e e e /

TCSPESHANDLER: PROCETURE REENTRANT PURLIC;

/% lock the Active Process Table. ¥/
DO WEILE LOCKSET(RAPTSIOCK,113);




END;
CAIL TCSSCFEDULEER;

/* Unlock the Active Process Table. =/
AFTSIOCK = ¢;
RETUFN;

END; /* TCSPESHANDLER Frocedure. */
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