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1.  INTRODUCTION

Subsequent to the calculation of expected single burst ground motion
environments for the MX land mobile basing concept, two unusual phenomena
were identified in the mechanical behavior of the near-surface alluvial

materials which could affect the validity of those calculations,

The first of these phenomena, termed cementation breakdown, refers to the
breakdown of material structure due to initial loading and its effect on
subsequent loading. The second, termed the pore-air effect, refers to the
role of pore pressure in the air-filled voids in determining near-surface

motion in a high explosive (HE) event.

In this report an assessment is made of the e¢ffect of these phenomena
on the original MX ground motion calculations. This is done by constructing
the simplest possible models of the phenomena and performing typical ground
shock calculations with them. Tt was found in all cases that the single
burst ground motion environment was not strongly affected, although the

pore—air effect could be important in H.E. tests and, therefore, in

analyzing and scaling H.E, data to the nuclear case. The cementation
breakdown effects could be important for multiburst situations, but

additional quantitative information concerning their nature would have to be

obtained before such an assessment could be made.
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II. MODELS OF CEMENTATION BREAKDOWN AND CALCULATIONS

The initial model representations of cementation breakdown were
constructed on the basis of previous experience with similar materials. It
was felt that if the effect of the breakdown proved very significant,
additional quantitative information could be sought from subsequent
experiments designed for that purpose. 1In order to allow for various
possibilities in the manner in which the cementation breaks down, three

modifications of the CAP model, Ref. [l], were formulated.

These models were evaluated by implementing them in several ground
shock calculations. The site chosen was the MX revised baseline site, Ref.
[2], with 100 ft water table. The site consists of 100 ft of dry sand,
500 ft of wet sand, 400 ft of weak rock and the remainder is bedrock. The
dry sand has a loading wavespeed of 1500 ft/s and an unloading wavespeed of
3600 ft/s. The wet sand has a low shear strength (150 psi) and an unloading
wavespeed of 7000 ft/s. The weak rock and bedrock have wavespeeds of 10,000 ft/s
and 14,000 ft/s, respectively. 1In all the calculations the air blast load was

provided by a 1 MT nuclear surface burst.
The three models studied were:

1) A degradation model - in which the failure envelope for dry and

wet alluvia are monotonically reduced with decreasing range, from a non-
degraded value to some smaller value in the vicinity of ground zero. This
model attempts to represent, in a qualitative sense, the expected reduction
in the shear strength of the material which results from the very severe

loadings in the close-in region.

2) A damage model - in which the overburden material shows a

reduction in shear strength that is directly related to compaction loading.
In this model, the frictional effects associated with the failure surface

at low pressures are monotonically reduced with continued plastic

-l —-




compaction, thus weakening the material during its unloading-reloading

cycle.

3) A compaction damage model - in which the uniaxial strain

reloading modulus is reduced as a function of the amount of initial
compaction for loading and the amount of unloading. This effect was

obtained by modifying the hardening rule in the CAP model.

The degradation model, which is illustrated in Fig. 1, is obtained by
multiplying the shear strengths of the dry and wet sands by a fractional
factor which is a function of the range from ground zero. For the purposes
of this study, the degraded shear strength was taken to be 10% of its
original value at zero range, and increased linearly with range out to
2000 ft (~ 500 psi) as shown in Fig. 1, so that the overall failure

envelope can be written as

‘/Jz' = [min(l, .1 + —2—('7(3’)-5 R FQ,) 1)

where F(Jl) is the cap model failure envelope J1 is the sum of the normal
stresses J; is the second invariant of the stress deviator and R is the

range from ground zero measured in feet. Equation (1) was assumed for

both the dry and wet sand (alluvium) materials.

The damage model assumes that the dry and wet sands show a reduction
of shear strength that is directly due to compaction loading. This
material model, schematically illustrated in Fig. 2, uses both a limit
surface to define the top of the cap, and a separate failure surface that
extends from the tension-cutoff point to the top of the cap. By this
mechanism, the friction angle associated with the failure surface at low
pressure is monotonically reduced with continued plastic compaction. 1In

this case the failure envelope can be written
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where T is the material tensile strength and L denotes the location of the

; top of the cap.
i
[

The effect of this damage model on the uniaxial behavior of the dry sand

is given in Figs. 3 and 4. Naturally it is only the unloading-reloading

behavior that is affected by the damage aspect of the model.

The third model, termec¢ a Comvaction Damage model, was formulated because

the Waterways Experimental Station (WES) suggested that the main effect of
breakdown of cementation may be reduced stiffness in reloading with no
appreciable reduction in shear strength. The uniaxial laboratory data that

‘ was reported by WES, Ref. [3], is reproduced in Fig. 5. The data includes
measurements for specimens that were taken from the testing machines, broken
up, remolded and reloaded. Clearly, this is an extreme case of cementation
breakdown. Therefore, it is expected that the modeling of this effect would

provide a worst case representation of the in situ behavior under explosive loading.

The Compaction Damage model, is a modification of the soil cap model. In

the original soil CAP model, Ref. [1], any loading which produces shear or

tension failure results in a backward motion (and contraction) of the cap

P

that is directly proportional to the dilatant strain,

- -

~—

Specifically, M o= (

where Kk is the cap parameter and AFE is the (dilatant) plastic volume strain.

[

Further, in the original CAP model, there is no distinction between loading

.

-

j
§
f
P l
;
i
4
i
¥
y

—6 -




and reloading properties of the model. In particular, the locking strain,

defined by W, remains unchanged.

To obtain the Compaction Damage model, two modifications were made to

the soil cap model. First, the increment in K as determined by AES was

multiplied by 100 in order to insure a rapid retraction of the cap under
failure or tension. Secondly, the value of W (the locking strain) was
incremented by AW = CZ * AES where CZ is a material damage coefficient.

This increase in W gives a reduced reloading modulus (for low pressures

the loading modulus is inversely proportional to W), which seems to be
indicated by the WES data. The value of CZ was taken as 15 so that the dry
sand studied would give a uniaxial loading, unloading and reloading behavior
that is similar to that of the WES data. 1In Fig. 6 the uniaxial behavior of

the dry sand model is shown.

It must be emphasized that the modified CAP model does not undergo any
work-softening since the reductlon in W only occurs on the failure envelope
or in tension and not during any plastic compaction (i.e., loading on the
cap). The model is therefore stable; it satisfies all the requisite

conditions to be mathematically well-posed.

Ground shock calculations, as previously described, were performed with
cementation breakdown models. Comparisons were then made with previous
runs which did not include cementation breakdown effects (designated as

WT 100).

First, the degradation and damage models were run. The velocities and
displacements at the 600 psi range are compared in Figs. 7 - 10 with the
original WT 100 calculation. As expected, it is the later time horizontal
motions that display the greatest difference from the baseline case. Note
that the damage calculation, because of the local reduction in shear

strength does not exhibit the rebound in horizontal velocity and

— 7 -
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corresponding reduction in the displacement. However, in both calculations,
there does not appear to be any effect that would significantly alter the

present vovisced baseline waveforms for this site and range.

As an illustration of the way these models are being exercised,
several stress paths are also included. Figures 11 - 12 illustrate the
degraded failure envelope below ground zero and at a range of 1080 ft in the

wet sand layer. Figures 13 - 14 indicate the degree to which the failure

surface has been damaged by the plastic compaction in the wet sand material.

The Compaction Damage model was evaluated in a similar way. Again, the
revised baseline site was utilized, with the dry sand including the
Compaction Damage model. The velocities and displacements at the 600 psi
range are compared with the original WT 100 in Figs. 15 - 16. As expected,
only the later motions display some differ»nce from the baseline. As in the
previous model, however, these differences are not large; there does not
appear to be any significant effect of the modified reloading behavior on
the amplitudes or frequency content of the resulting motions. In fact,
comparisons out to the 100 psi range show the same order of difference as at

: the 600 psi range.

P As an illustration of how the modified CAP model is being exercised the

associated stress path and the history of W at the 600 psi range is given in

Fig. 17 and Fig. 18. The large change in W occurs at about t =z~ .45 sec

(which corresponds to unloading on the failure envelope in Fig. 17). It is

this change in W that gives the reduced reloading modulus. However, as can
be seen from the stress path, there is only a limited amount of reloading on

the cap.

y In conclusion, the breakdown in cementation that is either modeled by a
reduction in shear strength or a reduction of the reloading modulus does not

;! significantly affect the ground shock response at the MAP site for single

- 8 .
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bursts. The effect of such phenomena on multiple burst response is

potentially much greater. A study of such effects, however, would require
substantial quantitative data on how the materials actually break down so
that the appropriate model can be used. Because the most recent tests,

Ref. [4], show that cementation breakdown affects the mechanical behavior of

alluvial materials less than originally suspected, these studies have been

deferred.
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IT1. PORE ATR MODEL

Pore air effects are potentially important in near surface ground
motions resulting from near-surface explosions. As an example, it has
been proposed, Ref. [3], that the later time, low frequency upward motions observed
in the MISERS BLUFF series of single and multiple burst tests can be
attributed to the pressure differential between air entrapped or compressed
in the porous near-surface silt and the negative phase underpressure in the

airblast loading on the ground surface.

To test this hypothesis, a model was constructed which could be easily
used in existing ground shock codes. Although there is a wide range of
models which could be used for this purpose, the model chosen represents a
compromise between a complete two-phase approach and the simplicity

required for the standard single-phase ground shock codes.
The model is based on the assumptions that:

1) during compaction the material behaves in the usual golid manner

(CAP model)

2) that this solid behavior occurs when the pressure is greater than
some history dependent threshold pressure (which represents the pressure of

the entrapped, and possibly compressed, air)

3) for pressures below the threshold, the solid material "falls
apart" and supports no stress, i.e., the equation of state of the air is
used (adiabatic expansion and compression, with all strains taken by the

air).

To complete the model, the threshold pressure must be defined. It is
initially one atmosphere (absolute), but its subsequent behavior depends on !
the porosity of the material, the deformation history, and the extent to

which pore-air migration is allowed. If complete migration is allowed, the

- 10 --




threshold pressure is constant. If no migration is permitted, then the air

is compressed to an extent commensurate with the compaction of the solid.

The qualitative behavior of tie model for hydrostatic loading is shown
in Fig. 19 and the behavior in uniaxial strain is shown in Fig. 20 for a
threshold pressure behavior which allows some migration of the pore air.

The stress path corresponding to Fig. 20 is shown in Fig. 21.

This pore air model was used in a series of calculations of event
MB I-4, in which six charges, each with a yield of one half ton, were
detonated in a hexagonal array. In order to analyze the model near the
center of the charge array, an axisymmetric soil island approximation to the
event was made, as shown in Fig. 22, The radius of the island was chosen to
be half the distance from the array center to each of the charges; therefore,
measured velocity data could be applied to the cylindrical boundary to eliminate
any errors which would be associated with the calculations of the ground response
directly from the bursts. Surface airblast loading resulting from the Low Altitude

Multiple Burst (LAMB) code was used on top of the island.

The result of these calculations indicate that the use of the pore-air
model 'eads to a greatly improved agreement between calculation and data as
shown in Fig. 23, Although this doesn't prove that pore-air effects are the
cause of the failure of superposition to represent all of the data, it

indicates that this is a plausible explanation.

If it is taken for granted that pore-air effects are important in
MTSERS BLUFF, the question arises as to their importance in the case of
nuclear explosions. To assess this, a two burst calculation was performed
using the pore-air model. As expected, the results were not dramatically
affected by pore-air behavior in the nuclear case. As shown in Fig. 24, the
comparison to the two burst case with superposition remains good even when

pore air effects are included. The smaller second peak in the two burst

—11 --




case than would be expected by superposition is due to the previous

compaction of the near surface porous material under the first air slap.
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IV.  CONCLUSLONS
Cementation breakdown has been modeled and its influence on the single

burst ground motion in a MAP type of environment has been assessed. Its

effect is confined to a late time signal and even for the extreme models

assumed it does not appear to be a significant factor in predicting peak

values or frequency content, The pore air effect has also been modeled and

its influence in both the high explosive (HE) and nuclear multiple burst

environments have been computed. For the HE case there is a low frequencyv

motion that does appear to be associated with the pore-air effect. This

motion would not be predicted by superposition. For the nuclear case, the

pore-air effect is small enough that superposition does seem to be approximately

satisified.
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THRESHOLD PRESSURE

b FIG.19 HYDROSTATIC BEHAVIOR OF PORE AIR MODEL
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FIG. 20 UNIAXIAL BEHAVIOR OF PORE AIR MODEL
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