
AD-A092 ZA wHITE SANDS MISSILE RANGE NM INSTRUMENTATION DIRECTORATE F/6 9/2
AUTOMATED READING OF VIDEOTAPE.(U)
NOV 80 R 6 MACHUCA

UNCLASSIF IED STEWS-I D-0-2

EhEEEEEEEEE-/
-E ''--'El...--l
--- III/Ii

!liii



1,5112.8 112,_
111 7 3 1112.2

14011 111.

1111IL125 I1-I4 ~l .

MICROCOPY RESOLUTION TEST CHART



TECHNICAL REPORT

STEWS -ID-80-2

AUTOMATED READING OF VIDEOTAPE

NOVEMBER 1980 C" l
,:

FINAL REPORT

Approved for public release; distribution unlimited

WINSTRUMENTATION DIRECTORATE

US ARMY WHITE SANDS MISSILE RANGE

WHITE SANDS MISSILE RANGE, NEW MEXICO 88002

8011 24 058



Destroy this report when no longer needed. Do not return it to the
originator. V

DISCLAIMER

The findings of this report are not to be construed as an official
Department of the Amy position unless so designated by other authorized
documen ts.



~PERJ REPGORANIZENATION NAGE ANBADESEF.POGREE PEN ORM AS

TO. CONTROLLING OF NAMETADE ',Fna yovgm

CGIFNLS FOlE

JILS4. CTACTIORAGRANT DONGRADING

GS ORGAUTI N ATEN NAME ND. CADDE) 10 RORMEL . R .TS

ATT. D STUTIONSTTET DA1 Proec No.~ac ente6e1 inBok 0 l ittntIo eo

1. SUPP RLEM NTAR OTFI ESN M N A D E S

IS.~~~~~~~~ KE=ODS(otiu r rame iei ncay i etl Z lcSaOb,

2. AIS T R AB U T IO S TAn T M E N (o f re n e R~e I e mp S C M Ed nD U ~ L EMe k m b

-Thisrep or deslcreae; onceptsn softmared.ihaesdiapoo

17T RIUTOpeAEMN vieoap re e betra deelood alc t diff er galenttra from onert

fram KYWR(ofie on h er sitdn te ttn s ar g etif and thc utreeaglrrttoso
thae tare.Ts is oebgis akn otu f h agtfo
Former ofvDeo horeescriptors o h otu r hncmue
atnd Ralized.

do Tra173cking , o 0 oo~

20.~mi~i ABSTRACTI@ 0Cnhodrwo



ACKNOWLEDGEMENTS

The author would like to acknowledge those who helped with this report.
Ms. P. Smith assisted with the programming. Mr. J. Wise allowed us the
use of the laboratory, and Mr. C. Klaassen, as Systems Manager, was very
helpful in making the equipment available to us. Ms. H. Essary prepared
the final report, with help from Mr. M. Ramos in preparing the figures.

(

Accession F~or

~IS GRA
DTIC TAB

Distribution/

Avi lbjtt *. C o e

Dist SAttia.'



TABLE OF CONTENTS

Page

INTRODUCTION ------------------------------------------- 1

SYSTEM DESCRIPTION ------------------------------------------ 1

STRUCTURE OF THE PREPROCESSING SOFTWARE --------------------- 9

CONSTRUCTION OF A CONTOUR FROM THE MOMENT FILE -------------- 16

FOURIER DESCRIPTOR METHODS ---------------------------------- 42

Appendix A. FINDING EDGES IN NOISY SCENES ----------------- A-i

Section 1. Edges from Moments ----------------------- A-i

Section 2. Second Order Edges ----------------------- A-5

Section 3. Algorithms for Implementation -------------- A-6

a. Calculation of Moment ---------------- A-6
b. Calculation of the Rotation ----------- A-B

Section 4. Evaluation ----------------------------- A-9



ij

LIST OF ILLUSTRATIONS

Page

Figures Ia. Digitized video imagqs of F102 --------------- 3
lb. Result of processing original with an

edge detector -------------------------- 3
Ic. Contour of F102 -------------------------- 3

2. Line segments and associated segment numbers --- 4

3. Library of contours of F102. This library was
generated from a computer made three-
dimensional model------------------------5

4. Some contours found by the computer before
being corrected by the operator-------------6

5. Contours of Figure 4 after being processed
by the operator ---------------------------- 7

6. The best match found by the computer-----------8

7. Structure of the preprocessing software -------- 10

8. Generic hardware model for preprocessing
hardware ------------------------------ 15

9a. F102 flying by a mountain ------------------ 17
9b. F102 flying in front of a mountain ----------- 17
9c. Hawk missile --------------------------------- 17
9d. F102, sunspots on wings and nose ------------ 17

lOa. Moment file of F102 flying by a mountain ------ 18
lOb. Moment file of F102 flying in front

of a mountain ------------------------- 18
10c. Moment file of Hawk missile ------------------ 18
lOd. Moment file of F102, sunspots on wings

and nose ------------------------------------ 18

11. Raw histogram Data (I) from moment file.
Integrated Data (II) from raw histograms ---- 19

12a. Contour found from Moment file (Fig. lOa) 20
12b. Contour found from Moment file (Fig. lOb)- ---- 20
12c. Contour found from Moment file (Fig. 10c) 20
12d. Contour found from Moment file (Fig. lOd) ----- 20

13. Two-dimensional number patterns and their
assigned geometrical directions ------------ 24

vi



LIST OF ILLUSTRATIONS (cont) Page

Figure 14. Examples of geometric relations for various
predicates, the geometric situation when

(a) P = true, and (b) Q = true ----------- 27

15. Data structures (a), (b) and operations with
their corresponding c), (d) geometric
structures and geometric operations --------- 34

16. Geometric criteria for the continuation of

a polygonal segment --------------------- 36

17. Polygon before closing by distance measure 37

18. Polygon after closing by distance measure ----- 38

19. Polygons and corrections entered by the
operator ----------------------------- 43

20. New polygons obtained from corrected poly-
gons of Figure 19 -------------------------- 44

21. Three different contours of an F102 from
video taken at WSMR ------------------------ 45

22. Three basic geometrical shapes and their
Fourier coefficients ----------------------- 46

23. Contours generated by functions of the
type Z ?t) = exp(it) + i/L exp(iLt) --------- 49

A-1. Example center of mass vectors -------------- A-2

A-2. Rocket and results of processing ------------ A-3

A-3. A curve r and its corresponding vector
field 0(t) -------------------------- A-4

A-4. Vector Field at a step or ramp edge point A-5

A-5. Vector field at a roof edge point ----------- A-6

A-6. Original of roof edge and edge points --------- A-7

A-7. Clear edges and edges with noise added -------- A-1O

A-8. Roof edges with corresponding ROC curves ------ A-11

A-9. Comparison of Sobel and Moment operator ------- A-12

A-1O. Signal to noise ratio vs. index of
detectability ------------------------------ A-13

vii



.41

INTRODUCTION

This report contains a description of an experimental videotape reading sys-
tem developed at the White Sands Missile Range Instrumentation Directorate
computer lab for the investigation of image processing and pattern recogni-
tion concepts. The VRS is presently being used to study the concept of accur-
ately determining the aspect angles of a target from one frame of video. The
ability of accurately finding the position of a target from one frame of video
is useful in extracting a data product from a videotape when there is tape
available from only one station. Such a system, made into a real-time hard-
ware machine, would also have applications in fire control of high-energy lasers,
since the aiming of such devices requires that exact knowledge about the posi-
tion of the target be available so that energy can be deposited at a critical
point of the target. This experimental system is useful as a test bed for con-
cepts that will have applications both in extracting a data product to be used
by customers of WSMR and as a model for a hardware machine that would be used
both for real-time tracking and for fire control of new weapons technology.

SYSTEM DESCRIPTION

The data flow of this system is as follows:
A video tape of a mission is taken at a station.

The frames to be read are put on a video disk which is attached to
an image analyzing system capable of digitizing the frames in the video disc.

These frames are digitized and put into data files with another
file containing all the file names of the frames which are of interest.

The software then processes the data in the following sequence:

1. Read in file containing names of files to be processed.

2. Read in first file and do preprocessing on it until completely done.

begin
rekeat

cobegin
begin

3a. Read next file and do preprocessing on it.

end;
begin

3b. Make a contour of the previously processed file and do the classi-
fication.

endl
end
until eofi

4. Finish off classifying last one read in

end.



Processing begins by first doing pixel level operations. The classifica-
tion is done by making.a line drawing of the plane or rocket to be analyzed,
and comparing it against a previously stored line drawing library made from
views of the object in question at different angles. Before a contour of
the target (Fig. la) can be made, points which are possible candidates for
edge points must be identified. Since, typically, scenes that we process
are very noisy, we begin by doing a three-by-three averaging to every point
in the scene. After this, a moment edge detector is used to assign to each
point in a scene a value which reflects the probability that a point is an
edge point (Fig. lb). A threshold is chosen by the operator and all points
classified as possible target points are assigned a zero and all others a
one. The computer then makes and displays a contour of the entire scene
with different polygonal segments being assigned different values (Fig. 2).
The operator chooses the number of segments which make up the target, and
the computer writes the segments out in a file. This file is then modified
by the use of interactive graphics programs (Figs. 4 and 5). The result
(Fig. ic) is compared against the library of stored views (Fig. 3), the
best match is found (Fig. 6) and the angular data needed is read from the
coordinate system. A description of the operations that take place is thus:

begin

1. Read in file containing names of files to be processed.
2. Read in first file and do preprocessing on it until completely done.

repeat
cobeqin
begin

3A. Read next file and do preprocessing on it.

end;

begin

3B. Make a contour by the following process:

a. Using a histogram, computer chooses a threshold for the
moment file of the original and displays a contour based on this threshold.

b. Is this contour acceptable?

c. while contour not acceptable dobegin
*Obtain new threshold from operator.
*Draw contour
*Is contour acceptable?

end

d. Let operator choose segments that will be used to construct
target.

e. Display segments chosen by the operator and modify them as the
operator instructs.

f. Calculate the Fourier descriptors, normalize and do classifi-
cation.

until eof;

4. Finish off classifying last one read in

end.
2
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Figure la. Digitized video image of F102 . Figure lb. Result of processing original
with an edge detector.

Figure 1c. Contour of F102.
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Figure 4. Some contours found by the computer before being corrected

by the operator.
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Figure 5. Contours of Figure 4 after being processed by the operator.



Figure 6. The best mtch found by the computer.
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STRUCTURE OF THE PREPROCESSING SOFTWARE

Before a contour of the scene can be made, points which are possible candi-
dates for edge points must be identified. Since, typically, the scenes that
we process are very noisy we begin by doing a three-by-three, averaging to
every point in the scene. After this a moment edge detector is used to
assign to each point in a scene, a value which reflects the probability that
a point is an edge point. As shown in Appendix A this sequence of steps
increases the probability of detecting edne points. The next step is to
do another averaging operation on the moment file with the purpose of in-
creasino the connectedness of the edge points.

The software to accomplish the preprocessing was written with two ends in
mind; one was that this software would be a model for a hardware module to
be built later, and the other was that execution time be reduced by overlap-
ping input/output with processing. Figure 7 illustrates how the software is
set up. The programs READ 1, WRITE 1 and PROCESS are passive pronrams in
that they suspend themselves immediately after doing some initialization oper-
ations. These consist of bookkeeping operations such as setting input file
name, output file name, and setting up parameters so that the proper buffer
is accessed each time a program is activated. The program which drives these
passive programs is called mAIN 1. It runs the needed programs and synchro-
nizes them via the use of global event flags. After the preprocessing is
finished it initiates the next step in processing by its call to ARROWS.

A typical frame is processed by mAiN i in the following way: First the pro-
grams READI, WRITE1 and PROCESS are loaded into memory. They do whatever
initialization is necessary and then suspend themselves. There are two in-
put buffers that will be used by RFADI to store the data to be processed,
and two output buffers where processed data is put and from where the program
WRITEI writes the data out onto the disk. MAINI first has the two input buf-
fers (lines 15 - 18) filled by the two activations of READi done by two calls
to RESUME (READi). READ1 automatically processes the buffers in an alternate
manner as do PROCES and WRITE1. The buffers are initially set up (lines 21 -
24) so that the remaining processing can be done concurrently (lines 25 - 35).
In the do loop there are waits for flags to be set that indicate that each of
the programs involved are finished. The rest of MAINi finishes up with the
buffers that need to be processed and written out. On line 45 it starts the
next step for this frame by its call to ARROWS.

0015 CALL RESUME(READ1) ' FILL IN BUFFER #2
0016 CALL WAITFR(36)
0017 CALL CLREF(36)
0018 CALL RESUME(READI)
0019 CALL WAITFR(3(,)
0020 CALL CLREF(36) BUFFERS #1 and 02 FULL

C
0021 CALL RESUME(PROCE1,)
0022 CALL WAITFR(37)
0023 CALL CLREF(37)

C AT THIS POINT INBUF#1 AND INBUF#2 ARE FILLED
C AND 02 HAS BEEN COPIED OVER TO OUTBUF #2
C

0024 CALL WAITFR(42)

9
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0025 DO 30 L-1,2
0026 CALL RESUME (READ1)

0027 CALL RESUME(WRITE1)
0028 CALL RESUME(IROCEl)
00 19 CALL WAITFR(38)
003 CALL WAITFR(37)
0031 CALL WAITFR(3b)
0032 CALL CLREF (38)
J033 CALL CLREI"(37)
0 34 CALL CLREF(36)
0035 30 CONT INUE
0036 CALL RESUME(WRITE1)
003-7 CALL RLSUME (PROCE1)
0038 CALL WAITrR (3o)
0039 CALL W;ITFR(07)
0040 CALL CLREF (38)
0041 CALL C; REF '.J7)
0042 CALL SETEF (40)
0043 CALL RESUME(WRITE1)
0044 CALL WAITFR(38)
0045 CALL REQI;ES(ARROWS)

PEADI has access to a common global area (line 8) where it reads in the
data to be processed. After initializing (lines 19 - 20) it suspends it-
self until activated. When activated it places the last six rows it has
read in the first six positions of the buffer (lines 25 - 27) to be pro-
cessed. It then reads 32 rows and stores the last six into STORE. The
bookeepinn for the change of buffers is done (lines 32 - 34). MAINi is
signalled that READ1 is finished by the call to SETEr and there is a jump
to 21 which suspends READI.

Jc01 I.R0,RAM READ1

T:TEGER*2 FWITCH,POINT,WAKEUP,FINISH,OFFSET

0003 !NTEGER-2 STORE(-183:0)

0004 INTEGER*2 INTIN(-383:2048,2),INTOUT(-383:2048,2)

001-1 LOGICAL*I INBUFF(128,-5:32,2) INPUT BUFFER
0,-06 LO-JICAL*1 OUBUFV'(128,-5:32,2) ! OUTPUT BUFFER

00(7 LOGICAL*1 B1 ((25)
0003 COMIO:.1 /DTA/INBUFF,OUBUFF

0009 EQUIVALENCE (INTIN(-383,1),INBUFF(1,-5,1)
3010 EQUIVALENCE (Ol'BUFF(1,-5,1),INTOUT(-323,1))

.01] DATA WAKEU,FINISH/33,36/

0019 POINT-1
0020 SWITCH=2

0021 CALL CLREF (4U)
C

0022 CALL STEIF (41)
0023 20 CALL SUSPND
0024 READ(iU'POINT) (INTIN(J,SWITCH) ,J-1,2048)

0025 DO 15 I--383,0
0026 INTIN(I,SWITCH)= STORE(I)

0027 15 CONTINUE

11



0028 DO 16 I--383,0
0029 STORE()- INTIN( 2048+I,SWITCH)
0030 16 CONTINUE
0031 30 CONTINUE
0032 INTER-SWITCH
0033 IF(INTER.EQ,1) SWITCH-2
0034 IF(INTER.EQ.2) SWITCH-1
0035 IF(POINT,EQ.5) GOTO 40
0036 CALL SETEF (FINISH)
0037 GOTO 20 ! GO WAIT TILL AWOKEN
0038 40 CALL SETEF (39)
0039 CALL SETEF (FINISH)
0040 END

The next step after the files have been read is to do the averaging and
edge detection. Again PROCES has access to the global common area DTA.
It initializes itself and then suspends itself and waits for MAINi to
activate it when needed. The processing (lines 13, 14, 15) consists of
an averaging operation, an edge detection (MOMENT) and another averaging.
The processing is done from INBUF to OUTBUF (AVG), ouTBuF to INBUF (MO-
MENT), and then INBUF to OUTBUF. The bookkeeping to allow alternate buf-
fers to be processed is then done; the program suspends itself and then
waits for the next call.

0001 PROGRAM PROCESS
0002 INTEGER*2 SWITCH,POINT,WAKEUP,AVERAG,FINAVG
0003 REAL*4 M1,M2,MX,MY
0004 LOGICAL*1 INBUF(128,-5:32,2) INPUT BUFFERS
0005 LOGICAL*1 OUTBUF(128,-5:32,2) OUTPUT BUFFERS
0006 COMMON /DTA/ INBUFOUTBUF
0007 DATA WAKEUP,FINAVG/34,37/
0008 SWITCH = 2
0009 KDUNT=0
0010 CALL CLREF(WAKEUP)
0011 20 CALL SUSPND
0012 KOUNT-KOUNT+1
0013 CALL AVERAG(SWITCH,31)
0014 CALL MOMENT(SWITCH,29)
0015 CALL AVERAG(SWITCH,27)
0016 CALL SETEF(FINAUG)
0017 INTER-SWITCH
0018 IF(INTER.EQ.1) SWITCH=2
0019 IF(INTER.EQ.2) SWITCH-1
0020 IF(KOUNT.EQ,4) GOTO 21
0021 GOTO 20
0022 21 CONTINUE
0023 END

12



.. .. . .. . .- -- - : °D - -L 
'
. .. " 7 -. - -

0001 SURROUTINE AVERAG(SWITCHL)
0002 LOGICAL*1 INBUF(128,-5:32,2),OUTBUF(128,-5:32,2)
0003 INTEGER*2 R1,R2,R3
0004 INTEGER*2 SWITCH,L
0005 COMMON /DTA/ INBUF,OUTBUF
0006 DO 10 J=-4,L
0007 D' 20 i=1,127
0008 R1=R2
0009 R2-R3
0010 10 = INBUF(I+1,J-1,SWITCH).AND 255
0011 Ii = INBUF(I+I,J,SWITCH).AND.255
0012 12 = INBUF(I+I,J+l SWITCH).AND.255
0013 R3 = (I0+I1+12)/3
0014 IAVG= (RI+R2+R3)/3
0015 OUTBUF(I,J-1,SWITCH)=IAVG.AND.255
0016 20 CONTINUE

0017 10 CONTINUE
0018 RETURN
0019 END

0001 SUBROUTINE MOMENT(SWITCH,L)
0002 LOGICAL*1 INBUF(128,-5:32,2),OUTBUF(128,-5:32,2)
0003 INTEGER*2 SWITCH
0004 COMMON /DTA/ INBUF,OUTBUF
0005 DO 30 J=-4,L
0006 DO 40 1=2,127
0007 I0=I3
0008 11=14
0009 12=15
0010 13=I6
0011 14=17
0012 15=I8
0013 16=OUTBUF(I+1,J-1,SWITCH).AND.255
0014 17-OUTBUF(I+1,J,SWITCH).AND.255
0015 18=OUTBUF(I+1,J+1,SWITCH).AND.255
0016 XM=FLOAT(5*(I0-I8)+4*(I1+I3-I5-I7))
0017 YM=FLOAT(5*(I6-I2)+4*(I3+I7-Il-I5))
0018 M=SQRT(XM**2+YM**2)
0019 INBUF(I,J-1,SWITCH)-M.AND. 255
0020 40 CONTINUE
0021 30 CONTINUE
0022 RETURN

0023 END

The averaqe that is done is an unweighted average. The edge detector used
is a moment operator which has been shown to perform well in the presence
of noise. The next program that is called is wRIt1. The data structure
here are the same as those used for PiAD1 with the same global common area
being used. It also suspends itself and waits to be activated.

13



0001 PROGRAM WRITE1
0002 INTEGER* 2 SWITCH,POINT,WKEUP,FINW I,OFFSET
0003 INTEGER*2 INTOUT(-383:2048,2)
0004 LOGICAL*I INBUF(128,-5:32,2) INPUT BUFFERS
0005 LOGICAL*1 OUTBUF(128 -5:32,2) OUTPUT BUFFERS
11006 LOGICAL*1 B10(25), CHARAC
0007 COMMON /DTA/INBUF,OUTBUF
0008 EQUIVALENCE (INTOUT(-383,1) ,OUTBUF(1,-5,1))
0009 DATA WAKEUP, FINWRI/35,38/

0018 POINT-1
0019 SWITCH-2

C
0020 CALL CLREF(WAKEUP)
0021 CALL SETEF (42)
0022 20 CALL SUSPND
0023 WRITE(11'POINT) (INTOUT(J,SWITCHj, J=-383,1664)
0024 30 CONTINUE

C
0025 INTER-SWITCH
0026 IF(INTER.EQ.i) SWITCH-2
0027 IF(INTER.EQ.2) SWITCH-1
0028 CALL READEF(40,LCODE)
0029 IF(LCODE.EQ.2) GOTO 46
0030 CALL SETEF(FIN;RI)
0031 GOTO 20
0032 46 CONTINUE
0033 INBUF(1,-5,1) - CHARAC
0034 DO 47 I=1,25
0035 INBUF(I+1,-5,1)= B10(I)
0036 47 CONTINUE
0037 CALL SETEF (FINW*RI)
0038 END

A model for a hardware realization of this software is given in Figure 8.
Here each of the circles would be a CPU together with some local memory.
They would be passive and controlled by a CPU,MAIN. The squares would
correspond to buffers accessed by cpuos as Indicated. There are standard
hardware methods, such as interrupts and flags, that can be used for the
synchronization which is done in the software model.

14
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CONSTRUCTION OF A CONTOUR FROM THE MOMENT FILE

After the moment file Pic is created a threshold "T" must first be found
such that a contour of the target will be included in the set.

To find T we first compute the histogram of the moment file created. A
number P needs to have been chosen beforehand which represents the percentage
of the scene points which are target points. The first point for which

f25histo> P

is found and used as the value Of T. It has been found that P=- i5. works
well in cases where the target is a small part of the scene and P= 25. does
well when the target is a large percentage of the scene. In Figure g there
are four originals that will be reduced to a contour. The result of pre-
processing this data is in Figure 10. The problem now is to find a T such
that the target will be separated from the background. If we look at the
raw histograms (Figure 11I) we can, in some cases, guess at where the thrcsh-
old should be chosen, assuming that there is one distribution for the tai-get
and another for the background. The background distribution is centered
about the maximum of the histogram while the target distribution is part of
the tail of the histogram. Thus it is reasonable to suppose that the target
points constitute a certain percentage of the points to the right of some
value. Experiments have shown that the proper value for this percentage is
between 15 and 25, depending on the size of the target. Figure llb is a
figure found from Ila by graphing

Sum MX 255 histo.
± f x

for each histogram of 11(l). From this graph we see that, as the contrast
decreases, the threshold to be chosen decreases, a procedure -that agrees with
our intuition. We can also see that, when the target size is large, the
graph is radically different than when the target is small. Using 11(II)
and P = 23, we obtain the contours of Figure 12. The computer is set to
threshold at P = 23, the contour appears on the screen; and the operator can,
reject this contour and request a new one based on an operator supplied value
for p. One choice of F does not always produce closed contours of the target;
and this Is why operator intervention is required at this point. As this
system stands now, P Is set by the operator on the initial frame and used for
subsequent frames until the operator intervenes.

16



Figure 9a, F102 flying by a mountain, Figure 9b. F102 flxina in front of a
mountain.

Figure 9c. Hawk missile Figure 9d. F102, sunspots on wings and
nose.
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Figure 10a. iftne nt f I e o f F'; Figure Kb~. 'o me i t file of F1102 flying,
flvinq by a T;'z ntitl~l t nun'~

Fhyjure 1%c. Momient filkh- of ~ Figure l0d, Moment file of F102, sun-
missile, spots on wings and nose.
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Figure 12a. Contour found from 111o- Figure 12b. Contour found from Moment
ment file (Fig. 10a.) file (Fig. job).I
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Figure 12c. Contour found from Mo- Figure 12d. Contour found from Moment
ment file (Fig. 10c). file (Fig. 10d).
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Once the value of T has been determined so that the target lies in the set

{PIC(i,j) :i=l... n,j=l..m , PIC(i,j) < T }

We are in a position to begin making the contours from which the targets
will be extracted. Again since these programs are intended to be used as
models for a future hardware implementation the processing follows a sequen-
tial order. That is, the rows are processed from 1 to n with the original
gray values used just once in the processing. It is commonly known that to
construct a fast contour plotting algorithm the Freeman code must be dropped
as soon as possible. We use the Freeman code to record the direction as we
go along but convert to a polygonal representation as soon as it is possible,
as when there occur two consecutive Freeman codes with the same direction.
This is the first step in the contour-forming process and results in a set of
line segments which are specified by their endpoints. The next step is join-
ing the elements into contours.

The program that performs the operations described above is the program ARROW.
First of all, six rows to be processed are read into AMMOUN(128,6). One pair
of rows is processed at a time with the results of the processing being put
into STOR(128,2) (lines 52 - 63). The assignment of directions begins by --
first, thresholding two rows of AMMOUN, with a point being assigned a zero if
the average of a two-by-two neighborhood is greater than t and a one if it is
less than t (lines 59 - 61). Beforehand STOR(128,1) is first overwritten by
the last row processed which had been put in STOR(128,2) (lines 65 - 66).

0001 PROGRAM ARROW
0002 INTEGER*2 MAG(384) ,ANG(384),CENTER,THRSHM,X
0003 INTEGER*2 U,V,POINT3,AO,AI,A2,A3
0004 INTEGER*2 POINTI,POINT2 ,VAR, SUM, SIGN
0005 INTEGER*2 h0,H1,H2,H3,STOR(128,2),AVERAG,THRESH
0006 LOGICAL*I Y,ANS,INV,FLAG
0007 LOGICAL*1 AMMOUN(128,6),ANGLE(128,6),NEW(128,5)
0008 LOGICAL*1 Bl0(25),NAMETE(26)
0009 REAL*4 K1,SEGMN
0010 INTEGER*2 LINES(500,3)COORDI(1500,6)
0011 INTEGER*2 POINSI
0012 INTEGER*2 POINTL,POINTH,POINTT,COL
0013 COMMON INV,FLAG,SIGN
0014 COMMON LINES,POINTL,POINTH,POINTT,COL, I28
0015 COMMON /DTA/COORDI

0016 EQUIVALENCE (MAG,AMMOUN)
0017 EQUIVALENCE (NAMETE,COORDI)
0018 EQUIVALENCE (ANG,ANGLE)

0019 DATA Y/89/
0020 DATA SEGMN/6RSEGMEN/
0021 DATA IJ/0/
0022 DATA AK/1.4111764/
0023 CALL ERRSET(37,.TRUE.,.FALSE.,.FALSE.,.FALSE.,31)

0024 I=NAMETE(1)
0025 DO 999 M=1,25
0026 B10(M) = NAMETE(M+I)

21



0027 999 CONTINUE
0028 CALL ASSIGN(7,B1O,I)
01-29 Do 947 L--1,20
0030 COORDI(L,1)=0
0031 COORflI(L,2)=0
0032 COORDI(L,3)=0
0033 COORDI(L,4)=O
0034 COORDI(L,5)=O
0035 COORDI(L,6)=0
0036 947 CONTINUE
0037 POINSI=l
0038 DEFINE FILE 7WO,64,U,POINT2)
0039 POINT2=1
0040 CALL D)EVIAT(THRESH,POINT2)
0!'41 POINT2=1
0042 IJ=0
0043 POINTT=1l
00V' P0INTL-0
0045 POINTH=l
0046 338 CONTINUE
0047 DO 150 K00=1,25
0048 DO 140 1O=0,5
0049 READ (7'POINT2,END=77) (MAG(I) ,I=1+KO*64,64+K0*64)
0050 140 CONTINUE
0051 77 CONTINUE
0052 DO 10 J=1,5
0053 DO0 5 1=1,127
0054 H2=HO
0055 H3=1
0056 LCONS=I+l
0057 HO=AMMOUN(LCONS,J) .AND.255
0058 H1=AMMOUN(LCONS,J+1) .AND.255
0059 tVERAG- (HO+H1+H2+H3) /4
0060 STOR(I,2)=0
0061 IF(AVERAG.LT.THRESH) STOR(I,2)=).
0062 14 CONTINUE
0063 5 CONTINUE
0064 CALL OUT(STORJ+IJ)
0065 DO 756 IND=1,128
0066 STOR(IND,1)=STOR(IND,2)
0067 7',6 CONTINUE
006," 10 CONTINUE
0069 700 CONTINUE
0070 POINT2=POINT2-1
0071 IJ=IJ+5
0072 150 CONTINUE
0073 339 FORMAT(32X,15(X,14),/)
0074 341 COlrTINUE
0075 CALL CLOSEM7
0076 COORDI(1,6)=POINTH
0077 CALL CHANGE
0078 CALL REQUES(SEGMNU)
0079 991 CONTINUE
0080 END 2



When the Subroutine OUT is called it uses STORE to generate Freeman-Code
directions for a row and three such rows are stored in the array NUMBER(128,3).

To obtain a Freeman-Code, the patterns of Figure 13 are assigned the indicated
values by the subroutine OUT and stored in NUMBER(128,3). All other patterns
are assigned a -1.

0001 SUBROUTINE OUT(STORE,J)
0002 INTEGER*2 STORE(128,2),NUMBER(128,3)
0003 REAL*4 ANGLES(15)
0004 REAL*4 THETA
0005 LOGICAL*1 FLAG1,FLAG2,FLAG
0006 DATA ANGLES/-I.,7.,6.,3.,4.,-I.,5.,I.,-l.,0.,-l.,2.,3*-l./
0007 DATA FLAG/.FALSE./
0008 IF(J.GT.3)CALL LOGIC(NUMBER,J)

0009 CALL READEF(15,LCODE)
0010 IF(LCODE.EQ.2) RETURN
0011 DO 10 I=1,127
0012 NUMBER(I,1)=NUMBER(I,2)
0013 NUMBER(I,2)=NUMBER(I,3)
0014 10 CONTINUE
0015 DO 20 I=1,127
0016 INDEX=STORE(I,1)*2**3+STORE(I,2)*2**2+STORE(I+1,1)*2+ STORE(I+1,2)
0017 IF(INDEX.EQ.0) INDEX=15
0018 NUMBER(I,3)=IINT (ANGLES (INDEX))
0019 20 CONTINUE
0020 RETURN
0021 END

The next step is the linking of directions which are the same, and appear
sequentially in a three-by-three window. Two predicates are used in control-
ling the statements to be executed. These are

p = The element of NUMBER is a continuation of a segment of the same
direction.

Q = The element of NUMBER being checked is continued by a segment of
the same direction.

The cases where P=.true. and Q=.true. are illustrated in Figures 14a, b.
The possible predicates and the actions taken when the predicates are true
are shown in Figure 14c.

a. PAQ
Put the segment number of the line that the element of NUMBER

continues into first 15 bits of NUMBER(i,2). This segement number is extracted
from the first 15 bits that NUMBER(i,2) continues.

b. FAQ
In this case a new segment needs to be started. The starting row

and columns are stored in the array LINES. POINTL contains the current
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segment number and LINES(POINTL,l) sets the row number, LINES(POINT1,2)
the column number and LINES(POINTL,3) the direction.

c. PandQ
This happens when a line segment of the same direction is termin-

ated. The action taken in this case is to store the beginning coordinates
ending coordinates, and direction of the line segment in cooRDi. The beginning
point of the segment is obtained by first stripping the first 15 bits off
NUMBER(i,2) and accessing the entry of LINES which corresponds to this
number. This gives the starting point of the segment, while the final point
is gotten from the current row and column coordinates.

d. P andQ
It is an isolated direction and thus it is stored directlyinto COOP.

Subroutines LOGIC and GUARDS look at the direction numbers in NUMBER and
link those arrows that occur sequentially in the same direction. The
arrays used to do the bookeeping at this stage are LINES(,) and cOORDI(,)
with the final results being stored in cooRDI(,). Long polygonal segments
are constructed by tracking along consistent joins of these line segments
at each point, checking for possible continuation of each segment.

The subroutine LOGIC drives the programs which produce the pseudo Freeman
code and do the bookeeping functions. The data from which it computes
line segments is in NUMBER(128,3) and it consists of the Freeman codes
generated from the last three rows processed. The first fifteen bits of
NUMBER are used to store the segment number of a particular entry.

LOGIC processes a row in the do loops of line fourteen to twenty-four.
This loop begins by looking to see if the element NUMBER(128,2) is a
possible edge element, and if it finds that the element equals "-1" it
looks at a new element since the non-edge elements have been assigned a "-l."
If it is a possible edge element it extracts the segment number and calls
GUARDS to compute the values of P and Q. What is left to do now are the
actions which correspond to different values of P and Q this is done in
lines 20 through 23.

0001 SUBROUTINE LOGIC (NUMBER,J)
0002 INTEGER*2 NUMBER(128,3)
0003 INTEGER*2 LINES(500,3) ,COORDI(1500,6)
0004 LOGICAL*1 P IF P=TRUE THEN ARROW IS A CONTINUATION
0005 LOGICAL*1 Q IF Q=TRUE THEN ARROW IS CONTINUED
0006 INTEGER*2 ROW,COL,POINTT,POINTH,POINTL, I
0007 LOGICAL*1 INV,FLAG
0008 INTEGER*2 SIGN,POINSI
0009 COMMON INV,FLAG,SIGN
0010 COMMON LINES,POINTL,POINTH,POINTT,COL, I28
0011 COMMON /DTA/ COORDI
0012 IF(J.EQ.1) POINTLI1
0013 IF(J.EQ.1) POINTHI-1
0014 DO 10 128=2,127
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0015 IF(NUMBER(I28,2).EQ.-1)GOTO 10
0016 COL=NUMBER(I28,2) .AND."177770
0017 CALL GUARDS(NUMBER,P,Q,128)
0018 ROW=NUMBER(I28,2) .AND.7 !DIRECTION CODE
0019 COL= (NUMBER(I28,2).AND."177770)/8 !COMPONENT NUMBER

0020 IF(P.AND..NOT.Q) CALL DUMP(J)
0021 IF((.NOT.P).AND.Q) CALL BEGIN(ROW,J)
0022 IF((.NOT.P).AND.Q) NUMBER(128,2)=NUMBER(I28,2).OR.(POINTL*8)
0023 IF((.NOT.P) .AND. (.NOT.Q)) CALL SINGLE(NUMBER,J,ROW)
0024 10 CONTINUE
0025 RETURN
0026 END

LOGIC computes the values of P and Q by using the subroutine GUARDS. GUARDS

looks in a three-by-three neighborhood of STATES(I28,3) and computes the
value of P and Q for STATES(I,2). It checks, as in Figure 14, for the appro-
priate values of P, lines 12 - 57, and then goes on to compute Q, line 60 - end.

This processing is done for the entire file with the final results being stored
into cooRDi. CoORDI(1500,6) is now sorted on the row coordinates of its ele-
ments. The format of the elements, that are stored in COORDI, is also changed
so that the data is now

CODE,BEGIN(j),BEGIN(i),DEL

0001 SUBROUTINE GUARDS (STATESP,Q,I)
0002 INTEGER*2 I,STATES (128,3) ,SEGME14,CODE
0003 INTEGER*2 CHOICP,CHOICQ
0004 LOGICAL*l P,Q,L
0005 P=-.FALSE.
0006 Q= .FALSE.
0007 L=.FALSE.
0008 CODE=(STATES(I,2).AND.7)
0009 INDEX=CODE+1
0010 SEGMEN=0
0011 CHOICP=-1
0012 GOTO(10,20,30,40,50,60,70,80) INDEX
0013 10 F((STATES(I-1,2).AND.7).EQ.O)CHOICP=STATES(I-1, 2)

0014 0014 IF(CHOICP,EQ.-1) GOTO 85
0015 SEGMEN=CHOICP.AND. "177770
0016 IF(SEGMENEQ.0)GOTO 85

0017 P=.TRUE.
0018 STATES(I,2)=SEGMEN.OR.CODE
0019 GOTO 85
0020 20 IF((STATES(I+l,1).AND.7).EQ.1)SEGMEN=STATES(I+1,l) .AND. "177770
0021 IF(SEGMEN.EQ.0) GOTO 85
0022 P=.TRUE.
0023 STATES (I,2)=SEGMEN.OR.CODE

0024 GOTO 85
0025 30 IF((STATESI,i).AND."177770.EQ.2)SEGMEN=STATES( 1).AND,"177770
0026 IF(SEGMEN.EQ.0) GOTO 85
0027 P=.TRUE.
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0028 STATES(I,2)=SEGMEN.OR.CODE
0029 GOTO 85
0030 40 IF((STATES(I-1,1).AND.7).EQ.3)SETMEN-STATES(I-1,1) .AND."177770
0031 IF(SEGMEN.EQ.0) GOTO 85
0032 P=.TRUE.
0033 STATES(I,2)=SEGMEN.OR.CODE
0034 GOTO 85
0035 50 IF((STATES(I-1,2).AND.7).EQ.4)SEGMEN-STATES(I-1,2).AND.'177770
0036 IF(SEGMEN.EQ.0) GOTO 85
0037 P=.TRUE.
0038 STATES (I,2)=SEGMEN.OR.CODE
0039 GOTO 85
0040 60 IFC(STATES(I+1,1).AND.7).EQ.5')SEGMEN--STATES(I+1,1).AND.'177770
0041 IF(SEGMEN.EQ.0) GOTO 85
0042 P=-.TRUE.
0043 STATES(I,2)=SEGMEN..OR.C0DE
0044 GOTO 85
0045 70 IF((STATES(I,1).AN.D.7).EQ.6) CHOICP=-STATES(I,l)
0046 IF(CHOICP.EQ.-I) GOTO 85
0047 SEGMEN=CHOICP.AND. 177770
0048 P=.TRUE.
0049 STATES (I, 2)=SEGME!N.0R.CODE
0050 GOTO 85
0051 80 IF((STATES(I-1,1).AND.7).EC.7) CHOICP=STATES(I-1,1)
0052 IFCCHOICP.EQ.-1) GOTO 85
0053 SEGMEN=CHOICP.AND. "177770
0054 IF(SEGMEN.EQ.0) GOTO 85
0055 P=.TRUE.
0056 STATES (I ,2)=SEGMEN.OR.CODE
0057 GOTO 85
0058 85 CHOICP=-l
0059 CHOICQ-1
0060 GOTO(100,200,300,400,500,600,700,800)INDEX
0061 100 IF(USTATES(19-1,2).AND.7).EQ.o)CHOICQ=-STATES(Is1,2)
0062 IF(CHOICQ.EQ.-1) GOTO 850
0063 Q=.TRUE.
0064 GOTO 850
0065 200 IF((STATES(I-1,3).AND.7).EQ.1) CHOICQ=STATES(I-1,3)
0066 IF.(CHOICQ.EQ.-1 ) GOTrO 850
0067 Q=-.TRUE.
0068 GOTO 850
0069 300 IF((STATES(I,3).AND.7).EQ.2)CHOICQ=-STATEs(I,3)
0070 IF(CHOICQ.EQ.-1) GOTO 850
0071 Q=-.TRJE.
0072 GOTO 850
0073 400 IF((STATES(I+1,3).AND.7).EQ.3)CHOICQ--sTATEs(I+1,3)
0074 IF(CHOICQ.EQ.-l) GOTO 850
0075 Q=-.TRUE.
0076 GOTO 850
0077 500 IF((STATES(I+1,2).AND.7).EQ.4) CIOICQ-STATES(I+1,2)
0078 IF(CHOICQ.EQ.-l) GOTO 850
0079 Q-.TRUE.
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0081 600 IF((STATEs(i-1,3).AiND.7).EQ.5) CHOICQ=STATES(I-1,3)
0082 IF(CHOICQ,EQ.-l) GOTO 850
0083 Q-=.TRUE.
0084 GOTO 850
0085 700 IF((STATES(I,3).AND.7).EQ.6)CHOICQ-STATES(I,3)
0086 IF(CHOICQ.EQ.-1) GOTO 850
0087 Q=.TRUE.
0088 GOTO 850
0089 IF((STATES(I+1,3).AND.7).EQ.7) CHOICQ-STATES(I+1,3)
0090 IF(CHOICQ.EQ.-1) GOTO 850
0091 Q=.TRUE.
0092 GOTO 850
0093 850 RETURN
0094 END

0001 SUBROUTINE BEGIN(DIRECT,J)
0002 INTEGER*2 LINES(500,3) ,COORDI (1500 ,6)
0003 INTEGER*2 COL,I,J,DIRECT,POINTL,POINTH,POINTT
0004 LOGICAL*l INV,FLAG
0005 INTEGER*2 SIGN
0006 COMMON INV,FLAG,SIGN
0007 COMMON LINES,POINTL,POINTH,POINTT,COL,I28
0008 COMMON /DTA/COORDI
0009 POINTL=-POINTL+l
0010 LINES(POINTL,1)=I28
0011 LINES(POIN'rL,2)=J
0012 LINES(POINTL,3)=DIRECT
0013 RETURN
0014 END

0001 SUBROUTINE DUMP (J)
0002 INTEGER*2 LINES(500..3),COORDI(1500,6)
000~3 INTEGER*2 I,J,DIRECT,POINTL,POINTH,POINTT
0004 REAL*4 BEGINX,BEGINY,ENDX,ENDY
0005 INTEGER*2 SIGN,COL
0006 LOGICAL*1 INV,FLAG
0007 COMMON INV,FLAG,SIGN
0008 COMMON LINES,POINTL,POINTH,POINTT,COL,128
0009 COMMON /DTA/COORDI
0910 DIRECT=-LINES(COL,3)
0011 BEGrNX-30+LINES(COL,1)'7
0012 BEGINY-775-LINES(COL,2)*7
0013 ENDX=30+(128)*7
0014 ENDY=775-(J)*7
0015 GOTO(100,200 ,300,400,500,600,700,SO0) DIRECT+l
0016 100 ENDX-ENDX+7
0017 GOTO 1000
0018 200 BEGINX-BEGINX+7
0019 BEGINY=BEGINY+7
0020 GOTO 1000
0021 300 BEGINY-BEGINY+7
0022 COTO 1000

29



0023 400 BEGINX=BEGINX-7
0024 BEGINY=BEGINY+7
0025 GOTO 1000
0026 BEGINX=BEGINX-7
0027 GOTO 1000
0028 600 ENDX=ENDX-7
0029 ENDY=ENDY-7
0030 GOTO 1000
0031 700 EliDY=ENDY-7
0032 QOTO 1000
0033 800 ENDX=ENDX*'
0034 ENDY =EN Li-- 7
0035 GCTO i000
0036 1000 CONTINUE
0037 10 C00RI(PC:-NTH,1)=- (BEGINY-775)/7
0036 COCPDI(POTNTH4,)= (BEG-NX-30)//7
0039 COORDI (POINTH, 3) =DIRECT
0040 20 COORDI(POINTH,4)=- (ENDY-775)/7
0041 COCRDI(POTNTH,5)=(E.:DX-30)/7
0042 POINTH=PCINTHF+l
0043 RET'URFN
0044 END

0001 SUBROUT:NE CHANUE
0002 INTEGER*2 Ck-CR.LU7(1500,b) !INPUT DATA
0003 INTEGER*2 P"OINT :AMOUNT OF DATA
0004 LOGICAL*1 rL.AC,Bl0(25)
0005 INTEGER*2 LINES (500'-,3) ,POINTLJrOINTH,POINTT
0006 I T EG ER *2 COL, 128, SIGN
0007 1.0D2ICALJ. lVJ
0008 22M1N IN,FLAG,SIGN
0009 OC0M*N LINES,iPOINTL,POINTH,POINTT,COL.128
0010 COMMON /DTA /COGRDI
0011 P)OINT=u
0012 FLAG=. TRUE.
0013 CALL EP.RSETC27,.TRUE.,.FALSE.,.FALSE.,.FALSE.,31)
0014 1,)0 CONTINUE

C COORDI FCRIIAT-C0DE,TAIL(J) ,TAIL(I) ,DELTA
O )15DO 90 I-2,P0TNTH

0016 G'--,-0(1'),2C),20,20, 30,40,40,40) COORDI (1 ,3)+1
0017 1 ) FLAG-COO DT(I,2).-,E.COORDI(I,5)
0018 C00RDI(l,,,)=IABS(COORDI(I,2)-COORDI(I,5'
0019 IF (. tCT.FLAG)COORDI (1 4) =COORDI (1,1)
0021) IF ( .OT.FLAG) 200RDI (I,5)=COORDI (I,2
0021 GOCTO 86
0022 20 FLAG-COORDI1(I,1).GE.COORDI(I,4)
0023 COORL I2,6j)=IABS(CoORD)I(I ,1)-COORDI(I,4))
0024 IF(FLAu;) COORDI(I,4i=COORDI(I,1)
0025 IF(FLAG) COOPDT(I,5)=COORDI(I,2)
0026 ;OTC 88
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0027 30 FLAG=-COORDI(I,5).GE.COORDI(I,2)

0028 COORDI(I,6)=IABS(COORDI(I,2)-COORDI(I,5))
0029 IF(.NOT.FLAG) COORDI(I,4)=COORDI(I,l)
0030 IF(.N0T.FLAG) COORDI(I,5)=COORDI(I,2)
0031 GOTO 88
0032 40 FLAG=COORDI (I,4) .GE.COORDI (I,1)
0033 COORDI(I,6)=IABS(COORDI(I,-)-COORDI(I,4))
0034 IF(FLAG) COORDI(I,4)=COORDI(I,1)
0035 IF(FLAG) COORDI(I,5)=COORDI(I,2)

0036 GOTO 88
0037 88 CONTINUE
0038 COORDI(I,1)=COORDI(I,3)
0039 COORDI(I,2)=COORDI(I,4)
0040 COORDI(I,3)=COORDI(I,5)
0041 COORDI(I,4)=COORDI(I,6)
0042 90 CONTINUE
0043 CALL SORT(POINTH,2)
0044 DO 199 I=3,POINTH-3

C WRITE(9,250) COORDI(I,l),COORDI(I,2),COORDI(I,3),COORDI(I,4)
0045 250 FORMAT(2X1 I1,X,13,X,13,X, 13)
0046 199 CONTINUE
0C47 RETURN
0049 END

0001 SUBROUTINE SORT(POINT,KEY)
0002 INTEGER*2 COORDI(1500,6) !TRANSMITTED VIA COMMON
0003 INTEGER*2 POINT !NUMBER OF ELEMENTS TO SORT
0004 INTEGER*2 KEY !WHICH COLUMN TO SORT ON
0005 INTEGER*2 L,R,K,X(4) ! INTERMEDIATE LOCATIONS
0006 INTEGER*2 LINES(500,3)
00(11 INTEGER*2 POINTL,POINTH,POINTT,COL,SIGN
0008 LOGICAL*1 FLAG,INV
0009 COMMON INVFLAG,SIGN
0010 COMMON LINES,POINTL,POINTH,POINTT,COL,I28
0011 COMMON /DTA/COORDI
0012 L--2
0013 R=-POINT
0014 1 CONTINUE ! RETURN POINT FOR OUTER REPEAT
0015 DO 2 J=R,L,-l
0016 IF(COORDI(J,KEY) .GE.COORDI(J-1,KEY) )GOTO, 2
0017 X(1)=COORDI(O'-1,1)
0018 X(2)=COORDI(J-1,2)
0019 X(3)=COORDI(J-1.,3)
0020 X(4)=COORDI(J-1,4)
0021 COORDI(J-1,1)=COORDI(J,1)
0022 COORDI(J-1,2)=COORDI(J,2)
0023 COORDI(J-1,3)-COORDI(J,3)
0024 COORDI (J-1,4)aCOORlI (J,4)
0025 COORDI(J,1)=X(1)
0026 COORDI(J,2)=X(2)
0027 COORDT(J,3)=X(3)
0028 COORDI(J,4)=X(4)
0029 K=J
irnlo 2 CONTINUE
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0031 L--K+1
0032 DO 3 J=L, R
0033 IF(COORDI(J,KEY).GE.COORDI(J-1,KEY))GOTO 3
0034 X(1)=COORDI(J-1,1)
0035 X(2)=COORDI (J-1,2)
0036 X(3)=COORDI(J-1,3)
0037 X(4)=COORDI(J-1,4)
0038 COORDI(J-1,1)=COORDI(J,l)
0039 COORDI(J-1,2)=COORDI(J,2)
0040 COORDI(J-1,3)=COORDI (J,3)
0041 COORDI (J-1, 4) =COORlI (J ,4)
0042 COORDI(j,1)=X(1)
0043 COO-RDI(J,2)=X(2)
0044 COORDI(J,3)=X(3)
0045 COORDI(J,4)=X(4)
0046 K=J
0047 3 CONTINUE
0048 R=-K-1
0049 IF(L.LL.R) GOTO 1
0050 END
0001 SUBROUTINE SINGLE (STATES ,J, IOW)
0002 INTEGER*2 I,J,DIRZCT
0003 INTEGER*2 LINES (500,3) ,COORDI (1500,6)
0004 LOGICAL*1 R,S,NR,N4S,FLAG, INV
0005 INTEGER*2 SIGN,ROW,COL,POINTT,POINTH,POINTL,DIR
0006 INTEGER*2 CODE, StGMEN,CHOICP ,CHOICQ ,POINSI

0007 REAL*4 BEGINX,BEGINY,ENDX,ENDY
0008 INTEGER*2 STATES(128,3)
0009 COMMON INV,FLAG,SIGN
0010 COMMON LINES ,POINTL,POINTH,POINTT,COL,I28
0011 COMMON /DTA/COORDI
0012 CODE=-STATES(I28,2) .AND.7
0013 DIRECT--CODE
0014 BEGINX=30+ (128) *7
0015 BEGINY= 775- (J) *7
0016 ENDX=30+t(138)*7
0017 ENDY=775- (J) *7
0018 GOTO(100,200,300,400,500,600,700,800) DIRECT+1
0019 100 ENDX=ENDX+7
0020 GOTO 1000
0021 200 BEGINX=BEGINX+7
0022 BEGINY=BEGINY+7
0023 GOTO 1000
0024 300 BEGINY=BEGINY+7
0025 GOTO 1000
0026 400 BEGINX=BEGINX-7
0027 BEGINY=BEGINY+7
0028 GOTO 1000
0029 500 BEGINX=BEGINX-7
0030 GOTO 1000
0031 600 ENDX=ENDX-7
0032 ENDY=ENDY-7
0033 GOTO 1000
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0034 700 ENDY=ENDY-7

0035 GOTO 1000
0036 800 ENDX=ENDX+7
0037 ENDY=ENDY-7
0038 GOTO 1000
0039 1000 CONTINUE
0040 COORDI(POINTH,1)=-(BEGINY-775)/7
0041 COORDI(POINTH,2)=(BEGINX-30)/7
0042 COORDI(POINTH,3)=DIRECT
0043 COORDI(POINTH,4)=-(ENDY-775)/7
0044 COORDI(POINTH,5)=(ENDX-30)/7
0045 COORDI(POINTH,6)=DIRECT
0046 POINTH=POINTH+1
0047 RETURN
0048 END

The fifth coordinate will be used to place pointers that will give the next
piece of a particular polygonal line, if there is one. At this point the
scene has been reduced to a number of line segments of different length,
each having one of eight possible directions. The next step is to link
these by checking to see if there is a possible continuation of one segement
by some other segment. Such a linking of segments is the function of the
program SEGARR. To begin with, all elements of COORDI(*,5) are set equal
to zero, after which a number of segments is built up in the following steps:

1. Look through coORDi(*,5), and if an entry is found equal to zero
then proceed, or else stop.

2. Start a new segment by recording the location of the zero entry
of COORDI(*,5) in SEGS.

3. Now look for an element in cooRDI that satisfies linking criteria as
given in Figure 16. If such an element is found, two different cases will be
considered. Either it is a single element, or it is a segment (more than one
element). The two alternative courses of action are:

'Segment' (a) Link-up data structures, as in Figure 15a, which
results in the graphic operations (Figure 15c).

'Single' (b) Link-up data structures, as in Figure 15b, which re-
sults in the graphic operations (Figure 15d).

After these segments have been created the segment list is looked through,

and if there is a consistent join of two segments whose distance apart is
less than three units, then these are joined.

The program SEGARR links together the segments which are stored in the common
area DTA. The number of elements in cooR~i is passed via the sixth element
of COORDI (lines 9 - 11). COORDI(*,5) will be used to store the pointers and
they are all initialized to zero in lines 16 - 18. The line with label 85 is
the beginning of the code which constructs the polygons from the long line
segments. First, COORDI(*,5) is searched for a zero, i.e., a segment that
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hasn't been used in the construction of a polygon. If it finds a zero, it
jumps out of that loop and begins constructing the data structure which
corresponds to a polygon (lines 20 - 23).

The pointer which keeps track of the numbers of polygons POINTS gets up-
dated, and the index of the segment to be processed gets stored both in
SEGS(POINTS,1) and SEGS(POINTS,2); also an "-1" gets stored in cooRDI(I,5)
to indicate the end of a polygon (lines 26 - 30). The call to WHERE com-
putes the endpoint of the current segment being analyzed and stores it in
the array SEARCH(3). SERCH(1) containing the direction of the segment
and SERCH(2), SERCH(3) the column and row coordinates (lines 33 - 34).
To determine if there is a segment of cooRDi that continues the segment
at poiNTv a call to FIND is made on line 34. This Subroutine returns an o
in FINDP if there is no continuation. It points to the continuation of the
segment being analyzed if one has been found that passes the test in FIND
(Figure 16, Lines 19 - 86). If a continuation has been found and it has
COORnI(FINDP,J) = o then it is one of the original long line segments and
it is added to the list being constructed (lines 35 - 40). Alternatively
it may be that there is a continuation of the element being tested but
that this continuation is a segment. In this case the list which is being
tested is added to the continuation list (Lines 42 - 46) with the corres-
ponding list operations as in Figure 15. The resulting contour has many
of the important segments in it but there are many gaps in the contours
(Figure 17) which should be closed. One obvious method of closing these
is to search through all the segments and join those that are less than
a certain distance apart (Lines 52 - 77). This works fairly well, as
Figure 18 shows.

0001 INTEGER*2 SEARCHM(3) CODE,HEAD(J),HEAD(I)
0002 INTEGER*2 COORDI(1500,6) ! CODE,BEGIN(J),BEGIN(I),DELPOINTER
0003 INTEGER*2 POINTH ! ALIAS FOR POINT
0004 INTEGER*2 SEGS(500,4) ! BEGIN,END
0005 INTEGER*2 POINTV,POINTS,POINT,DI,DJ,FINDP
0006 INTEGER*2 MIN ,INDEX,H,TY(3)
0007 LOGICAL *1 BIO(25),FLAG,INTERN
0008 COMMON /DISOO/ SEGS,POINTS
0009 COMMON /DTA/COORDI
0010 CALL ERRSET(37,.TRUE.,.FALSE.,.FALSE.,.FALSE.,31)
0011 POINT=-COORDI(1,6)
0012 ISAVE=1
0013 K1=0
0014 602 CONTINUE
0015 POINTS=O
0016 DO 90 I=2,POINT+3 ! SET ALL POINTERS TO ZERO
0017 COORDI(I,5)=0
0018 90 CONTINUE
0019 85 CONTINUE ! RETURN HERE TO BEGIN A SEGMENT
0020 DO 80 I=ISAVE+1,POINT+I ! SEARCH FOR UNUSED ONES
0021 ISAVE=I
0022 IF(COORDI(I,5).EQ.0) GOTO 70
0023 80 CONTINUE
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0024 70 CONTINUE JUMPS OUT OF LOOP HERE
0025 POINTV=I
0026 IF(POINTV.GT.'(POINT)) GOTO 20 !FINISHED
0027 POINTS=POINTS+1 UPDATE SEGMENT POINTER
0028 SEGS(POINTS,1)=I MARK BEGINNING OF SEGMENT
0029 SEGS(POINTS,2)=I
0030 COORDI(POINTV,5)=-l
0031 60 CONTINUE RETURN POINT FOR SEGMENT CONSTRUCTION
0032 L=-POINTV !INTERMEDIATE STORAGE LOCATION
0033 CALL WHERE(COORDI(L,1) ,COORDI(L,2),COORDI(L,3) ,COORDI(L,4),SEARCH)

C SEARCH CONTAINS ACTIVE POINT FOR SEARCH
0034 CALL FIND(SEARCH,FINDPPOINTV,NP) FINDP POINTS TO NEXT OR 0
0035 IF(FINDP.EQ.0) GOTO 30 ! CANNOT CONTINUE
0036 IF(COORDICFINDP,5) .NE.0) GOTO 50
0037 COORDI(POINTV,5)=FINDP
0038 SEGS(POINTS,2)=FINDP
0039 COORDI (FINDPI 5) =-1
0040 POINTV=FINDP
0041 GOTO 60
0042 50 CONTINUE! MERGE LISTS
0043 COORDI(POINTV,5)=SEGS(NP,1)
0044 SEGS(NP,1)=SETS (POINTS ,1)
0045 POINTS=POINTS-l
0046 GOTO 85 !BEGIN A NEW SEGMENT
0047 COORDI(POINTV,5)=-l
0048 IF(SEGS(POINTS,1) ,EQ.SEGS(POINTS,2))COORDI(POINTV,5)=0
0049 IF(SEGS(POINTS,1) .EQ.SEGS(POINTS,2)) POINTS=POINTS-1
0050 GOTO 85
0051 20 CONTINUE
0052 Kl=K1+1
0053 MIN=5000
0054 H=SEGS(K.,2)
0055 IF(H.EQ.-1l) GOTO 110
0056 CALL WHiERE(COORDI(H,1),COORDI(H,2),COORDI(H,3),COORDI(H,4),Y)
0057 DO 150 J=1,POINTS
0059 T--SEGS(J,l)
0059 IF(T.EQ.-1) GOTO 150
0060 DJ=IABS(COORDI(T,3)-Y(3))
0061 DI=IABS(COORDI(T,2)-Y(2))
0062 IDIS=DJ+DI
0063 IF (IDIS.LT.MIN) INDEX=J
0064 IF(IDIS.LT.MIN) MIN=IDIS
0065 150 CONTINUE
0066 IF(MIN.GT.3)GOTO 110
0067 ICONST-SEGS (INDEX,2)
0068 IF(SEGS(INDEX,1L.EQ.COORDI(ICONsT.5)) GOTO 110
0069 COORDI(SEGS(K1,2) ,5)=SEGS(INDEX,1)
0070 SEGS(KJ.,2)=SEGS(INDEX,2)
0071 IF(K1.EQ.INDEX) GOTO 110
0072 SEGS(IWDEX,1)--l
0073 SEGS(INDEX,2)--l
0074 K1=K1-1
0075 110 CONTINUE
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0076 IF(1C1.NE.POINTS)GOTO20
0077 21 CONTINUE
0078 CALL INITT(160)
0079 CALL DWINDO(-50.,1000.,10.,850.)
0080 CALL CHRSIZ (3)
0081 CALL COMPLE (LX)
0082 CALL DISPLA
0083 CALL CHRSIZ (3)
0084 CALL FINITT(0,780)

TYPE *,I$LX',LX
C ACCEPT*,IJO
C IF(IJO,EQ.0) STOP

0085 230 FORMAT(3X,6(15,X))
0086 LTIME=1
0087 670 CONTINUE
0088 TYPE ?
0089 READ(5,222)IJO
0090 IF(IJO,EQ.0) STOP
0091 IF(LTIME.EQ.1)CALL INTTT(160)
0092 LTIME=-TIME+1
0093 CALL DWINDO(-50.,1000.,i0.,S50.)
0094 CALL CHRSIZ(3)
0095 CALL CHRSIZ (3)
0096 CALL DISPL1(IJO)
0097 CALL CHRSIZ (3)
0098 CALL FINITT(0,780)
0099 IF(IJO.NE.0) GOTO 670
0100 222 FORMAT(I3)
0101 CALL CHRSIZ(3)

CCCCC DO 500 I=1,POINTS
C IF(SEGS(I,4).LT.20)GOTO 500
C IF(SEGS(I,1).EQ.-l)GOTO 500
C IHEAD=SEGS(I,1)

-C L=-SEGS(I,2)
C CALL WHERE(COORDI(L,1) ,COORDI(L,2) ,COORDI(L,3) ,COORDI(L,4) ,SEARCH)
C ICYCLE=TABS (COORDI(IHEAD,3)-SEARCH(3))

0001 SUBROUTINE FIND (ACTIVE,FINDP,POITV,NP)
0002 INTEGER*2 ACTIVE(3) POINT FROM WHERE SEARCH IS MADE
0003 INTEGER*2 POINT
0004 INTEGER*2 TEST1,TEST2
0005 INTEGER*2 FINDP !INDEX OF POINT FOUND OR ZERO
0006 INTEGER*2 COORDI(1500,6) ! DATA TO BE SEARCHED
0007 INTEGER*2 SEGS(500,4) !SEGMEN POINTERS
000B II4TEGER*2 DI,DJ,DEL,POINTV
0009 INTEGER*2 NP !INDEX OF SEGS FOR HEAD OF MERGE
0010 INTEGER*2 POINTS
0011 COMMON /DTA/COORDI
0012 COMMON /DISOO/SEGS,POINTS
0013 POINT-COORDI(1,6)
0014 FINDP-0
0015 JDIS=1
0016 JLII4-0
0017 J2-ACTIVE(2)
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0018 12=ACTIVE(3)
0019 DO 5 L=-100,1,-1
0020 IF((POINTV+L).LT.1) GOTO 4
0021 IF(POINTV+L.GT.POINT)GOTO 4
0022 JN=COORDI (POINTV+L,2)
0023 IN=COORDI(POINTV+L,3)
0024 TEST1=IN-12
0025 IF(IABS(TESTI).GT.JDIS)GOTO 4
0026 TEST2=JN-J2
0027 IF(IABS(TEST2).GT.JDIS) GOTO 4

* I0028 GOTO(10,20,30,40,50,60,70,80) ACTIVE(1)+1
0029 10 IF(TEST1,LT.JLIM)GOTO 4
0030 GOTO 90
0031 20 IF((TEST1.LT.JLIM).AND.(TEST2.GT.JLIM)) GOTO 4
0032 GOTO 90
0033 30 IF(TEST2.GT.JLIM) GOTO 4
0034 GOTO 90
0035 40 IF((TEST1.GT.JLIM).AND.(TEST2.GT.JLIM)) GOTO 4
0036 GOTO 90
0037 50 IF(TEST1.GT.JLIM) GOTO 4
0038 GOTO 90
0039 60 IF((TEST1.GT.JLIM) .AND. (TEST2.LT.JLIM)) GOTO 4
0040 GOTO 90
0041 70 IF(TEST2.LT.JLIM) GOTO 4
0042 GOTO 90
0043 80 IF((TEST1.LT.JLIM) .AND.(TEST2.LT.JLIM)) GOTO 4
0044 GOTO 90
0045 90 CONTINUE
0046 FINDP=POINTV+L
0047 IF(COORDI(POINTV+L+5).EQ.0) RETURN !A SIMPLE CONSTRUCT
0048 DO 1 J=1,POINTS-1 ! IS CANDIDATE THE HEAD OF A LIST
0049 NP=-J
0050 IF SEGS(J,1).EQ.FINDP.AND.(COORDI(SEGS(J,2),5).EQ.-1)) RETURN IT IS T
0051 1 CONTINUE
0052 4 FINDP=-0
0053 IF((POINTV-.L),LT.1) GOTO 5
0054 IF((POINTV-L-1.).GT.POINT) GOTO 5
0055 JN=COORDI (POINTV-L,2)
0056 IN=COORDI (POINTV-L,3)
0057 TEST=IN-12
0058 IF(IABS(TEST1).GT.JDIS) COTO 5
0059 TEST2=JN-J2
0060 IF (IABS (TEST2) .GT. (JDIS)GOTO 5
0061 GOTO(100,200,300,400,500,600,700,800) ACTIVE(1)+1
0062 100 IF(TEST1.LT.JLIM)GOTO 5
0063 GOTO 900
0064 200 IF(TEST1.LT.JLIM).AND.CTEST2.GT.JLIM) GOTO 5
0065 GOTO 900
0066 300 IF(TEST2.GT.JLIM) GOTO 5
0067 GOTO 900
0068 400 IF((TEST1.GT.JLIM).AND.(TEST2.GT.JLIM)) GOTO 5
0069 GOTO 900
0070 500 IF(TEST1.GT.JLIM) GOTO 5
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0071 GOTO 900
0072 600 IF((TEST1.GT.JLIM).AND.(TEST2.LT.JLIM)) GOTO 5
0073 GOTO 900
0074 700 IF(TEST2.LT.JLIM) GOTO 5
0075 GOTO 900
0076 800 IF((TESTI.LT.JLIM).AND.(TEST2.LT.JLIM)) GOTO 5
0077 GOTO 900
0078 900 CONTINUE
0079 FINDP=POINTV-L
0080 IF(COORDI(POINTV-L,5).EQ.0) RETURN ! A SIMPLE CONSTRUCT
00F1 DO 2 J=1,POINTS-1
0082 NP=J
0083 IF(SEGS(J,1).EC.FINDP.AND.(COORDI(SEGS(J,2),5).EQ.-1))RETURN
0084 2 CONTINUE
0085 FINDP=0
0086 5 CONTINUE
0087 RETURN
0088 END

This process results, in most cases, in a closed curve that can be analyzed
by the Fourier Classification process but there are also cases where the
contours produced are not suitable for processing but must be first modified
by an operator (Figure 4, 5) before they can be used. In this case, the
next step in the processing allows an operator to interactively modify the
contours produced so that they are closed curves and can be analyzed by the
Fourier descriptor programs. Programs that are used to modify the computer-
generated polygons are documented in Reference 2. Examples of how they work
are in Figures 3, 4, 19 and 20.

FOURIER DESCRIPTOR METHODS

The library that is stored in the computer does not use the (x,Y) coordinates
of the polygons, but first-transforms them via the Fast Fourier Transforms
and stores the "Fourier Descriptors." These Fourier Descriptors are defined
as follows: A closed curve can be thought of as a function of a complex var-
iable, z(t), parametrized by arc-length t. We can normalize and have the
curve described by z(t), o < t < 2*pi. If we go around the contour more than
once, we get a periodic function, which can be expanded in a convergent Four-
ier series. The Fourier Descriptor of the curve is defined to be the Complex
Fourier series expansion of z(t) which is given by the formula

Z(t) = I A(n) eint  where
n1 02 T-inttA(n) - F2- Z(t) a- dt

2'T 0

(See Figure 21, 22)

Thus the Fourier Descriptors (32 of the A(i)) for each element in the library
are computed and stored into memory. The contour of the unknown plane is then
found, the Fourier coefficients for this unknown are calculated, and the angu-
lar data necessary is obtained by finding the element i the library whose
Fourier coefficients are closest to the unknowns.
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Figure 19. Polygons and corrections entered by the operator.
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Fi-Sure 20. New polygons obtained from corrected polygons

of Figure 19.
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Figure 21. Three different contours of an F102 from video taken at WSMR. The
Fourier coefficients are given in the format; absolute value,
phase. The order is A(l). A(2), ... ,A(16), A(-15),...,

A(-2), A(-l).
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1.0000 0.0000 1.0000 6.2832 1.0000 6.2832
0.0008 6.2526 0.0131 3.2229 0.0019 1.8251
9.0052 4.9677 0.0144 0.0874 0.0139 0.0442
0.0008 6.2222 0.0594 6.2778 0.0320 6.2259
0.0379 6.2806 0.0068 3.2674 0.2060 8.2799
0.0008 6.1918 0.0070 0.1841 0.0231 3.0520
0.023 5.2840 0.0172 6.2461 0.0069 3.C2399
0.0008 6.1613 0.0041 3.2849 0.0043 5 7475
6.0103 6.2641 0.0044 0.2824 0.0192 0.0035
0.0008 6.1309 0.6070 6.1569 0.0023 2.1349
0.0015 5.5522 0.002? 3.2520 0.012 S.8220
0.0008 6.1005 0.0030 0.3747 0.0074 6.0468
0.0040 6.2193 0.0032 5.9555 0.0184 0.0434
0.0008 6.0701 0.0019 3.1482 0.0069 2.888S
0.0012 5.7624 0.0022 0.4517 0.0024 3.4748
0.0008 6.0396 0.0020 5.5142 0.0010 4.3339
0.002? 0.1023 0.001? 3.2299 0.0031 3.6698
0.0008 0.2128 0.0024 0.4700 0.0011 5.7489
0.0013 0.6179 0.0029 5.9149 0.0019 2.1316
0.0008 0.1824 0.0024 3.0879 0.0067 3.0924
0.0063 0.0366 0.0051 0.1933 0.0154 6.1665
0.0008 0.1520 0.0042 5.9977 0.0071 6.2568
0.0018 0.8579 6.0037 3.0272 0.0044 0.5355
0.008 0.1215 0.0121 0.0645 0.0021 6.1648
0.0183 0.0080 0.0067 6.0901 0.0022 4.09010.0008 0.0911 0.0062 3.0280 0.0009 1.0853
0.0032 1.1520 0.0362 0.0134 0.0090 2.9816
0.0008 0.0607 0.0131 6.1835 0.0315 3.1761
0.1091 0.0000 0.0136 3.0708 0.4984 6.2832
0.0008 0.0303 0.2461 6.2832 0.0624 0.0220
0.0155 1.4847 0.0785 6.2671 0.0461 0.0436

Finure 22. Three basic Teometrical sha'es and their
Fourier coefficients.
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In order to compute the Fourier Transforms, a closed curve description of
the target to be analyzed has been produced by the computer and the operator.
The description of this curve consists of a sequence of x,y coordinates, which
are the vertices of a polygon. As the first step the length of this contour
is computed, and the contour is resampled at a spacing chosen to make the total
number of samples a power of two. This polygon is then filtered to remove
noise, and the Fourier descriptor is computed by taking the Fast Fourier Trans-
form of this sequence of (x,y) coordinates.

If two polygons are congruent in the plane then they can be shown to be so by
a sequence of rotations, translations and contractions followed by a point-to-
point comparison. If we have two congruent triangles represented by a sequence
of x,y coordinates they can be shown to be congruent by first rotating both so
that their longest side lies on the x axis, doing separate contractions so that
they both have the same area then doing a point-by-point comparison starting at
the greatest x coordinate. It is clear that the point-by-point comparison must
be done starting at the same place on both triangles, and continuing at equi-
distantly sampled points in order for this process to be meaningful. The geo-
metric transformations used to show two polygons congruent translate into the
frequency domain as shown in Table I.

TABLE I. EQUIVALENT OPERATIONS

TIME DOMAIN FREQUENCY DOMAIN
Translation Addition to a(O)
Rotation Multiplication of series by a constant
Comparison point Multiplication of a(j) by

change exp(ijt)

In order for a comparison to be meaningful in the frequency domain, a "normali-
zation" in the frequency domain must be done similar to the geometric normali-
zation that has been done for the triangles. This normalization1 must be done,
using only the operations which are listed on the right of Table I.

First, a(O) is set equal to zero to normalize position. Size normalization is
accomplished by dividing each coefficient by the absolute value of a(l). To
normalize the point where the comparison is to begin, we require that the phase
of the two coefficients of largest magnitude be zero. For a simple closed
curve that does not cut itself a(1) is the coefficient of largest magnitude.
Some polygons and their normalized Fourier coefficients appear in Figure 22.

Let a(L) and a(K) be two non-zero coefficients of the Fouripr series. The
normalization multiplicity of the coefficients a(L) and a(Ko is defined to be
M=abs(K-L). Some of the geometric significance of M in the case where a(l) and
a(L) are the only non-zero coefficients is given by the following proposition:

Let z(t) = A(1)*exp(it) + A(L)*exp(iLt) with abs(A(l)) > abs(A(L)) > 0

1. T. P. Wallace and 0. R. Mitchell, "Local and Global Shape Descrip-
tion of Two and Three Dimensional Objects," School of Electrical Engineering,
Purdue University, September 1979.
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PROPOSITION 1. If abs(A(l)) > abs(L*A(L)) then the closed curve described
by z(t) has no intersections.

PROPOSITION 2. If abs(A(l)) = abs(L*A(L)) then the closed curve described
by z(t) has M = abs(l - L) cusp points. The angles at these points are
convex if L < o and concave if L > o (see Figure 23).

PROPOSITION 3. The function abs(zt)) has M maximum points and m minimum
points.

Let z(t) = A(J)exp(ijt)

PROPOSITION 4. The requirement that a(L) and a(K) have zero-phase angle
can be satisfied by m different orientation/starting point combinations.

PROPOSITION 5. max IA(j) lj =0 = IA(l)I if the associated curve has noJ 3 -00
2

intersections. 2

Thus for a figure whose second greatest coefficient is a(L), there are
M = abs(L - 1) possible ways to normalize this figure. In order for an
accurate comparison to be possible the normalization chosen for like figures
must be the same. We use the following method to choose the normalization:

1. Calculate the Fourier coefficients for the m possible normalizations.

2. For each of the m normalizations calculate

Ire (a .) Ja ai

3. Use the normalization which maximizes the above quantity.

The pattern recognition method begins by constructing a three-dimensional
representation of the target to be analyzed. A library of polygons is then
constructed which are the projections of the three-dimensional object, as
seen from different views. From this library of polygons a library of
Fourier Descriptors is computed using normalization described above, and
stored into the computer. When an unknown is to be analyzed'and its contour
is found, the Normalized Fourier Descriptors are calculated and these num-
bers are compared to the library entries via the difference.

Sa - LIB (iW

2. K. Phillips and R. Machuca, "The Geometry of Closed Curves Parame-
tized by Fourier Series," Research Memorandum, White Sands Missile Range,
Instrumentation Directorate, Advanced Technology Office.
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(a) (b)

(c) (d)

Figure 23. Contours generated by functions of the
type Z (t) =exp(lt) + I/L exp(iLt) for
(a) L 15 (b) L =3 (c) L = -3 (d) L -15
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Once the closest element of the library is found, an interpolation 3 is done
to get an accurate measure of the aspect angles. When this is done the pro-
cessing of the frame Is finished.

We have described an interactive system that could be used to obtain aspect
angle information from one frame of video. Before this system can be made
completely automatic there must be research done with regards to two diffi-
cult problems. One Is the automatic choosing of a threshold which would
separate possible target points from the background. An approach being con-
sidered is an adaptive procedure for choosing P where P would be incremented
if the size of the ellipse defined by the coefficients a(l) and a(-l) increased;
and P would be decreased if the area of this ellipse decreased. The other is
the extraction of the target from the polygonal representation of the scene.
Both are difficult problems which will require much research before a satis-
factory solution can be found.

3. T. P. Wallace and 0. R. Mitchel, ibid.
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Appendix A

FINDING EDGES IN NOISY SCENES

Research into methods of identifying edges in a noisy scene has been an
active field of investigation for many years. Treatmgnt of the subject may
be found in many books written over the past decade '' and many different
approaches are proposed. Recently a survey and comparative analysis of the
methods was made.'

The body of this appendix is segmented into four parts. In the first, we
derive and define a "Moment Operator" which we show to work well for step
and ramp edges. Then, we define and characterize second order edges using
the concept of the rotation of a point in a vector field and develop the
detector analytically. In Section 3 we develop the algorithms for imple-
menting the previously defined operators. Finally, in Section 4, these
algorithms are evaluated using ROC curves and compared with previously
known techniques.

The detection of edges to isolate objects in a scene is motivated by many
distinct problems. One such problem arises in a tracking system where
the input video image- is analyzed and the object to be tracked identified.
Subsequent input and feedback to the drive controls causes the sensor to
re-orient to a new position in an attempt to maintain the same x-y coordi-
nate position for the object in the field of view. While this problem
motivated the research that led to this paper, the results herein discussed
are much broader in scope and application. The constraints imposed by this
problem led to a method that is useful in high data throughout systems.

Section 1. Edges from Moments

First order edge detection inethods work in the following way: A picture
function f(x,y) is transformed to another picture function F(x,y) = Tf(x,y)
in such a way that the edges of objects in the scene will be in the set
f (x,y):F(X,y) > W} for some W. The usual method is to transform the picture
using T equal To the gradient operator. Different edge detection methods
correspond to different numerical approximations to the gradient.

4. A. Rosenfeld and A. Kak, "Digital Picture Processing," Academic
Press, New York, New York, 1976

5. B. Lipkin and A. Rosenfeld, "Picture Processing and Psychopictorics",
Academic Press, New York, New YOrk, 1970

6. W. Pratt, "Digital Image Processing," John Wiley and Sons, New York,
New York, 1978

7. I. Abdou, "Quantitative Methods of Edge Detection," Image Processing
Institute, University of Southern California, Los Angeles, California, 1978
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The method used in our edge detection program is not based on derivatives.

To reduce the effect of noise, this edge detection method uses integrals.

The reasoning for the use of moments to find edges is as follows:

• A digitized picture can be thought as a lamina whose density at
each point is f(xy), so points of high intensity correspond to points of
high density.

• A point (a,b) on an edge in the original function (see Figure A-l)
would correspond to a point in this lamina (digitized picture) with high
densities on one side and lower densities on the other side.

Thus if we look at a small lamina centered at point (a,b) and compute the
center of mass of this small lamina, we can expect the center of mass to
lie within an area of high densities.

J'$ I € I *

U , ', i jt, t

(1)(2

i~I~Il = regions of high density

Figure A-i. Example center of mass vectors for (1) and edge
and (2) a region of uniform intensity.

Suppose we now look at a point (c,d) such that the densities around it are
fairly constant. Then the center of mass of a small lamina about it would
be close to (c,d). In this case, a vector from (c,d) to the center of mass
would be very small compared to a vector from (a,b) to the center of mass
in the previous case.

We conclude that one way to transform f(xy) to F(xy) such that edges of
the original picture lie in the set F(x,y) > W is to replace every f(x,y)
by the length of the vector from (x,y) to tf-e center of mass of a small
lamina centered about (x,y). That is, F(x,y) is the magnitude of the vector
from (x,y) to the center of gravity of a square lamina centered at (x,y)
whose density is given by the picture function f(xy).

Figure A-2(b) is an example of how this method works on a scene (Figure A-2(a))
typical of those we study at WSMR.
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~e)IMGEOFROCK~ET AND PLUME. THE (b) RAMP AND STEP EDGES FOUND By
PLUME IS THE LARGE RGION OF USING THE MOMENT OPERATOR.

HIGHEST INTENSIITY.

4W4

(c) THE VECTOR FIELD GENERATED BY (d) SECOND ORDER EDGES DETECTED
THE MOMENT OPERATOR. BY USING THE VECTOR FIELD.

Figure A-2. Rocket and results of processina.
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Once the coordinates (XY of the center of mass of a lamina about (x,y)
are calculated, the direction of the edge (if any) can easily be found.
Since (,T) points to where the intensity of the picture is the highest,
the direction of the edge is perpendicular to the direction of the vec-
tor from (x,y) to 7,Y. If we take (x,y) = (0,0), then the direction of
the edge is e = Arctan (Y!X) + 7/2.

Thus this model gives for each point in the scene a quantity that meas-
ures the probability that a point is an edge point and a direction which
is the direction of a possible edge through that point.

The model introduced in Section I will not work for roof edges. This is
because at the very peak of the roof, exactly where the edge is situated,
both X and Y are equal to zero. In order to detect roof edges we need
to take advantage of the direction information, and as Figures 6(a), (b)
and (c) show we need to detect the shearing cause by the change in direc-
tion of the vector field at the edge points. One way of doing this is by
using a tool from the theory of vector fields, namely the rotation of a
vector field about a point.

If a curve r on the plane (scene) is given in the form

r: x=X(t), y=y(t) a < t< b

then (t) = {o[x(t), y(t)], [x(t), y(t)] is defined on the interval Ea,b]
(see Figure A-3).

/0p

1 Ct)

Figure A-3. A curve r and its corresponding vector field 0(t)

For each t E [a,b] there is determined an angle, the angle in radians between
O(t) and 0(a) measured from 0(a) to 0(t). This angle is a many-valued func-
tion (vanishing for t = a) is designated by 6(t) and called an angular
function of the field 0 on a curve r. The rotation of the field 0 on the
curve r is defined to be

Iy(0,I') = e[O(b) - 0(a)]
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If r is a closed Jordan curve, then the rotation is found by subdividing
r into two curves (not closed), computing the rotation of each, and adding.
In the following, r is taken to be a small circle about a point.

We can write the rotation as

= I e(b) - 0(a)] = 1 d dt.

With 8(t) = Arctan T/X + Tr/2, we make the following observations:

If 0(t) = constant, then dt- 0 andy = 0. Soy = 0 when

x a point on the edge of an object in a scene (see Figure A-4).

Figure A-4. Vector Field at a step or ramp edge point.

Section 2. Second Order Edges

After a scene is processed by the moment edge detector, each point is
assigned a direction and a magnitude. In effect this specifies a vector
at each point of the plan in question; i.e., these vectors define a vector
field over the scene. An important tool in the study of vector fields is
the rotation of a vector field.8,9 To define the rotation of a vector field,
suppose a vector of the vector field 0 at the point (xy) is given by

¢(x,y) = {(x,y), 4(x.y)}

O(x,y) = Y(x,y)

w(x,y) = Y,(x,y)

If 0 Is symmetric about x and r is a small circle about x = edge point
on a roof edge, see Figure 5, then write r = r + r2 (where ri = one half of
the circle and r2 = the other half)12

B. J. Milnor, "Topology from the differentiable viewpoint," University
Press of Virginia, Charlottesville, Virginia, 1965

9. A. H. Stroud, "Approximate Calculation of Multiple Integrals,"
Prentice Hall, Englewood Hills, New Jersey, 1971
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frd(t) dt = fde(t) + fde(t) = + Tr = 27
'dtr r I r 2

Fiqure A-5. Vector field at a roof edge point.

Figure A-6(a) and A-6(b) are examples of how these observations can be used
to detect second order edges.

Section 3. Algorithms for Implementation

a. Calculation of Moment. Since we are interested in real time appli-
cations of these methods we simplify the calculation of Y and Y by setting

hh f-k f(x + t, y + u) dt du = 1

This can be justified by observing that M/4hk is the average of the inten-
sities over a small neighborhood of (x,y) and so this value can be approxi-
mated by the average value of intensities over the entire picture. This
would then be just a scale factor and so could be left out.

To calculate the integrals involved we use an integral formula 10 of order 0(h6 ).
The formula for integration is

9
f f F(x,y) = Wi*Di with W2 k + I 25/324,W2k = 10/81

and if we apply this to the integrals for 7 and f and factor out all scale

factors we get

r 5 * (Dl - D5) + 4 * (08 + 02 - 06- D4)

5 * (D7 -D3) + 4* (D8 + D6 02 - D4)

and use abs (X)2 - abs (Y)2 for the associated magnitude. If we sweep
a three-by-three window across digitized scene D7 can be taken as the upper

10. A. H. Stroud, ibid.
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left hand corner while D3 is the lower right hand corner. In this case the

direction of a possible edge is equal to

G = Arctan (. =---- + n/2

b. Calculation of the Rotation. The vector field of a roof edge will
look like the vector field of Figure A-5. To find roof boundary points, we
therefore have to find points for which, in a neighborhood of such a point,

fcdo = 27r

The smallest region, in the discrete case over which we can take an integral,
is a two-by-two window; thus our algorithm sweeps a two-by-two window across
a scene and computes the integral f do for each of these windows. If it
turns out that this integral is equal to 27r, those four points which make up
the window are classified as boundary points. To calculate the integral of
a two-by-two window we use an approximation

4

fde Aeo

computed by a computer program.

For the purpose of this experiment the procedure used to generate a file
which is the file of detected second order edges in the following:

1. From the original file (scene) two files are generated; one (ACI)
contains SQRT [(X)2 + (Y)2]; and the other (ANG) the angle of (®, O< 0< 255)
a possible edge.

2. From the ANG and ACI files one new file AAA is created. AAA is
created by sweeping a two-by-two window across the ANG file. The rotation
is calculated, and if a point is classified as boundary, then to the corres-
ponding point of AAA (initialized at zero) is added the average of those ele-
ments of ACI that have the same subscripts as those of the two-by-two window
being swept across ANG.

Examples of how this method works are shown in Figure A-6.

11. R. Machuca and A. Gilbert, "Finding Edges in Noisy Scenes, IEEE
Transactions on PAMI, unpublished.
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Section 4. Evaluation

The methods described above were tested on disks whose edges were step,
ramp and roof edges. The step and ramp edges had edge height equal to 16
while the roof edge was constructed by beginning at the center with gray
value equal to 100 incrementing by one to gray value equal 132 and then
decrementing by one to gray value 100. All files were 128 x 128 x 8.

To test the effectiveness of the different operations considered here we
added Gaussian noise of different standard deviation to achieve a given
signal to noise ratio and then tested the algorithms (Figure 7).

The NR ati wa meaure indb;thatiswe sedSNR 10logo 16)2
On

where a m = standard deviation of the noise. For the ramp and step edges
we used SNR = 4, 5, 6, . . . , 14 while for the roof edge the signal to
noise ratios used were 10, 11, 12, . . . , 20. To measure the effect-
iveness of the different algorithms we graphed PE the probabiljYo
false alarms vs. PD = the probability of detection (Figure A-9).
Figure A-8 contains examples of processed roof edge disks with SNR = 13.
The graphs of PF vs. PD (ROC curves) for the corresponding operators
appears in Figure A-8.

The results for different operators and step, ramp and roof edges appear
respectively in Figure A-10. These graphs show that the performance of
the moment operator is, in all cases, better than that of the Sobel opera-
tor. A significant improvement is obtained by first applying the average
and then the moment operator. When the signal-to-noise ratio is high the
median gives better results than the average; but there is a cross-over
point at which the average filter gives better results than the median.

12. I. Abdou, "Quantitative Methods of Edge Detection," Image Pro-
cessing Institute, University of Southern California, Los Angeles, Cali-
fornia, 1978.
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