MILES PRESSURE/SEISMIC RESPONSE ENGINEERING DEVELOPMENT OF MILES TEST FIXTURE

Honeywell, Inc.

Kerry J. Sutherland
Thom R. Cavanagh

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

ROME AIR DEVELOPMENT CENTER
Air Force Systems Command
Griffiss Air Force Base, New York 13441
This report has been reviewed by the RADC Public Affairs Office (PA) and is releasable to the National Technical Information Service (NTIS). At NTIS it will be releasable to the general public, including foreign nations.

RADC-TR-80-271 has been reviewed and is approved for publication.

APPROVED:
ROBERT B. CURTIS
Project Engineer

APPROVED:
LOUIS E. WHITE, Lt Colonel, USAF
Acting Chief, Surveillance Division

FOR THE COMMANDER:
JOHN P. HUSS
Acting Chief, Plans Office

SUBJECT TO EXPORT CONTROL LAWS
This document contains information for manufacturing or using munitions of war. Export of the information contained herein, or release to foreign nationals within the United States, without first obtaining an export license, is a violation of the International Traffic in Arms Regulations. Such violation is subject to a penalty of up to 2 years imprisonment and a fine of $100,000 under 22 U.S.C 2778.

Include this notice with any reproduced portion of this document.

If your address has changed or if you wish to be removed from the RADC mailing list, or if the addressee is no longer employed by your organization, please notify RADC (ATTN) Griffiss AFB NY 13441. This will assist us in maintaining a current mailing list.

Do not return this copy. Retain or destroy.
DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY PRACTICABLE. THE COPY FURNISHED TO DTIC CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY.
This report describes the development, configuration, operation, and evaluation of Transducer Test Set TS-3753/U. The test set is a fixture designed to measure the physical parameters plus seismic and magnetic response characteristics of Motional Pickup Transducer TR-29916 commonly called the MILES transducer. The measurements can be performed in a factory environment to permit the data to be used to monitor the manufactured quality of the MILES transducer.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>SECTION</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>INTRODUCTION</td>
</tr>
<tr>
<td></td>
<td>Background</td>
</tr>
<tr>
<td></td>
<td>Purpose of Test Set</td>
</tr>
<tr>
<td></td>
<td>Description</td>
</tr>
<tr>
<td>II</td>
<td>TEST SET DEVELOPMENT</td>
</tr>
<tr>
<td></td>
<td>General</td>
</tr>
<tr>
<td></td>
<td>Hardware Development</td>
</tr>
<tr>
<td></td>
<td>Software Development</td>
</tr>
<tr>
<td></td>
<td>Operational Verification</td>
</tr>
<tr>
<td></td>
<td>Manual</td>
</tr>
<tr>
<td></td>
<td>Chronological Development</td>
</tr>
<tr>
<td>III</td>
<td>FINAL TEST SET CONFIGURATION</td>
</tr>
<tr>
<td></td>
<td>Test Item</td>
</tr>
<tr>
<td></td>
<td>Test Definition</td>
</tr>
<tr>
<td></td>
<td>Test Set</td>
</tr>
<tr>
<td></td>
<td>Console Subassemblies</td>
</tr>
<tr>
<td></td>
<td>Tester Subassemblies</td>
</tr>
<tr>
<td></td>
<td>Summary of Characteristics</td>
</tr>
<tr>
<td>IV</td>
<td>PRINCIPLES OF OPERATION</td>
</tr>
<tr>
<td></td>
<td>Test Principles</td>
</tr>
<tr>
<td></td>
<td>Functional Interface</td>
</tr>
<tr>
<td></td>
<td>MILES Transducer Interface</td>
</tr>
<tr>
<td></td>
<td>Tester Interface</td>
</tr>
<tr>
<td></td>
<td>Input Data Selection</td>
</tr>
<tr>
<td>V</td>
<td>TEST SET VERIFICATION</td>
</tr>
<tr>
<td></td>
<td>Purpose</td>
</tr>
<tr>
<td></td>
<td>Verification Testing</td>
</tr>
<tr>
<td></td>
<td>Results</td>
</tr>
<tr>
<td></td>
<td>Conclusions</td>
</tr>
<tr>
<td>VI</td>
<td>REFERENCES</td>
</tr>
<tr>
<td></td>
<td>APPENDIX A Auto Test Flow Chart</td>
</tr>
<tr>
<td></td>
<td>APPENDIX B Auto Test Program Listing</td>
</tr>
<tr>
<td></td>
<td>APPENDIX C Preamp Calibration Program Listing</td>
</tr>
<tr>
<td>FIGURE NO.</td>
<td>TITLE</td>
</tr>
<tr>
<td>-----------</td>
<td>---</td>
</tr>
<tr>
<td>1</td>
<td>Equipment Location Diagram</td>
</tr>
<tr>
<td>2</td>
<td>Test Set Final Configuration</td>
</tr>
<tr>
<td>3</td>
<td>Test Chamber</td>
</tr>
<tr>
<td>4</td>
<td>Center Clamp and Modulation Mechanism</td>
</tr>
<tr>
<td>5</td>
<td>Test Set Functional Interface</td>
</tr>
<tr>
<td>6</td>
<td>Scanner Relay Boards</td>
</tr>
<tr>
<td>7</td>
<td>MILES Transducer Interface, Simplified Functional Diagram</td>
</tr>
<tr>
<td>8</td>
<td>Null Detection Waveforms</td>
</tr>
<tr>
<td>9</td>
<td>Tester Interface, Simplified Functional Diagram</td>
</tr>
<tr>
<td>10</td>
<td>Field Magnetization Curve</td>
</tr>
<tr>
<td>11</td>
<td>Interface Signals</td>
</tr>
<tr>
<td>12</td>
<td>Input Data Selection</td>
</tr>
<tr>
<td>A-1</td>
<td>Auto Test Program Flow Chart (6 sheets)</td>
</tr>
<tr>
<td>A-2</td>
<td>Definition of Symbols</td>
</tr>
<tr>
<td>E-1</td>
<td>System Interconnect Diagram</td>
</tr>
<tr>
<td>E-2</td>
<td>Preamp Schematic</td>
</tr>
<tr>
<td>E-3</td>
<td>Power Supply Filter Schematic</td>
</tr>
<tr>
<td>E-4</td>
<td>Amplifier, MUX, Nul Detector Schematic</td>
</tr>
<tr>
<td>E-5</td>
<td>MILES Transducer Interface Interconnection Diagram</td>
</tr>
<tr>
<td>E-6</td>
<td>Oscillators, A2 Board Schematic</td>
</tr>
<tr>
<td>E-7</td>
<td>Coil Drivers, A1 Board Schematic</td>
</tr>
<tr>
<td>E-8</td>
<td>Length Measurement Circuit, A4 Board Schematic</td>
</tr>
<tr>
<td>E-9</td>
<td>Correlation Reference Circuit, A10 Board Schematic</td>
</tr>
<tr>
<td>E-10</td>
<td>Correlator, A9 Board Schematic</td>
</tr>
<tr>
<td>TABLE NO.</td>
<td>TITLE</td>
</tr>
<tr>
<td>----------</td>
<td>------------------------------------</td>
</tr>
<tr>
<td>1</td>
<td>Size and Weight</td>
</tr>
<tr>
<td>2</td>
<td>Center-to-Center Measurements</td>
</tr>
<tr>
<td>3</td>
<td>Differences in Models</td>
</tr>
<tr>
<td>4</td>
<td>Operational Requirements</td>
</tr>
<tr>
<td>5</td>
<td>Test Conditions</td>
</tr>
<tr>
<td>6</td>
<td>Test Specifications</td>
</tr>
<tr>
<td>7</td>
<td>Control Channels</td>
</tr>
</tbody>
</table>
SUMMARY

The TS-3753/U Transducer Test Set was developed to test Motional Pickup Transducer TR-299/G, commonly called the MILES Transducer. The transducer is a buried line system employed in security systems in the form of a cable. It is stored on a reel.

The test set handles the storage reel, transports the cable through a test chamber to a takeup reel, and automatically (under computer control) tests the cable and assimilates the test data. Start, stop, and control instructions are entered via a computer keyboard. The test operator can select the points on the cable to be tested, but is relieved of the chore of step-by-step direction.

During Phase III of this developmental effort, the basic test chamber was modified, the operator console was developed, and software test programs were developed.

At the conclusion of Phase III, the system was operationally tested. The results of the tests clearly indicate that the test set provides an effective means of testing the MILES transducer.
EVALUATION

The development of Transducer Test Set TS-3753/U, referred to as the MILES test fixture or test fixture, marks the first time that the Air Force has the capability of measuring the in-factory seismic and magnetic sensitivities of Motional Pickup Transducer TR-299/G, commonly called the MILES cable. Data acquired with the test fixture will allow the Air Force to more effectively monitor the manufactured quality of the MILES cable; will provide additional insight into explaining performance anomalies observed with some of the MILES operating in the field; and will permit predicting MILES performance in the field when combined with certain parameters of the actual site of its deployment. These capabilities all enhance the more effective use of the MILES cable in achieving the detection requirements for fixed installation security systems as outlined in TPO R6A. Two engineering development models of the test fixture were procured. One will be retained by AFLC to support continued procurement and deployment of the MILES. The disposition of the second fixture has not been established; however, it may be retained at an R&D facility to support any additional test and development conducted on the MILES cable.

ROBERT B. CURTIS
Project Engineer
SECTION I
INTRODUCTION

This final report covers the work accomplished under Phase III of Contract F30602-76-C-0385 for development of a test device for use in in-factory testing of the MILES transducer. The project was performed under direction of Rome Air Development Center (RADC). The contract period extended from 12 April 1979 to 31 March 1980.

During Phase III, two working systems were designed, built, and delivered. The system nomenclature is Transducer Test Set TS-3753/U.

BACKGROUND

The MILES transducer provides an effective means for intrusion detection in perimeter security systems. The transducer is essentially a cable, 100 meters in length, that is usually buried at a depth of nine inches, but may be buried as deep as eighteen inches. The transducer core is a permalloy material possessing high permeability and magnetostrictive properties. A sense winding is wrapped about the core. The winding direction is reversed periodically to provide a gradiometer configuration that results in rejection of far-field disturbances. By virtue of the high permeability of the core, the transducer is sensitive to anomalies produced within the earth's magnetic field as, for example, by an armed intruder. The magnetostrictive properties of the core material make the transducer sensitive to the small soil displacements (pressure/seismic) caused by the passage of an intruder.

The MILES transducer has been widely deployed in a "round" configuration in which the core is a stranded bundle of permalloy material, and an outer layer of thermoplastic material provides a protective covering.

Although MILES transducers have been used successfully in security systems, variations in sensitivity have been observed. The cause of these variations may be either the burial environment or the specific transducer characteristics. Prior to the development of this test set, no information or technique was available for assessing either the magnetic or pressure/seismic sensitivity. Consequently, little or no guidance could be provided to assist in the optimization of a specific installation or the correction of performance anomalies.

The test set provides a solution to this problem. It provides the means to make in-factory measurements of the magnetic and pressure/seismic sensitivity of MILES transducers. The use of this test set will assure satisfactory transducer performance before its installation in a security system.

PURPOSE OF THE TEST SET

The test set measures the following parameters of the transducer:

1. DC Resistance
2. Winding-to-Shield Insulation Resistance
3. Magnetic Sensitivity at Any Point Along the Cable*
4. Pressure Sensitivity at Any Point Along the Cable*
5. Distance Between Transpositions

It contains a cable transport for positioning the desired portion of the cable in the test assembly.

DESCRIPTION

The test set consists of two major parts: the test device and the operator console.

The test device contains the necessary mechanical, pneumatic, and electrical apparatus to physically perform the tests and to position the cable. Cable positioning is done by transferring the cable from the supply or shipping reel to a takeup reel. In moving from one reel to the other, the cable passes through a test chamber. The cable is stopped at the desired point on the cable and tested in the test chamber. Testing the magnetostrictive characteristics requires clamping the cable at a transposition and applying a 1 Hz mechanical perturbation. The cable also passes through a set of large coils which are used to test the magnetic properties of the cable. Several DC resistance checks are made via the connector on the leading end of the cable.

The operator console supervises testing, issues commands to the test device, and gathers and analyzes tests results data. The heart of the console is a Hewlett-Packard 9825 computer. The software program of the computer directs automatic testing of the transducer and supplies the operator with program options. The operator is relieved of the burden of issuing commands such as activating pistons, closing switches, and turning drive motors on and off. The computer issues these commands. The console also records all test data, compares them with preset limits, and makes the determinations of whether the tests results are good or bad.

For a more detailed discussion of the theory of operation, refer to the Transducer Test Set TS-3753/U Operation and Maintenance Manual dated May 1980. The physical description of the test set in its final form is given in Section III of this document.

* Except for a few feet at each end of cable.
SECTION II
TEST SET DEVELOPMENT

GENERAL

The advanced development test fixture was developed during Phase II of the contract to demonstrate that the desired parameters could be measured with repeatable results. Therefore, to determine the state of development of the test fixture at the start of Phase III, refer to the Final Technical Report of Phase II RADC-TR-79-157 dated June 1979.

HARDWARE DEVELOPMENT

Hardware development during Phase III consisted of:

1. Upgrading the Phase II test fixture so that it could be tied to a controller or data acquisition system.
2. Improving deficiencies previously discovered or discovered during Phase III.
3. Development of a data acquisition and sequence control system to automatically, under computer control, run tests, gather test data, and analyze test results.
4. Fabricate a second automated test fixture.

SOFTWARE DEVELOPMENT

Software development consisted of:

1. Developing a program (Auto Test) for the Hewlett-Packard 3052A Data Acquisition System. This program, among other things, issues commands to move the Unit Under Test (UUT), clamp and test the UUT, and to record and reduce the measured data.
2. Development of a program to calibrate the preamplifier gain. Since the preamplifier circuits contained relays which were under computer control, it was more practical to write a program to calibrate the preamplifier than to write procedures for manual calibration.
3. Development of a program to check the overall calibration of the test set. The Functional Test Program is used to test a standard transducer of known characteristics. The results are compared to the results of the same tests run earlier on the same transducer. If the results are comparable, the test set is considered to be in proper calibration. If the results are different, the test set requires manual calibration.

The Functional Test Program is a slightly modified version of the Auto Test Program (Item 1 above). The major differences are:
a) Operator selection of the manual test transposition mode is not allowed, and

b) Tighter limits have been placed on the allowable variation in standard deviation and mean of the pressure/seismic, magnetic sensitivity, and distance between transpositions data.

OPERATIONAL VERIFICATION

Successful operation of the completed system was demonstrated during verification testing. This is discussed in Section V of this document.

MANUAL

An operator and maintenance manual was developed during Phase III. This manual gives instructions on how to use the system programs, how to manually calibrate the system, and how to modify the system software. It also provides the theory of operation and includes a parts list.

CHRONOLOGICAL DEVELOPMENT

The Phase III contract period was from 12 April 1979 to 31 March 1980. The developmental chronology is given here on a month-by-month basis as reported in the project monthly progress reports.

May 1979

1. Stroke of cable clamp was increased to permit easier threading of cable. At the same time the clamp arms were given more lateral stability.

2. The decision was made to mount reels and test assembly on a common base to provide stability and repeatability.

3. Definition of the reel assemblies was begun. This included:
 a) A DC generator drive of 1/8 to 1/4 hp for use in conjunction with a controller which would respond to a 1-10 volt input. Reel speeds would be 0.4 to 12 rpm's yielding cable speeds of $\frac{1}{5}$ in/sec in forward mode and $16\frac{1}{2}$ in/sec in the rewind mode.
 b) Clutch between motor drive and reel.
 c) Friction brake to prevent overshoot.
 d) Preamplifier and null detector circuitry mounted directly on take-up reel.
 e) Sliprings for preamplifier signals. Long life sliprings will be used and to further lengthen their life, two sets of sliprings will be used for high current signals.
 f) Level winder device driven by assembly to eliminate sharp kinks
and high stresses in cable due to overlapping strands when cable is wound on reel under tension.

g) Pulse generator for cable length measurement.

4. A need was recognized for a device to position the oscillating clamp to provide a symmetrical stress on the UUT.

5. It was decided to eliminate the straightening rollers. The rollers put undue stress on the cable.

June 1979

1. It was decided that the 19" rack mount used to house the custom electronics boards for Phase II would be mounted in the H-P data acquisition cabinet for Phase III. This modified H-P cabinet will be called the console.

July 1979

1. The 1 Hz magnetic oscillator and the 16 Hz null detector oscillator have been designed and built.

2. The length and null detector circuits have been designed.

3. It was decided that the overall length of the test set would probably have to be increased from 20 feet to 22 feet. This is to reduce the angle of incidence of the cable between the transducer and center line of the test set.

4. Due to the mechanical dimensions, it became apparent that, with or without lengthening the test stand, the first transposition could not be tested under automatic control. The distance from the test stand to the take-up reel would not allow it.

August 1979

1. Drawings for parts to correct mechanical deficiencies were completed, including drawings for the mounting bases, modified clamping arrangement, and redesign of the force arm bearings.

2. The design for the power distribution and pneumatic valves/solenoids was completed.

3. The magnetic excitation oscillator, nulling oscillator, and length measurement circuits were built.

September 1979

1. The two Hewlett Packard 3052 Data Acquisition Systems were received.
October 1979
1. The eight custom electronic circuit boards were fabricated and debugged.
2. The HP 3052 Data Acquisition System was installed and checked out.
3. Completed 90% of the interface wiring between custom electronics and the data acquisition system.
4. The software initialization, functional test, and direct current resistance/insulation resistance measurement programs have been coded.

November 1979
1. All electronic and mechanical parts except the limit switch have been received.
2. Total software concept completed and reviewed.

December 1979
1. The mechanical test device for unit #1 has been completely assembled.
2. Problems requiring modifications include:
 a) The wind dimensions of the level winder rollers must be decreased. This will eliminate bunching of the cable on the ends of the reels.
 b) The clamp design will require further modifications to prevent occasional misclamping.
 c) The supply reel limit switch mounting will have to be modified.
3. The software Automatic Test Program is operational and being debugged.

January 1980
1. All necessary modifications identified during system integration have been designed and necessary parts have been ordered.
2. The Preamplifier Calibration Program has been written and debugged. This program uses the high speed sampling voltmeter to check pre-amplifier calibration.
3. The Functional Test Program is being written. This program will be used to test system calibration.
February 1980

1. The Automatic Test Program is complete except for entering the test limits.
2. The Functional Test Program has been reviewed.
3. Draft copies of the tester Maintenance Manual were submitted.

March 1980

1. The Auto Test Program was completed and parameter limits selected.
2. The Functional Test Program was completed. The parameter limits will be selected during on-site calibration of Unit #001.
3. Acceptance Test Procedure was completed.
SECTION III
FINAL TEST SET CONFIGURATION

TEST ITEM

The test item is a magnetic and magnetostrictive transducer in the form of a cable. Its title is Motional Pickup Transducer TR-229/G. It consists of a core of stranded magnetostrictive wire, which is insulated. Around the insulation is a sense winding, and the coil direction of the winding reverses every 43 inches. The change is called a transposition. Insulation covers this winding, and over the insulation is a silver-copper braid shield. Finally, a plastic jacket covers the shield. This composition forms a cable, which comes in lengths of 337 feet. The cable is 1/2 inch in diameter and weighs 70 pounds. A wooden reel, which is 3 feet in diameter and 1 foot wide, holds the cable and weighs 125 pounds when loaded. The test item terminates in a Bendix QDP 06 SW10-995 connector, which is PB in this system. Connector contact C is the shield connection; contacts A and B are the signal and return end of the sense winding. The sense winding returns electrically through the core, so that contact B is connected to the core. The output from contact A is the sensor output.

As a functional device, the test item is referred to as a MILES transducer. Its form and handling characteristics are those of a cable; hence, it is the MILES cable. As a generalized test item, it is the unit under test, sometimes abbreviated UUT.

TEST DEFINITION

Acceptability of a MILES transducer depends on the results of five tests. These tests measure:

- Resistance of the sense winding.
- Resistance of the insulation between the sense winding and the shield.
- Distance between sense winding transpositions.
- Response to a controlled mechanical disturbance.
- Response to a controlled disturbance in the magnetic field surrounding the unit under test.

The mechanical disturbance is the result of a time varying force applied as a controlled stress along the length of selected sample sections of the MILES transducer. Each sample section spans about 86 inches, where a sense winding transposition occurs in the center and at each end of the sample. The controlled force, which is superimposed on a bias tension of 10 pounds, varies sinusoidally with an amplitude of 1.4 pound at a frequency of 1 hertz. The magnetic disturbance is the result of a controlled sinusoidal variation, with an amplitude of 100 gamma, in a magnetic field that is biased to the positive knee of the MILES transducer's hysteresis curve. The magnetic bias includes
the effect of the earth's magnetic field. The combined magnetizing force is 0.25 oersted. In each case, a varying voltage on the sense winding reflects the disturbance.

An automatic data reduction routine uses the data generated by the tests to calculate and printout the mean and standard deviation of the mechanical disturbance response, the magnetic disturbance response, and the distance between transpositions. The data output also includes the number of transposition tested and the number of test failures.

TEST SET

The test set, which is illustrated in Figures 1 through 4, is comprised of two subsystems: a console and a tester. The console is a cabinet of rack mounted electronic equipment. This equipment implements the automatic test control, data acquisition, and data reduction capabilities of the test set. An interactive program controls the operation of the console. Through a computer on the console, the operator initiates each test, monitors the results, and has the option to repeat any test that fails. The operator also has the option to assign control to the program. The tester consists of three major assemblies: a supply-rewind assembly that holds the unit under test, a test chamber assembly, and a takeup/advance assembly.

CONSOLE SUBASSEMBLIES

The console includes a computer and a cabinet of rack mounted equipment that includes a multimeter, a voltmeter, a digital-to-analog converter, and a channel multiplexer. This equipment forms a modified version of the Hewlett-Packard 3052A Data Acquisition System. The cabinet also contains power supplies and special electronic equipment for controlling the tester and for processing signals from the tester.

The following paragraphs identify each of the subassemblies in the console.

The following options define the Hewlett-Packard modification to their standard 3052A system for the test set.

<table>
<thead>
<tr>
<th>Option</th>
<th>Effect</th>
</tr>
</thead>
<tbody>
<tr>
<td>210</td>
<td>Add 98035A Real-Time Interface</td>
</tr>
<tr>
<td>D92</td>
<td>Replace Fast Scanning Control Board with Standard Control Board (deletes option 100)</td>
</tr>
<tr>
<td>R20</td>
<td>Add Shelf 12675 to Cabinet</td>
</tr>
<tr>
<td>D55</td>
<td>Delete Digital Voltmeter 3455A</td>
</tr>
<tr>
<td>M22</td>
<td>Add Digital Voltmeter 3438A</td>
</tr>
<tr>
<td>S21</td>
<td>Add Digital-to-Analog Converter 59501A</td>
</tr>
</tbody>
</table>

Cabinet

The cabinet is the HP 29402B. The cabinet is strapped for 120 volts, 60 hertz, single phase, 2-wire plus ground.
Figure 1. Equipment Location Diagram
Computer

The computer is the HP 9825A Programmable Calculator. It is called a calculator, controller, or computer, depending upon its application. In the test set, it is a computer. It has keyboard and tape cartridge input and LED display and strip printer output. Interconnecting the computer and the other HP units is a Hewlett-Packard interface bus, the 98034A HP-1B Interface. The HP-1B interface includes a circuit board and a bus cable that connect to each unit. Real-Time Clock HP 98035A gives the computer real-time referencing and time related control capability. In the test set, the computer controls the test sequence, data acquisition, data reduction, and functional test routines. Operational and functional test programs recorded on tape cartridges for the computer are as follows:

<table>
<thead>
<tr>
<th>Program</th>
<th>Cartridge</th>
</tr>
</thead>
<tbody>
<tr>
<td>Auto Test</td>
<td>HW 27600189</td>
</tr>
<tr>
<td>Functional Test (File 0) and</td>
<td>HW 27600190</td>
</tr>
<tr>
<td>Preamp Calibration (File 1)</td>
<td>HP 03052-90011</td>
</tr>
<tr>
<td>3052A System Verification</td>
<td>HP 03052-90012</td>
</tr>
<tr>
<td>3052A Applications</td>
<td>HP 03052-90036</td>
</tr>
<tr>
<td>9825A System Test</td>
<td>HP 09825-90036</td>
</tr>
<tr>
<td>9825A General Utility Routines</td>
<td>HP 09825-10004</td>
</tr>
</tbody>
</table>

Multimeter (DMM)

The HP 3438A is a digital readout, five-function multimeter. In the test set, the DMM measures resistance of the sense winding and the insulation resistance of the unit under test. It also measures the resistance of the slip rings in the same circuit. This DMM is a low voltage potential instrument with a maximum resistance range capability of 19.9 megohms. Therefore, the 100 megohm at 500 ±5 volts DC specified by the Transducer, Motional Pickup TR-299/G() Specification cannot be verified with this test set. However, the 100 megohm, high voltage potential requirement should be construed as a qualification requirement, not an acceptance test requirement. In fact, the high voltage potential test can quite often damage the unit by weakening the insulation. Also, since the DC resistance of the transducer is on the order of 200 ohms, an insulation resistance in excess of 20 megohms would result in less than 0.01% transducer signal attenuation.

Voltmeter (SVM)

The HP 3437A SVM is a microprocessor controlled, digital readout, successive approximation voltmeter. In the test set, the SVM measures the output of the preamplifier, the velocity and length measurement circuits, the transposition null indicator circuit, and the correlator.

Digital-to-Analog Converter

The HP 59501A D/A Power Supply Programmer is a digital-to-analog converter that supplies an analog output voltage that is proportional to a digital input signal. The programmable output range is 1 volt or 10 volts. Each range is unipolar (0 to 0.999 or 0 to 9.99 volts) or bipolar (-1 to 0.998 or -10 to
9.98 volts). The test set uses the 0 to 9.99-volt range. The output goes to the control unit that controls the speed of the advance or rewind motor on the reel assemblies.

Scanner

The HP 3495A Scanner is a channel selector with a display that indicates the selected channel. The scanner configuration in this system has 30 actuator channels (option 002) and 20 low thermal channels (option 004). Not all of these are used. Selecting a channel consists of closing a reed relay contact.

The low thermal channels form a 20-to-1 multiplexer with one set of common terminals. Signals are multiplexed to the common terminals one at a time in a break-before-make sequence. Actuator channels are not sequenced, and any number of channels per decade may be selected at the same time. Six of the low thermal channels in this system select data for acquisition in a programmed sequence. Twenty-six actuator channels modify the control and data acquisition circuits, as directed by the program.

Power Supplies

There are four supplies in the cabinet: two bipolar 15-volt, 3-ampere supplies (HP dual output 62215E), one 5-volt, 2-ampere supply (Analog Devices 956), and either a 30-volt, 5-ampere supply (HP 62215G) or a 28-volt, 1.3-ampere supply (LAMBDA LM-B28).

Motor Speed Control

Paratrol S, which is made by Parametrics, is a DC motor speed control device. This device controls the speed of either of the reel drive motors in accordance with the output of the digital-to-analog converter.

Circuit Boards

A board rack, which is mounted between the scanner and the power supplies, holds the following circuit boards:

A1 Field Coil Drivers
A2 Oscillators
A4 Length Measurement Circuit
A9 Correlator
A10 Correlation Reference Circuit

TESTER SUBASSEMBLIES

The following paragraphs identify the subassemblies of each of the major assemblies in the tester. Figure 1 illustrates these subassemblies.

Supply-Rewind Assembly

1. Base. The base is an aluminum channel 0.3-inch thick, 1 foot wide, and 3½ inches high. It bolts to a 26-inch leg of the test chamber base and to the stand.
2. Stand. The stand supports the following subassemblies.
3. Supply Reel. The supply reel holds the unit under test.
4. Rewind Motor. The rewind motor, also designated motor 2, is a ¼ horsepower, DC, PM motor that rewinds the unit under test.
5. Reduction Gear. The reduction gear provides a motor speed reduction of 40-to-1.
6. Clutch. The electromagnetic clutch engages the motor drive to the reel.
7. Brake. The manual friction brake applies enough drag to keep the reel from freewheeling. The brake, which is not shown, is located in the reduction gear assembly.
8. Level Winder. The level winder distributes the MILES cable on the reel.
9. Limit Switch. A microswitch mounted on the level winder detects the end of the MILES cable if the cable comes loose from the supply reel. The limit switch interrupts the advance motor.

Takeup-Advance Assembly

NOTE

Subassemblies (below) which are followed by an asterisk (*) are equivalent to the sequentially corresponding item in the supply-rewind assembly (above).

1. Base. *
2. Stand. *
3. Takeup Reel. The takeup reel, which is a permanent part of this assembly, holds the unit under test as it comes through the test chamber.
4. Advance Motor. The advance motor, also designated motor 1, is a ¼ horsepower, DC, PM motor that advances the unit under test from the supply reel to the takeup reel.
5. Reduction Gear. *
6. Clutch. *
7. Brake. *
8. Level Winder. *
9. Connector. Connector J8 is the interface between the unit under test and the test circuits.

10. MILES Transducer Interface. The MILES transducer interface includes a shielded preamplifier circuit board; an amplifier, multiplexer, and null detector circuit boards; and a power supply and filter circuit board. A metal box mounted on the reel contains this entire subassembly, including the unit under test interface connector J7 and the slip ring interface connector J6. This unit is labeled MILES Interface in Figure 1.

11. Slip Ring. The slip ring connects the MILES transducer interface, which revolves with the reel, to junction box 1, which remains stationary.

12. Junction Box 1 (JB1). Junction box 1 is the interface between the slip ring and cable W101. The cable connects the assembly electrically to the console.

Test Chamber Assembly

1. Base. The base is an aluminum channel, with the flat side up. It is 1 foot wide, 3½ inches high, and 11 feet long. It supports the remaining subassemblies and bolts to reel assembly bases through a 26-inch leg at each end.

2. Cover. The cover is an iron tubular shield, 2 feet in diameter and 11 feet long. Three openings along the front of the cover provide access to the clamp assemblies.

4. Null Coil. The null coil, which consists of 280 turns of 20-gauge magnet wire wound on a 3-inch diameter form, detects sense winding transpositions.

5. Field Coils. Two field coils, each of which consists of 460 turns of 14-gauge magnet wire on a tubular form 1 foot in diameter and 34 inches long, establish the magnetic field around the unit under test.

6. Length Measurer. The length measurer includes a shaft encoder with a spring loaded wheel that rests on the unit under test. The shaft encoder generates 100 pulses for each inch that the unit under test moves past the wheel.

7. Modulation Motor. The modulation motor, which is also designated motor 3 or the 1-Hz motor, is a 1/8 horsepower universal motor that turns a reduction gear 60 revolutions per minute (1 hertz). Mechanically linked through a force transducer to the stress clamp assembly, the motor supplies the 1-Hz oscillating force that physically stresses the unit under test.
8. Isolation Transformer. The isolation transformer prevents line fluctuations from affecting the 1-Hz motor.

9. Force Transducer. The force transducer links the 1-Hz motor and the stress clamp assembly. The force transducer provides an output voltage that is proportional to the stress imposed on the unit under test and in phase with that stress. This voltage becomes the reference signal that is cross-correlated with the output of the preamp.

10. Pneumatic System. The pneumatic system includes an input hose, a connector, a moisture filter, a lubricator, two pressure regulators, six solenoid valves and cylinders, a tension piston, and a centering piston. Supplied with compressed air at 80 to 90 psi, a high pressure regulator reduces the pressure to 60 psi to drive the cylinders that apply force to the cable clamps and to the centering piston. A low pressure regulator reduces the pressure to 31 psi to drive the cylinder that applies force to the UUT. In response to signals from the console, the solenoid valves control the pneumatic drive to the cylinders. An anchor clamp holds the unit under test on the right (the supply reel side). A tension clamp holds the unit under test on the left, the tension cylinder applies a 10-pound pull against the anchor clamp, and the tension brake holds the tension clamp in position to maintain the tension. The centering piston centers the stress clamp, which then clamps the unit under test in the center.

SUMMARY OF CHARACTERISTICS

Tables 1 through 6 summarize in separate categories characteristics of the test set, as related to installation and operation.

Table 1. Size and Weight

<table>
<thead>
<tr>
<th>Assembly</th>
<th>Weight (pounds)</th>
<th>Dimensions (inches)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Length</td>
</tr>
<tr>
<td>Overall Test System</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cable Handler-Model 1</td>
<td>1258</td>
<td>268</td>
</tr>
<tr>
<td>Cable Handler-Model 2</td>
<td>1263</td>
<td>268</td>
</tr>
<tr>
<td>Console</td>
<td>328</td>
<td>45</td>
</tr>
<tr>
<td>Test Chamber (Incl. Stand)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Model 1</td>
<td>434</td>
<td>132</td>
</tr>
<tr>
<td>Model 2</td>
<td>429</td>
<td>132</td>
</tr>
<tr>
<td>Supply-Rewind (with full reel)</td>
<td>443</td>
<td>80</td>
</tr>
<tr>
<td>Supply Reel (loaded)</td>
<td>125</td>
<td>36*</td>
</tr>
<tr>
<td>Advance-Takeup (with empty reel)</td>
<td>381</td>
<td>80</td>
</tr>
<tr>
<td>Computer</td>
<td>26</td>
<td>20</td>
</tr>
</tbody>
</table>

* Diameter
** Mounted
Table 2. Center-To-Center Measurements

<table>
<thead>
<tr>
<th>From</th>
<th>To</th>
<th>Distance (inches)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply Reel</td>
<td>Anchor Clamp</td>
<td>65.5</td>
</tr>
<tr>
<td>Takeup Reel</td>
<td>Tension Clamp</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td>(Relaxed)</td>
<td></td>
</tr>
<tr>
<td>Limit Switch</td>
<td>Anchor Clamp</td>
<td>48</td>
</tr>
<tr>
<td>Stress Clamp</td>
<td>Null Coil</td>
<td>2</td>
</tr>
<tr>
<td>Stress Clamp</td>
<td>Anchor Clamp</td>
<td>43</td>
</tr>
<tr>
<td>Stress Clamp</td>
<td>Tension Clamp</td>
<td>42 (Relaxed)</td>
</tr>
<tr>
<td>Tension Clamp (Relaxed)</td>
<td>Length Measurer</td>
<td>14</td>
</tr>
</tbody>
</table>

Table 3. Differences in Models

<table>
<thead>
<tr>
<th>Model</th>
<th>Power Supply 4</th>
<th>Test Chamber Cover</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Diameter (inches)</td>
<td>Length (inches)</td>
</tr>
<tr>
<td>1</td>
<td>30 vdc (HP 62215(G)</td>
<td>24</td>
</tr>
<tr>
<td>2</td>
<td>28 vdc (LM-B28)</td>
<td>20</td>
</tr>
</tbody>
</table>

Table 4. Operational Requirements

- **Power Input**: 2.5 kilowatts, maximum; 120 volts, -10 percent, +5 percent, 60 hertz, single phase
- **Compressed Air**: 85 ±5 pounds per square inch, 5 SCFM
- **Temperature**: 13 to 33 degrees C
- **Relative Humidity**: 80 percent, maximum
Table 5. Test Conditions

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Null Coil Excitation</td>
<td>100 hertz</td>
</tr>
<tr>
<td>Magnetic Field dc Bias</td>
<td>+10 oersteds</td>
</tr>
<tr>
<td>Pretest</td>
<td></td>
</tr>
<tr>
<td>Test</td>
<td>+0.25 oersted</td>
</tr>
<tr>
<td>Magnetic Field Excitation</td>
<td>100 gamma peak at 1 hertz</td>
</tr>
<tr>
<td>Mechanical Stress Bias</td>
<td>10 pounds</td>
</tr>
<tr>
<td>Mechanical Stress Variation</td>
<td>1 pound rms at 1 hertz</td>
</tr>
</tbody>
</table>

Table 6. Test Specifications

<table>
<thead>
<tr>
<th>Measure</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sense Winding Resistance in ohms</td>
<td>245</td>
<td>285</td>
</tr>
<tr>
<td>Insulation Resistance in megohms</td>
<td>1</td>
<td>---</td>
</tr>
<tr>
<td>Transportation Spacing in inches</td>
<td>42</td>
<td>44</td>
</tr>
<tr>
<td>Mechanical Sensitivity in microvolts per pound</td>
<td>8</td>
<td>18</td>
</tr>
<tr>
<td>Magnetic Sensitivity in microvolts per gamma</td>
<td>0.15</td>
<td>0.25</td>
</tr>
</tbody>
</table>
SECTION IV
PRINCIPLES OF OPERATION

This section identifies special circuits used in the tester and the principles involved in the implementation of the mechanical and magnetic response tests. Data acquisition and processing principles are covered in other manuals, as referenced in Section VI.

TEST PRINCIPLES

The test set measures electrical, magnetic, and mechanical characteristics of a MILES transducer. After establishing defined conditions that simulate the environment of an operational MILES transducer, the test set measures the response of the unit under test to the kind of mechanical and magnetic disturbances that might be expected of an armed intruder. These tests are performed on selected sample sections of the unit under test. The center of each test section occurs exactly where the sense winding in the MILES transducer reverses coil direction. This point is called a transposition. The two ends of the test section are approximately 43 inches from the center, which is the nominal distance between transpositions. This configuration ensures that the test conditions are the same for all sections tested.

To perform these tests, the test set must be able to advance the unit under test from the supply reel to the takeup reel, detect each transposition, stop and clamp the unit under test in precisely the right place, impose a sequence of test conditions, and measure the results. To accomplish all this, the test set uses a real-time computer to establish different circuit configurations through a set of programmable relays, control an automatic tester that handles the unit under test, and monitor the results through digital meters.

FUNCTIONAL INTERFACE

Figure 5 illustrates a simplified relationship among the subassemblies of the test set. The subassemblies on the far right and on the far left are in the tester. The UUT is shown in dotted lines, because it is not part of the test set. That portion of the interface circuits that interfaces with the UUT is also in the tester. The remaining subassemblies are part of the console. Through an interface bus, the computer sends commands to those units that are part of the data acquisition system and receives data from multimeter DMM and voltmeter SVM. The numbers shown in parentheses indicate the bus addresses of these units. Digital-to-analog converter DAC, which is also designated a power supply programmer, sends the motor control unit a voltage in the range of 0 to 9.99 volts in response to a digital word from the computer. The motor control unit, in turn, sends a voltage proportional to its input signal to the advance motor or to the rewind motor, as directed by programmed relays in the scanner. The voltage to these motors is approximately 90 volts peak, but its 60-Hz waveform is clipped by SCR circuits in the motor control unit to regulate the power transfer. The voltage, as measured by a digital voltmeter, is approximately 15 volts DC. The scanner also sends a 30-volt signal to the advance or rewind clutch from power supply 1. Other selected relays in the
scanner send 120 volts AC to solenoids that control pneumatic valves in the clamp assemblies and to the 1-Hz motor through an isolation transformer.

Figure 6 illustrates the relay board layout as seen from the rear of the console. Relay board 1 contains twenty relays, numbered 0 through 19 in order, from top to bottom. Relay boards 2, 3, and 4 contain ten relays each, numbered from top to bottom, where the tens digit indicates the relay board and the units digit, the relay. The low thermal relays of relay board 1 select one channel at a time. The actuator relays in the other boards can select any number of channels at the same time. Relay board 1 selects input channels, and the other relay boards select output channels. Table 7 summarizes the application of the scanner channels. Those not designated are spares.

A limit switch mounted on the supply-rewind assembly disables the advance motor if the unit under test comes off the supply reel. This is a safety feature, which prevents the takeup-advance assembly from running free if the cable comes off the supply reel.

The interface circuits indicated in Figure 5 include a MILES transducer interface assembly, which is mounted on the takeup reel, and a tester interface assembly, which is mounted in the console. The MILES transducer interface circuits transfer signals from the unit under test to the data acquisition system and to the tester interface circuits. The tester interface circuits monitor the shaft encoder and the force transducer in the tester and drive the field coils and the null coil in the tester. Succeeding paragraphs explain these circuit groups.

MILES TRANSDUCER INTERFACE

Figure 7 is a simplified functional representation of the circuits that interface the unit under test. Eight relays establish any of the six circuit configurations. Each decoder input, A₂, A₁, or A₀ is a logic 0 or logic 1 as specified by the scanner channels indicated in the logic table. This connects each relay input to 0 or +15 volts. Each of five decoded states energized, the circuit is as shown in the figure. The output of the sense winding, designated sensor, goes through a 60-Hz notch filter and two high-gain amplifiers that are separated by a 2-Hz low pass filter. The first amplifier is designated the preamplifier; the second is, therefore, the post-amplifier. The combined gain is calibrated to 106 db, a voltage gain of 199,526. The filters reduce the noise. A buffer amplifier with unity gain transfers this signal, which is now called Sense, to the output terminal. Sense goes to input channel 4 of the scanner for a voltage measurement and to the correlator for processing.

Calibrate

The test set automatically checks the calibration of the above amplifiers by energizing K3, which connects a resistor across the input, energizing K2, which inputs a 5-volt peak sinusoidal signal from the 1-Hz oscillator in the tester interface circuits, and measuring the voltage output through channel 4.
Figure 6. Scanner Relay Boards
Table 7. Control Channels

<table>
<thead>
<tr>
<th>Input</th>
<th>00 Null</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>01 Length</td>
</tr>
<tr>
<td></td>
<td>02 Velocity</td>
</tr>
<tr>
<td></td>
<td>03 Resistance</td>
</tr>
<tr>
<td></td>
<td>04 Correlated Sense</td>
</tr>
<tr>
<td></td>
<td>05 Sense</td>
</tr>
<tr>
<td>Output</td>
<td>20 Energize Anchor Clamp</td>
</tr>
<tr>
<td></td>
<td>21 Energize Tension Clamp</td>
</tr>
<tr>
<td></td>
<td>22 Apply Tension</td>
</tr>
<tr>
<td></td>
<td>23 Energize Tension Brake</td>
</tr>
<tr>
<td></td>
<td>24 Energize Stress Clamp</td>
</tr>
<tr>
<td></td>
<td>25 Energize Centering Piston</td>
</tr>
<tr>
<td></td>
<td>26 Apply Power to 1 Hz Motor</td>
</tr>
<tr>
<td></td>
<td>28 Modulate Field Coils With 1-Hz Sinewave Signal</td>
</tr>
<tr>
<td></td>
<td>30 1-set A₀</td>
</tr>
<tr>
<td></td>
<td>31 0-set A₀</td>
</tr>
<tr>
<td></td>
<td>32 1-set A₁</td>
</tr>
<tr>
<td></td>
<td>33 0-set A₁</td>
</tr>
<tr>
<td></td>
<td>34 Saturate Field With 10 Oersteds</td>
</tr>
<tr>
<td></td>
<td>35 Bias Field With 0.25 Oersted</td>
</tr>
<tr>
<td></td>
<td>36 Engage Advance Clutch</td>
</tr>
<tr>
<td></td>
<td>37 Engage Rewind Clutch</td>
</tr>
<tr>
<td></td>
<td>38 Drive Advance Motor</td>
</tr>
<tr>
<td></td>
<td>39 Drive Rewind Motor</td>
</tr>
<tr>
<td></td>
<td>41 Drive Null Coil at 100 Hertz</td>
</tr>
<tr>
<td></td>
<td>42 Supply Magnetic Reference to Correlator</td>
</tr>
<tr>
<td></td>
<td>43 Supply Mechanical Reference to Correlator</td>
</tr>
<tr>
<td></td>
<td>44 0-set A₂</td>
</tr>
<tr>
<td></td>
<td>45 1-set A₂</td>
</tr>
<tr>
<td></td>
<td>46 Send Input to SVM</td>
</tr>
<tr>
<td></td>
<td>47 Send Input to DMM</td>
</tr>
<tr>
<td></td>
<td>49 Disable Length Measurement</td>
</tr>
</tbody>
</table>
Figure 7. MILES Transducer Interface, Simplified Functional Diagram
Resistance

The test set measures resistance with the DMM connected through channel 3 and
the common return of power supplies 1, 2, and 3. Energizing K4 shorts these
two terminals, allowing the DMM to read the resistance of the slip rings.
Energizing K5 connects the sense winding to the DMM with the other end return-
ing through the core and the common side of the amplifier circuit. Energizing
K5 and K6 connects the DMM from the sense winding to the shield to measure
insulation resistance. K6 opens the return path from the sense winding,
allowing the common of the isolated power supply to rise above the common line
connected to the shield.

Null

The test set detects sense winding transpositions by inducing a 100-Hz signal
into the sense windings through a null coil and measuring the effect of the
phase shift as the transposition goes through the null coil. The output of
the sense winding bypasses the preamplifier and postamplifier through relays
K1, K7, and K8. The buffer amplifier sends the signal to a bandpass filter
which restricts the signal to a band between 30 and 150 Hz. That signal and
its inverse then go to a synchronous demodulator, where an FET switch control-
led by a 100-Hz squarewave signal alternately selects the output of the filter
and its inverse. A short time-constant filter removes the glitches from the
selected signal, which then goes to channel 0 as Null. Figure 8 illustrates
the results of this signal processing. The null coil excitation is a triangu-
lar waveform that peaks at the same time that the sync signal switches the
demodulator. As a transposition approaches the null coil, the induced voltage
decreases in amplitude, and there is a phase reversal as the transposition
goes through the null coil. The demodulated signal, therefore, reverses
polarity at that point. A 5-microsecond negative pulse, which is formed from
the transition of the sync signal, triggers the SVM to read the voltage at
each peak of the resulting null signal for maximum signal-to-noise discrimina-
tion. The change in polarity signifies the transposition. The illustrated
waveforms are idealized for clarity. Also, the filters introduce a slight
delay in the detected signal; the program compensates for this by introducing
a corresponding delay in the voltmeter reading.

TESTER INTERFACE

Figure 9 illustrates the simplified functional interface between the console
and the tester. Scanner relays control the circuit configuration. Written
above each relay is the channel number by which the computer selects that
relay. Each channel has two relays, and the letter A or B preceding the
contact number distinguishes the relay. Often, however, only one of the
relays in a given channel is used.

Length Measurement

An advancing MILES cable turns the wheel of a shaft encoder assembly, which
generates a hundred 5-volt pulses per inch of advance. This output signal,
Motion, is the input to the length measurement circuit. Unless inhibited by
channel 49 (disable = 0), a gate transfers the input signal to a frequency-to-
voltage converter and to a divide-by-five counter. The output of the converter
Figure 8. Null Detection Waveforms
Figure 9. Tester Interface, Simplified Functional Diagram
is a voltage that represents the velocity of the unit under test. The output of the divider increments a modulo 1024 counter. A digital-to-analog converter converts the count in the modulo 1024 counter to a voltage that represents the length of the unit under test in increments of 51.2 inches. The program accumulates the multiples, as the length indication rises 1 volt for each 5.12 inch increment of forward motion. The SVM reads length or velocity through channel 1 or 2, as directed by the program, and the program disables the input through channel 49 to prevent noise when the MILES cable is stopped.

Magnetic Signal Generation

The magnetization routine saturates the field coils by connecting the coils in series through channel 34 to a 30-volt source and a set of calibration resistors that limit the magnetization to 10 oersteds. The routine then switches in another set of calibration resistors through channel 35 and opens channel 34 to reduce the magnetization to 0.25 oersted. This routine establishes a defined field bias for the sensitivity tests.

Figure 10 is a simplified illustration of the magnetization process. The calibration resistors and the field coil circuit are shown in Figure 9. A 1-Hz oscillator generates the 5-volt peak sinusoidal signal that is the calibration input to the sense amplifiers. This same 1-Hz signal modulates the field coils during the magnetic sensitivity test. A coil driver applies the modulation signal through scanner channel 28 and a calibration resistor to the center of the two field coils. The return path is through the power supply. The calibration resistor ensures that the 1-Hz signal varies the magnetic field 100 gamma peak about the 0.25 oersted bias.

A 100-Hz oscillator generates the triangular excitation signal and the square-wave sync signal described above. A coil driver applies the excitation signal through scanner channel 41 to the null coil.

Correlation

To measure the sensitivity of the MILES transducer to controlled mechanical and magnetic disturbances, the test set reduces spurious responses by band limiting in the low level circuits, cross-correlating the resulting sense signal with a synchronous mechanical or magnetic reference, and averaging the result over a period of several seconds.

Correlation reference circuits establish a magnetic reference through scanner channel 42 or a mechanical reference through scanner channel 43. The magnetic reference signal source is the output of the 1-Hz driver. The mechanical reference signal source is the force transducer, which produces a 1-Hz signal as a result of the stress imposed by the 1-Hz modulation motor. The selected 1-Hz signal goes through a 2-Hz low pass filter and a buffer amplifier to a magnetic reference circuit and to a mechanical reference circuit.

The amplitude and phase of the output of each of these correlation reference circuits are adjusted to match those of the sense signal. The scanner channel that selects the input to the reference circuit also selects the output. The correlator multiplies the selected reference signal and the sense signal, scales the product, and averages the product over a period of several seconds.
Figure 10. Field Magnetization Curve
to produce the correlated sense signal. This output equals the product of the peak amplitude of each input divided by 20 and multiplied by the cosine of the phase angle between them.

Figure 11 illustrates the characteristics of the interface signals.

INPUT DATA SELECTION

Figure 12 is a simplified representation of the data acquisition input circuit. The numbers in parentheses are those used by the program to address the particular device on the computer interface bus. To read resistance, for example, the computer signals unit 709 to set up a relay configuration that places the resistance to be measured between the channel 3 input and the common return and to close channels 3 and 47. The computer then sends a trigger signal and a read command to 723 and stores the result.
Figure 11. Interface Signals
Figure 12. Input Data Selection
SECTION V
TEST SET VERIFICATION

PURPOSE

Both of the TS-3753/U Transducer Test Sets were tested at the contractor site. These tests were designed to demonstrate or verify that the systems would indeed perform the functions set forth in the statement of work.

VERIFICATION TESTING

Verification was performed in accordance with Acceptance Test Procedures. Since these procedures were not formally submitted under this contract, they have been included as attachments to this document. Also contained in the attachments are the actual data sheets and computer printouts. Attachment 1 is for test set serial number 1 and Attachment 2 is for serial number 2.

The tests are listed in section 4 of the ATP. The data sheets and printouts are referenced by paragraph numbers to the pertinent ATP test.

Also contained in the last printout are the results of the test witnessed by the Government representative.

RESULTS

The results of verification testing indicate that the test set performed in accordance with design requirements.

CONCLUSIONS

The TS-3753/U Transducer Test Set provides an effective means for testing the MILES transducer. The unit fulfills design requirements in that it:

1. Provides repeatable results in the measurement of the MILES transducer parameters.
2. Provides a high degree of confidence in the condition of the tested transducer.
SECTION VI
REFERENCES

APPENDIX A

AUTO TEST FLOW CHART
Sequence Display Test Preparation Instructions

1. Input today's date.
2. Input serial number of unit.
3. Choose automatic (A) or manual (M) position selection.

- If A: Enter test positions 10, 40, 80, 80.
- If M: Enter number of test positions, \(n \), where \(1 \leq n \leq 83 \).
 - Enter first position, \(n_1 \), where \(3 \leq n_1 \leq 85 \).
 - Enter successive positions, \(n_i \), where \(n_{i-1} \leq n_i \leq 85 \).

4. Automatic sequence control: automatic, yes or no.

- If automatic, yes: Set flag for automatic sequencing.
- If automatic, no: Retain interactive sequence control.
- If not automatic: Yes, go back to automatic sequence control.
- If not automatic, no: No, end.

Figure A-1. Auto Test Program
Flow Chart (Sheet 1 of 6)
Figure A-1. Auto Test Program
Flow Chart (Sheet 2 of 6)
Figure A-1. Auto Test Program
Flow Chart (Sheet 3 of 6)
The subscripted parameters P_i and M_j refer to the pressure sensitivity and magnetic sensitivity, respectively, of the two transducer winding segments coincident on the ith transposition test point selected. The subscripted parameter L_i refers to the distance between transposition $i-2$ and $i-1$ where transposition 1 is located between the first and second transducer winding segments.
Figure A-1. Auto Test Program
Flow Chart (Sheet 5 of 6)
Figure A-1. Auto Test Program Flow Chart (Sheet 6 of 6)
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Offpage Connector</td>
<td>The racetrack symbol signifies beginning or end of a program.</td>
</tr>
<tr>
<td>Start or Terminate</td>
<td>A rectangle contains one or more instructions.</td>
</tr>
<tr>
<td>Process</td>
<td>A diamond signifies alternate paths in a program sequence.</td>
</tr>
<tr>
<td>Decide</td>
<td>A pointed rectangle signifies an instruction that modifies other instructions.</td>
</tr>
<tr>
<td>Modify</td>
<td>The square signifies a supplementary operation that is not under program control.</td>
</tr>
<tr>
<td>Process Offline</td>
<td></td>
</tr>
<tr>
<td>Input-Output Symbols</td>
<td></td>
</tr>
<tr>
<td>Input from Keyboard</td>
<td></td>
</tr>
<tr>
<td>Display</td>
<td></td>
</tr>
<tr>
<td>Print Out</td>
<td></td>
</tr>
</tbody>
</table>

Figure A-2. Definition of Symbols
APPENDIX B

AUTO TEST PROGRAM LISTING
47: It G# = "M";
#ab "MANUAL"
16: It G# = "n"
#ab "MANUAL"
19: ent "INPUT"
AUTOMATIC SEQUE
NCING "Y/N":GI;
if G#="T":Jump 0
20: It G##="Y";
if G##="Y":It
G##="N":It G##=n
"Jump -1"
21: It G# = ":"
#ab "AUTOMATIC
OPERATION SELEC
TED":beefIt:"YES"
-#G##
22: It G# = "Y"
#ab "AUTOMATIC
OPERATION SELEC
TED":beefIt:"YES"
-#G##
23: #ab "PRESS
MOTOR CONTROL
START BUTTON":#ab
24: prn "::::::
:::;::
..."
25: #ab "measure
res"
26: beepIt2=20t
r3=r30
27: #ab "INITIAL
POS. PRESS CONT
INUE":beefIt;
G##="YES";#ab
28: #ab "find
transmission
2"
29: #ab "N POSIT
ION PRESS
CONT":beefIt;
if G##="YES";
30: for I=1 to N
31: #ab "POSITION
N #:I":IN
32: #ab "FIN"
33: next I
34: #ab "FINAL
POSITIONING":
beefIt G##="YES"
35: #ab "final"
-#E#
36: #ab "final
positioning"
37: beep
38: #ab "READY"
FOR REWIND":It
G##="YES":beef
39: #ab "rewind"
40: #ab "READY
FOR DATA REDUC
ITION":beefIt
G##="YES":#ab
41: #ab "measure
res"
42: #ab "data
reduction"
43: #ab "END"
44: #ab "measure
res"
45: #ab It2=20t
r3=r30
46: #ab "FIN
END OF TEST
 Fully
"beefIt
47: beep
48: '#ab "measure
res"
49: #ab "RES.
MEASUREMENT
ROUTINE":CON'T It
beefIt G##="YES"
50: #ab "RES.
MEASUREMENT IN
PROCESS"
51: for X=1 to 3
52: if X=1:It
709+"C":313245
4703#
53: if X=2:It
709+"C":313244
4703#
54: if X=3:It
709+"C":303244
4703#
55: cIt 723:wait
500
136: if V = .061
137: jmp -1
138: red 724+r4
139: red 724+r5
140: if 4+r5+red -1
141: red 724+r
142: if V <4:0
143: "found null
read length":
144: urt 709
"C"="4601"
145: asb "length measurement"
146: L-W
147: ret
148: "final positioning":
149: "6=N[I][IN+1]
150: pr "FINAL POSITION"
151: asb "N[I]
positioning"
152: pr
153: "remind":
154: "clear":urt 709,"C"
155: I+Kwait
500
156: urt 724,"P371"
157: "measure
final length":
158: "setup rew
load motor":urt
709,"3+3739"
159: "setup rew
load motor":
160: asb "length measurement"
161: L-W=0
162: ret 2+4.0;
163: 2100+A
164: "turn on
remind motor":urt
709,"3+39173
01114,4446
165: "measure
L":asb "length
measurement"
166: dbm "CABLE
LENGTH = "2+0-
L-W." IN.
167: if L-W+300:
2+0-3+K
168: if L <2+0 -
250urt 709,"C":
169: if A <2998:
2998+A
170: if A <2200:
2200+A
171: A+A+H
172: urt 706.2+A
173: goto "measur
L"
174: ret
175: "MANUAL":
176: dbm "MANUAL
TEST POINTS
SELECTION":beep
177: dbm "TWO
TEST POINTS
MINIMUM":beep;
178: ent "INPUT
OF DESIRED
TEST POINTS":N;
beep:N+1
179: if N =84:
180: goto "one test pt
load motor":urt
709,"3+3739"
181: for I=1 to
N
182: beep
183: if #11: jmp
2
184: ent "INPUT
FIRST TEST PT
LOCATION":N[1]
185: if 1=I: jmp
2
186: ent "INPUT
LAST TEST POINT
LOCATION":N[11]
187: if I=11: jmp
5
188: if I=11: jmp
2
189: ent "INPUT
NEXT TEST POINT
LOCATION":N[11]
-11: jmp 2
191: beep:dbm
"TEST PT MUST
EXCEED PREVIOUS
PT TEST FREQ":
192: if N[1]>86:
dbm "FIRST TEST
POINT MUST BE
>2"beep:dbm
193: if N[1]=86
194: next I
195: ret
196: "one test
pt":
197: ent "INPUT
TEST POINT LOCA
TION":N[1]
198: if N[1]<2:
dbm "TEST POINT
MUST BE >2":
beep:dbm
199: jmp 2
200: if N[1]=86:
dbm "TEST POINT
MUST BE >8":
beep:dbm
201: auto:hop
202: dbm "AUTOMATIC
TEST MODE SELECT
ED":beep:dbm
203: dbm "PTS":
10.40.60.80.
WILL BE TESTED":
beep:dbm
204: 10=N[1];
40+N[216]+N[3]
780+N[4]
205: 4=N
206: ret
207: "transpose
ion test":
208: wtr 709;"C"
209: wtr 709;
"46"
210: wtr 706;
"2000"
211: dsp "N POSI
TIONING "bep
lif G##"YES";
stp
212: for I=1 to
N
213: asb "N[11]";
positioning"
214: beep
215: next I
216: dsp "FINAL
POSITIONING "bep
lif G##"YES";
stp
217: "clamping
sequence":dsp
"CLAMPING PROCE
DURE IN PROCESS"
218: wtr 709;
"C"; 1.494602
219: "is velocity
r=0":wtr 50
220: tr 724
221: red 724+V
222: if I<1.05;
I<1
223: wait 1000
224: "zero mech"
wait 750;wtr
709; "251wtr
709; "4.49"
225: "close stat
ary":wait
750;wtr 709;
"20"
226: "close tens
ion":wait
750;wtr 709;
"21"
227: "open tens
ion":wait
750;wtr 709;
"22"
228: "close tens
ion brake":wait
750;wtr 709;
"23"
229: "relax tens
ion":wait
750;wtr 709;
"24"
230: "close cent
er clamp":wait
750;wtr 709;
"25"
231: "relax zero
mech":wait
750;wtr 709;
"26"
232: ret
233: "unclamping
sequence":dsp
"UNCLAMPING
PROCEDURE IN
PROCESS"
234: wait 1000
235: "open center
clamp":wtr
709; "2-,20212325"
236: "open/ zero
mech":wait
1000;wtr 709;
"2-,20212325"
237: "open tens
ion brake":clam
p;wait 1000;
wait 709; "2-,20212325"
238: "open stati
onary":clam
p;wait 1000;
wait 709; "2-,20212325"
239: "open center
clamp":wait
1000;wtr 709;
"2-
204: 10=N[1];
40+N[216]+N[3]
780+N[4]
205: 4=N
206: ret
207: "transpose
ion test":
208: wtr 709;"C"
209: wtr 709;
"46"
210: wtr 706;
"2000"
211: dsp "N POSI
TIONING "bep
lif G##"YES";
stp
212: for I=1 to
N
213: asb "N[11]";
positioning"
214: beep
215: next I
216: dsp "FINAL
POSITIONING "bep
lif G##"YES";
stp
217: "clamping
sequence":dsp
"CLAMPING PROCE
DURE IN PROCESS"
218: wtr 709;
"C"; 1.494602
219: "is velocity
r=0":wtr 50
220: tr 724
221: red 724+V
222: if I<1.05;
I<1
223: wait 1000
224: "zero mech"
wait 750;wtr
709; "251wtr
709; "4.49"
225: "close stat
ary":wait
750;wtr 709;
"20"
226: "close tens
ion":wait
750;wtr 709;
"21"
227: "open tens
ion":wait
750;wtr 709;
"22"
228: "close tens
ion brake":wait
750;wtr 709;
"23"
229: "relax tens
ion":wait
750;wtr 709;
"24"
230: "close cent
er clamp":wait
750;wtr 709;
"25"
231: "relax zero
mech":wait
750;wtr 709;
"26"
232: ret
233: "unclamping
sequence":dsp
"UNCLAMPING
PROCEDURE IN
PROCESS"
234: wait 1000
235: "open center
clamp":wtr
709; "2-,20212325"
236: "open/ zero
mech":wait
1000;wtr 709;
"2-,20212325"
237: "open tens
ion brake":clam
p;wait 1000;
wait 709; "2-,20212325"
238: "open stati
onary":clam
p;wait 1000;
wait 709; "2-

270: "magnetic
data collection
"disp "DATA
COLLECTION IN
PROCESS"
271: "prepare to
gain mode": wait
500

272: "turn on
1Hz field":
273: "set up
magnetic correla-
tion":
274: wrt 709,"4,
42444649,283133
3584"
275: wrt 724,
"T2"
276: 0+[M100]
wait 30000
15000
277: for 0=1 to
100
278: red 724+V
279: V+[M100]+M[100]
100]
280: wait 200
281: next D
282: M100]/100+
283: "turn off
all fields":
284: wrt 709,"2,
2021232449E":
wait 100iurt
709,"4,4449E"
285: ret
286: "M[1] posi-
tioning":
287: "clear"urt
709,"0"
288: "turn on
motor":
289: "close ad-
ance clutch":
290: "turn on
null coil":
291: "preamp to
null mode":
292: wrt 709,"1,
0013;35303338i
4,414446"
293: wrt 706,
"2100"wait
2008wurt 709,
"4,414446"
294: "set up
SV":urt 724,
"D.0015S+N15;
T2;F5"
295: "accelerate
advance motor":
296: fmt 2+:f4,0,
z1200+A
297: "acc motor"
:
298: "is measure-
ment null near"

299: wrt 706.2+A
300: "read length
h:gsb "length
measurement"
301: "is null
near"if L-W-
[L[1]251gsb
"null detect"
302: fmt 5+:"TRAN
SPOSITION #1",
t2.0;" LENGTH
= "+5.1
303: if T>=2;
304: if A<2998;
305: R+1AGto
"acc motor"
306: "return":wr-
t709,"0"
307: ret
308: "length
measurement":
309: wrt 724,
"R3":urt 709,
"01":wait 5
310: trq 724
311: red 724+r9
312: trq 724
313: red 724+V
314: if obsV-
r9<.5;jmp -4
315: 5,12+V+V
316: if V<.9*B;
sto "add 51.2
inches"
317: V+B151.2*M+
V+L
318: ret
319: "add 51.2
inches":
320: V+B1M+1+M;
51.2*M+V+L
321: ret
322: "null detec-
t":
323: "set up
SV":urt 724,
"D.0015S+N15;
T2;F5"
324: wrt 709,
"00"
325: "cal null":
wait 5
326: red 724+r5
327: red 724+R6
328: red 724+r7
329: (r5+r6+r7)/
3+R5
330: red 724+V
331: if V/r5>0;
332: gsb "length
measurement"
333: L-W+L[T]:T+
1+T
334: beep
335: ret
336: "test null"
;
337: fmt 5+:"SEEK
ING POSITION
#",f2, FOR
TESTING"
338: wrt .5+N[11]
339: if B$="find
1"disp "SEEKING
FINAL POSITION
"
340: fmt 2+:f4,0,
341: wrt 724,
"T2"
342: "slow down
motor":urt 706,
2+A
418: "calculate MAG std deviation":
419: 0=M[99]
420: for C=1 to N
421: M[99]+=obs: M[C]-M[100] 112 -M[99]
422: next C
423: obs=(M[99])
424: 1N-1-M[99] 12
425: "calculate distance between n transactions & mean":
426: 0-L[100]:
427: W=L[0]
428: for C=1 to T-2
429: L[C+1]=L[C] +L[100]-L[100]
430: next C
431: 0-L[100]
432: for C=1 to T-2
433: L[C]=L[C]+obs: L[C+1]-L[C]-L[100]-L[99]
434: next C
435: obs=L[99]
436: IT-3=L[99]
437: "test P. E mean":
438: 1r obs=P[10]
439: 01-13=M[10] 12 -M[99]
440: "test MAG mean":
441: 1r obs=M[10]
442: "test MAG std deviation":
443: 11 M(99) .05E+1-E
444: "test total # of transactions":
445: if obs<T-
446: "test distance between transactions & mean":
447: if obs[L10]
448: "test distance between transactions std deviation":
449: if L[99] 11
450: "test distance between transactions":
451: for C=1 to T-2
452: if obs[L[C]+
453: next C
454: "test cable length":
455: if obs=O-
456: "test DCP change": if obs
457: "test IR change": if obs
458: "print results":
459: "end test":
460: "end test":
461: for C=1 to 12
462: print 16.4,9, P(99)
463: if C="y":
464: "MAG data results":
465: if C= "y":
466: "end":
467: "end":
468: "end":
469: "end":
470: "end":
471: "end":
472: "end":
473: "end":
474: "end":
475: "end":
476: "end":
477: "end":
478: ret
479: "low magnet ic sensitivity":
480: for Y=1 to 200
481: "end FETEST MAGNETIC TEST":
482: "input Y .h":
483: if C="y":
484: "FETEST":
485: if C="y":
486: "FETEST"
484: END "SEN. FAILUE"
485: "Increment # of defects":E +1= E
486: END "TEST END"
487: ret
488: "RETEST"
489: sub "function ring sequence"
490: "For ready:
491: press CONT"
492: beep
493: sub "claiming sequence"
494: writeln "30333435E"
495: writeln "1000"
496: writeln "3335E"
497: goto "magnet test"
498: ret
499: "low pressure sensitivity"
500: for i=1 to 2000:beep
501: "input test"
502: "RETEST"
503: writeln "INPUT: N":C1
504: if C1="*
505: goto "retest"
506: if C1="V
507: goto "retest"
508: writeln "BAD P S":E 1= E
509: writeln "increment # of defects":E +1= E
510: "detect list"
511: "for C=1 to"
512: 100:beep
513: "END"
514: writeln "************
515: writeln "TRANSDUCER"
516: writeln "FAILING ****
517: writeln "TOTAL DEFECTS"
518: writeln "DEFECT LIST"
519: "test DCP"
520: if obs=1
521: writeln "CHANGE IN DCP"
522: if obs=2
523: writeln "CHANGE IN IP"
524: for C=1 to N
525: if obs=obs1
526: writeln "BADD P S"
527: writeln "BADD P S MEAN"
528: if obs=obs2
529: writeln "BADD P S MEAN"
530: writeln "STD P S"
531: writeln "STD P S MEAN"
532: for C=1 to N
533: if abs(L[C+1]-L[C])>43:1:1:
 print "DISTANCE BETWEEN TRPF INCOMPLETE AT":C
534: next C
535: if abs(L[101]-L[99])>43:1:1:
 print "HIGH DISTANCE":print "BETWEEN TRP MEAN"
536: if abs(L[100]-L[99])>43:1:1:
 print "INCORRECT POSITIVE TRANSITION"
537: next C
538: if abs(L[99]-L[98])>43:1:1:
 print "HIGH DISTANCE":print "BETWEEN TRP TRANSITION"
539: next C
540: for C=1 to N
541: if abs(L[C+1]-L[C])>43:1:1:
 print "DISTANCE BETWEEN TRPF COMPLETE AT":C
542: next C
543: if abs(L[101]-L[99])>43:1:1:
 print "HIGH DISTANCE":print "BETWEEN TRP MEAN"
544: if abs(L[100]-L[99])>43:1:1:
 print "INCORRECT POSITIVE TRANSITION"
545: next C
546: if abs(L[99]-L[98])>43:1:1:
 print "HIGH DISTANCE":print "BETWEEN TRP TRANSITION"
547: next C
548: if abs(L[98]-L[97])>43:1:1:
 print "INCORRECT NEGATIVE TRANSITION"
549: next C
550: if abs(L[97]-L[96])>43:1:1:
 print "INCORRECT NEGATIVE TRANSITION"
APPENDIX C

PREAMP CALIBRATION PROGRAM LISTING
0: err PREAM-
CAL
1: rem 724
2: wri 724, D.00
.15+$38.728
3: wri 709,"C",
"3133444605"
4: dati TERMINAT
E PREAMP INPUT
5: dati "ALLOW
PREAMP TO WARM
UP FOR 2HR"
6: dati "ADJUST
P30 UNTIL EEPROM
THEN STOP"
7: "start"
8: for N=1 to
1000
9: wait 20
10: trn 724
11: red 724+1V
12: V+4R
13: dati "VOLTMET
EP READING ="
14: next N
15: A,N-A
16: if abs(A).0
20+40+A to "start"
17: for N=1 to
500;beep;wait
20;next N
18: wri "OFFSET=
"+A
19: dati "GAIN
CHECK";0+40+40
20: dati "ATTACH
SCOPE PB TO
OSC BD TER #4:
E+40
21: dati "ATTACH
GROUND LEAD TO
#22"+40
22: dati "ATTACH
OTHER PROBE
TIP TO JB1 #5:
E+40
23: wri 709,"B"
3133,4+5456,
05E"
APPENDIX D

FUNCTIONAL TEST PROGRAM LISTING
55: dsn "RES.
MEASUREMENT IN
PROCESS"
56: if x=1 to 3
57: if x=2
709: "C" * 13244
709: "C" * 13244
4703
58: if x=2
709: "C" * 13244
709: "C" * 13244
4703
59: if x=2
709: "C" * 13244
709: "C" * 13244
4703
60: clr 7224 red
500
61: if x=2
red
500
62: clr 7224 red
500
63: clr 7224 red
500
64: mov [0 likeness=101
65: if y=1 likeness=0
66: if y=3 likeness=3
67: if y=5 likeness=5
68: mov
69: "SLIPPING
MEASUREMENT":
70: r1+5
71: if x=2 goto "BAD SLIPPING"
72: goto "DCR"
73: "BAD SLIPRING";
74: "DEFE
CTIVE "Print"
SLIPPING"
75: print " TEST
AROINT";
76: dsn "****
DETECTIVE SLIFF
INGS "****
77: for 0=0 to
200
78: beep= 50
79: next 0
80: end
81: "DCR";
82: dsn " CABLE
RES. MEASURE
IN PROCESS";
83: if obt inspector-1
2651/20!goto
"BADDCR"
84: if obt 6."DCR
= "+(3,0)" "b
85: out 16.6 r2:
17
86: "IP MEASURE
MENT";
87: if r3 1.47;
88: goto "BADIR"
89: if r3 1.97;
90: out 6."IP = "+(9.0) "b
91: out 16.6 r3;
92: ret
93: if r4; goto "RETEST"
94: goto "DCR INPUT Y/N"
95: if a$"Y":
96: if a$"N":
97: goto "TESTFA
IL"
98: print "RES.
RETEST"
99: goto "measure
print"
100: ret
101: "BADDCR":
102: for i=1 to
2000; beep= 50
50: inc I:
103: if obt "FETEST
CABLE DCRIIP"
" INPUT Y/N" a $
104: if a$="Y":
105: if a$="N":
106: goto "TESTFA
IL";
107: print "RES.
RETEST"
108: goto "measure
print"
109: ret
110: urt 16."#"
OF FAILURES": E;
111: dsn "<<<
TRANSUDER TEST
FAILED >>>"
112: beep
113: end
114: "BADDOR":
115: ent "RETEST
DCR INPUT Y/N"
9. A$
116: if a$"Y":
117: if a$"N":
118: goto "dorset t"
119: ret
120: "BADIR":
121: ent "RETEST
DCR INPUT Y/N";
122: if a$"Y":
123: if a$"N":
124: goto "testfa
IL"
125: goto "testfa
IL"
126: "find trans
position 2":
127: dsn "SEEKIN
G INITIAL POSI
TION"
128: urt 706;
129: "2000"
130: "close adj
clutch":
131: "set r preload
" to null mode":
132: "1n/sec
to end motor":
133: "turn motor
on":
134: ret 4+c2
59
135:
136:
137:
138:
139:
140:
141: if V>0.064
142:
143:
144:
145:
146:
147: if V<4.01
148:
149:
150:
151:
152:
153:
154: ^6-N[I]NN+
155:
156:
157:
158:
159:
160:
161:
162:
163:
164:
165:
166:
167:
168:
169:
170:
171:
172:
173:
174: if L>2999:
175:
176:
177:
178:
179:
180:
181:
182:
183: if N=86:
184:
185:
186:
187:
188:
189:
190:
191:
192:
193:
194:
195:
196: if N[I]<24:
197: if N[II]>86:
198: next 1
199:
200:
201:
202: if N[I]<24:
203: if N[II]>85:
204: ret
205: "AUTO";
206: dsp "AUTOMAT
207: "MODE SELECT
ED";beep
208: 10+M[1];
209: 4+N
210: "transpo
tion test";
212: writ 709,"C"
213: writ 709,"46"
214: writ 706,"2000"
215: dsp "H POSSI
216: for I=1 to N
217: gab "H[I]
positioning"
218: beep
219: next I
220: dsp "FINAL
POSITIONING";
221: "clamping
sequence";dsp
"CLAMPING PROCE
DURE IN PROCESS
".
222: writ 709,"C","494102"
223: "is relocat
ed";wait 50
224: tre 724
225: red 724+V
226: if V>.005
227: wait 1000
228: "zero mech
";wait 750;writ
709,"25";writ
709,"4.49"
229: "close stat
tonar";"wait
750;writ 709,"20"
230: "close tens
ton clamp";wait
750;writ 709,"21"
231: "apply tens
ton ion preset
709";"22"
232: "close tens
ton brok";wait
750;writ 709,"23"
233: "relax tens
ton ion preset
709";"24"
234: "close cent
er clamp";wait
750;writ 709,"24"
235: "relax zero
mech";wait
750;writ 709,"24"
236: ret
237: "unclamping
sequence";dsp
"UNCLAMPING
PROCEDURE IN
PROCESS"
238: wait 1000
239: "open cen
ter clamp";writ
709,"2";202123
240: "open zero
mech";wait
1000;writ 709,"2",
"2";28212325
241: "open tens
don brok clamp
";wait 1000;writ
709,"2";2025
242: "open start
motor clamp";wait
1000;writ 709,"2",
"2";25
243: "open cente
er clamp";wait
1000;writ 709,"2",
"2"
244: wait 1000
245: writ 709,"C"
246: wait 500
247: ret
248: "field bias
";dsp "BIAS
FIELD APPLICATI
ON"
249: "preamp to
null mode"
250: "10 aerated
to bias coil
10"
251: writ 709,"3"
252: wait 1000
253: "remove 10
aerated field"
254: ".25 aera
ted to field coil
s 102"
255: writ 709,"3",
"300335"
256: wait 1000
257: ret
258: "pressure
data collection"
259: "DATA
COLLECTION IN
PROCESS"
260: "turn on
1Hz motor"
261: "set up
pressure correla
tion"
262: writ 709,"3",
"3013354344460
40"
263: writ 724,"12"
264: 0=wait
3000;wait 3000
265: for Q=1 to
100
266: red 724+V
267: V+P
268: wait 200
269: next U
270: P.100+P[I];
271: "turn off
1Hz motor":
272: wut 709,"2,+
2021232449E"
273: ret
274: "magnetic
data collection
"dsp" DATA
COLLECTION IN
PROCESS"
275: "preemp to
gain mode":wait
500
276: "turn on
1Hz field"
277: "set up
magnetic correla-
tion":
278: wut 709,"4,
42444649-2833333
3504E"
279: wut 724,
"T2"
280: 0+M[I]011;
wait 30000;wait
15000
281: for 0=1 to
100
282: red 724;V
284: wait 200
285: next 0
286: M[I]+1001-
M[I]1+1414+M[I]
+M[I]1
287: "turn off
calls fields":
288: wut 709,"2,+
2021232449E"
wait 100+wut
709,"4,449E"
289: ret
290: "ML1 posit-
ioning"
291: "clear";wut
709,"C"
292: "turn on
motor":
293: "close adva-
nce clutch";
294: "turn on
null coil":
295: "preemp to
null mode":
296: wut 709,1,
0.3363033383
4:144446
297: wut 706,
"2100";wait
2000+wut 709,
"4,144446"
298: "set up
SVN">wut 724,
"D.0015S;N15;
T2.R3"
299: "accelerate
advance motor"
;:
300: fmt 2,+4.0,
22100+R
301: "acc motor"
;:
302: "is measure-
ment null near"
;:
303: wut 706.2+R
304: "read length
h":;sb "length
measurement"
305: "is null
near":if L-W-
L[T-1]:25;sb
"null detect"
306: fmt 5."TRAN
POSITION ";
;f2.0:;" LENGTH
= "rf5.1
307: if T=23
308: if H=2998:
309: H=1+R;sto
"acc motor"
310: "return";wut
709,"C"
311: ret
312: "length
measurement":
313: wut 724,
"PR">wut 709,
"O1";wait 5
314: trg 724
315: red 724;r9
316: trg 724
317: red 724;V
318: if abs(V-
R9)>0.5;jmp -4
319: 5.12+V+V
320: if V<.968;
sto "add 51.2
inches"
321: V+B151.2*M+
V+L
322: ret
323: add 51.2
inches:
324: V+B1M+1+M
51.2*M+V+L
325: ret
326: "null detect"
;
327: "set up
SVN">wut 724,
"D.0015S;N15;
T2.R1"
328: wut 709,
"00"
329: "call null";
wait 5
330: red 724,r5
331: red 724,r6
332: red 724,r7
333: (r5+r6+r7)/
3+5
334: red 724;V
335: if V/r5>0;
jmp -1
336: sb "length
measurement"
337: L-W"L[T]"T+
1+T
338: beep
339: ret
340: "test null"
;:
341: fmt 5."SEEK
ING POSITION ";
;f2.0:" FOR
TESTING"
342: wut .5;N[I]
343: if B$="final
1";disp "SEEKING
FINAL POSITION
".
344: fmt 2, +4.0w
345: urt 724,
"T2"
346: "slow down
motor";urt 706,
2,A
347: "read veloc
ity";urt 709,
"02"
348: A-7+Aiif
A<210812100+A
349: trg 724
350: red 724+V
351: if V1>1;sto
"slow down moto.
"r"
352: gsb "length
measurement"
353: "near null"
;if L(1)=1+30<L

-WH;jmp -1
354: "slow down
";urt 706,"2050"
355: gsb "null"
356: "advance 2
inches to cente.
r clamp"
357: "read initia.
1 length";gsb
"length measure
ment"
358: L+R-W+L(1)
T+1+T
359: if B$="final
1";ret
360: urt 709,
"3638"
361: "add 2 inch.
es to length";
362: gsb "length
measurement"
363: if L-R<1.9;
JMP -1
364: urt 709,
"3E"
365: "TEST ST":;i
f G$"YES";disp
"PRESS CONT"

TO CLAMP CABLE
beepstp
366: gsb "clamp
sequence"
367: if G$"YES"
1;disp "PRESS
CONT" TO APPLY
FIELD BIAS";
beepstp
368: wait 2000
369: gsb "field
bias"
370: disp "READY
FOR P/S DATA";
beep; if G$"YES"
1;stp
371: wait 2000
372: fnt 5;"CABLE
TRANS."
373: urt 16.5,
M(II)
374: gsb "pressu.
re data collect
ion"
375: if abs(abs(P(II)-13)10001
sto "low pressu.
re sensitivity"
376: fnt 3,f5.1.

uv/lb"
377: prnt "PRESS
URE SENS."
378: urt 16.3,
P[1]
379: "magnetic
test";
380: disp "READY
FOR MAGNETIC
TEST";beep;wait
2000; if G$"YE
S";stp
381: gsb "magnet.
ic data collect
ion"
382: if abs(abs(P(II)-.2)10001
sto "low magnet.
ic sensitivity"
383: fnt 3,f5.2.

uv/gallon"
384: prnt "MAGNE
SEN S."
385: urt 16.3,
M[II]}
386: "TEST ED":;
387: gsb "unclam.
ping sequence"
388: gto "return
".
389: ret
390: "null";
391: urt 709,
"00"
392: urt 724,
"R1"
393: "wait 500
394: for X=1 to
10
395: red 724,V
396: V+j5-r5
397: next X
398: r5/10+r5
399: red 724,V
400: if V/r5>0;
JMP -1
401: urt 709,
"3E"
402: ret
403: "data reduc.
tion";
404: "calculate
P/S mean";
405: 0-P[100]
406: for C=1 to
N
407: P[100]+abs1
P[C]+P[100]
408: next C
409: P[100]/N+P[
100]
410: "calculate
P/S std deviati.
one";
411: 0+P[99]
412: for C=1 to
N
413: P[99]+abs1
P[C]-P[100]/12
+P[99]
414: next C
415: rabs(P[99]/
(N-1))+P[99]
416: "calculate
MAG mean";
417: 0+M[100]
485: "FETEST"
486: "MAGNETIC TEST"
487: "INPUT Y/N": C
488: if C="Y"
489: goto "FETEST"
490: if C="N"
491: goto "FETEST"
492: print "SEN. FAILURE"
493: "Increment
of defects": E
494: print "TEST ED"
495: if "FETEST"
496: print "MAGNETIC TEST"
497: print "PRESSURE TEST"
498: print "TEST ED"
499: print "TRANSUDER"
500: print "Test DCR"
501: print "CHANGE IN DCR"
502: print "Test IR"
503: print "CHANGE IN IR"
504: print "Test P/S
magnitude"
505: print "test P/S
mean"
506: print "BAD P/S
AT TRP +H[C]
507: print "BAD P/S
mean"
508: print "BAD P/S
mean"
509: print "BAD P/S
mean"
510: "retest"
511: print "unclm
 ping sequence"
512: goto "TEST
ST"
513: goto "FETEST"
514: print "correct"
515: print "TEST FAILURE"
516: for C=1 to 100; beep; echo C
517: print 41prt
""""""""""""""""""""""""""""""
518: print "**
TRANSUDER **"
519: print "****
FAILED

520: print "**
521: print 21prt
"TOTAL DEFECTS"
522: print 21prt
"DETECT LIST"
523: print "test DCR"
524: if abs(1-
r2/r201)>0.1:
525: print "CHANGE IN DCR"
526: if abs(1-
r3/r301)>0.1:
527: print "test IR"
528: for C=1 to 100;
529: if abs(obs
P[C]=13): 5
530: print "BAD P/S
AT TRP +H[C]
531: print "BAD P/S
mean"
532: print "BAD P/S
mean"
533: print "BAD P/S
mean"
534: print "BAD P/S
mean"
541: if M[9] r:
052: print "HIGH F"
553: print 0.05:
535: test mag
516: magnitude":
536: for C=1 to
537: if abs(M[C])<.21:
517: print "BAD MAG
518: AT TPP",M[C]
539: "test mag
540: mean":
541: if abs(M[10]
520: r103)=r104:
542: print " BAD MAG
543: MEAN"
544: "test mag
545: std dev":
546: if M[9]>r1
547: print "HIGH
548: MAG STD 0.0"
549: test dist
550: between trans.
551: for C=1 to
552: T-2
553: if abs(L[C+] 1]-L[C]-43)>1
554: print "DISTANCE
555: BETWEEN TPP INCO
556: PRECT AT +C"
557: next C
558: "test dista
559: nce between
560: trans. mean":
561: if abs(L[10]
562: r106)=r107:
563: print "HIGH
564: DISTANCE prop
565: "BETWEEN TPP
566: MEAN"
567: "test dis.
568: between trans.
569: std dev":
570: if L[9]>r1
571: print " HIGH
572: DISTANCE prop
573: BETWEEN TPP
574: S.D.
"
575: "test # of
576: trans.":
577: if abs(T-
578: 861)<r1:
579: INCOPPRT #
APPENDIX E

SCHEMATICS
Figure E-2. Preamp Schematic
FIGURE E-4. Amplifier, Mux, Null Detector Schematic
See Fig 7-4

See Fig 7-3
Figure E-5. MILES Transducer Interface Interconnection Diagram
NOTES:
1. Do select values during calibration of magnetic field intensity.
Figure E-6. Oscillators, A2 Board Schematic
Figure E-7. Coil Drivers
Al Board Schematic
MILES PRESSURE/SEISMIC RESPONSE ENGINEERING DEVELOPMENT OF MILE--ETC(U)
AUG 80 K J SUTHERLAND, T R CAVANAGH

RADC-TR-80-271
MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS 1963 A
+15 VDC \rightarrow T, U

GND \rightarrow R, S

-15 VDC \rightarrow V, W

C4 \rightarrow 0.1 \mu F

C5 \rightarrow 0.1 \mu F

SIG REF RTN \rightarrow 3, 4

SIG REF 1 VOLT/LB \rightarrow 1, 2

2 Hz, LOW PASS FILTER
31/2 ORDER BUTTERWORTH

U1

+15

-15

ANA RTN

RTN

RTN

OUT

GUARD

MP230-5

ANALOGIC

NC

NC

NC

OPTIONAL

GAIN SELECT

R2

100 K

1%

R3, 100 K

1%

R4

100 K

PHASE ADJ

R5

100 K

LEVEL ADJ

U3

AD510

C2

3.0 \mu F, 10%

C3

3.0 \mu F, 10%

\theta = -\text{ARC TAN} \left(\frac{2 \pi f RC}{1} \right)

\theta = -90^\circ \text{ or } f = \frac{1}{2\pi RC}

76
Figure E-9. Correlation Reference Circuit
A10 Board Schematic
Figure E-10. Correlator
A9 Board Schematic
MILES PRESSURE/SEISMIC RESPONSE

PHASE III

ACCEPTANCE TEST PLAN/PROCEDURES

S/N #001
TABLE OF CONTENTS

1.0 SCOPE

2.0 APPLICABLE DOCUMENTS

3.0 SYSTEM CALIBRATION

4.0 TEST PROCEDURES

5.0 QUALITY ASSURANCE PROVISIONS

Appendix I CALIBRATION DATA SHEETS

Appendix II TEST DATA SHEETS
1.0 SCOPE

1.1 Scope

This test plan establishes calibration procedures, quality inspections and test procedures, and performance requirements for factory acceptance of Transducer Test Set TS-3753/U&(). Test set performance will be verified on a standard transducer, Motional Pickup TR-299/G().

2.0 APPLICABLE DOCUMENTS

2.1 Government Documents

The following documents of the exact issue shown, form a part of this test plan to the extent specified herein. In the event of conflict between the documents referenced herein and the contents of this test plan, the contents of this test plan shall be considered a superseding requirement.

- Specification
 MIL-T-38531 Transducer, Motional Pickup TR 299/G()
 Amendment 3

- Standards
 Military
 Change B
 MIL-STD-143B Standards and Specifications, Order of Precedence for the Selection of.
 MIL-STD-810C Environmental Test Methods.

- Other Publications
 AFSC Design Handbook DH1-X. Checklist of general design criteria.
 PR #A-6-1353 Statement of Work, MILES Pressure/Seismic Response.
 Amendment 4
 S.O.W. CDRL MILES Pressure/Seismic Response, Operating Hazard Sequence #B003 Analysis, Phase II.
3.0 SYSTEM CALIBRATION

3.1 Test Device Set Up

Locate the test device in a lab area. Do not take special precaution to shield the test device from normal lab electrical and seismic noise. Reasonable caution shall be taken to insure that the test device is not located where the transducer conditioning and loading apparatus may be inadvertently bumped or exposed to magnetic materials in close proximity. Locate the test device electronics rack in a position where the operator has a clear view of the transducer conditioning and loading apparatus. Connect all interface cables.

3.2 Calibration Test Equipment

Laboratory test equipment of the exact model number or equivalent specified on the calibration equipment data sheet shall be used. Record the lab equipment calibration dates.

3.3 Test Device Calibration

Calibrate the test device to within the specifications listed on the test device calibration data sheets. Record the calibration values. Refer to the test set maintenance manual for additional information on system calibration.

4.0 TEST PROCEDURES

4.1 Standard Test Transducer

The tests called out in this section shall be run on Transducer, Motional Pickup TR-299/G(), Serial No. O O / . The test procedures are called out on the test data sheets.

4.2 Automated Data Acquisition and Sequence Control Operation

4.2.1 Manual Sequencing, Manual Test Point Selection

a. Software
b. Sequence Control Smoothness
c. Test Time
d. Rewind Time
4.2.2 Manual Sequencing, Automatic Test Point Selection

- Software
- Sequence Control Smoothness
- Test Time
- Rewind Time
- Positioning Accuracy
- Display Clarity
- Data Clarity
- Transducer Damage Inspection

4.2.3 Automatic Sequencing, Manual Test Point Selection

- Software
- Sequence Control Smoothness
- Test Time
- Rewind Time
- Positioning Accuracy
- Display Clarity
- Data Clarity
- Transducer Damage Inspection

4.2.4 Automatic Sequencing, Automatic Test Point Selection

- Software
- Sequence Control Smoothness
- Test Time
- Rewind Time
- Positioning Accuracy
- Display Clarity
- Data Clarity
- Transducer Damage Inspection
- Limit Switch
- Failure Mode

4.3 Measurement Accuracy

4.3.1 DCR (Direct Current Resistance), IR (Insulation Resistance)

- Measured Accuracy

4.3.2 Mechanical Response

- Repeatability

4.3.3 Magnetic Response

- Repeatability
4.3.4 Distance Between Transpositions
 a. Measured Accuracy

5.0 QUALITY ASSURANCE INSPECTION PROCEDURES

5.1 Quality Assurance Personnel

Honeywell designated quality control personnel shall perform the quality assurance inspections called out in this section. The quality assurance data sheets are in Appendix II.

5.2 Nameplates and Product Marking

Identification and marking shall be in accordance with the provisions of MIL-STD-130. Indicate conformance on the quality assurance data sheet.

5.3 Workmanship

All workmanship shall be in accordance with the Honeywell Sea, Air and Ground Workmanship Standard UED 23036. Indicate conformance on the quality assurance data sheet.

5.4 Test Set Performance Verification

Quality personnel shall verify the accuracy of the performance data collected in 4.0 and sign off on each data sheet.
APPENDIX I

CALIBRATION DATA SHEETS
Transducer Test Set TS-3553/U

Calibration Equipment Data Sheet

Serial Number 001
Date 3-24-80

<table>
<thead>
<tr>
<th>TEST EQUIPMENT LIST</th>
<th>CALIBRATION DATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Storage Oscilloscope 466 Tektronics</td>
<td>1/17/80</td>
</tr>
<tr>
<td>Fluke Model 8040A DMM Bell</td>
<td>2/13/80</td>
</tr>
<tr>
<td>Gauss Meter Model 640</td>
<td>1/16/80</td>
</tr>
</tbody>
</table>

Quality Assurance: ____________________________
Date ____________________________
Calibration Data Sheet

<table>
<thead>
<tr>
<th>Date</th>
<th>Sheet 2 of 7</th>
</tr>
</thead>
</table>

PRECALIBRATION CHECK LIST

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Plug in power cord from console.</td>
</tr>
<tr>
<td>2.</td>
<td>Mount the supply reel with the "standard MILES transducer" on the supply-rewind axle, with the connector end of the UUT facing the test chamber from the top of the reel. Unit Under Test.</td>
</tr>
<tr>
<td>3.</td>
<td>Ensure that the end of the UUT is secure, so it will stay in place as the reel is turned. Align the level winder by turning the reel manually until the level winder guide is in line with the end of the UUT.</td>
</tr>
<tr>
<td>4.</td>
<td>Press the end plate against the reel and tighten the Allen screw that holds it in place. Secure the locking screw into the reel.</td>
</tr>
<tr>
<td>5.</td>
<td>Adjust the brake on each stand so that the drag is just enough to stop the reels from freewheeling.</td>
</tr>
<tr>
<td>6.</td>
<td>Release the end of the UUT, and pass it through the level winder guide and through each of the cable clamps and the null coil.</td>
</tr>
<tr>
<td>7.</td>
<td>Align the level winder guide on the takeup-advance assembly to guide the UUT directly to the connector or the reel.</td>
</tr>
<tr>
<td>8.</td>
<td>Connect P8 on the UUT to J8 on the reel.</td>
</tr>
<tr>
<td>9.</td>
<td>Turn the takeup reel until the marker arrow points up and the UUT makes less than one complete turn on the reel.</td>
</tr>
<tr>
<td>10.</td>
<td>Connect the male 1/4" quick connect coupling from the test set pneumatic system to 85±5 PSI shop air.</td>
</tr>
<tr>
<td>11.</td>
<td>Adjust the pneumatic regulator. Set the high pressure regulator to 60 PSI and the low pressure regulator to 31 PSI.</td>
</tr>
<tr>
<td>12.</td>
<td>Set the following console instruments ON-OFF switches to ON: Scanner, Voltmeter(SVM), Motor Speed Control, Multimeter(DMM), D-to-A Converter, Computer.</td>
</tr>
</tbody>
</table>

Quality Assurance:

Date ____________

Signature: 87
Transducer Test Set TS-3753/U+()

Calibration Data Sheet

Serial Number: 001

Date: 3-24-80

Sheet 3 of 7

<table>
<thead>
<tr>
<th>PRECALIBRATION CHECK LIST</th>
<th>TECHNICIAN SIGN OFF</th>
</tr>
</thead>
<tbody>
<tr>
<td>13. Set the DMM function to KΩ and range to AUTO.</td>
<td>[Signature]</td>
</tr>
</tbody>
</table>

Quality Assurance: _________________________

Date _________________________
Calibration Data Sheet

Serial Number: 001
Date: 3-24-80

<table>
<thead>
<tr>
<th>CALIBRATION CHECK LIST</th>
<th>TECHNICIAN SIGN OFF</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Turn on preamp power (switch on bottom front panel of cabinet) and main power (switch on upper right of cabinet). Wait five minutes before proceeding.</td>
<td>QMB</td>
</tr>
<tr>
<td>2. Coil Drivers, Circuit Board A1</td>
<td>QMB</td>
</tr>
<tr>
<td>a. Short terminal 7 to terminal 15.</td>
<td></td>
</tr>
<tr>
<td>b. Short terminal 12 to terminal 3.</td>
<td></td>
</tr>
<tr>
<td>c. Attach positive lead from digital voltmeter to terminal 12. Attach negative lead to terminal 15. Set meter to dc volts and AUTO range.</td>
<td></td>
</tr>
<tr>
<td>d. Adjust R56 until meter reads 0.000±0.005 volt.</td>
<td></td>
</tr>
<tr>
<td>e. Remove shorts made in steps a and b.</td>
<td></td>
</tr>
<tr>
<td>f. Remove meter connections.</td>
<td></td>
</tr>
<tr>
<td>3. Length Measurement Circuit, Circuit Board A4</td>
<td>QMB</td>
</tr>
<tr>
<td>a. Attach positive lead from digital voltmeter to terminal 10. Attach negative lead to terminal 22.</td>
<td></td>
</tr>
<tr>
<td>b. Slowly rotate wheel of shaft encoder on (A) until voltmeter reading is minimum.</td>
<td></td>
</tr>
<tr>
<td>c. Adjust R8 until meter reads 0.000±0.005 volt.</td>
<td></td>
</tr>
<tr>
<td>d. Slowly rotate wheel of shaft encoder until voltmeter reading is maximum.</td>
<td></td>
</tr>
<tr>
<td>e. Adjust R6 until meter reads 10.0±0.005 volts.</td>
<td></td>
</tr>
<tr>
<td>f. Remove meter connection.</td>
<td></td>
</tr>
<tr>
<td>4. Insert Function Test Cartridge into computer.</td>
<td>QMB</td>
</tr>
<tr>
<td>5. Preamp Offset, MILES Transducer Interface Assembly</td>
<td>QMB</td>
</tr>
<tr>
<td>a. Allow a minimum of 2 hours after turning on the preamp power supply for warmup before proceeding with this test.</td>
<td></td>
</tr>
<tr>
<td>b. Load calibration program (Function Test Cartridge, file 1) by inputting the following sequence via the keyboard:</td>
<td></td>
</tr>
<tr>
<td>LOAD 1 EXECUTE</td>
<td></td>
</tr>
<tr>
<td>c. Press RUN and follow the programmed instructions. Record the specified data.</td>
<td></td>
</tr>
<tr>
<td>1) Programmed instructions:</td>
<td></td>
</tr>
<tr>
<td>a) TERMINATE PREAMP INPUT. Terminate preamp input, terminate A and B of J7, with a 260 ±5 ohm 1/2 watt metal film resistor.</td>
<td></td>
</tr>
</tbody>
</table>

Quality Assurance: ____________________
Date: 89
Transducer Test Set TS-3753/U+

Calibration Data Sheet

Serial Number: 001
Date: 3-34-80

Sheet 5 of 7

CALIBRATION CHECK LIST

<table>
<thead>
<tr>
<th>TECHNICIAN SIGN OFF</th>
</tr>
</thead>
<tbody>
<tr>
<td>b) ALLOW PREAMP TO WARM UP FOR 2 HR. See step 5a.</td>
</tr>
<tr>
<td>c) ADJUST R30 UNTIL BEEP, THEN STOP. This adjusts the preamp offset to less than .02 volts.</td>
</tr>
<tr>
<td>d) VOLTMETER READING = ? The value of the offset voltage is displayed continually until the offset is less than 0.02 volts. Then the value of the offset voltage is printed out.</td>
</tr>
<tr>
<td>e) GAIN CHECK. The next steps provide for measuring the preamplifier gain.</td>
</tr>
<tr>
<td>f) ATTACH SCOPE PB TO OSC BD TER #4. ATTACH GROUND LEAD TO #22. Attach oscilloscope probe to terminal 4 of circuit board A2. Ground oscilloscope to terminal 22.</td>
</tr>
<tr>
<td>g) ATTACH OTHER PROBE TIP TO JB1 #5. Attach the other oscilloscope probe to terminal TB1-5 in junction box JB1.</td>
</tr>
<tr>
<td>h) REMOVE PREAMP TERMINATION. Remove 260 ohm preamp termination.</td>
</tr>
<tr>
<td>i) FROM TERMINAL #4 OSC BOARD INPUT P-P SCOPE READING, app 20 V. Input value of the peak-peak voltage seen at terminal 4 of circuit board A2. Attach jumper from this terminal to TB-1 in JB1.</td>
</tr>
<tr>
<td>j) FROM JB1 #5 INPUT VOLTAGE P-P, 10 V. Input value of the peak-peak voltage seen at terminal TB1-5 in junction box JB1. Remove jumper.</td>
</tr>
<tr>
<td>k) PREAMP TEST COMPLETE. The preamplifier gain will be printed out; first in decimals then in absolute numbers.</td>
</tr>
</tbody>
</table>

2) Record the printed data.

<table>
<thead>
<tr>
<th>MIN</th>
<th>MAX</th>
<th>TEST</th>
</tr>
</thead>
<tbody>
<tr>
<td>Offset(V)</td>
<td>---</td>
<td>.02</td>
</tr>
<tr>
<td>Gain(db)</td>
<td>103</td>
<td>109</td>
</tr>
<tr>
<td>Gain</td>
<td>(\pm 0.01)</td>
<td>(\pm 0.01)</td>
</tr>
</tbody>
</table>

Quality Assurance: _______________________
Date: 90
Transducer Test Set TS-3753/U+()

Calibration Data Sheet

Serial Number 001

Date 3-24-80
Sheet 6 of 7

<table>
<thead>
<tr>
<th>CALIBRATION CHECK LIST</th>
<th>TECHNICIAN SIGN OFF</th>
</tr>
</thead>
<tbody>
<tr>
<td>b. Initiate auto test program. Input: RUN</td>
<td></td>
</tr>
<tr>
<td>c. Choose manual test point selection and auto sequencing.</td>
<td></td>
</tr>
<tr>
<td>d. Continue program until computer displays: READY FOR MAGNETIC TEST</td>
<td></td>
</tr>
<tr>
<td>e. Wait approximately 5 seconds; then press STOP.</td>
<td></td>
</tr>
<tr>
<td>f. Adjust RNC2 in JB4 to 15KΩ.</td>
<td></td>
</tr>
<tr>
<td>g. Using a gauss meter such as the Bell 640 Incremental Gauss Meter, adjust R16 so that the gauss meter reads 0.25 gauss with the probe oriented in the same direction as the transducer at the center of field bias coil 1.</td>
<td></td>
</tr>
<tr>
<td>h. Measure R16 and adjust R20 to the same value.</td>
<td></td>
</tr>
<tr>
<td>i. Adjust RNC2 in JB4 to 17400n-0.5 R16.</td>
<td></td>
</tr>
<tr>
<td>j. Repeat steps 6.g. through 6.i. until RNC2 and the magnetic field strength are both correct.</td>
<td></td>
</tr>
<tr>
<td>a. Load auto test program (Auto Test Cartridge, file 0) by inputting the following sequence via the keyboard: LOAD 0 EXECUTE</td>
<td></td>
</tr>
<tr>
<td>b. Initiate auto test program. Input: RUN</td>
<td></td>
</tr>
<tr>
<td>c. Choose auto sequencing.</td>
<td></td>
</tr>
<tr>
<td>d. Continue program until computer displays: READY FOR P/S DATA</td>
<td></td>
</tr>
<tr>
<td>e. Wait approximately 5 seconds; then press STOP.</td>
<td></td>
</tr>
<tr>
<td>f. Measure force transducer output (VAF) at JB3 between TB2-5 and TB2-6.</td>
<td></td>
</tr>
<tr>
<td>g. Disconnect lead from terminal TB1-5 in junction box JB-1.</td>
<td></td>
</tr>
<tr>
<td>h. Short terminals X and R on circuit board A9.</td>
<td></td>
</tr>
<tr>
<td>i. Adjust R2 on circuit board A9 until SVM reads 0.00±0.01 volt.</td>
<td></td>
</tr>
<tr>
<td>j. Remove short between terminals X and R and place short between terminals X and Y.</td>
<td></td>
</tr>
<tr>
<td>k. Attach oscilloscope probe to terminal Y. Ground oscilloscope to terminal R of circuit board A9.</td>
<td></td>
</tr>
<tr>
<td>l. Record peak-to-peak voltage, V, of signal displayed on oscilloscope (approximately 10 volts).</td>
<td></td>
</tr>
<tr>
<td>m. Adjust R5 on circuit board A9 until SVM reads (V/2)4/10. For example, if V=10, adjust R5 until meter reads 2.5 volts.</td>
<td></td>
</tr>
</tbody>
</table>

Quality Assurance: __________________________

Date __________________________ 91
CALIBRATION CHECK LIST

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>n.</td>
<td>Remove test leads and reattach lead to terminal T81-5 in JB-1.</td>
</tr>
<tr>
<td>o.</td>
<td>Attach one oscilloscope probe to terminal 12 of circuit board A10. Ground the oscilloscope to terminal R.</td>
</tr>
<tr>
<td>p.</td>
<td>Adjust R5 on circuit board A10 until the peak-to-peak voltage indicated on the oscilloscope equals 11.28 million divided by (preamp gain X VAF(PP)). (See step 5, Preamp Offset).</td>
</tr>
</tbody>
</table>
| q. | Adjust R4, shown in Figure 2.9, on circuit board A10 until: \[V_p \times 10^6 \]
\[
V_{SVM} = \frac{6 \times 0.355 \times V_{AF} \times 14.14}{G}
\]
where
- \(V_{SVM} \): SVM reading
- \(V_p \): Preamp Output
- \(V_{AF} \): Force Transducer Output |
| r. | Remove oscilloscope connections. |
| s. | Wait at least 2 minutes for the correlation circuitry to stabilize. |
| t. | Press CONTINUE on the computer keyboard. |
| u. | Continue program until computer displays READY FOR MAGNETIC TEST. |
| v. | Wait approximately 5 seconds, and press STOP. |
| w. | Attach one oscilloscope probe to terminal 7 of circuit board A10. Ground the oscilloscope to terminal R. |
| x. | Adjust R21 on circuit board A10 until the peak-to-peak voltage indicated on the oscilloscope equals 2 million divided by the preamp gain. |
| y. | Adjust R20 on circuit board A10 until: \[V_p \times 10^6 \]
\[
V_{SVM} = \frac{6 \times 200 \times 0.1414}{G}
\] |
| z. | Remove oscilloscope probe from terminal 1. |
| a1. | End of test. |

TECHNICIAN SIGN OFF

Quality Assurance: ____________________________
Date ____________________________ 92
APPENDIX II

TEST DATA SHEETS
Transducer Test Set TS-3753/U+()

Test Data Sheet
Serial Number oo1
Date 3-24-86

<table>
<thead>
<tr>
<th>PARA. 4.2.1 MANUAL SEQUENCING</th>
<th>TECHNICIAN SIGN OFF</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Insert Automatic Test Cartridge into the computer and load the automatic test program by inputting the following sequence via the keyboard: LOAD EXECUTE</td>
<td></td>
</tr>
<tr>
<td>2. Press RUN and follow the programmed instructions.</td>
<td>domo</td>
</tr>
<tr>
<td>3. Choose manual sequencing and manual test point selection. The test points selected shall be 3, 4, 50 and 82.</td>
<td>domo</td>
</tr>
<tr>
<td>4. Perform the following test. When the test requires data to be recorded, record the data in the technician sign-off column; if a qualitative judgement is required, such as for smoothness of operation, assess the equipment performance and sign if adequate. Explain any deficiencies.</td>
<td></td>
</tr>
<tr>
<td>a. Software. Does the program operate correctly? Check accuracy of mean and standard deviation calculations.</td>
<td></td>
</tr>
<tr>
<td>b. Sequence Control Smoothness. Is the transducer transport operation smooth? Check for 'jerky' transducer movement, especially when starting or stopping.</td>
<td></td>
</tr>
<tr>
<td>c. Test Time. Record the test time at each transposition tested.</td>
<td></td>
</tr>
<tr>
<td>[t_1 \leq 4 \text{ minutes}]</td>
<td></td>
</tr>
<tr>
<td>Record the time required to move the transducer from 3 to 4.</td>
<td></td>
</tr>
<tr>
<td>[t_m \leq 1 \text{ minute}]</td>
<td></td>
</tr>
<tr>
<td>d. Rewind Time. Record the rewind time.</td>
<td></td>
</tr>
<tr>
<td>[t_{rew} \leq 4 \text{ minutes}]</td>
<td></td>
</tr>
<tr>
<td>e. Positioning Accuracy. Record the transposition numbers tested. Record the distance from the center of the transposition to the center line of center clamp for each test location.</td>
<td></td>
</tr>
</tbody>
</table>

Quality Assurance: ____________________
Date ____________________

94
Test Data Sheet

Serial Number: 001
Date: 3-24-80
Sheet: 2 of 14

Para. 4.2.1 Manual Sequence

MANUAL TEST POINT SELECTION

- \(t_1 = 3 \)
- \(t_2 = 4 \)
- \(t_3 = 50 \)
- \(t_4 = 82 \)
- \(d_1 \leq \frac{1}{2} \text{ inch} \)

TECHNICIAN SIGN OFF

- \(d_1 = \frac{3}{8} \)
- \(d_2 = \frac{3}{16} \)
- \(d_3 = \frac{1}{16} \)
- \(d_4 = \frac{1}{8} \)

- Display Clarity. Assess the quality of the display. Is it readable?
- Data Clarity. Assess the quality of the data printout. Is it readable?
- Inspect the MILES transducer for damages caused by the test.

Quality Assurance:

Date:

Signature:

95
Transducer Test Set TS-3753/U+()

Test Data Sheet

Serial Number: 001
Date: 3-24-80

<table>
<thead>
<tr>
<th>Para. 4.2.2 MANUAL SEQUENCING AUTOMATIC TEST POINT SELECTION</th>
<th>TECHNICIAN SIGN OFF</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Insert Automatic Test Cartridge into the computer and load the automatic test program by inputting the following sequence via the keyboard: LOAD 0 EXECUTE</td>
<td></td>
</tr>
<tr>
<td>2. Press RUN and follow the programmed instructions.</td>
<td></td>
</tr>
<tr>
<td>3. Choose manual sequencing and automatic test point selection. The test points selected shall be 10, 40, 60 and 80.</td>
<td></td>
</tr>
<tr>
<td>4. Perform the following test. When the test requires data to be recorded, record the data in the technician sign-off column; if a qualitative judgement is required, such as for smoothness of operation, assess the equipment performance and sign if adequate. Explain any deficiencies.</td>
<td></td>
</tr>
<tr>
<td>a. Software. Does the program operate correctly? Check accuracy of mean and standard deviation calculations.</td>
<td></td>
</tr>
<tr>
<td>b. Sequence Control Smoothness. Is the transducer transport operation smooth? Check for "jerky" transducer movement, especially when starting or stopping.</td>
<td></td>
</tr>
<tr>
<td>c. Test Time. Record the test time at each transposition tested.</td>
<td></td>
</tr>
<tr>
<td>[t_1 \leq 4 \text{ minutes}]</td>
<td></td>
</tr>
<tr>
<td>d. Rewind Time. Record the rewind time.</td>
<td></td>
</tr>
<tr>
<td>[t_{rew} \leq 4 \text{ minutes}]</td>
<td></td>
</tr>
<tr>
<td>e. Positioning Accuracy. Record the transposition numbers tested. Record the distance from the center of the transposition to the centerline of the center and clamp for each test location.</td>
<td></td>
</tr>
<tr>
<td>[t_1 = 10 \quad t_2 = 40 \quad t_3 = 60 \quad t_4 = 30]</td>
<td></td>
</tr>
<tr>
<td>[d \leq \frac{1}{2} \text{ inch}]</td>
<td></td>
</tr>
</tbody>
</table>

Quality Assurance:______________
Date__________________________

\[t_{10} = 3.04 \quad t_{40} = 3.04 \quad t_{60} = 3.04 \quad t_{80} = 3.04 \quad t_{rew} = 3.17 \]
Para. 4.2.2 MANUAL SEQUENCING
AUTOMATIC TEST POINT SELECTION

<table>
<thead>
<tr>
<th>Test Data Sheet</th>
<th>Serial Number</th>
<th>Date</th>
<th>Sheet</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>001</td>
<td>3-24-85</td>
<td>4</td>
</tr>
</tbody>
</table>

| f. Display Clarity. Assess the quality of the display. Is it readable? |
| g. Data Clarity. Assess the quality of the data printout. Is it readable? |
| h. Inspect the MILES transducer for damage caused by the test. |

<table>
<thead>
<tr>
<th>TECHNICIAN SIGN OFF</th>
</tr>
</thead>
<tbody>
<tr>
<td>DJS</td>
</tr>
</tbody>
</table>

Quality Assurance: ________________________
Date: ___________________________ 97
<table>
<thead>
<tr>
<th>Para. 4.2.3 AUTOMATIC SEQUENCING</th>
<th>MANUAL TEST POINT SELECTION</th>
<th>TECHNICIAN SIGN OFF</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Insert Automatic Test Cartridge</td>
<td>Manual test point selection</td>
<td></td>
</tr>
<tr>
<td>and load the automatic test program</td>
<td>The test points selected</td>
<td></td>
</tr>
<tr>
<td>by inputting the following sequence</td>
<td>shall be 3, 4, 50 and 82.</td>
<td></td>
</tr>
<tr>
<td>via the keyboard:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LOAD 0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EXECUTE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Press RUN and follow the</td>
<td></td>
<td></td>
</tr>
<tr>
<td>programmed instructions.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Choose automatic sequencing and</td>
<td></td>
<td></td>
</tr>
<tr>
<td>manual test point selection.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Perform the following test.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>When the test requires data to be</td>
<td></td>
<td></td>
</tr>
<tr>
<td>recorded, record the data in the</td>
<td></td>
<td></td>
</tr>
<tr>
<td>technician sign-off column; if a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>qualitative judgement is required,</td>
<td></td>
<td></td>
</tr>
<tr>
<td>such as for smoothness of operation,</td>
<td></td>
<td></td>
</tr>
<tr>
<td>assess the equipment performance</td>
<td></td>
<td></td>
</tr>
<tr>
<td>and sign adequate. Explain any</td>
<td></td>
<td></td>
</tr>
<tr>
<td>deficiencies.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>a. Software. Does the program</td>
<td></td>
<td></td>
</tr>
<tr>
<td>operate correctly? Check accuracy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>of mean and standard deviation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>calculations.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>b. Sequence Control Smoothness.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Is the transducer transport</td>
<td></td>
<td></td>
</tr>
<tr>
<td>operation smooth? Check for</td>
<td></td>
<td></td>
</tr>
<tr>
<td>"jerky" transducer movement,</td>
<td></td>
<td></td>
</tr>
<tr>
<td>especially when starting or</td>
<td></td>
<td></td>
</tr>
<tr>
<td>stopping.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>c. Test Time. Record the test time</td>
<td></td>
<td></td>
</tr>
<tr>
<td>at each transposition tested.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(t_1 \leq 4) minutes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Record the time required to move</td>
<td></td>
<td></td>
</tr>
<tr>
<td>the transducer from 3 to 4.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(t_m \leq 1) minute</td>
<td></td>
<td></td>
</tr>
<tr>
<td>d. Rewind time. Record the rewind</td>
<td></td>
<td></td>
</tr>
<tr>
<td>time.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(t_{rew} \leq 4) minutes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>e. Positioning Accuracy. Record the</td>
<td></td>
<td></td>
</tr>
<tr>
<td>transposition numbers tested.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Record the distance from the center</td>
<td></td>
<td></td>
</tr>
<tr>
<td>of the transposition to the centerline of the center clamp for each test location.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| \(t_3 = 3.03 \) | \(t_4 = 7.04 \) | \(t_{50} = 3.04 \) | \(t_{82} = 7.03 \) |
| \(t_{move} = 30.5 \) sec | \(t_{rew} = 3.21 \) |

Quality Assurance: ____________________________

Date ____________________________ 98
Para. 4.2.3 AUTOMATIC SEQUENCING
MANUAL TEST POINT SELECTION

\[
t_1 = 3 \quad t_2 = 4 \quad t_3 = 50 \quad t_4 = 82
\]

\[
d \leq \frac{1}{2} \text{ inch}
\]

f. Display Clarity. Assess the quality of the display. Is it readable?
g. Data Clarity. Assess the quality of the display. Is it readable?
h. Inspect the MILES transducer for damages caused by the test.

<table>
<thead>
<tr>
<th>TECHNICIAN SIGN OFF</th>
</tr>
</thead>
<tbody>
<tr>
<td>(d_3 \frac{1}{8} '')</td>
</tr>
<tr>
<td>(d_4 \frac{1}{4} '')</td>
</tr>
</tbody>
</table>

Quality Assurance: ______________________

Date ____________________________ 99
Test Data Sheet

<table>
<thead>
<tr>
<th>Serial Number</th>
<th>001</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date</td>
<td>3-24-80</td>
</tr>
</tbody>
</table>

Para. 4.2.4 AUTOMATIC SEQUENCING

AUTOMATIC TEST POINT SELECTION

1. Insert Automatic Test Cartridge into the computer and load the automatic test program by inputting the following sequence via the keyboard:

```
LOAD 0
EXECUTE
```

2. Press RUN and follow the programmed instructions.

3. Choose automatic sequencing and automatic test point selection. The test points selected shall be 10, 40, 60 and 80.

4. Perform the following test. When the test requires data to be recorded, record the data in the technician sign-off column; if a qualitative judgement is required, such as for smoothness of operation, assess the equipment performance and sign if adequate. Explain any deficiencies.

 a. Software. Does the program operate correctly? Check accuracy of mean and standard deviation calculations.
 b. Sequence Control Smoothness. Is the transducer transport operation smooth? Check for "jerky" transducer movement, especially when starting or stopping.
 c. Test Time. Record the test time at each transposition tested.

 \[
 t_1 \leq 4 \text{ minutes}
 \]

 d. Rewind Time. Record the rewind time.

 \[
 t_{\text{rew}} \leq 4 \text{ minutes}
 \]
 e. Positioning Accuracy. Record the transposition numbers tested. Record the distance from the center of the transposition to the centerline of the center clamp for each test location.

 \[
 t_1 = 10 \quad t_2 = 40 \quad t_3 = 60 \quad t_4 = 80 \\
 d \leq \frac{1}{2} \text{ inch}
 \]

 Quality Assurance:

 Date 100
Transducer Test Set TS-3753/U+()

Test Data Sheet

Serial Number Q/3-24-80
Date 3-24-80
Sheet 8 of 14

Para. 4.2.4 AUTOMATIC SEQUENCING
AUTOMATIC TEST POINT SELECTION

<table>
<thead>
<tr>
<th>Task</th>
<th>Technician Sign Off</th>
</tr>
</thead>
<tbody>
<tr>
<td>f. Display Clarity. Assess the quality of the display. Is it readable?</td>
<td></td>
</tr>
<tr>
<td>g. Data Clarity. Assess the quality of the data printout. Is it readable?</td>
<td></td>
</tr>
<tr>
<td>h. Inspect the MILES transducer for damages caused by the test.</td>
<td></td>
</tr>
<tr>
<td>i. Limit Switch. Wrap a minimum of 10 transpositions around the takeup reel prior to restarting the automatic test sequence. Check for proper limit switch operation.</td>
<td></td>
</tr>
<tr>
<td>j. Failure Mode. Disconnect the 1 Hz motor to cause a failure during P/S testing. Run another test. Choose automatic sequencing and automatic test point selection. After first transposition is tested, reconnect motor lead. Check the failure mode software and print out.</td>
<td></td>
</tr>
</tbody>
</table>

Quality Assurance: _______________________
Date ___________________________ 101
Para. 4.3 MEASUREMENT ACCURACY

1. Insert Automatic Test Cartridge into the computer and load the function test program by inputting the following sequence via the keyboard:
 - LOAD
 - 0
 - EXECUTE

2. Press RUN and follow the programmed instructions.

3. Choose automatic sequencing.

4. Measure the cable DCR and IR at the end of the test. Record the measured DCR and IR on the test printout.

5. Repeat steps 2 through 4 until a total of 5 tests have been run.

<table>
<thead>
<tr>
<th>TECHNICIAN SIGN OFF</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>
Para. 4.3.1 DCR, IR

1. Record the measured and tested values of the DCR and IR from the Para. 4.3 test printouts.

<table>
<thead>
<tr>
<th>DCR</th>
<th>Measured</th>
<th>Tested</th>
<th>Error</th>
<th>Measured</th>
<th>Tested</th>
<th>Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>22.6 Ohm</td>
<td>22.7</td>
<td>0.4%</td>
<td>20.1</td>
<td>20.2</td>
<td>0.5%</td>
<td></td>
</tr>
<tr>
<td>25.3 Ohm</td>
<td>25.2</td>
<td>0.4%</td>
<td>23.6</td>
<td>23.7</td>
<td>0.4%</td>
<td></td>
</tr>
<tr>
<td>22.7 Ohm</td>
<td>22.8</td>
<td>0.4%</td>
<td>21.1</td>
<td>21.2</td>
<td>0.4%</td>
<td></td>
</tr>
<tr>
<td>25.9 Ohm</td>
<td>25.8</td>
<td>0.4%</td>
<td>24.3</td>
<td>24.4</td>
<td>0.4%</td>
<td></td>
</tr>
<tr>
<td>22.9 Ohm</td>
<td>23.0</td>
<td>0.4%</td>
<td>21.3</td>
<td>21.4</td>
<td>0.4%</td>
<td></td>
</tr>
</tbody>
</table>

The difference between the tested and measured values shall not exceed ±1% of the measured value. This requirement does not apply to the IR reading if they exceed the range of the test instrument.

Quality Assurance: ________________________
Date _______________________________ 103
Para. 4.3.2 MECHANICAL RESPONSE

1. Record the values of the P/S means from the printouts obtained in the Para. 4.3 tests. Calculate the mean and standard deviation of these values.

\[
\mu_p = \frac{\sum_{i=1}^{5} e_i}{5}
\]

\[
\sigma_p^2 = \frac{\sum_{i=1}^{5} (e_i - \mu_p)^2}{5 - 1}
\]

\[
\sigma_p \leq 0.1 \mu_p
\]

\[
\leq 0.1 \times 1.23 = 0.123
\]

\[
\begin{align*}
12.1 - 12.3 &= 0.2 \quad 0.02 \\
12.4 - 12.3 &= 0.1 \quad 0.01 \\
12.5 - 12.3 &= 0 \quad 0 \\
12.6 - 12.3 &= 0.3 \quad 0.03 \\
12.3 - 12.3 &= 0 \quad 0 \\
\end{align*}
\]

<table>
<thead>
<tr>
<th>Value</th>
<th>Quality Assurance:</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\mu_p)</td>
<td>(0.10)</td>
<td></td>
</tr>
<tr>
<td>(\sigma_p)</td>
<td>(0.06)</td>
<td></td>
</tr>
</tbody>
</table>
Para. 4.3.3 MAGNETIC RESPONSE

1. Record the values of magnetic means from the print outs obtained in the Para. 4.3 tests. Calculate the mean and standard deviation of these values.

\[
\mu_m = \frac{\sum e_i}{5} \\
\sigma_m^2 = \frac{\sum (e_i - \mu_m)^2}{5 - 1}
\]

\[
\sigma_m < 0.1 \mu_m \\
\leq 0.1 \times 0.19 = 0.019
\]

<table>
<thead>
<tr>
<th>TECHNICIAN SIGN OFF</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>(e_1)</th>
<th>(e_2)</th>
<th>(e_3)</th>
<th>(e_4)</th>
<th>(e_5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.19</td>
<td>0.19</td>
<td>0.17</td>
<td>0.17</td>
<td>0.17</td>
</tr>
</tbody>
</table>

\[
\mu_m = 0.19 \\
\sigma_m = 0
\]

Quality Assurance: __________________________

Date ________________________________ 105
Transducer Test Set TS-3753/U+()

Test Data Sheet
Serial Number 001
Date 3-24-80

<table>
<thead>
<tr>
<th>Para. 4.3.4 DISTANCE BETWEEN TRANSPOSITIONS</th>
<th>TECHNICIAN SIGN OFF</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Modify the function test program to print out all the distance between transposition measurements.</td>
<td></td>
</tr>
<tr>
<td>2. Run a complete test using the modified program.</td>
<td></td>
</tr>
<tr>
<td>3. Make actual measurements of the distance between transpositions at the specified locations. The measurement shall be made from the center line of the first transposition to the center line of the second transposition.</td>
<td></td>
</tr>
<tr>
<td>$d_3 = T_3 - T_4$</td>
<td>43.2</td>
</tr>
<tr>
<td>$d_{10} = T_{10} - T_{11}$</td>
<td>43.0</td>
</tr>
<tr>
<td>$d_{75} = T_{75} - T_{76}$</td>
<td>43.0</td>
</tr>
</tbody>
</table>

The tested value and the measured value must agree within ±1% of the measured value.

4. Calculate the mean and standard deviation (see para. 4.3.2 tests) of the distance between transposition measurements. The results must agree with the printout results.

$\mu = 43.1$
$\sigma = 0.2$

Quality Assurance: ____________________________
Date ____________________________ 106
Transducer Test Set TS-3753/U+

Quality Data Sheet
Serial Number 001
Date 3-26-86

<table>
<thead>
<tr>
<th>Para. 5.2 NAMEPLATES AND PRODUCT MARKING</th>
<th>TECHNICIAN SIGN OFF</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Indicate conformance with MIL-STD-130.</td>
<td></td>
</tr>
<tr>
<td>Quality Assurance: [Signature]</td>
<td></td>
</tr>
<tr>
<td>Date: 3-26-86</td>
<td></td>
</tr>
</tbody>
</table>

Para. 5.3 WORKMANSHIP	
1. Indicate conformance with the Honeywell Sea, Air and Ground Workmanship Standard UED 23036.	
Quality Assurance: [Signature]	
Date: 3-26-86	

Quality Assurance:_____________________
Date______ 107
Unit #001 Manual Sequencing,
Manual Test Point Selection
Paragraph 4.2.1
MILES TRANSDUCER
AUTOMATIC TEST

CABLE TRANS.#80
PRESSURE SENS.
-12.6 uV/lb
MAGNETIC SENS.
-0.19 uV/° gamma

3/24/80

FINAL POSITION
DCR = 253 Ω
IR = 19000000 Ω

SERIAL #001

P/S DATA RESULTS
μs = 12.3 uV/d
σs = 0.8 uV/d

MAG DATA RESULTS
μm = 0.19 uV/° gamma
σm = 0.00 uV/° gamma

LENGTH RESULTS
μd = 43.1 inches
σd = 0.2 inches

TRANSPOSITIONS
TOTAL = 86.00

CABLE TRANS.#40
PRESSURE SENS.
-13.1 uV/lb
MAGNETIC SENS.
-0.19 uV/° gamma

CABLE TRANS.#60
PRESSURE SENS.
-11.2 uV/lb
MAGNETIC SENS.
-0.19 uV/° gamma

Unit #001 Manual Sequencing,
Automatic Test Point Selection
Paragraph 4.2.2
MILES TRANSDUCER AUTOMATIC TEST

3/24/80

SERIAL #001

CABLE TRANS.#82
PRESSURE SENS.
-12.4 uu/lb
MAGNETIC SENS.
-0.19 uu/øamma

FINAL POSITION
DCR = 254 Ω
IR = 1900000 Ω

P/S DATA RESULTS
µs = 13.4uu/lb
σs = 1.2uu/lb

MAG DATA RESULTS
µm = 0.19uu/øamma
σm = 0.00uu/øamma

LENGTH RESULTS
µd = 43.1inches
σd = 0.2inches

TRANSPOSITIONS
TOTAL= 86.00

CABLE TRANS.#3
PRESSURE SENS.
13.8 uu/lb
MAGNETIC SENS.
0.19 uu/øamma

CABLE TRANS.# 4
PRESSURE SENS.
-14.9 uu/lb
MAGNETIC SENS.
-0.19 uu/øamma

CABLE TRANS.#50
PRESSURE SENS.
-12.7 uu/lb
MAGNETIC SENS.
-0.19 uu/øamma

$$$$$$$$$$$$$$$$$$$

$ TRANSDUCER **$**

$$$ PASSED **$$$**

$$$$$$$$$$$$$$$$$$$

Unit #001 Automatic Sequencing,
Manual Test Point Selection
Paragraph 4.2.3

110
Unit #001 Automatic Sequencing,
Automatic Test Point Selection
Paragraph 4.2.4
FINAL POSITION
DCR = 254 Ω
IR = 19000000 Ω

P/S DATA RESULTS
μs = 9.2μV/lb
σs = 6.1μV/lb

MAG DATA RESULTS
μm = 0.19μV/γ/γ
σm = 0.00μV/γ/γ

LENGTH RESULTS
μd = 43.1 inches
σd = 0.2 inches

TRANSPOSITIONS
TOTAL = 36.00

MILES TRANSDUCER
AUTOMATIC TEST

3/24/80

SERIAL #001

DCR = 254 Ω
IR = 19000000 Ω

P/S #001

MAGNETIC SENS.
-0.19 μV/γ/γ

CABLE TRANS.#10
BAD P/S SEN.!!

MAGNETIC SENS.
-0.19 μV/γ/γ

CABLE TRANS.#40
PRESSURE SENS.
-12.7 μV/lb

MAGNETIC SENS.
-0.19 μV/γ/γ

CABLE TRANS.#60
PRESSURE SENS.
-11.0 μV/lb

MAGNETIC SENS.
-0.19 μV/γ/γ

CABLE TRANS.#80
PRESSURE SENS.
-12.9 μV/lb

MAGNETIC SENS.
-0.19 μV/γ/γ

TOTAL DEFECTS
3.00

DEFECT LIST

BAD P/S AT TRP
10.00
BAD P/S MEAN
HIGH P/S STD DEV

Unit #001 Automatic Sequencing,
Automatic Test Point Selection, Failure Mode
Paragraph 4.2.4.1
*
MILES TRANSDUCER
AUTOMATIC TEST
*

3/24/80

SERIAL #001/4.3/

DCR = 254 0
IR = 1900000 0

CABLE TRANS. #10
PRESSURE SENS.
-12.2 uu/1b
MAGNETIC SENS.
-0.19 uu/\gamma

CABLE TRANS. #40
PRESSURE SENS.
-12.8 uu/1b
MAGNETIC SENS.
-0.19 uu/\gamma

CABLE TRANS. #60
PRESSURE SENS.
-10.8 uu/1b
MAGNETIC SENS.
-0.19 uu/\gamma

CABLE TRANS. #80
PRESSURE SENS.
-12.5 uu/1b
MAGNETIC SENS.
-0.19 uu/\gamma

FINAL POSITION
DCR = 254 0
IR = 1900000 0

P/S DATA RESULTS
\nu_s = 12.1 uu/1b
\sigma_s = 0.9 uu/1b

MAG DATA RESULTS
\nu_d = 0.19 uu/\gamma
\sigma_d = 0.0 uu/\gamma

LENGTH RESULTS
\nu_l = 43.1 inches
\sigma_l = 0.2 inches

TRANSPOSITIONS
TOTAL = 86.00

** TRANSDUCER **
$$$ PASSED $$$

\begin{align*}
\text{PDR} & \geq 25^2 \text{ in} \\
\text{IR} & \geq 18.548 \text{ in}
\end{align*}

Unit #001 Measurement Accuracy
Paragraph 4.3 Run #1
CABLE TRANS. #80
PRESSURE SENS.
-12.8 \text{ uv/\text{lb}}
MAGNETIC SENS.
-0.19 \text{ uv/\text{gamma}}

FINAL POSITION
DCR = 253 \Omega
IR = 1900000 \Omega

F/S DATA RESULTS
\(\mu S = 12.4 \text{ uv/\text{lb}} \)
\(\sigma S = 1.0 \text{ uv/\text{lb}} \)

MAG DATA RESULTS
\(\mu M = 0.19 \text{ uv/\text{gamma}} \)
\(\sigma M = 0.06 \text{ uv/\text{gamma}} \)

LENGTH RESULTS
\(\mu D = 43.1 \text{ inches} \)
\(\sigma D = 0.2 \text{ inches} \)

TRANSPOSITIONS TOTAL = 86.00

$\text{URESUE} T\text{E N.}$

Unit #001 Measurement Accuracy
Paragraph 4.3 Run #2
CABLE TRANS.#80
PRESSURE SENS.
-12.7 uv/1b
MAGNETIC SENS.
-0.19 uv/\gamma

FINAL POSITION
DCR = 253 \Omega
IR = 19000000 \Omega

P/S DATA RESULTS
\nu_s = 12.3uv/1b
\sigma_s = 0.9uv/1b

MAG DATA RESULTS
\nu_m = 0.19uv/\gamma
\sigma_m = 0.00uv/\gamma

LENGTH RESULTS
\nu_d = 43.1 inches
\sigma_d = 0.2 inches

TRANSPOSITIONS
TOTAL = 86.00

CABLE TRANS.#10
PRESSURE SENS.
-12.4 uv/1b
MAGNETIC SENS.
-0.19 uv/\gamma

CABLE TRANS.#40
PRESSURE SENS.
-12.9 uv/1b
MAGNETIC SENS.
-0.19 uv/\gamma

CABLE TRANS.#60
PRESSURE SENS.
-11.0 uv/1b
MAGNETIC SENS.
-0.19 uv/\gamma

Unit #001 Measurement Accuracy
Paragraph 4.3 Run #3
MILES TRANSDUCER
AUTOMATIC TEST

3/24/80
SERIAL #1/4.3/4

::: ::::::::: ::
DCR = 254 Ω
IR = 1900000 Ω

CABLE TRANS.#10
PRESSURE SENS.
-12.5 μv/lb
MAGNETIC SENS.
-0.19 μv/γamma

CABLE TRANS.#40
PRESSURE SENS.
-13.1 μv/lb
MAGNETIC SENS.
-0.19 μv/γamma

CABLE TRANS.#60
PRESSURE SENS.
-10.8 μv/lb
MAGNETIC SENS.
-0.19 μv/γamma

CABLE TRANS.#80
PRESSURE SENS.
-12.5 μv/lb
MAGNETIC SENS.
-0.19 μv/γamma

FINAL POSITION
DCR = 254 Ω
IR = 1900000 Ω

P/S DATA RESULTS
μs = 12.2μv/lb
σs = 1.0μv/lb

MAG DATA RESULTS
μm = 0.19μv/γamma
σm = 0.00μv/γamma

LENGTH RESULTS
μd = 43.1 inches
σd = 0.2 inches

TRANSPOSITIONS
TOTAL = 86.00

Unit #001 Measurement Accuracy
Paragraph 4.3 Run #4

116
MILES TRANSDUCER
AUTOMATIC TEST

3/24/80
SERIAL #1/4.3/5

DCR = 254 Ω
IR = 19000000 Ω

CABLE TRANS.#10
PRESSURE SENS.
-12.6 uV/lb
MAGNETIC SENS.
-0.19 uV/gamma

CABLE TRANS.#40
PRESSURE SENS.
-13.2 uV/lb
MAGNETIC SENS.
-0.19 uV/gamma

CABLE TRANS.#60
PRESSURE SENS.
-10.9 uV/lb
MAGNETIC SENS.
-0.19 uV/gamma

CABLE TRANS.#80
PRESSURE SENS.
-12.5 uV/lb
MAGNETIC SENS.
-0.19 uV/gamma

FINAL POSITION
DCR = 254 Ω
IR = 19000000 Ω

P/S DATA RESULTS
\(\nu_s = 12.3 \text{ uV/lb} \)
\(\sigma_s = 1.0 \text{ uV/lb} \)

MAG DATA RESULTS
\(\nu_m = 0.19 \text{ uV/gamma} \)
\(\sigma_m = 0.00 \text{ uV/gamma} \)

LENGTH RESULTS
\(\nu_d = 43.1 \text{ inches} \)
\(\sigma_d = 0.2 \text{ inches} \)

TRANSPOSITIONS
TOTAL = 86.00

Unit #001 Measurement Accuracy
Paragraph 4.3 Run #5
Functional Test - CABLE TRANS.#60

P/S mean: 15.00
P/S mean L: 5.00
P/S sd L: 10.00
MAG mean: 0.20
MAG mean L: 0.05
MAG sd L: 0.10
Tn Dt mean: 43.00
Tn mean L: 1.00
Tn sd L: 2.00

Pressure Sens.
-10.6 \(\text{uv/lb} \)

Magnetic Sens.
-0.19 \(\text{uv/\gamma} \)

Functional Test - CABLE TRANS.#80

P/S mean: 15.00
P/S mean L: 5.00
P/S sd L: 10.00
MAG mean: 0.20
MAG mean L: 0.05
MAG sd L: 0.10
Tn Dt mean: 43.00
Tn mean L: 1.00
Tn sd L: 2.00

Pressure Sens.
-12.6 \(\text{uv/lb} \)

Magnetic Sens.
-0.19 \(\text{uv/\gamma} \)

Final Position

DCR: 254 \(\Omega \)
IR: 19000000 \(\Omega \)

P/S Data Results
-**\(\mu_s \):** 12.2 \(\text{uv/lb} \)
-**\(\nu_s \):** 1.1 \(\text{uv/lb} \)

MAG Data Results
-**\(\mu_m \):** 0.19 \(\text{uv/\gamma} \)
-**\(\sigma_m \):** 0.00 \(\text{uv/\gamma} \)

Length Results
-**\(\nu_d \):** 43.1 inches
-**\(\sigma_d \):** 0.2 inches

Total Transpositions: 86.00

Notes:

- **Unit #001 Distance Between Transpositions**
- Functional Test (Sheet 1)
- Paragraph 4.3.4

118
Unit #001 Distance Between Transpositions
Functional Test (Sheet 2)
Paragraph 4.3.4

<table>
<thead>
<tr>
<th>TRP#</th>
<th>1L= 43.2</th>
<th>TRP#</th>
<th>26L= 43.3</th>
</tr>
</thead>
<tbody>
<tr>
<td>TRP#</td>
<td>2L= 43.2</td>
<td>TRP#</td>
<td>27L= 43.0</td>
</tr>
<tr>
<td>TRP#</td>
<td>3L= 43.1</td>
<td>TRP#</td>
<td>28L= 43.1</td>
</tr>
<tr>
<td>TRP#</td>
<td>4L= 43.1</td>
<td>TRP#</td>
<td>29L= 43.3</td>
</tr>
<tr>
<td>TRP#</td>
<td>5L= 43.1</td>
<td>TRP#</td>
<td>30L= 43.0</td>
</tr>
<tr>
<td>TRP#</td>
<td>6L= 43.2</td>
<td>TRP#</td>
<td>31L= 43.3</td>
</tr>
<tr>
<td>TRP#</td>
<td>7L= 42.8</td>
<td>TRP#</td>
<td>32L= 43.0</td>
</tr>
<tr>
<td>TRP#</td>
<td>8L= 43.3</td>
<td>TRP#</td>
<td>33L= 43.2</td>
</tr>
<tr>
<td>TRP#</td>
<td>9L= 43.0</td>
<td>TRP#</td>
<td>34L= 42.9</td>
</tr>
<tr>
<td>TRP#</td>
<td>10L= 43.0</td>
<td>TRP#</td>
<td>35L= 43.2</td>
</tr>
<tr>
<td>TRP#</td>
<td>11L= 43.3</td>
<td>TRP#</td>
<td>36L= 43.0</td>
</tr>
<tr>
<td>TRP#</td>
<td>12L= 43.1</td>
<td>TRP#</td>
<td>37L= 42.6</td>
</tr>
<tr>
<td>TRP#</td>
<td>13L= 43.2</td>
<td>TRP#</td>
<td>38L= 43.2</td>
</tr>
<tr>
<td>TRP#</td>
<td>14L= 43.2</td>
<td>TRP#</td>
<td>39L= 42.9</td>
</tr>
<tr>
<td>TRP#</td>
<td>15L= 43.1</td>
<td>TRP#</td>
<td>40L= 42.8</td>
</tr>
<tr>
<td>TRP#</td>
<td>16L= 43.1</td>
<td>TRP#</td>
<td>41L= 42.5</td>
</tr>
<tr>
<td>TRP#</td>
<td>17L= 43.1</td>
<td>TRP#</td>
<td>42L= 43.2</td>
</tr>
<tr>
<td>TRP#</td>
<td>18L= 43.2</td>
<td>TRP#</td>
<td>43L= 43.0</td>
</tr>
<tr>
<td>TRP#</td>
<td>19L= 43.2</td>
<td>TRP#</td>
<td>44L= 43.1</td>
</tr>
<tr>
<td>TRP#</td>
<td>20L= 43.1</td>
<td>TRP#</td>
<td>45L= 43.4</td>
</tr>
<tr>
<td>TRP#</td>
<td>21L= 43.2</td>
<td>TRP#</td>
<td>46L= 43.2</td>
</tr>
<tr>
<td>TRP#</td>
<td>22L= 43.1</td>
<td>TRP#</td>
<td>47L= 43.2</td>
</tr>
<tr>
<td>TRP#</td>
<td>23L= 43.0</td>
<td>TRP#</td>
<td>48L= 43.2</td>
</tr>
<tr>
<td>TRP#</td>
<td>24L= 43.2</td>
<td>TRP#</td>
<td>49L= 43.2</td>
</tr>
<tr>
<td>TRP#</td>
<td>25L= 43.2</td>
<td>TRP#</td>
<td>50L= 43.3</td>
</tr>
</tbody>
</table>
TRP# 51L = 43.2
TRP# 52L = 43.1
TRP# 53L = 43.3
TRP# 54L = 43.0
TRP# 55L = 43.3
TRP# 56L = 43.1
TRP# 57L = 42.7
TRP# 58L = 43.2
TRP# 59L = 43.2
TRP# 60L = 43.4
TRP# 61L = 43.1
TRP# 62L = 43.2
TRP# 63L = 43.4
TRP# 64L = 43.2
TRP# 65L = 43.2
TRP# 66L = 43.0
TRP# 67L = 43.3
TRP# 68L = 43.2
TRP# 69L = 43.2
TRP# 70L = 43.3
TRP# 71L = 43.1
TRP# 72L = 43.2
TRP# 73L = 43.2
TRP# 74L = 43.2
TRP# 75L = 43.0

Unit #001 Distance Between Transpositions
Functional Test (Sheet 3)
Paragraph 4.3.4
3/24/80

SERIAL #00:

DCP = 253 Ω
IR = 1900000 Ω

Limit Switch OK

Unit #001 Limit Switch Test
Paragraph 4.2.4.i
**** MILES TRANSDUCER **** AUTOMATIC TEST 3/25/80 SERIAL #001

<table>
<thead>
<tr>
<th>DCR</th>
<th>254 Ω</th>
<th>IR</th>
<th>19000000 Ω</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| CABLE TRANS.#10 | PRESSURE SENS. | -12.9 uv/lb |
| | MAGNETIC SENS. | -0.19 uv/γ |

| CABLE TRANS.#40 | PRESSURE SENS. | -12.5 uv/lb |
| | MAGNETIC SENS. | -0.18 uv/γ |

| CABLE TRANS.#60 | PRESSURE SENS. | -10.5 uv/lb |
| | MAGNETIC SENS. | -0.19 uv/γ |

| CABLE TRANS.#80 | PRESSURE SENS. | -12.7 uv/lb |
| | MAGNETIC SENS. | -0.19 uv/γ |

FINAL POSITION
DCR = 254 Ω
IR = 19000000 Ω

P/S DATA RESULTS
μs = 12.2uv/lb
σs = 1.1uv/lb

MAG DATA RESULTS
μm = 0.19uv/γ
σm = 0.00uv/γ

LENGTH RESULTS
μd = 43.1 inches
σd = 0.2 inches

TRANSPOSITIONS TOTAL
86.00

Unit #001 Witness Test
MILES PRESSURE/SEISMIC RESPONSE
PHASE III
ACCEPTANCE TEST PLAN/PROCEDURES
S/N #002
TABLE OF CONTENTS

1.0 SCOPE

2.0 APPLICABLE DOCUMENTS

3.0 SYSTEM CALIBRATION

4.0 TEST PROCEDURES

5.0 QUALITY ASSURANCE PROVISIONS

Appendix I CALIBRATION DATA SHEETS

Appendix II TEST DATA SHEETS
1.0 SCOPE

1.1 Scope

This test plan establishes calibration procedures, quality inspections and test procedures, and performance requirements for factory acceptance of Transducer Test Set TS-3753/U&(). Test set performance will be verified on a standard transducer, Motional Pickup TR-299/G().

2.0 APPLICABLE DOCUMENTS

2.1 Government Documents

The following documents of the exact issue shown, form a part of this test plan to the extent specified herein. In the event of conflict between the documents referenced herein and the contents of this test plan, the contents of this test plan shall be considered a superseding requirement.

- **Specification**
 - MIL-T-38531 Amendment 3
 - Transducer, Motional Pickup TR 299/G()

- **Standards**
 - **Military**
 - MIL-STD-130D Change B
 - Identification Marking of U.S. Military Property.
 - MIL-STD-143B
 - Standards and Specifications, Order of Precedence for the Selection of.
 - MIL-STD-454E
 - Standard General Requirements for Electronic Equipment.
 - MIL-STD-810C
 - Environmental Test Methods.
 - MIL-STD-1472B

- **Other Publications**
 - AFSC
 - Design Handbook DH1-Y. Checklist of general design criteria.
 - PR #A-6-1353 Amendment 4
 - Statement of Work, MILES Pressure/Seismic Response.
 - S.O.W. CDRL
 - MILES Pressure/Seismic Response, Operating Hazard Sequence #B003 Analysis, Phase II.
3.0 SYSTEM CALIBRATION

3.1 Test Device Set Up

Locate the test device in a lab area. Do not take special precaution to shield the test device from normal lab electrical and seismic noise. Reasonable caution shall be taken to insure that the test device is not located where the transducer conditioning and loading apparatus may be inadvertently bumped or exposed to magnetic materials in close proximity. Locate the test device electronics rack in a position where the operator has a clear view of the transducer conditioning and loading apparatus. Connect all interface cables.

3.2 Calibration Test Equipment

Laboratory test equipment of the exact model number or equivalent specified on the calibration equipment data sheet shall be used. Record the lab equipment calibration dates.

3.3 Test Device Calibration

Calibrate the test device to within the specifications listed on the test device calibration data sheets. Record the calibration values. Refer to the test set maintenance manual for additional information on system calibration.

4.0 TEST PROCEDURES

4.1 Standard Test Transducer

The tests called out in this section shall be run on Transducer, Motional Pickup TR-299/G(), Serial No. 002. The test procedures are called out on the test data sheets.

4.2 Automated Data Acquisition and Sequence Control Operation

4.2.1 Manual Sequencing, Manual Test Point Selection

a. Software
b. Sequence Control Smoothness
c. Test Time
d. Rewind Time
e. Positioning Accuracy
f. Display Clarity
g. Data Clarity
h. Transducer Damage Inspection

4.2.2 Manual Sequencing, Automatic Test Point Selection

a. Software
b. Sequence Control Smoothness
c. Test Time
d. Rewind Time
e. Positioning Accuracy
f. Display Clarity
g. Data Clarity
h. Transducer Damage Inspection

4.2.3 Automatic Sequencing, Manual Test Point Selection

a. Software
b. Sequence Control Smoothness
c. Test Time
d. Rewind Time
e. Positioning Accuracy
f. Display Clarity
g. Data Clarity
h. Transducer Damage Inspection

4.2.4 Automatic Sequencing, Automatic Test Point Selection

a. Software
b. Sequence Control Smoothness
c. Test Time
d. Rewind Time
e. Positioning Accuracy
f. Display Clarity
g. Data Clarity
h. Transducer Damage Inspection
i. Limit Switch
j. Failure Mode

4.3 Measurement Accuracy

Run five automatic tests on standard transducer.

4.3.1 DCR (Direct Current Resistance), IR (Insulation Resistance)

a. Measured Accuracy

4.3.2 Mechanical Response

a. Repeatability

4.3.3 Magnetic Response

a. Repeatability
4.3.4 Distance Between Transpositions
 a. Measured Accuracy

5.0 QUALITY ASSURANCE INSPECTION PROCEDURES

5.1 Quality Assurance Personnel

Honeywell designated quality control personnel shall perform the quality assurance inspections called out in this section. The quality assurance data sheets are in Appendix II.

5.2 Nameplates and Product Marking

Identification and marking shall be in accordance with the provisions of MIL-STD-130. Indicate conformance on the quality assurance data sheet.

5.3 Workmanship

All workmanship shall be in accordance with the Honeywell Sea, Air and Ground Workmanship Standard UED 23036. Indicate conformance on the quality assurance data sheet.

5.4 Test Set Performance Verification

Quality personnel shall verify the accuracy of the performance data collected in 4.0 and sign off on each data sheet.
APPENDIX I

CALIBRATION DATA SHEETS
Transducer Test Set TS-3553/U

Calibration Equipment Data Sheet

<table>
<thead>
<tr>
<th>TEST EQUIPMENT LIST</th>
<th>CALIBRATION DATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Storage Oscilloscope 466 Tektronics</td>
<td>1/17/80</td>
</tr>
<tr>
<td>Fluke Model 8040A DMM Bell</td>
<td>2/13/80</td>
</tr>
<tr>
<td>Gauss Meter Model 640</td>
<td>1/16/80</td>
</tr>
</tbody>
</table>

Quality Assurance:
Date: 131

Sheet 1 of 7
Transducer Test Set TS-3753/U*

Calibration Data Sheet

<table>
<thead>
<tr>
<th>PRECALIBRATION CHECK LIST</th>
<th>TECHNICIAN SIGN OFF</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Plug in power cord from console</td>
<td></td>
</tr>
<tr>
<td>2. Mount the supply reel with the "standard MILES transducer" on the supply-rewind axle, with, the connector end of the UUT* facing the test chamber from the top of the reel.</td>
<td></td>
</tr>
<tr>
<td>3. Ensure that the end of the UUT is secure, so it will stay in place as the reel is turned. Align the level winder by turning the reel manually until the level winder guide is in line with the end of the UUT.</td>
<td></td>
</tr>
<tr>
<td>4. Press the end plate against the reel and tighten the allen screw that holds it in place. Secure the locking screw into the reel.</td>
<td></td>
</tr>
<tr>
<td>5. Adjust the brake on each stand so that the drag is just enough to stop the reels from freewheeling.</td>
<td></td>
</tr>
<tr>
<td>6. Release the end of the UUT, and pass it through the level winder guide and through each of the cable clamps and the null coil.</td>
<td></td>
</tr>
<tr>
<td>7. Align the level winder guide on the takeup-advance assembly to guide the UUT directly to the connector or the reel.</td>
<td></td>
</tr>
<tr>
<td>8. Connect P8 on the UUT to J8 on the reel.</td>
<td></td>
</tr>
<tr>
<td>9. Turn the takeup reel until the marker arrow points up and the UUT makes less than one complete turn on the reel.</td>
<td></td>
</tr>
<tr>
<td>10. Connect the male (\frac{1}{2})" quick connect coupling from the test set pneumatic system to 85±5 PSI shop air.</td>
<td></td>
</tr>
<tr>
<td>11. Adjust the pneumatic regulator. Set the high pressure regulator to 60 PSI and the low pressure regulator to 31 PSI.</td>
<td></td>
</tr>
<tr>
<td>12. Set the following console instruments ON-OFF switches to ON: Scanner Voltmeter(SVM) Motor Speed Control Multimeter(DMM) D-to-A Converter Computer</td>
<td></td>
</tr>
</tbody>
</table>

Quality Assurance:

Date

132
Transducer Test Set TS-3753/U+()

Calibration Data Sheet

Serial Number: 002
Date: 3-24-86
Sheet 3 of 7

PRECALIBRATION CHECK LIST

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>13. Set the DMM function to KΩ and range to AUTO.</td>
<td></td>
</tr>
</tbody>
</table>

TECHNICIAN SIGN OFF

- [DMM]

Quality Assurance:

Date: 133
Transducer Test Set TS-3753/U+()

Calibration Data Sheet

<table>
<thead>
<tr>
<th>Serial Number</th>
<th>Date</th>
<th>Sheet</th>
</tr>
</thead>
<tbody>
<tr>
<td>002</td>
<td>3-24-80</td>
<td>4</td>
</tr>
</tbody>
</table>

Calibration Check List

<table>
<thead>
<tr>
<th>CALIBRATION CHECK LIST</th>
<th>TECHNICIAN SIGN OFF</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Turn on preamp power (switch on bottom front panel of cabinet) and main power (switch on upper right of cabinet). Wait five minutes before proceeding.</td>
<td>[Signature]</td>
</tr>
</tbody>
</table>
| 2. Coil Drivers, Circuit Board A1
 a. Short terminal 7 to terminal 15.
 b. Short terminal 12 to terminal 3.
 c. Attach positive lead from digital voltmeter to terminal 12. Attach negative lead to terminal 15. Set meter to dc volts and AUTO range.
 d. Adjust R56 until meter reads 0.000±0.005 volt.
 e. Remove shorts made in steps a and b.
 f. Remove meter connections. | [Signature] |
| 3. Length Measurement Circuit, Circuit Board A4
 a. Attach positive lead from digital voltmeter to terminal 10. Attach negative lead to terminal 22.
 b. Slowly rotate wheel of shaft encoder on length measurer until voltmeter reading is minimum.
 c. Adjust R8 until meter reads 0.000±0.005 volt.
 d. Slowly rotate wheel of shaft encoder until voltmeter reading is maximum.
 e. Adjust R6 until meter reads 10.0±0.005 volts.
 f. Remove meter connections. | [Signature] |
| 4. Insert Function Test Cartridge into computer. | [Signature] |
| 5. Preamp Offset, MILES Transducer Interface Assembly
 a. Allow a minimum of 2 hours after turning on the preamp power supply for warmup before proceeding with this test.
 b. Load calibration program (Function Test Cartridge file 1) by inputting the following sequence via the keyboard:
 LOAD 1
 EXECUTE
 c. Press RUN and follow the programmed instructions. Record the specified data.
 1) Programmed instructions:
 a) TERMINATE PREAMP INPUT. Terminate preamp input, terminate A and B of J7, with a 260 ±5 ohm 1/2 watt metal film resistor. | [Signature] |

Quality Assurance:

Date: ____________________________

[134]
Transducer Test Set TS-3753/U+

Calibration Data Sheet
Serial Number: 002
Date: 3-24-80
Sheet 5 of 7

<table>
<thead>
<tr>
<th>CALIBRATION CHECK LIST</th>
<th>TECHNICIAN SIGN OFF</th>
</tr>
</thead>
<tbody>
<tr>
<td>b) ALLOW PREAMP TO WARM UP FOR 2 HR. See step 5a.</td>
<td></td>
</tr>
<tr>
<td>c) ADJUST R30 UNTIL BEEP, THEN STOP. This adjusts the preamp offset to less than .02 volts.</td>
<td></td>
</tr>
<tr>
<td>d) VOLTMETER READING = ? The value of the offset voltage is displayed continually until the offset is less than 0.02 volts. Then the value of the offset voltage is printed out.</td>
<td></td>
</tr>
<tr>
<td>e) GAIN CHECK. The next steps provide for measuring the preamplifier gain.</td>
<td></td>
</tr>
<tr>
<td>f) ATTACH SCOPE PB TO OSC BD TER #4. ATTACH GROUND LEAD TO #22. Attach oscilloscope probe to terminal 4 of circuit board A2. Ground oscilloscope to terminal 22.</td>
<td></td>
</tr>
<tr>
<td>g) ATTACH OTHER PROBE TIP TO JB1 #5. Attach the other oscilloscope probe to terminal TB1-5 in junction box JB1.</td>
<td></td>
</tr>
<tr>
<td>h) REMOVE PREAMP TERMINATION. Remove 260 ohm preamp termination.</td>
<td></td>
</tr>
<tr>
<td>i) FROM TERMINAL #4 OSC BOARD INPUT P-P SCOPE READING, app 20 V. Input value of the peak-peak voltage seen at terminal 4 of circuit board A2. Attach jumper from this terminal to TB-1 in JB1.</td>
<td></td>
</tr>
<tr>
<td>j) FROM JB1 #5 INPUT VOLTAGE P-P, 10 V. Input value of the peak-peak voltage seen at terminal TB1-5 in junction box JB1. Remove jumper.</td>
<td></td>
</tr>
<tr>
<td>k) PREAMP TEST COMPLETE. The preamplifier gain will be printed out; first in decimals then in absolute numbers.</td>
<td></td>
</tr>
<tr>
<td>2) Record the printed data.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MIN</td>
</tr>
<tr>
<td>Offset(V)</td>
<td>---</td>
</tr>
<tr>
<td>Gain(db)</td>
<td>103</td>
</tr>
<tr>
<td>Gain</td>
<td></td>
</tr>
<tr>
<td>d. Remove the oscilloscope probes.</td>
<td></td>
</tr>
</tbody>
</table>

6. Earth Field Bias, Circuit Board A2.
 a. Load auto test program (Auto Test Cartridge, file 0) by inputting the following sequence via the keyboard:
 LOAD 0
 EXECUTE

Quality Assurance: _______________________
Date_______________________________ 135
Transducer Test Set TS-3753/U+

Calibration Data Sheet

Serial Number 002
Date 3/4/80 Sheet 6 of 7

CALIBRATION CHECK LIST

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>b. Initiate auto test program. Input:</td>
<td>RUN</td>
</tr>
<tr>
<td>c. Choose manual test point selection and auto sequencing.</td>
<td></td>
</tr>
<tr>
<td>d. Continue program until computer displays:</td>
<td>READY FOR MAGNETIC TEST</td>
</tr>
<tr>
<td>e. Wait approximately 5 seconds; then press STOP.</td>
<td></td>
</tr>
<tr>
<td>f. Adjust RNC2 in JB4 to 15kΩ.</td>
<td></td>
</tr>
<tr>
<td>g. Using a gauss meter such as the Bell 640 Incremental Gauss Meter, adjust R16 so that the gauss meter reads 0.25 gauss with the probe oriented in the same direction as the transducer at the center of field bias coil 1.</td>
<td></td>
</tr>
<tr>
<td>h. Measure R16 and adjust R20 to the same value.</td>
<td></td>
</tr>
<tr>
<td>i. Adjust RNC2 in JB4 to 17400Ω-0.5 R16.</td>
<td></td>
</tr>
<tr>
<td>j. Repeat steps 6.g. through 6.i. until RNC2 and the magnetic field strength are both correct.</td>
<td></td>
</tr>
</tbody>
</table>

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a. Load auto test program (Auto Test Cartridge, file 0) by inputting the following sequence via the keyboard:</td>
<td>LOAD 0 EXECUTE</td>
</tr>
<tr>
<td>b. Initiate auto test program. Input:</td>
<td>RUN</td>
</tr>
<tr>
<td>c. Choose auto sequencing.</td>
<td></td>
</tr>
<tr>
<td>d. Continue program until computer displays:</td>
<td>READY FOR P/S DATA</td>
</tr>
<tr>
<td>e. Wait approximately 5 seconds; then press STOP.</td>
<td></td>
</tr>
<tr>
<td>f. Measure force transducer output (VAF) at JBI between T82-5 and TB2-6.</td>
<td></td>
</tr>
<tr>
<td>g. Disconnect lead from terminal TB1-5 in junction box JB-1.</td>
<td></td>
</tr>
<tr>
<td>h. Short terminals X and R on circuit board A9.</td>
<td></td>
</tr>
<tr>
<td>i. Adjust R2 on circuit board A9 until SVM reads 0.00±0.01 volt.</td>
<td></td>
</tr>
<tr>
<td>j. Remove short between terminals X and R and place short between terminals X and Y.</td>
<td></td>
</tr>
<tr>
<td>k. Attach oscilloscope probe to terminal Y. Ground oscilloscope to terminal R of circuit board A9.</td>
<td></td>
</tr>
<tr>
<td>l. Record peak-to-peak voltage, V, of signal displayed on oscilloscope (approximately 10 volts).</td>
<td></td>
</tr>
<tr>
<td>m. Adjust R5 on circuit board A9 until SVM reads (\frac{(V/2)^2}{10}). For example, if (V = 10), adjust R5 until meter reads 2.5 volts.</td>
<td></td>
</tr>
</tbody>
</table>

Quality Assurance: __________________________
Date __________________________ 136
Transducer Test Set TS-3753/U+()

Calibration Data Sheet

<table>
<thead>
<tr>
<th>Serial Number</th>
<th>003</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date</td>
<td>3-24-70</td>
</tr>
<tr>
<td>Sheet</td>
<td>7 of 7</td>
</tr>
</tbody>
</table>

CALIBRATION CHECK LIST

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>n.</td>
<td>Remove test leads and reattach lead to terminal TB1-5 in JB-1.</td>
</tr>
<tr>
<td>o.</td>
<td>Attach one oscilloscope probe to terminal 12 of circuit board A10. Ground the oscilloscope to terminal R.</td>
</tr>
<tr>
<td>p.</td>
<td>Adjust R5 on circuit board A10 until the peak-to-peak voltage indicated on the oscilloscope equals 11.28 million divided by (preamp gain X VAF(PP)). (See step 5, Preamp Offset).</td>
</tr>
<tr>
<td>q.</td>
<td>Adjust R4, shown in Figure 2.9, on circuit board A10 until:</td>
</tr>
</tbody>
</table>
| | \[
| | V_{SVM} = \frac{G \times 0.355 \times V_{AF} \times 14.14}{V_{PV}}
| | \]
| | where \[
| | V_{SVM} = SVM reading
| | V_{PV} = Preamp Output
| | V_{AF} = Force Transducer Output |
| r. | Remove oscilloscope connections. |
| s. | Wait at least 2 minutes for the correlation circuitry to stabilize. |
| t. | Press CONTINUE on the computer keyboard. |
| u. | Continue program until computer displays READY FOR MAGNETIC TEST. |
| v. | Wait approximately 5 seconds, and press STOP. |
| w. | Attach one oscilloscope probe to terminal 7 of circuit board A10. Ground the oscilloscope to terminal R. |
| x. | Adjust R21 on circuit board A10 until the peak-to-peak voltage indicated on the oscilloscope equals 2 million divided by the preamp gain. |
| y. | Adjust R20 on circuit board A10 until: |
| | \[
| | V_{SVM} = \frac{G \times 200 \times 0.1414}{V_{PV}}
| | \]
| z. | Remove oscilloscope probe from terminal 1. |
| a1. | End of test. |

QUALITY ASSURANCE:

| Date | 137 |

| TECHNICIAN SIGN OFF |

| Signature | |

End of test.
Transducer Test Set TS-3753/U

Test Data Sheet

Serial Number 007
Date 3-34-80

Sheet 1 of 14

Para. 4.2.1 MANUAL SEQUENCING
MANUAL TEST POINT SELECTION

<table>
<thead>
<tr>
<th>TECHNICIAN SIGN OFF</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

1. Insert Automatic Test Cartridge into the computer and load the automatic test program by inputting the following sequence via the keyboard:

```
LOAD
0
EXECUTE
```

2. Press RUN and follow the programmed instructions.

3. Choose manual sequencing and manual test point selection. The test points selected shall be 3, 4, 50 and 82.

4. Perform the following test. When the test requires data to be recorded, record the data in the technician sign-off column; if a qualitative judgment is required, such as for smoothness of operation, assess the equipment performance and sign if adequate. Explain any deficiencies.

 a. Software. Does the program operate correctly? Check accuracy of mean and standard deviation calculations.

 b. Sequence Control Smoothness. Is the transducer transport operation smooth? Check for "jerky" transducer movement, especially when starting or stopping.

 c. Test Time. Record the test time at each transposition tested.

 \[t_1 \leq 4 \text{ minutes} \]
 Record the time required to move the transducer from 3 to 4.

 \[t_3 \leq 1 \text{ minute} \]
 d. Rewind Time. Record the rewind time.

 \[t_{rew} \leq 4 \text{ minutes} \]

 e. Positioning Accuracy. Record the transposition numbers tested. Record the distance from the center of the transposition to the center line of center clamp for each test location.

<table>
<thead>
<tr>
<th>Quality Assurance:</th>
<th>Date</th>
<th>139</th>
</tr>
</thead>
</table>
Transducer Test Set TS-3753/U+()

Test Data Sheet
Serial Number
Date 3-24-76
Sheet 2 of 14

Para. 4.2.1 MANUAL SEQUENCE MANUAL TEST POINT SELECTION

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>t_1</td>
<td>3</td>
</tr>
<tr>
<td>t_2</td>
<td>4</td>
</tr>
<tr>
<td>t_3</td>
<td>50</td>
</tr>
<tr>
<td>t_4</td>
<td>82</td>
</tr>
<tr>
<td>d</td>
<td>$\leq \frac{1}{2}$ inch</td>
</tr>
</tbody>
</table>

TECHNICIAN SIGN OFF

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>d_1</td>
<td>$\frac{3}{8}$"</td>
</tr>
<tr>
<td>d_2</td>
<td>$\frac{3}{8}$"</td>
</tr>
<tr>
<td>d_3</td>
<td>$\frac{3}{8}$"</td>
</tr>
<tr>
<td>d_4</td>
<td>$\frac{3}{8}$"</td>
</tr>
</tbody>
</table>

- f. Display Clarity. Assess the quality of the display. Is it readable?
- g. Data Clarity. Assess the quality of the data printout. Is it readable?
- h. Inspect the MILES transducer for damages caused by the test.

Quality Assurance: __________________________

Date ___________________________ 140
Para. 4.2.2 MANUAL SEQUENCING
AUTOMATIC TEST POINT SELECTION

1. Insert Automatic Test Cartridge into the computer and load the automatic test program by inputting the following sequence via the keyboard:
 - LOAD
 - EXECUTE

2. Press RUN and follow the programmed instructions.

3. Choose manual sequencing and automatic test point selection. The test points selected shall be 10, 40, 60 and 80.

4. Perform the following test. When the test requires data to be recorded, record the data in the technician sign-off column; if a qualitative judgement is required, such as for smoothness of operation, assess the equipment performance and sign if adequate. Explain any deficiencies.
 - a. Software. Does the program operate correctly? Check accuracy of mean and standard deviation calculations.
 - b. Sequence Control Smoothness. Is the transducer transport operation smooth? Check for "jerky" transducer movement, especially when starting or stopping.
 - c. Test Time. Record the test time at each transposition tested.
 \[t_1 \leq 4 \text{ minutes} \]
 - d. Rewind Time. Record the rewind time.
 \[t_{\text{rew}} \leq 4 \text{ minutes} \]
 - e. Positioning Accuracy. Record the transposition numbers tested. Record the distance from the center of the transposition to the centerline of the center and clamp for each test location.
 \[t_1 = 10 \quad t_2 = 40 \quad t_3 = 60 \quad t_4 = 80 \]
 \[d \leq \frac{1}{2} \text{ inch} \]

<table>
<thead>
<tr>
<th>TECHNICIAN SIGN OFF</th>
</tr>
</thead>
<tbody>
<tr>
<td>(t_{10} = 3.03)</td>
</tr>
<tr>
<td>(t_{20} = 3.03)</td>
</tr>
<tr>
<td>(t_{60} = 3.03)</td>
</tr>
<tr>
<td>(t_{80} = 3.03)</td>
</tr>
<tr>
<td>(t_{\text{rew}} = 3.16)</td>
</tr>
</tbody>
</table>

Quality Assurance: ____________________________

Date: ____________________________ 141
Transducer Test Set TS-3753/U+()

Test Data Sheet
Serial Number 007
Date 3-24-82

<table>
<thead>
<tr>
<th>Para. 4.2.2 MANUAL SEQUENCING AUTOMATIC TEST POINT SELECTION</th>
<th>TECHNICIAN SIGN OFF</th>
</tr>
</thead>
<tbody>
<tr>
<td>f. Display Clarity. Assess the quality of the display. Is it readable?</td>
<td></td>
</tr>
<tr>
<td>g. Data Clarity. Assess the quality of the data printout. Is it readable?</td>
<td></td>
</tr>
<tr>
<td>h. Inspect the MILES transducer for damage caused by the test.</td>
<td></td>
</tr>
</tbody>
</table>

Quality Assurance:__________________________
Date__________________________ 142
Para. 4.2.3 AUTOMATIC SEQUENCING
MANUAL TEST POINT SELECTION

1. Insert Automatic Test Cartridge into the computer and load the automatic test program by inputting the following sequence via the keyboard:
 LOAD
 0
 EXECUTE

2. Press RUN and follow the programmed instructions.

3. Choose automatic sequencing and manual test point selection. The test points selected shall be 3, 4, 50 and 82.

4. Perform the following test. When the test requires data to be recorded, record the data in the technician sign-off column; if a qualitative judgement is required, such as for smoothness of operation, assess the equipment performance and sign if adequate. Explain any deficiencies.
 a. Software. Does the program operate correctly? Check accuracy of mean and standard deviation calculations.
 b. Sequence Control Smoothness. Is the transducer transport operation smooth? Check for "jerky" transducer movement, especially when starting or stopping.
 c. Test Time. Record the test time at each transposition tested.
 \[t_1 \leq 4 \text{ minutes} \]
 Record the time required to move the transducer from 3 to 4.
 \[t_{\text{move}} = 3' 30" \]
 \[t_{\text{rew}} = 3' 49" \]
 d. Rewind time. Record the rewind time.
 \[t_{\text{rew}} \leq 4 \text{ minutes} \]
 e. Positioning Accuracy. Record the transposition numbers tested. Record the distance from the center of the transposition to the centerline of the center clamp for each test location.

Quality Assurance:

Date: 143
Para. 4.2.3 AUTOMATIC SEQUENCING
MANUAL TEST POINT SELECTION

<table>
<thead>
<tr>
<th></th>
<th>TECHNICIAN SIGN OFF</th>
</tr>
</thead>
<tbody>
<tr>
<td>(t_1 = 3)</td>
<td>(d_3 \frac{1}{8} '')</td>
</tr>
<tr>
<td>(t_2 = 4)</td>
<td>(d_4 \frac{1}{4} '')</td>
</tr>
<tr>
<td>(t_3 = 50)</td>
<td></td>
</tr>
<tr>
<td>(t_4 = 82)</td>
<td></td>
</tr>
<tr>
<td>(d \leq \frac{1}{2}) inch</td>
<td></td>
</tr>
</tbody>
</table>

f. Display Clarity. Assess the quality of the display. Is it readable?
g. Data Clarity. Assess the quality of the display. Is it readable?
h. Inspect the MILES transducer for damages caused by the test.

Quality Assurance: ____________________________

Date ____________________________ 144
Para. 4.2.4 AUTOMATIC SEQUENCING
AUTOMATIC TEST POINT SELECTION

1. Insert Automatic Test Cartridge into the computer and load the automatic test program by inputting the following sequence via the keyboard:
 LOAD 0
 EXECUTE

2. Press RUN and follow the programmed instructions.

3. Choose automatic sequencing and automatic test point selection. The test points selected shall be 10, 40, 60 and 80.

4. Perform the following test. When the test requires data to be recorded, record the data in the technician sign-off column; if a qualitative judgement is required, such as for smoothness of operation, assess the equipment performance and sign if adequate. Explain any deficiencies.
 a. Software. Does the program operate correctly? Check accuracy of mean and standard deviation calculations.
 b. Sequence Control Smoothness. Is the transducer transport operation smooth? Check for "jerky" transducer movement, especially when starting or stopping.
 c. Test Time. Record the test time at each transposition tested.
 \[t_1 \leq 4 \text{ minutes} \]
 d. Rewind Time. Record the rewind time.
 \[t_{\text{rew}} \leq 4 \text{ minutes} \]
 e. Positioning Accuracy. Record the transposition numbers tested. Record the distance from the center of the transposition to the centerline of the center clamp for each test location.
 \[t_1 = 10 \quad t_2 = 40 \quad t_3 = 60 \quad t_4 = 80 \]
 \[d \leq \frac{1}{2} \text{ inch} \]

Quality Assurance: _______________________
Date _______________ 145
Para. 4.2.4 AUTOMATIC SEQUENCING
AUTOMATIC TEST POINT SELECTION

- **f. Display Clarity.** Assess the quality of the display. Is it readable?
- **g. Data Clarity.** Assess the quality of the data printout. Is it readable?
- **h.** Inspect the MILES transducer for damages caused by the test.
- **i. Limit Switch.** Wrap a minimum of 10 transpositions around the takeup reel prior to restarting the automatic test sequence. Check for proper limit switch operation.
- **j. Failure Mode.** Disconnect the 1 Hz motor to cause a failure during P/S testing. Run another test. Choose automatic sequencing and automatic test point selection. After first transposition is tested, reconnect motor lead. Check the failure mode software and print out.

<table>
<thead>
<tr>
<th>Quality Assurance:</th>
<th>Technicians Sign Off:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date ______________</td>
<td>Date ________________</td>
</tr>
</tbody>
</table>
Transducer Test Set TS-3753/U+()

Test Data Sheet
Serial Number: O C 2
Date: 3-2-5-80

<table>
<thead>
<tr>
<th>Para. 4.3 MEASUREMENT ACCURACY</th>
<th>TECHNICIAN SIGN OFF</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Insert Automatic Test Cartridge into the computer and load the function test program by inputting the following sequence via the keyboard: LOAD 0 EXECUTE</td>
<td></td>
</tr>
<tr>
<td>2. Press RUN and follow the programmed instructions.</td>
<td></td>
</tr>
<tr>
<td>3. Choose automatic sequencing.</td>
<td></td>
</tr>
<tr>
<td>4. Measure the cable DCR and IR at the end of the test. Record the measured DCR and IR on the test printout.</td>
<td></td>
</tr>
<tr>
<td>5. Repeat steps 2 through 4 until a total of 5 tests have been run.</td>
<td></td>
</tr>
</tbody>
</table>

Quality Assurance: 147
Para. 4.3.1 DCR, IR

1. Record the measured and tested values of the DCR and IR from the Para. 4.3 test printouts.

<table>
<thead>
<tr>
<th>DCR</th>
<th>Measured</th>
<th>Tested</th>
<th>Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>953</td>
<td>953.0</td>
<td>953.0</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>IR</th>
<th>Measured</th>
<th>Tested</th>
<th>Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>716</td>
<td>716.88</td>
<td>716.88</td>
<td>0</td>
</tr>
<tr>
<td>716</td>
<td>716.88</td>
<td>716.88</td>
<td>0</td>
</tr>
<tr>
<td>716</td>
<td>716.88</td>
<td>716.88</td>
<td>0</td>
</tr>
</tbody>
</table>

The difference between the tested and measured values shall not exceed ±1% of the measured value. This requirement does not apply to the IR reading if they exceed the range of the test instrument.

Quality Assurance: __________________________

Date ____________________________ 148
Para. 4.3.2 MECHANICAL RESPONSE

1. Record the values of the P/S means from the printouts obtained in the Para. 4.3 tests. Calculate the mean and standard deviation of these values.

\[
\mu_p = \frac{1}{5} \sum_{i=1}^{5} e_i
\]

\[
\sigma_p^2 = \frac{1}{5} \sum_{i=1}^{5} \left(e_i - \mu_p \right)^2
\]

\[
\sigma_p \leq 0.1 \mu_p
\]

\[
\sigma_p \leq 1.1
\]

\[
0.1 \leq \sigma_p
\]

\[
\sigma_p \leq 1.1
\]
Para. 4.3.3 MAGNETIC RESPONSE

1. Record the values of magnetic means from the print outs obtained in the Para. 4.3 tests. Calculate the mean and standard deviation of these values.

\[
\mu_m = \frac{\sum_{i=1}^{5} e_i}{5}
\]

\[
\sigma_m^2 = \frac{\sum_{i=1}^{5} (e_i - \mu_m)^2}{5 - 1}
\]

\[
\sigma_m \leq 0.1 \mu_m
\]

<table>
<thead>
<tr>
<th>TECHNICIAN SIGN OFF</th>
</tr>
</thead>
<tbody>
<tr>
<td>(e_1 = \mu_m)</td>
</tr>
<tr>
<td>(e_2 = \mu_m)</td>
</tr>
<tr>
<td>(e_3 = \mu_m)</td>
</tr>
<tr>
<td>(e_4 = \mu_m)</td>
</tr>
<tr>
<td>(e_5 = \mu_m)</td>
</tr>
</tbody>
</table>

\(\mu_m = .15 \)

\(\sigma_m = 0 \)

Quality Assurance: __________________________

Date __________________________ 150
Para. 4.3.4 DISTANCE BETWEEN TRANSPOSITIONS

1. Modify the function test program to print out all the distance between transposition measurements.

2. Run a complete test using the modified program.

3. Make actual measurements of the distance between transpositions at the specified locations. The measurement shall be made from the center line of the first transposition to the center line of the second transposition.

<table>
<thead>
<tr>
<th>Tested Value</th>
<th>Measured Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>(d_3 = T_3 - T_4)</td>
<td>43.0 43”</td>
</tr>
<tr>
<td>(d_{10} = T_{10} - T_{11})</td>
<td>43.9 43”</td>
</tr>
<tr>
<td>(d_{75} = T_{75} - T_{76})</td>
<td>43.4 43”</td>
</tr>
</tbody>
</table>

The tested value and the measured value must agree within ±1% of the measured value.

4. Calculate the mean and standard deviation (see para. 4.3.2 tests) of the distance between transposition measurements. The results must agree with the printout results.

Quality Assurance: _________________________

Date _________________________ 151
Quality Data Sheet
Serial Number 002
Date 3-26-80
Sheet 14 of 14

Para. 5.2 NAMEPLATES AND PRODUCT MARKING
1. Indicate conformance with MIL-STD-130.
 Quality Assurance: [Signature]
 Date: 3-26-80

Para. 5.3 WORKMANSHIP
1. Indicate conformance with the Honeywell Sea, Air and Ground Workmanship Standard, UED 23036.
 Quality Assurance: [Signature]
 Date: 3-26-80

Quality Assurance: __________________________
Date ___________________________ 152
<table>
<thead>
<tr>
<th>MILES TRANSUCER</th>
<th>CABLE TRANS.#82</th>
</tr>
</thead>
<tbody>
<tr>
<td>AUTOMATIC TEST</td>
<td>PRESSURE SENS.</td>
</tr>
<tr>
<td></td>
<td>-11.4 (\text{uV/g})</td>
</tr>
<tr>
<td></td>
<td>MAGNETIC SENS.</td>
</tr>
<tr>
<td></td>
<td>0.19 (\text{uV/g})</td>
</tr>
</tbody>
</table>

3/24/80

SERIAL #24.2.1

<table>
<thead>
<tr>
<th>P/S DATA RESULTS</th>
<th>MAG DATA RESULTS</th>
<th>LENGTH RESULTS</th>
<th>TRANSPOSITIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\mu s = 11.7 \text{uV/1b})</td>
<td>(\sigma m = 0.9 \text{uV/gamma})</td>
<td>(\mu d = 43.0 \text{inches})</td>
<td>TOTAL = 86.00</td>
</tr>
<tr>
<td>(\sigma s = 1.5 \text{uV/1b})</td>
<td>(\sigma m = 0.0 \text{uV/gamma})</td>
<td>(\sigma d = 0.2 \text{inches})</td>
<td></td>
</tr>
</tbody>
</table>

Unit #002 Manual Sequencing,
Manual Test Point Selection
Paragraph 4.2.1
MILES TRANSDUCER
AUTOMATIC TEST

3/24/80

SERIAL #2/4.2.2

CABLE TRANS.#86
PRESSURE SENS.
-12.4. uv/1b
MAGNETIC SENS.
0.20 uv/gamma

FINAL POSITION
DCR = 253 0
IR = 19000000 0

P/S DATA RESULTS
μd = 11.0uv/1b
σd = 1.0uv/1b

MAG DATA RESULTS
μd = 0.20uv/gamma
σd = 0.01uv/gamma

LENGTH RESULTS
μL = 43.0 inches
σL = 0.2 inches

TRANSPOSITIONS
TOTAL = 86.00

%%%%%%%%%%%%%%%

** TRANSDUCER **

$$$ PASSED $$$

%%%%%%%%%%%%%%%
Unit #002 Automatic Sequencing,
Manual Test Point Selection
Paragraph 4.2.3
MILE TRANSDUCER
AUTOMATIC TEST

3/24/80
SERIAL #2/4.2.4

CABLE TRANS.#10
PRESSURE SENS.
-11.4 µV/1b
MAGNETIC SENS.
0.19 µV/ºgamma

CABLE TRANS.#40
PRESSURE SENS.
-10.1 µV/1b
MAGNETIC SENS.
0.19 µV/ºgamma

CABLE TRANS.#60
PRESSURE SENS.
-10.1 µV/1b
MAGNETIC SENS.
0.19 µV/ºgamma

CABLE TRANS.#80
PRESSURE SENS.
-12.4 µV/1b
MAGNETIC SENS.
0.19 µV/ºgamma

FINAL POSITION
DCR = 253 Ω
IR = 19000000 Ω

F/S DATA RESULTS
µs = 11.0µV/1b
σs = 1.1µV/1b

MAG DATA RESULTS
µm = 0.19µV/ºgamma
σm = 0.00µV/ºgamma

LENGTH RESULTS
µd = 43.01 inches
σd = 0.2 inches

TRANSPOSITIONS
TOTAL = 86.00

** ** TRANSDUCER **
** ** PASSED ** **

Unit #002 Automatic Sequencing,
Automatic Test Point Selection
Paragraph 4.2.4

156
MILES TRANSDUCER AUTOMATIC TEST

3/24/80

SERIAL #002

F/P DATA RESULTS
\(\mu = 8.3 \text{uv/lb} \)
\(\sigma = 5.7 \text{uv/lb} \)

MAG DATA RESULTS
\(\mu = 0.19 \text{uv/\gamma} \)
\(\sigma = 0.00 \text{uv/\gamma} \)

LENGTH RESULTS
\(\mu_d = 43.0 \text{ inches} \)
\(\sigma_d = 0.2 \text{ inches} \)

CABLE TRANS.#10
BAD F/S SEN.!!
MAGNETIC SENS.
\(0.19 \text{ uv/\gamma} \)

CABLE TRANS.#40
PRESSURE SENS.
-10.2 \(\text{uv/lb} \)
MAGNETIC SENS.
\(0.19 \text{ uv/\gamma} \)

CABLE TRANS.#60
PRESSURE SENS.
-10.2 \(\text{uv/lb} \)
MAGNETIC SENS.
\(0.19 \text{ uv/\gamma} \)

CABLE TRANS.#80
PRESSURE SENS.
-12.8 \(\text{uv/lb} \)
MAGNETIC SENS.
\(0.19 \text{ uv/\gamma} \)

FINAL POSITION
\(\text{DCR} = 253 \text{ \(\Omega \)} \)
\(\text{IR} = 19000000 \text{ \(\Omega \)} \)

CABLE TRANSITIONS
TOTAL = 36.00

TOTAL DEFECTS = 2.00

DEFECT LIST
BAD P/S AT TRP
10.00
BAD P/S MEAN
HIGH P/S STD 0V

Unit #002 Automatic Sequencing,
Automatic Test Point Selection, Failure Mode
Paragraph 4.2.4.J

157
CABLE TRANS.#80
PRESSURE SENS.
-12.8 uV/lb
MAGNETIC SENS.
0.19 uV/\gamma

FINAL POSITION
DCR = 253 \Omega
IR = 19000000 \Omega

P/S DATA RESULTS
\nu = 11.2 uV/lb
\sigma = 1.2 uV/lb

MAG DATA RESULTS
\nu_m = 0.19 uV/\gamma
\sigma_m = 0.00 uV/\gamma

LENGTH RESULTS
\nu = 43.0 inches
\sigma = 0.2 inches

TRANSPOSITIONS
TOTAL = 86.00

CABLE TRANS.#40
PRESSURE SENS.
-10.5 uV/lb
MAGNETIC SENS.
0.19 uV/\gamma

CABLE TRANS.#60
PRESSURE SENS.
-10.1 uV/lb
MAGNETIC SENS.
0.19 uV/\gamma

3/24/80
SERIAL #2/4.3/1

DCR = 253 \Omega
IR = 19000000 \Omega

UNIT #002 Measurement Accuracy
Paragraph 4.3 Run #1
MILES TRANSDUCER AUTOMATIC TEST

3/25/80
SERIAL #2/4.3/2

CABLE TRANS.#10 PRESSURE SENS.
-11.4 uuv/1b
MAGNETIC SENS.
0.19 uuv/deg

CABLE TRANS.#40 PRESSURE SENS.
-13.0 uuv/1b
MAGNETIC SENS.
0.19 uuv/deg

CABLE TRANS.#60 PRESSURE SENS.
-12.4 uuv/1b
MAGNETIC SENS.
0.19 uuv/deg

FINAL MEASUREMENT
DCR = 253 Ohm
IR = 19000000 Ohm

P/S DATA RESULTS
um = 11.2 uuv/1b
om = 1.2 uuv/1b

MAG DATA RESULTS
um = 0.19 uuv/deg
om = 0.00 uuv/deg

LENGTH RESULTS
um = 43.0 inches
om = 0.2 inches

TRANSPOSITIONS TOTAL= 86.00

TRASNDUCER
PASSED

DCR 253 Ohm
IR >18.888 m-2

Unit #002 Measurement Accuracy
Paragraph 4.3 Run #2

159
MILES TRANSDUCER
AUTOMATIC TEST

3/25/80

SERIAL #2/4.3/3

CABLE TRAN.$#10
PRESSURE SENS.
-11.6 uV/lb
MAGNETIC SENS.
0.19 uV/degman

CABLE TRAN.$#40
PRESSURE SENS.
-9.8 uV/lb
MAGNETIC SENS.
0.19 uV/degman

CABLE TRAN.$#60
PRESSURE SENS.
-10.1 uV/lb
MAGNETIC SENS.
0.19 uV/degman

FINAL POSITION
OCR = 253 Ω
IR = 19000000 Ω

P/S DATA RESULTS
με = 10.5uV/lb
σε = 1.1uV/lb

MAG DATA RESULTS
με = 0.19uV/degman
σε = 0.06uV/degman

LENGTH RESULTS
υd = 43.0 inches
σd = 0.2 inches

TRANSPOSITIONS
TOTAL = 86.00

Unit #002 Measurement Accuracy
Paragraph 4.3 Run #3
3/25/80

SERIAL #2/4.3/4

CABLE TRANS.#10
PRESSURE SENS.
-11.1 uv/lb
MAGNETIC SENS.
0.19 uv/\gamma

CABLE TRANS.#40
PRESSURE SENS.
-10.4 uv/lb
MAGNETIC SENS.
0.19 uv/\gamma

CABLE TRANS.#60
PRESSURE SENS.
-10.4 uv/lb
MAGNETIC SENS.
0.19 uv/\gamma

FINAL POSITION
DCR = 253 \Omega
IR = 19000000 \Omega

P/S DATA RESULTS
\mu = 11.1 uv/lb
\sigma = 0.9 uv/lb

MAG DATA RESULTS
\mu = 0.19 uv/\gamma
\sigma = 0.00 uv/\gamma

LENGTH RESULTS
\mu d = 43.0 inches
\sigma d = 0.2 inches

TRANSPOSITIONS
TOTAL = 86.00

CABLE TRANS.#80
PRESSURE SENS.
-12.3 uv/lb
MAGNETIC SENS.
0.20 uv/\gamma

UNIT #002 MEASUREMENT ACCURACY

PARAGRAPH 4.3 RUN #4

DCR = 252.9
IR = 18.888
CABLE TRANS.#80
PRESSURE SENS.
-12.5 uv/lb
MAGNETIC SENS.
0.20 uv/\gamma

FINAL POSITION
DCR = 253 \Omega
IR = 19000000 \Omega

F/S DATA RESULTS
\nu_s = 11.3 \text{uv/lb}
\sigma_s = 0.9 \text{uv/lb}

MAG DATA RESULTS
\nu_m = 0.19 \text{uv/\gamma}
\sigma_m = 0.00 \text{uv/\gamma}

LENGTH RESULTS
\nu_d = 43.0 \text{inches}
\sigma_d = 0.2 \text{inches}

TRANSPOSITIONS
TOTAL = 36.00

CABLE TRANS.#40
PRESSURE SENS.
-10.5 \text{uv/lb}
MAGNETIC SENS.
0.19 \text{uv/\gamma}

CABLE TRANS.#60
PRESSURE SENS.
-10.6 \text{uv/lb}
MAGNETIC SENS.
0.19 \text{uv/\gamma}

MILES TRANSUDUCER
AUTOMATIC TEST

3/25/80
SERIAL #2/4.3/5

CABLE TRANS.#10
PRESSURE SENS.
-11.5 \text{uv/lb}
MAGNETIC SENS.
0.19 \text{uv/\gamma}

DCR = 253 \Omega
IR = 19000000 \Omega

CABLE TRANS.#40
PRESSURE SENS.
-10.5 \text{uv/lb}
MAGNETIC SENS.
0.19 \text{uv/\gamma}

CABLE TRANS.#60
PRESSURE SENS.
-10.6 \text{uv/lb}
MAGNETIC SENS.
0.19 \text{uv/\gamma}

D/AR > 18.588m-people

Unit #002 Measurement Accuracy
Paragraph 4.3 Run #5

162
MILES TRANSDUCER FUNCTIONAL TEST

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>P/S mean</td>
<td>13.00</td>
</tr>
<tr>
<td>P/S mean L</td>
<td>5.00</td>
</tr>
<tr>
<td>P/S sd L</td>
<td>10.00</td>
</tr>
<tr>
<td>MAG mean</td>
<td>0.10</td>
</tr>
<tr>
<td>MAG mean L</td>
<td>0.05</td>
</tr>
<tr>
<td>MAG sd L</td>
<td>0.10</td>
</tr>
<tr>
<td>Tn Dt mean</td>
<td>43.00</td>
</tr>
<tr>
<td>Tn mean L</td>
<td>1.00</td>
</tr>
<tr>
<td>Tn sd L</td>
<td>2.00</td>
</tr>
</tbody>
</table>

3/25/80

SERIAL #2/4.3.4

DCR = 253 Ω

IR = 19000000 Ω

CABLE TRANS.#10

PRESSURE SENS.

-11.7 \(\text{uv/lb} \)

MAGNETIC SENS.

0.19 \(\text{uv/\gamma} \)

CABLE TRANS.#40

PRESSURE SENS.

-10.2 \(\text{uv/lb} \)

MAGNETIC SENS.

0.19 \(\text{uv/\gamma} \)

Final position

DCR = 253 Ω

IR = 19000000 Ω

P/S DATA RESULTS

- \(\mu = 10.9 \text{uv/lb} \)
- \(\sigma = 1.1 \text{uv/lb} \)

MAG DATA RESULTS

- \(\mu = 0.19 \text{uv/\gamma} \)
- \(\sigma = 0.08 \text{uv/\gamma} \)

LENGTH RESULTS

- \(\mu_d = 43.0 \text{inches} \)
- \(\sigma_d = 0.2 \text{inches} \)

TRANSPOSITIONS

TOTAL = 86.00

Unit #002 Distance Between Transpositions

Functional Test (Sheet 1)

Paragraph 4.3.4

163
<table>
<thead>
<tr>
<th>TRP#</th>
<th>1L = 43.2</th>
<th>TRP#</th>
<th>26L = 43.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>TRP#</td>
<td>2L = 43.0</td>
<td>TRP#</td>
<td>27L = 43.0</td>
</tr>
<tr>
<td>TRP#</td>
<td>3L = 43.0</td>
<td>TRP#</td>
<td>28L = 42.9</td>
</tr>
<tr>
<td>TRP#</td>
<td>4L = 43.1</td>
<td>TRP#</td>
<td>29L = 43.1</td>
</tr>
<tr>
<td>TRP#</td>
<td>5L = 42.9</td>
<td>TRP#</td>
<td>30L = 43.1</td>
</tr>
<tr>
<td>TRP#</td>
<td>6L = 42.9</td>
<td>TRP#</td>
<td>31L = 43.0</td>
</tr>
<tr>
<td>TRP#</td>
<td>7L = 42.9</td>
<td>TRP#</td>
<td>32L = 43.1</td>
</tr>
<tr>
<td>TRP#</td>
<td>8L = 43.3</td>
<td>TRP#</td>
<td>33L = 42.9</td>
</tr>
<tr>
<td>TRP#</td>
<td>9L = 42.9</td>
<td>TRP#</td>
<td>34L = 42.8</td>
</tr>
<tr>
<td>TRP#</td>
<td>10L = 42.9</td>
<td>TRP#</td>
<td>35L = 43.0</td>
</tr>
<tr>
<td>TRP#</td>
<td>11L = 43.1</td>
<td>TRP#</td>
<td>36L = 42.9</td>
</tr>
<tr>
<td>TRP#</td>
<td>12L = 43.0</td>
<td>TRP#</td>
<td>37L = 42.5</td>
</tr>
<tr>
<td>TRP#</td>
<td>13L = 43.0</td>
<td>TRP#</td>
<td>38L = 42.8</td>
</tr>
<tr>
<td>TRP#</td>
<td>14L = 43.2</td>
<td>TRP#</td>
<td>39L = 42.8</td>
</tr>
<tr>
<td>TRP#</td>
<td>15L = 43.0</td>
<td>TRP#</td>
<td>40L = 42.6</td>
</tr>
<tr>
<td>TRP#</td>
<td>16L = 43.0</td>
<td>TRP#</td>
<td>41L = 42.4</td>
</tr>
<tr>
<td>TRP#</td>
<td>17L = 42.9</td>
<td>TRP#</td>
<td>42L = 43.1</td>
</tr>
<tr>
<td>TRP#</td>
<td>18L = 43.0</td>
<td>TRP#</td>
<td>43L = 42.8</td>
</tr>
<tr>
<td>TRP#</td>
<td>19L = 43.0</td>
<td>TRP#</td>
<td>44L = 43.1</td>
</tr>
<tr>
<td>TRP#</td>
<td>20L = 43.2</td>
<td>TRP#</td>
<td>45L = 43.3</td>
</tr>
<tr>
<td>TRP#</td>
<td>21L = 42.9</td>
<td>TRP#</td>
<td>46L = 43.1</td>
</tr>
<tr>
<td>TRP#</td>
<td>22L = 43.1</td>
<td>TRP#</td>
<td>47L = 42.9</td>
</tr>
<tr>
<td>TRP#</td>
<td>23L = 42.9</td>
<td>TRP#</td>
<td>48L = 43.1</td>
</tr>
<tr>
<td>TRP#</td>
<td>24L = 43.0</td>
<td>TRP#</td>
<td>49L = 43.1</td>
</tr>
<tr>
<td>TRP#</td>
<td>25L = 43.0</td>
<td>TRP#</td>
<td>50L = 43.1</td>
</tr>
</tbody>
</table>

Unit #002 Distance Between Transpositions
Functional Test (Sheet 2)
Paragraph 4.3.4
TRP# 51L= 43.2
TRP# 52L= 43.1
TRP# 53L= 43.1
TRP# 54L= 43.0
TRP# 55L= 43.1
TRP# 56L= 43.0
TRP# 57L= 42.5
TRP# 58L= 43.2
TRP# 59L= 43.0
TRP# 60L= 43.2
TRP# 61L= 43.0
TRP# 62L= 43.1
TRP# 63L= 43.3
TRP# 64L= 43.0
TRP# 65L= 43.0
TRP# 66L= 43.1
TRP# 67L= 43.0
TRP# 68L= 43.1
TRP# 69L= 42.9
TRP# 70L= 43.3
TRP# 71L= 43.1
TRP# 72L= 43.1
TRP# 73L= 42.8
TRP# 74L= 43.4
TRP# 75L= 42.9
TRP# 76L= 43.2
TRP# 77L= 42.4
TRP# 78L= 43.3
TRP# 79L= 42.9
TRP# 80L= 43.3
TRP# 81L= 42.8
TRP# 82L= 43.4
TRP# 83L= 42.6

Unit #002 Distance Between Transpositions
Functional Test (Sheet 3)
Paragraph 4.3.4

165
Unit #002 Limit Switch Test
Paragraph 4.2.4.i
MILES TRANSDUCER AUTOMATIC TEST

3/25/80
SERIAL #002

CABLE TRANS.#10
PRESSURE SENS.
-12.6 uv/1b
MAGNETIC SENS.
0.19 uv/degree

CABLE TRANS.#40
PRESSURE SENS.
-11.8 uv/1b
MAGNETIC SENS.
0.19 uv/degree

CABLE TRANS.#80
PRESSURE SENS.
-11.6 uv/1b
MAGNETIC SENS.
0.20 uv/degree

FINAL POSITION
DCR = 254 0
IR = 19000000 0

P/S DATA RESULTS
μs = 11.3uv/1b
σs = 0.6uv/1b

MAG DATA RESULTS
μm = 0.19uv/degree
σm = 0.00uv/degree

LENGTH RESULTS
μd = 43.0inches
σd = 0.2inches

TOTAL = 86.00

Unit #002 Witness Test
MISSION
of
Rome Air Development Center

RADC plans and executes research, development, test and selected acquisition programs in support of Command, Control Communications and Intelligence (C3I) activities. Technical and engineering support within areas of technical competence is provided to ESD Program Offices (POs) and other ESD elements. The principal technical mission areas are communications, electromagnetic guidance and control, surveillance of ground and aerospace objects, intelligence data collection and handling, information system technology, ionospheric propagation, solid state sciences, microwave physics and electronic reliability, maintainability and compatibility.