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Abstract

A theory is formulated for the small-amplitude free vibration of thick,

circular cylindrical shells laminated of bimodulus composite materials, which

have different elastic properties depending upon whether the fiber-direction

strain is tensile or compressive. The theory used is the dynamic, shear

deformable (moderately thick shell) analog of the Sanders best first-approxi-

mation thin-shell theory. By means of tracers, the analysis can be reduced

to various simpler shell theories, namely Love's first approximation, and

Donnell's shallow-shell theory. As an example of the application of the theory,

a closed-form solution is presented for a freely supported panel or complete

shell. To validate the analysis, numerical results are compared with existing

results for various special cases. Also, the effects of the various shell

theories, thickness shear flexibility, and bimodulus action are investigated.

Index categories: Structural Dynamics; Structural Composite Materials.
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Nomenclature

A.. - stretching stiffnesses

Bij = bending-stretching coupling stiffnesses

b = circumferential arc width of panel

[C] = matrix of coefficients

C9,Ci = shell-theory tracers

CO = C /R

D. bending stiffnesses

dxy = a2( )/axay
= total shell thickness

I - rotatory inertia coefficient (per unit mldsurface area)

KOK S = thickness-shear correction factors

[L] - matrix of linear differential operators

M1tN i - stress couples and in-surface stress resultants

m,n - axial and circumferential mode numbers

P = normal inertia coefficient (per unit midsurface area)

Qi - thickness-shear stress resultants

Qijk = plane-stress reduced stiffness coefficients

R - radius of shell midsurface

Sl a thickness-shear stiffnesses

t u time

u,v,w axial, circumferential, and radial mldsurface displacements

U,V,W - amplitudes of u,v,w

x,y,z = position coordinates In axial, circumferential, and outward normal

directions

X,Y amplitudes of *1 and *2

* i, -C.',
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z nx,' Zny = neutral-surface positions forcx-O and £y-O, respectively

xy Znx/h, ny/h

a's = m4/L, nff/b (for panel) or n/R (for complete cylinder)

6,A = generalized displacement vectors defined in Eqs. (8) and (15)

*1,*2 = bending slopes in xz and yz planes Accs-U r "

cj = strain components at arbitrary location (x,y,z) N7iS /.

= midsurface strain components

Kj = curvature-change components

p = material density D

Ci  = stress components A a i

= natural frequency DI

xy 32( )/xay

Introduction

Analysis of composite-material shell-type structures has been of con-

siderable research interest in the past two decades. Earlier work has been
summarized in a monograph by Leissal and in two more recent survey papers2'

Due to its importance, the finite-length circular cylindrical shell con-

figuration has received the most attention. Thin-shell analyses of composite-

material shells of this configuration have been performed by Dong4 , Abhat and

Wilcoxs and Fortier and Rossettos6 using Donnell's shallow-shell theory7, by

Bert, Baker, and Egle e , Stavsky and Loewy9 , Shivakumar and Krishna Murtyl o,

and Greenberg and Stavskyll using Love's first approximation theory12 , and by

Padovan13 using Novozhilov's higher-order theory14 . In the present work,

tracer coefficients are introduced to consider Sanders' best first-approximation

theory's, Love's first approximation 12 , Loo's 16 , Morley's 17, and Donnell's 7

theories.

"M--
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The thickness shear moduli of composite materials are typically an order

of magnitude lower than their in-plane elastic moduli. This is in contrast

to isotropic materials, which have shear to elastic moduli ratios of approxi-

mately 40%. Thus, composite-material shells would be expected to be affected

by thickness-shear flexibility to a much greater extent than isotropic shells

having the same geometric parameters. Previous research on vibration of

laminated, shear deformable shells includes that of Refs. 18 and 19, using the

shear deformable analog of Donnell's shallow shell theory, and Refs. 20 and 21,

using the shear deformable version of Love's first approximation. In some

recent work22, the shear deformable analog of Sanders' theory was developed

and it was shown, using tracers, that this theory can be reduced to two simpler

shear deformable theories as special cases: (1) Love's first approximation

and Loo's, and (2) Morley's and Donnell's. This approach is extended to shell

vibration in the present paper,

Certain fiber-reinforced materials, especially those with very soft

matrices (e.g., cord-rubber), exhibit quite different elastic behavior depend-

23-25
ing upon whether the fiber-direction strain is tensile or compressive

As a first approximation, the stress-strain behavior of such materials is

usually modeled as being bilinear, with different elastic coefficients

depending upon the sign of the fiber-direction strain. Thus, these materials

are called bimodulus composite materials. The fiber-governed, symmetric-

compliance material model proposed in Ref. 26 has been shown to agree well

with experimental data obtained under in-plane loading of several materials

with drastically different properties in tension and compression. To the

best of the present investigators' knowledge, all of the previous investigations

of laminated bimodulus shells, as reviewed in Refs. 22 and 27, have involved



the static behavior of thin cylindrical shells under mechanical or thermal

loading. However, free vibration of cross-ply laminated plates was considered

in Ref. 28.

Formulation

Laminate Action

To explain the effect of bimodulus action on the shell behavior, we

discuss first a flat plate. If a single-layer plate or a laminate symmetrically

laminated about its midplane are made of ordinary (not bimodulus) materials,

there is no coupling between bending and stretching. However, a laminate

which is not symmetrically laminated does exhibit bending-stretching coupling.

Now consider a flat plate consisting of either a single layer of bimodulus

material or synmnetrically laminated of bimodulus materials. When the plate

is subjected to bending, the different elastic moduli in tension and compres-

sion cause a shift in the neutral surface away from the geometric mldplane

toward the tension side of the bend if the tensile properties exceed the com-

pressive ones. Consequently, this plate displays bending-stretching coupling,

analogous to a plate unsynmnetrically laminated of ordinary material as des-

cribed in the preceeding paragraph. Therefore, in a laminated bimodulus-

material shell, bending-stretching coupling can be induced by the combination

of bimodulus-material action, laminate configuration, and shell geometry

(curvature).

One can write the laminate constitutive relations as

- ii , 
I2)
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Here, the respective in-plane, bending-stretching, bending or twisting, and

thickness-shear stiffnesses are defined as

h/2

(AijBij'Dij) f f (l,z,z2)Qijki dz (1,J-1,2,6)

h/2

S * J K1Kj qijkL dz (i .j=4,5)
-h2

Here, Qijkl denotes the plane-stress reduced stiffness defined by

{ai l a EQ ijkz]{fj } (3)

and subscripts iJ refer to the position in the stress-strain-relation

array, k refers to the sign of the fiber-direction strain (1 +, 2 "-

and z is the layer number.

Shear Deformable Shell Theory

The coordinate system used here is shown in Fig. 1. Then the equations

of motion in the absence of body forces and body moments can be written as

x

. b/R /

S//

Figure 1. Shell geometry

4AiWm
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N + N (C/2R)M Put + (IIR) t1,X 6,Y 2 6,Y tt ( I/R 'tt

N + N2 + (C/R)Q + (C2/2R)M 6,X tt 2,ttN6,X 2,y 1 ) ~ /RM = Pv + (I/R)€2,

Q5,X +  Q -,y (N2/R) = Pw tt (4)
MI + M 69 Q 5 IP 1t + (I/R)ut

M1,x 6,y 5 ~',tt +t

M6,+ M 2 Q4  I2 + (I/R)v.,t

Here, it has been assumed that the mass distribution is symmetric about the

middle surface. The normal and rotatory inertias are

-h/2
(PI) = {-h/2 (l ,Z2)p dz (5)

The first terms on the right side of each of Eqs. (4) are the same as

for plates in Mindlin's shear deformable theory29. The second terms on the

right side of all except the third equation of set (4) are the inertia-coupling

terms due to shell curvature, first introduced by Mirsky and Herrmann30 .

The kinematics of deformation can be expressed as

C = ux CO = V, + (w/R) ; e = u, + v,

1 x2 y 6 'y

L4 x *2 
+ W'y - (C1/R)v ; s *1 + Wx (6)

K, = *I,x K 2 = *2,y I = 6 i,y + *2,x + (C2/
2R)(v'x" U,y)

The coefficients C z appearing in Eqs. (4) and (6) are shell-theory

tracers which take on values listed in Table 1. Note that in contrast to

the case of thin-shell theory, Loo's approximation offers no simplification

over Love's first-approximation theory and Donnell's theory coincides with

Morley's.

o d .. ,, . .-. . .. . . . ,. . . . ,, .," . . .
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Table I. Shell-theory tracers and their values

Theory (thin-shell theory
generalized to shear deformable theory) C, C2

Sanders'15  1 1

Love's first approximation 12 and Loo's16  1 0

Morley's 17 and Donnell's 7  0 0

Substituting Eqs. (1) and (6) into Eqs. (4), one obtains the following

operator equation

[L](61 = 0 (7)

where

{6) = {uv~w1,12 T  (8)

and CL] is a symmetric matrix of linear differential operators listed in

Appendix A.

Criteria for Homogeneity Along the Middle Surface

In deriving Eq. (7), we tacitly assumed that the laminate stiffnesses

(AijBijD ij, Sip) are all independent of coordinates ix,y) on the middle

surface. However, in view of the bimodulus nature of the materials comprising

the laminate, these stiffnesses depend upon the fiber-direction neutral-

surface positions associated with the respective layers (i.e., Znx for a

single layer with axially oriented fibers, and znx and zny for a cross-ply

laminate).

Thus, for layers having the fibers oriented axially, the associated

fiber-direction neutral-surface position is determined by

C1 = 
C' 

+ Z K, = 0

or

znx =- 1 = 1x1,x = constant (9)

IS4~~~.. 1t. - xr ~Z r
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Similarly, for layers having the fibers oriented circumferentially
o2 + Z z0

£2 = 2 ny2

or

y /K (v, + Rw)/ ,y constant (10)

Closed-Form Solution

We seek a solution which satisfies the governing operator Eq. (7), the

homogeneity relations (9) and (10), and appropriate boundary conditions.

A closed-form solution is presented for a shell that is freely sup-

ported (simply supported without in-surface restraint; SS3 in Hoff's

notation3 l) along its curved edges:

N1 (O,y,t) = NI(L,y,t) = M1(O,y,t) = MI(L,y,t) = 0

w(O,y,t) = w(L,y,t) = v(O,y,t) = v(L,y,t) = 0 (11)

0 2(O,yt) = *2(L,y,t) = 0

The shell may be either circumferentially complete (closed), which

requires that the circumferential mode shapes be periodic in position (i.e.,

trigonometric functions), or a cylindrically curved panel (open shell) freely

supported along the generators, which requires that the following additional

boundary conditions be satisfied:

N2(x,O,t) = N2(x,b,t) = M2(x,Ot) = M2 (x,b,t) = 0

w(x,O,t) w(x,b,t) = u(x,O,t) = u(x,b,t) = 0 (12)

,p(x.0,t) V1 (x,b ,t) . 0

Under these conditions, the solution to Eq. (7) is of the form

I
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u = U cos ax sin By cos wt

v = V sin ax cos 8Y cos wt

w = W sin ax sin 8Y cos wt (13)

= X cos ax sin ay cos wt

*2 = Y sin ax cos By cos wt

where a=mw/L and a=nir/b for a panel and n/R for a complete cylinder.

Substitution of Eqs. (13) into Eq. (7) leads to the following homo-

geneous algebraic system

[C]fA) = {0} (14)

where CC] is a matrix with elements depending upon Aij, Bij, D i, Sij, P$ I,

a, and 8, and

= {U,V,W,X,Y}T (15)

Numerical Results

Before proceeding to the calculations for shells laminated of bimodulus

materials, we present some results for both circumferentially complete

cylinders and cylindrically curved panels laminated of ordinary composite

materials.

The first example is for a thin-walled complete cylinder cross-plied

of boron-epoxy. The geometric parameters and material properties used are

listed in Table 2. The agreement between the natural frequencies for numer-

ous modes computed by use of the thin-shell theory of Appendix B (special-

ized to Love's first approximation) and the Love's first-approximation

analysis of Ref. 8 is excellent, as shown by comparison of columns 3 and 4

in Table 3. The inclusion of thickness shear deformation sometimes

- - - - -. . . . .. .. .... .



decreases the natural frequencies, but in other instances increases them,

as can be seen in column 5 of Table 3. For this thin shell, the effect

of rotatory inertia is almost negligible (column 6).

The second example is for a cylindrically curved panel with thickness

shear flexibility included, using numerical input data from Refs. 18 and

19 as listed in Table 4. In order to make a fair comparison with the

results of Refs. 18 and 19, it is necessary to use the shear deformable

version of Donnell's theory and to neglect rotatory inertia and the tangen-

tial inertias (Pu,tt adPt)as suggested by Visv. Dimensionless

natural frequencies for various modes, with and without bending-stretching

coupling (B..) suppressed, are listed in Tables 5 and 6. The lack of good

agreement in Table 5 is difficult to explain, especially in view of the

good agreement in Table 6.

In studying the above results, one can discern these general trends:

1. For a complete shell at a fixed axial wave number, the natural

frequencies first decrease then increase with increasing circumferential

wave number (n). As was first explained by Arnold and Warburton 33, this

is due to the decrease in membrane strain energy and the increase in bending

strain energy as n is increased.

2. The inclusion of thickness shear deformation and rotatory inertia

does not always decrease the frequency. A similar observation may be seen

in the recent work of Greenberg and Stavsky3

3. Bending-stretching coupling (B 1j #O) always lowers the natural

frequency compared to the value for the uncoupled case (B1 ~ 0).

4. If the frequencies are normalized with the panel width (b), as in

Table 6, increasing the aspect ratio (L/b) lowers the frequency values,

just as it does in the case of a flat panel (plate).
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To illustrate the effects of bimodulus composite-material action,

aramid-rubber properties,determined primarily from the experiments of

24
Patel et al. by use of the material model of Ref. 26, are used. Some

details of the estimation of certain properties not directly measured in

Ref. 24 are given in Ref. 28. The complete set of properties used is

listed in Table 7. This material has the most drastic difference between

tensile and compressive properties known to the present investigators;

thus, it is definitely a worst case.

Although the present problem is a linear one in each portion of a

cycle of vibration, it actually is different in the two portions of a cycle.

This phenomenon was explained for the vibration of single-layer and two-

layer, cross-ply plates in Ref. 28. Here, for completeness, we discuss the

cross-ply case: side cross-sectional views are shown in Fig. 2. The inner

layer is oriented circumferentially (y direction) and the outer layer is

oriented axially (x direction). During the first portion of a cycle, con-

sider the shell to be deflected as shown in Fig. 2(a). Then the neutral

surface for ex falls outside of the interface within the axially oriented

layer, while the neutral surface for ey lies inside the interface, i.e.,

within the circumferential layer. In the latter portion of the vibration

cycle, Fig. 2(b), the ex neutral surface falls outside the axial layer, and

the ey neutral surface lies outside of the circumferential layer. Therefore,

in the latter portion of the cycle, compressive properties are used for

the entire axial layer and tensile properties for the entire circumferential

layer. From the foregoing considerations for a two-layer, cross-ply shell,

it is clear that the stiffnesses acting in the two portions of a cycle,

(a) and (b) in Fig. 2, are different and thus the associated frequencies
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j (denoted by w, and wz, respectively) are also different. The corresponding

time intervals over which the two portions take place are i/w and 7t/W2 .

Thus, the total period for a complete cycle is (~WW) + (4W/ 2). The average

frequency (w) over the entire cycle is 2w divided by the total period; then

W (1/2)(w + w2) (16)

As discussed above, the neutral-surface positions are different during

the two portions of a cycle; numerical results are listed in Table 8. The

average frequency, as calculated from Eq. (16), is plotted in Fig. 3 versus

aspect ratio for various values of R/h. The dashed line shows the analogous

results from Ref. 28. for flat plates.

As was mentioned in Ref. 28, it can be shown that in the bilinear

analysis presented, energy is conserved at the junction between the two

portions of the vibrational cycle.
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Concluding Remarks

Two analyses have been presented for prediction of the free-vibrational

behavior of freely supported, cylindrically curved panels or complete

cylindrical shells cross-ply laminated of bimodulus composite materials.

One analysis is for thin shells and the other is for moderately thick

shells with thickness shear deformation and rotatory inertia included.

When reduced to the special case of ordinary material, the solutions yielded

results which agreed well with various existing numerical results. The

peculiarities of bimodulus shells have been discussed and the effects of a

limited number of parameters investigated. These results may be used to

validate numerical analyses, such as those based on the finite-element

method.
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Appendix A: Linear Differential Operators Appearing in Eq. (7)

2L+ .(AC22 2

L11 s AldIR + (A6 L C2B66 d4 (866 - P~ Cd66 d Rd

L12 -(A12 + 66-- 2 66 )d~d

(A6  2 2 2
2  2 2

LIS z CBD2 +dB66 C2D66Pdt

+1 -
1-2 2

L23 s (R- A22 + C1S4.4)d~ L24 ' (B12 + B66 + 'I C2D66 dd

L25 a (866 + 1E06d2+ B22d 
2 + EIS44 - (I/R)d 2

L33 3 - SS~d 2- S44d 
2 + (A22/R 

2) +P
x y

L34 - (R- B12 - SSS)d~ ; L35 =(R-'822 -S4 4 )d y

L4 D 11d 2+ 066d 2 S55 - Id~ 2 L45 = (D12 +D66)d d

L55 ,D66d +D22dy -S44 - Idt do w *C I/R ; x da a( )/ax

Appendix B: Thin-Shell Theory

The theory developed here is an extension of the static bimodulus-

composite shell analysis presented in Ref. 27. The shell theory used is a

generalized first-approximation one that can be reduced to the theories of

Sanders, Love's first-approximation, Loo, Morley, and Donnell by use of the

tracers listed in Table B-1. It is emphasized that these are different tracers

than those listed in Table 1.

The shell constitutive equations are the same as given in Eqs. (1)-(3),

except now the thickness shear quantities (Q4 and Q,) are not needed. The

appropriate equations of motion are
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N1,x + N 6,y - (C4/R )M6,Y -* t

N6, + N + (C;/RM + (Cj/R) (BP)6X 2,y 3 6,X + )2,y =V'tt (i

t4'x + 2M 6y+ M 29y- (N 2/R) = P.t

The kinematic relations for the middle-surface strains are the same as

in Eqs. (6). Since now the thickness shear strains (C4 and e.) are

identically zero, the curvatures are given by

K, M -W, xx K ,y + (C2/R)v, y(B2)

IC6=-2w,x + (C'/R)vx - (C'/R)u,

Substituting the expressions for the middle-surface strains and

curvatures into the constitutive relations and the latter into Eqs. (Bl),

one obtains the same form of operator expression as Eq. (7) except that

now the elements of the {6} vector are only u, v, w. The linear differ-

ential operators are now

11=Alld 2 + [A66 - 2C4'B66R' + (C4)20 6R-2 ]d 
2 - Pd 2

L12 = [A12 + A66 + CIB 12R' + (CI - C-B6 - C3 4D66  x d

x xxy

=~~~~ 1 B1d, -C6R (22+26-24 6 R'dd iRd=

L10[A12 + A66 + CIB 12R 1 + (C3. - C4-)B66R
1
- C3C 4 ]2 d xd

-1 (3)26R-
L2 -(A66 + 2C3B 66R + (C)D 66R)

+ [A22 + (CI + CD)B22R_ + CICID22R- 3d 2- Pd
y

L23 z - 812 + 2B66 + CID 12R -1+ C'3 66R1J]d2dx y

-(B22 + CID22R' 1)d 3 + (A22 + CIB 22R' )R'd~

*y -,
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2

L32 = B12 + 2B66 + CjD 12R_' + 2CD 66R" dxd

- (B22 + CID 22R I )d 3 + (A22 + CjB 22R'I)R_'d

KiL 33  Dild 4 + 2(D,, + 2D66)d2d 2 + D 2d 4

' - 2B2 R'd
2 + A R + Pd2 (83)

2B12R d2  - 2

Note that the operators Lrs are symmetric for all of the theories except

Morley's.

The criteria for the neutral-surface locations (znx and z ny) to be

constant are now

Znx = Ux/Wx a const. (84)

Zny = (vy + R' w)/(W, yy - CR Rvy) - const.

The appropriate boundary conditions for closed cylindrical shells and

cylindrically curved panels are the same as Eqs. (11) or Eqs. (12) except

that here the conditions on *1 and 02 are not needed (since *1 and *2 do

not appear in this thin-shell theory). Similarly, only the first three

expressions in Eqs. (13) and the first three elements in Eqs. (15) are

required.
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Table 2. Geometric Parameters and Material-Property
Data for Example I (Ref. 8)

Geometric Parameters
Wall thickness h, in (mui) 0.02 (0.51)
Middle-surface radius R, in (mm) 2.481 (63.0)

Length L, in (mm) 31.5 (800)

Material Properties (Boron-Epoxy)
Fiber-direction Young's modulus, psi (GPa) 31.0 x 106 (214)

Transverse Young's modulus, psi (GPa) 2.7 x 106 (18.6)

Major Poisson's ratio, dimensionless 0.28

In-plane and thickness shear moduli, psi (GPa)a 0.75 x 106 (5.17)

Specific gravity, dimensionless 2.05

a The minor Poisson's ratio is assumed to be given by the reciprocal
relation.
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Table 3. Natural Frequencies Associated with Various Vibrational Modes for
a Complete Cylindrical Shell of Boron-Epoxy (Example I)

No. of axial No. of circum. Natural Frequencies, Hz

half waves, full waves, Ref. 8a Present
m n TST TST SOT SOT wRI

1 1 532 534 533 534

2 235 241 240 246

3 253 260 256 257

4 444 450 418 412

5 714 721 751 823

6 1047 1056 1057 1113

7 1442 1453 1460 1536

8 1897 1911 1941 2028

2 1 1287 1290 1290 1290

2 676 683 682 682

3 443 454 445 444
4 497 509 480 505

5 728 739 753 830

6 1051 1063 1083 1135

7 1442 1456 1489 1511

8 1897 1913 1932 2020

a The numerical values listed here were taken directly from the

computer printout, rather than from the less accurate graphical pre-
sentation of Ref. 8, which was not plotted accurately.

TST: thin-shell theory
SDT: shear deformable theory
SDT wRI: shear deformable theory with rotatory inertia

S--- -.- --- -.- - .-.-.- ~--------~-------....i
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Table 4. Geometric Parameters and Material-Property
Data for Example II

Ex. IIA Ex. IIB

Geometric Parameters (Ref. 18) (Ref. 19)

Panel aspect ratio (L/b) 1 1 to 5
Middle-surface radius/thickness (R/h) 31.25 to 312.5 40

Material Properties

Fiber-direction Young's modulus 40 ET  25 ET
Transverse Young's modulus ET ET
Major Poisson's ratio a  0.25 0.25

In-plane and longitudinal-thickness
shear moduli ET  0.5 ET

Transverse-thickness shear modulus 0.5 ET  0.2 ET

a The minor Poisson's ratio is assumed to be given by the

reciprocal relation.
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Table 5. Dimensionless Natural Frequencies wb2 (P/ETh3) Associated with Various
Vibrational Modes for Cylindrically Curved Panels (Example IIA)

No. of axial No. of circ. w/o Coupling (Bi=O) w/Coupling (Bi 0)
half waves half waves

m n b/h R/h Ref. 18 Present Ref. 18 Present

1 1 50 312.5 24.76 20.59 19.23 14.08

2 1 50 312.5 53.44 55.40 - -

1 2 50 312.5 60.43 53.58 - -

2 2 50 312.5 75.86 75.51 - -

1 1 50 156.25 36.00 24.48 32.86 19.32

2 1 50 156.25 54.91 60.89 - -

1 2 50 156.25 78.74 53.95 - -

2 2 50 156.25 80.34 76.66 - -

1 1 10 62.5 22.00 16.91 18.57 11.34

2 1 10 62.5 35.06 38.30 - -

1 2 10 62.5 45.01 38.19 - -

2 2 10 62.5 48.46 51.70 - -

1 1 10 31.25 34.86 17.11 32.38 11.64

2 1 10 31.25 37.27 38.63 - -

1 2 10 31.25 67.63 38.21 - -

2 2 10 31.25 55.21 51.77 - -
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Table 6. Dimensionless Fundamental Frequencies wb2(P/ETh3)
for Cylindrically Curved Panels (Example IIB)

Panel Aspect Without Coupling With Coupling
Ratio L/b Ref. 19 Present Ref. 19 Present

1 16.11 15.89 11.71 11.65

2 10.94 10.79 7.35 7.37

3 10.27 10.10 6.58 6.59

4 10.07 9.91 6.32 6.33

5 9.99 9.83 6.22 6.21

Table 7. Material Properties for Aramid-Rubber Bimodulus
Composite Materiala

Property k = I k = 2

Fiber-direction Young's modulus, GPa 3.58 0.0120

Transverse Young's modulus, GPa 0.00909 0.0120

Major Poisson's ratio, dimensionless 0.416 0.205

Minor Poisson's ratio, dimensionless 0.00106 0.205

In-plane and longitudinal-thickness
shear moduli, GPa 0.00370 0.00370

Transverse-thickness shear modulus, GPa 0.00290 0.00499

Specific gravity, dimensionless 0.970

a Fiber-direction tension is denoted by k = 1, and fiber-

direction compression by k = 2.
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Table 8. Dimensionless Neutral-Surface Locations in the First and
Second Portions of a Cycle for Two-Layer, Cross-Ply Cylindrical
Panels Constructed of Aramid-Rubber (Sanders-Type Theory with
Thickness Shear Deformation; b/h = 10)

Aspect First Portion Second Portion

ratio z (1) z (1) z (2) Z (2)
a/b X YxY

R/h = 10 (Highly Curved)

0.5 0.4405 -0.0987 -0.0272 0.3824

0.7 0.4343 -0.0736 -0.0374 0.4108

1.0 0.4234 -0.0521 -0.0546 0.4283

1.4 0.4069 -0.0368 -0.0768 0.4378

2.0 0.3796 -0.0250 -0.1101 0.4433

R/h = 20 (Moderately Curved)

0.5 0.4430 -0.0327 -0.0226 0.4033

0.7 0.4387 -0.0618 -0.0316 0.4220

1.0 0.4312 -0.0438 -0.0459 0.4338

1.4 0.4195 -0.0311 -0.0648 0.4401

2.0 0.3995 -0.0213 -0.0930 0.4439

R/h = 50 (Slightly Curved)

0.5 0.4446 -0.0719 -0.0193 0.4161

0.7 0.4418 -0.0539 -0.0272 0.4289

1.0 0.4361 -0.0384 -0.0394 0.4371

1.4 0.4276 -0.0273 -0.0558 0.4414

2.0 0.4130 -0.0190 -0.0801 0.4441

4-
'"A NA
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Table B-I Thin-shell-theory tracers and their values

Theory Cl C. C3 C4.

Sanders 1 1 3/2 1/2

Love's first approximation I 1 1 0

Loo 1 0 1 0

Morley 1 0 0 0

Donnell 0 0 0 0
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AXIS OF SHELL
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x =0
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y

(a) First portion of cycle (b) Second portion of cycle

Fig. 2 Bimodulus action during the two portions of motion of a two-layer,
cross-ply shell in the fundamental mode of vibration. Inside layer
is in y direction (900); outside layer is in x direction (0). Shaded
portions are in tension in the respective fiber directions.
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os!1 R/hz20

R/h x-50

5 FLAT
PLATE

0
0.5 1.0 1.5 2.0

ASPECT RATIO, L/b

Fig. 3 Variation of fundamental frequency with aspect ratio for
two-layer, cross-ply curved panels of aramid-rubber.
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