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COMPOSITE MATERIALS: A SURVEY OF THE DAMPING CAPACITY
OF FIBER-REINFORCED COMPOSITES

Charles W. Bert
School of Aerospace, Mechanical and Nuclear Engineering
University of Oklahoma, Norman, Oklahoma

ABSTRACT

A discussion is given on the importance of damping in fiber-reinforced
composites and is followed by concise definitions of the various measures of
damping. The current state of the theory of damping in fiber-reinforced com-
posites is reviewed for perfectly-bonded viscoelastic composites, yielding-
matrix composites, and those in which slip takes place at the fiber-matrix
interface. General trends in stiffness and damping of composites with polymer-
ic matrices are reviewed.

NOMENCLATURE

LTTY TP = response amplitudes at the i-th and (i+n)-th cycles (see Fig. &)

= compiex elastic modulus
EL. s complex elastic moduli for L and T directions

E,.E,. = elastic moduli of fiber and matrix
EI.E'l = Joss and storage elastic moduli
r-‘x.z-trz = complex shear moduli for LT, LZ, TZ planes (see Fig. 5)

9 . y_}s tangent

] s fe

L s fiber direction (see Fig. 5)

n = number of decaying cycles over which & is measured

Q = quality factor

I > * ‘l:lplil‘ll direction normal to the fiber (see Fig. 5) : |
s time ;

1} = maximum strain energy per unit volume '

ud = gnergy dissipated in a unit volume per cycle !

vf'(vf)o ¢ * fiber volume fraction and its optimum for max. damping i

2 Pt = thickness direction (see Fig. Sg .

Y s Joss angle (see Fig. 3) i

é = Jogarithmic decrement

Cty*Cmy » glastic strain values at inftia) yielding, fider and matrix .

u” = plastic-strain range in the matrix _‘

4 * dimensionless damping ratfo

] « lamination angle

vi2 = major Poisson’s ratio

= yield strength of matrix




L = specific damping capacity
w) o2 = half-power-point frequencies (see Fig. 2)
uy = specific damping capacity

INTRODUCT ION

For composite materials, damping {s understood here to mean any phenomenon
within the body of the material) in which energy is dissipated. This includes,
dbut is not limited to: (1) internal friction or hysteresis within each of the
constituent materfals and (2) interfacial slip at the fiber-matrix interfaces.

Damping in composites is important for one or more of these reasons:

1 In controlling the resonant response of structures and thus in pro-
longing their service life under repeated-loading environment or impact condf-
tions. In this instance, which is commonly encountered in aircraft structures,
for example, it is beneficial to increase the damping capacity of the material.

2 In providing a source of excitation for dynamic instability in gyro-
scopic systems, such as shaft-disk systems in turbomachinery, energy-storage
flywheels, and other rotating machinery. This hysteresis induced whirling was
investigated as early as 1928 by Taylor (l)‘. In this class of application, it
was shown by Genin and Maybee (2), for example, that it is beneficia) to
decrease material damping, provided the operating speed is beyond the first
critical speed for lateral whirling. Economic and efficiency requirements
dictate that most modern rotating machinery must operate in this regime.

3 Measurement of damping throughout the service use of a structure holds
some promise as a means of detecting material failure, cf. (3,4).

The present review is directed primarily at the first reason, for which
increased damping (or some combination of increased fatigue strength, increased
stiffness, and moderate damping) is desired.

The three main classes of composite materials are (see Fig. 1): (a) par-
ticulate, (b) fiber-reinforced, and (c) laminated. In structural applications,
the combination of (b) and (c) is most widely used; i.e., layers of fiber-
reinforced material are oriented in various ways and bonded together to form a
laminate. In the present review, emphasis is placed upon this combination.

]
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(a) Particulate (b) Fiber-reinforced (c) Laminated

Fig. 1. Types of composite materials.

Although the combinations of different kinds of constituent materials
used in composites arelimited only by the designer's imagination and the mate-
rial specialist's fabricational skill, currently the two main categories are
polymer-matrix composites and metal-matrix composites. Since polymers generally
have higher damping than metallic materfals, one would expect polymer-matrix
composites to have high damping inherently. However, as will be shown later,
this is only true for the damping factors associated with certain orientations
and properties (i.e., transverse normal loading and inplane shear loading).

MEASURES OF DAMPING
Before reviewing the theoretical aspects and experimental data for damping

in fidber-reinforced composites, it is well to review briefly the most widely
used definitions of damping (§). This i3 done here in the context of a material

1}
Underiined numbers in parentheses designate References at end of paper.




which can be modeled by the complex-modulus approach?.

Ene dissivation under steady-state einusoidal vibration. This is
usually aeﬁnea in terms of specific_damping capacity v, which 1s the ratio of
energy dissipated (U, in a umit volume per cycle to the maximum strain energy
per unit volume (U), i.e., v = Uy/U.

Banduidth of half-g%r potnts in stc#-atato sinuosidal ezcitation,
One way of specifying this is in terms of the dimensioniess damping ratio g,
which {s defined as the ratio of the actual damping coefficient to the critical

one, and can be calculated from
¢ ® (02-w1)/2, (1

{see Fig. 2). This measure is the basis for determining damping by the
original Kennedy-Pancu system identification method (6). The guality factor
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(Q) is defined as 1/(2g). .
Loss ent under eirusoidal excitation. Applying the complex-stiffness
approach to %Ee material stifiness (elastic modulus), we have
E=eRe el = ef141g) (2)

Here E is the complex modulus, eR and €l are the respective real and imaginary
components of E, and g is called the loss factor (see Fig. 3). The quantities

E': ar‘ad E:i?re usu:!ly cal}ed the]storahe modulus and the loss modulus, respec-
tively while g is sometimes ca Yed the "loss tangent", since g = tan y.

Decay o. e vibration (see Fig. 4). The most po.pular measure of this
phenomenon 1s t ogar ¢ decrement, defined as follows:

[ 3%} Lﬂ(‘1/‘1’l) (3)

For most materfals, at least at relatively small amplitudes, & is very small
and independent of amplitude. Then a more practical way of calculating § from
experimental data is

g——
It is realized that there are numerous deficiencies in this approach, as has

been pointed out in (5). However, in spite of these limitations, the complex-

modulus approach 1is the mode) most widely used in structural dynamics.
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Fig. 4. Exponential decay. Fig. 5. Definitionof axes.
§ = (U/n) tnlay/ay,,) (4

where n is any arbitrary integer (often selected to be 10 for convenience).
The following interrelationships among the measures of damping (for mate-
rials with small damping) are useful (see (5) for more general onesg:

9=2x=21/Q=y/2x = &/n _ (S)
Some additional measures were discussed in (5).

THEORY OF DAMPING IN VISCOELASTIC COMPOSITES REINFORCED WITH
PERFECTLY-BONOED CONTINUOUS FIBERS

Here it is assumed that no significant macroscopic yielding or inter-
facial slip takes place. It is further assumed that the fibers, as well as the
matrix, can be characterized by their elastic coefficients and the associated
loss coefficients. The pioneering work for this case was the damping micro-
mechanics analysis conducted by Hashin (7). See also (8). Hashin applied the
well-known elastic-viscoelastic correspondence principle to relate the effective
elastic moduli and creep compliances of the viscoelastic composites. Unfortu-
nately, this method cannot be used in those instances where the elastic moduli
cannot be obtained explicitly.

A more generally applicable approach, in which the energy dissipated per
cycle in the composite is formulated and used to predict the various loss tan-
gents, was presented by Bert and Chang (9,10). Measured stiffness and damping
properties of glass and epoxy as a function of frequency were used to predict
these properties for the composite. It is noted that the highest 1oss tangents
were those associated with transverse normal loading and with inplane shear.

1t is interesting to note that, to the best of the present investigator's
knowledge, no analysis has yet appeared to predict damping in a composite re-
inforced by anisotropic fibers. In contrast, a number of such micromechanics
analyses have been formulated for analyzing stiffness of such composites (11 -
15). It is noted that graphite fibers are known to be highly anisotropic.

THEORY OF DAMPING IN METALLIC-MATRIX
COMPOSITES AT HIGH STRAINS

One way to achieve high damping in a metallic-matrix composite is to sub-
ject it to sufficiently high loads to cause the matrix to deform plastically.
Apparently Baker (16) was the first to investigate this phenomenon. He con-
ducted experiments on aluminum-matrix composites reinforced with either silica
or stainless-steel fibers. Based on a simplified model, he obtained an expres-
sion to predict the specific damping capacity v as a function of the strain.
Upon ggrrncting a typographical error in his equation (17), one can express it
as follows:

o i A
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Here E, and E. are the elastic moduli of the fiber and matrix respectively, Ve
{s the fiber volume fraction, 4c . is the plastic strain range endured by the
matrix, and ¢o_ . is the matrix yield strength. The model predicts somewhat
higher values than those determined experimentally, yet the trend of ¢ versus
strain is similar. [t is interesting to note the peaking effect in y . This

optimal-damping condition is due to a balance between two opposing phenomend:
the buildup of elastic energy and the loss of energy due to plastic deformation.
Experiments on aluminum-matrix composites with boron fibers were conducted
by Varschavsky (17), who also refined Baker's theory. Weiss (18) investigated
the effect of prestressing upon the damping of aluminum-matrix composites with
high-strength steel fibers. He obtained the following expression for the fiber
volume fraction which is predicted to result in the maximum damping capacity

(Veloge = 11 ¢ (Eg/Edleqy /ey, - 21° B

Here gy and Cny are the respective fiber and matrix yield strains. The pre-

stressing considered by Weiss took the form of residual stress due to stretch-
ing after hot pressing.

THEORY OF DAMPING IN COMPOSITES WITH DISCONTINUOUS
FIBERS AND INTERFACIAL SLIP

Apparently the first analysis of damping in composites with discontinuous
fibers 1s due to Pompe and Schultrich (19). They used the well-known shear-lag
model of Cox (20) and Rosen {21) modified to include matrix-fiber interfacial
slip as approximated by either perfectly-plastic, viscous, or viscoplastic in-
terfacial boundary-layer material. This model predicted peaks to occur in the
dependence of damping on both stress amplitude and frequency. They claimed to
have correlated the location of these peaks with the shear strength of the
fiber-matrix bond. Cox's mode) was 2)so extended to imperfect adhesion by
Yamaki (22), who, however, did not investigate its effect on damping.

The effect of interfacial slip on damping was also investigated experi-
mentally and theoretically by McLean and Read {23), Nelson and Hancock (24),
and Plunkett (25). The latter paper was an attempt to quantitatively explain
the increase in damping factor with increasing strain in composites previously
observed by Schultz and Warwick (3) and Gibson and Plunkett (26), for example,
Plunkett (25) found that the damping factor depended upon crack density and
strain distribution at maximum previous strain, but was nearly independent of
current strain distribution.

Three interesting observations will now be made regarding this topic.
First, it is interesting to make an analogy between the damping action of dis-
continuous-fiber composites, especially when modeled as a shear-lag action, and
that of a beam with discontinuous constrained-layer damping. Plunkett and
Lee (27) showed that there is an optimal length of damping and it appears that
there may be an analogous optimal fiber aspect ratio for damping purposes. It
should be interesting to compare this aspect ratio with the one which maximizes
the fracture strength of a discontinuous composite. Clearly in esch instance
we are dealing with an exchange between normal-stress and shear-stress actions.

The second observation has to do with the possible application of contin-
uous damage mechanics (COM) to predicting damping in composites. The COM con-
cept was originated by Kachanov (28) to predict creep rupture, but it has been
considerably extended by Hult (29), among others. In this approach, one re-
lates material damage to stress Tevel and load-carrying ability to damsge.

The Jast observation is concerned with the different behavior, of compo-
sites with fnterfacial slip, when they are unloaded. Amirbayat and Hearle (30)




showed that in this case, fiber buckling often occurs. It is clear that this
should affect the hysteresis loop very drastically, and that it may be quite
different under compressive rather than tensile loading (31).

EXPERIMENTAL METHOOS FOR DETERMINING COMPLEX
MODULI OF FIBER-REINFORCED COMPOSITES

It is not the purpose of the present work to discuss the experimental
details of the numerous methods which have been used for determining the com-
plex moduli of fiber-reinforced composites. For this purpose, the reader s
referred to the survey papers of Bert and Clary (32) and Bert (33) and the book
by Read and Dean (34). However, it goes without Saying that the macroscopic
anisotropic nature of fiber-reinforced composites with respect to damping as
well as to stiffness makes the determination of these properties considerably
more complicated than for homogeneous, isotropic materials or even for isotropic
composites (i.e., particulate composites).

As in the case of homogeneous, isotropic materials, the main kinds of
tests are (32):

Resonance method _
Non-resonant forced vibration ¢
Free vidbration ;
Pulse propagation

Continuous-wave propagation

Thermal methods

Obviously, the type of motion, specimen configuration and fiber orienta- )
tion determine the kind of complex moduli determined. Thus, axia)l motion of a :
slender bar with the fibers oriented along the axis can be used to determine
the complex modulus in the fiber direction, EL‘ A similar specimen undergoing

the same motion but with the fibers oriented transversely can be used to obtain
ET. normal to the fiber direction. However, if the fibers are oriented at an i

acute angle ¢ to the axis of the bar, shear-normal coupling considerably com-
mc::es the motion and the interpretation of test results in terms of complex

uli, ;
It is well-known that torsion of a bar can be used to measure the complex ]
shear modulys of a homogeneous, fsotropic material. However, in the case of a
fiber-reinforced bar, there may be three different principal orthotropic, com=
plex shear moduli (Gu.. GLZ' and GTZ)‘ Here L denotes the fiber direction, and

T and 1 denote two directions orthogonal tolL (see Fig. 5). If there are nunmerous
smali~-diameter fibers (as in the case of glass or carpon fibers), the material
is usually considered to be statistically transversely isotropic, with the

plane of isotropy being the cross-sectional plane (TZ). In this case, GLZ'éLT

and this {s the madulus determined by motion of a torsion bar with the fibers
oriented along the bar axis (not G.rz as sometimes incorrectly assumed). See

Lekhnitskii's anisotropic elasticity book (35), pages 197-203.

1f the composite contains large-diameter fibers (such as boron fibers)
and the manufacturing process is such that the fiber spacing_in the cross-
sectional plane is different in the T and Z directions, then G,_zfﬁu. In this

case one cannot determine either § 1 or § 7 without additional measurements,
simz;t‘u"_“rconp ex torsional ringy depends upon both Gu. and G ;. see (35),
page .

If one twists a torsion bar with the fibers oriented at an acute angle
to the bar axis, there is a coupling with flexural action which complicates the
data analysis even more; see (35), page 180.

Although it {s conceptually possible to determine all of the complex
modulf of a cube-shaped specimen, this is extremely difficult experimentally so
that this approach is relatively unexploited to date.

NDWN




TRENDS IN MEASURED COMPLEX MODULI OF FIBER-
REINFORCED, POLYMER-MATRIX COMPOSITES

Due to the facts that even a transversely isotropic material has five
independent stiffnesses and an equal number of associated damping factors, as
well as the strong dependency of these properties upon temperature and fre-
quency, it is an extremely monumental ‘effort to even approach a complete
characterization of the complex moduli for a single composite material. (This
increases the importance of the theoretical predictive methods described above.)
However, an extremely large number of investigators have obtained )imited dyna-
mic stiffness and damping (0S&D) data for glass-fiber/polymer-matrix composites.
A smaller number of researchers have studied carbon/polymer and boron/polymer
composites. Beyond these composites, data are extremely sparse. Furthermore,
detailed 0S&D data depend on the method of measurement and upon air damping
(damping values measured under high vacuum are lower than those measured at
standard atmospheric pressure).

Due to all of the above factors, it would be a monumental task to attempt
any significant correlation among the myriads of information existing. Thus,
instead, the general trends for the effects of various parameters on D380 of
polymer-matrix composites are discussed and data sources referenced s¢ that the
reader may study the original data. Since adequate data are not yet available
for other material combinations, the trends discussed are applicable only to
composites with either epoxy or polyester matrices and glass, carbon, or boron
fibers. These composites are denoted by GFRP, CFRP, and BFRP, respectively.

Effect of Temverature. This depends upon both the kind of fiber and
orientat‘.on !__35). For example, the storzge modulus (ER) of CFRP (36) is
virtually independent of temperature regardiess of orientatfon, while its
associated logarithmic decrement (4g) for 0° orientation decreases slightly as
temperature is lowered. For other orientations such as + 45° and 90°, the
effect of the matrix comes into play and produces a damping peak at about 0°C.
The damping data for BFRP (36) and GFRP (37) have similar trends. In (37), it
was concluded that the domping of GFRP at cryogenic temperatures is essentially
the same as metals, even though GFRP has an order of magnitude more damping at
room temperature.

Effect of Fiber Orientation3. In tne case of GFRP (38), BFRP (36€,39), ard
CFRP (36), damping is minimum and stiffness fs maximum at 0°, i.e., in the fiber
direction. This is very reasonable, since the fibers play a dominant role at
0°, and all three of these fibers exhibit less damping and much higher stiffness
than the matrix material. As the orientation angle is increased, the general
trends are for the damping to increase (up to a peak) and the stiffness to
decrease. For these composites, the maximum damping occurs at different angles.
For GFRP, maximum damping probably occurs at 45° (38), but for BFRP, it occurs
anywhere from 10° (39, 2nd mode) to 90° (39, 3rd mode)(36 reported 67°). For
CERP. (36) reported maximum damping at 67°, For the three composites discussed,
E" was a maximum at 90°; however, it is theoretically possible (40) to have a
composite in which E is pot maximum at 0° and not minimum at 90°.

g_ﬁ%t_gz_@rih&im_. Relatively few lamination schemes have been investi-
gated. ever, Mazza et al. (41) showed that cross-ply GFRP has considerably
more damping than 0° unidirectional. Using beam specimens of BFRP, (41) and
also Paxson (42) found that + 45° angle-ply laminates exhibited even higher
damping than did unidirectional materfal at 90°. (Unfortunately, he did not
investigate unidirectional material at 45°, so it is not known how much of the
improvement s due to orientation and how much is due to lamination.)

Probably the most extensive investigation of DS4D of laminates was the
CFRP beam investigation carried out by Adams and Bacon (43). They investigated
the effect of cross-ply ratio (ratio of total thickness of 0° layers to total
thickness of 90° layers) and found good agreement with predictfons. (Oynamic
modulus increased considerably with increasing crass-ply ratio, while damping

The effect of random fiber orientation, as in SMC (sheet molding compound)
and DMC (dough molding:-compound), 1s discussed later under Effect of Short
Fiber Length.
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decreased slightly.) They also investigated the effect of lamination angle (o)
on + o angle-ply laminates and obtained maximum damping at 9-35° in every in-
stance. They also investigated a rather complicated laminate’(0°/0°/30°/30°/
45°/45°).. As a result of their extensive investigation, Adams and Bacon con-
¢luded tﬁat shear stresses (and sometimes transverse normal stresses) are the
predominant factors in a lamination geometry that result in high damping.

Schultz and Tsai (44) investigated two GFRP laminates: (a)(0/-60°/+60°)s
and (b)(0/90°/45°/-45°)s. These laminates were designed to be quasi-isotropic,
i.e., isotropic with respect to inplane (stretching) stiffness. However, they
were not isotropic with respect to flexural stiffness and the associated flex-
ural damping. Thus, both the predicted and measured values of ER and damping
ratio displayed an angular dependence. The stiffnesses were predicted quite
accurately by use of single-layer properties (38) and classical anisotropic-
elastic-property transformations. The measured damping values followed the
same trend as predicted from single-ply data, but the measured values were 25%
to 100% higher than predicted except at 0°, where agreement was good. Appar-
ently some interply shear deformation was taking place and resulted in an {n-
crease in damping.

Effect of Mmber oE Loading Cucles. Information on this effect shows the
most inconsistency and thus is the most controversial. The general trend (3,
4,45-47) is for the damping to increase with number of loading cycles. However,
T4%.46) concluded that damping was not sufficiently sensitive to be useful as a
practical indicator of incipient failure. In contrast to this general trend,
(48) found a rapid decrease in damping in the first few cycles, followed by a
gradual decrease after that. The investigators in (48) attributed the rapid
initial decrease on the basis of residual strain caused by the mismatch between
the fiber and matrix thermal-expansion coefficients.

Effect of Short Fibepr Length. As predicted by various analyses previously
mentioned, the storage elastic moduli of composites with short, unidirectionally
aligned fibers are usually lower than those of ones having the same fiber volume
fraction of continuous, unidirectional fibers (24,49). Likewise the damping of
short-fiber composites is usually greater. However, the trend is not as pro-
nounced for the case of shear stiffness and damping. In (50), it was reported
that the storage moduli in shear (GR) for a short-fiber composite (SFC) were
lower than for a continuous-fiber composite (CFC), but the decrease in GR with
temperature was considerably less. Thus, at temperatures above approximately
75°C, GR is actually higher for SFC. Similarly, the peak in the curve of shear
loss modulus (GI) versus temperature for SFC, although smaller in value, occurs
at a higher temperature than that for CFC. Thus, Gy for SFC is higher than
that for CFC only at temperatures above approximate{y 108°C.

In high-production, short-fiber composites, the fibers are usually more
or less randomly oriented. In England such composites are called DMC (dough
molding compound), while in the U.S. they are referred to as SMC {sheet molding
compound). These composites lend themselves readily to high production rates
because they can be matched-die and injection molded.

In (50) it was reported that OMC has GR values only slightly less than
unidirectiona) SFC and GI values somewhat higher. In an investigation (51) of
SMC (25% and 65% E-glass fibers by weight) and XMC (hybrid with 25 wt £ random
€-glass fibers, SO wt % continuous E-glass fibers), it was found that the
measured ER values fell between the estimated bounds obtained by using Paul's
elastic-modulus bounds (52) in conjunction with the elastic-viscoelastic
correspondence principle.

CONCLUDING REMARKS

1t is concluded that existing prediction techniques are adequate for com-
posites with well-bonded continuous fibers. However, for short-fiber compo-
sites, with or without fiber slippage, and for continuous-fiber composites
having fiber slippage, more extensive analysis and analysis-experiment corre-

* The notatfon (0°/0°/30°/30°/45°/45°), means a symmetric laminate having
layers at 0°, 0°, 30°, 30°, 45°, and 43°.




lation needs to be carried out.

Although the trends described here may be quite useful to designers, what
is sorely needed at this time is a design synthesis procedure to achieve the
combination of fiber and matrix materials, volume fractions, orientations, and
lamination arrangements to result in minimum dynamic response to either sinu-
sofdal or random excitations, as appropriate in the application.
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