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APPROXIMATION TECHNIQUES FOR PARAMETER ESTIMATION IN

HEREDITARY CONTROL SYSTEMS

H. T. Banks and I. G. Rosen

Abstract

Two types of approximation techniques for parameter estimation

of delay systems are described and compared. One involves state

discretization only while the other entails simultaneous state and

time discretization.

We consider two approximation techniques for parameter
identification problems for delay systems of the form
(1) x(t) = Lx, + Bu(t) 0<t<T
x(0) = n Xg = ¢
where B is an n x m matrix, u is an R™ valued function
that is piecewise continuous on (0,T] (i.e., u € PC(0,T)),

n€R" and ¢ is an R™ valued function that is square integrable




on (-r,0) (i.e., ¢ € Lg(-r,O)). For x:[-r,T] =+ R® measurable
and t € [0,T], we denote by Xy the measurable function given
by xt(G) = x(t+0), -r < © < 0. The linear operator

L:Ln(-r,O) + R is assumed to be of the form:
2

Vv 0
(2) Lo = 1 AeCTy) o [_TA(s)«»(s)ds

where 0 = Tog €Ty € Taee oS Ty= T, Aj, j =0,1,2...v, are n xn
matrices and A is an n x n matrix valued function which is
square integrable on (-r,0). Strictly speaking the expression
for L given by (2) is not well defined for all ¢ € Lg(-r,O) in
that point evaluations of ¢ are required. However, with the
usual interpretation (see [7])) the system (1) has well defined
solutions for all (n,9 € R" x Lg(-r,o).

The basic parameter identification problem (PID) is one of
fitting to data a model such as (1) (where u is a fixed input,
Ai =Aifq) i = 0,1,2...v, A(*) = A(-,q) and B = B(q) are con-
tinuous functions of some parameter q € RK) by choosing parameter
values q from some compact set £ < RK and initial conditions
n,$ from some compact & éontained in R" x Lg(-r,O). To be more
specific, assume that one is given £ € C"(O,T) (c"(o0,T) denoting
the collection of R"™ valued continuous functions defined on (0,T))
that represents measurements on [0,T] of the "observables"
c(t,q) = cx(t;q) + du(t) for (1) where t -+ x(t;q) is the solution

to (1) corresponding to a value q € 2. (If, as usual, only dis-




crete measurements are made, the curve £ may be constructed
via some interpolation scheme.) The problem then is to find a |

value ¥ = (q,(7,9)) € 2 x ¥such that
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J(v) = |c(0,q) - 5(0)|51 + le(T,q) - a(T)lﬁz

| T 2 4
+ I lc(s,q) - E(S)Iw ds
0 3

attains a minimum on 2 x % at vy = ¥y. Here W,,Wy,Wg Tepresent

positive definite weighting matrices.
These problems are infinite dimensional state system problems
and our approach involves first rewriting (1) as an equivalent

ordinary differential equation (ODE) in an appropriately chosen

Hilbert space Z. As the state space we choose 7 = R? x Lg(-r,O)

since one can argue equivalence of (1) in some sense (mild solutions)

to the abstract ODE in Z given by
z(t) =z(t) + (Bu(t),0)

with initial conditions 2z(0) = zg = (n,$). More precisely, taking
x as the solution to (1) on (0,») for a given (n,¢) and u = 0
we define the homogeneous solution semigroup {S(t):t > 0} by
S(t)(n,9) = (x(t;n,¢), x,(n,4)). Then {S(t):t > 0} is a

3% semigroup of bounded linear operators defined on Z with

infinitesimal generator o defined on 2(ar) = ((6(0),4): ¢€W’1"2(-r,0))
| by 2(0(0),0) = (Lb,4) (see [3], [71).
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In the light of the discussion above, we are able to obtain
solutions to the PID governed by the delay system (1) via solutions

to the PID formulated in the Hilbert space Z given by

: () Given input u € PcC"(0,T) and observation ¢ € c(o,T),

minimize

J(¥) = J(4,2p) = [€2(057) + du(0) - E(O)If,1 *
A 2 T ~ 2
(i) + wum - eml ] +[O|cz(s;v) « du(s) - £} ds
over I =2 x% subject to
z2(t) =£(q)z(t) + (B(a)u(t),0)
z(0) = z;.

Approximate solutions to the PID () are obtained via the
following two techniques, one involving discretization in the state

only, the other involving simultaneous discretization in state and

time.

Technique 1.

Choose a sequence of finite dimensional approximating sub-
N N

spaces 1

of 2 and let P  represent the orthogonal projection




of Z onto 'ZN along (ZN)l. Define the operators.,QfN(q):zN > ZN

in such a way that they appropriately approximate the operator
Aq) on Z for each q €2 (see [3], [7]) “and consider the

sequence of approximating PID given by

G%@?)iz Given input u € PC"(0,T) and observation £ € Cn(O,T)

minimize:
NNy = N2y = 182N054Y) + au(o) - E(o)lf,1 +

AN 2, {TaN._.N 2

&Mty « qam - emI] + [ (&N + aue) - el es 4
over TN =2x Py subject to

t Ny =oM @)V + PNBu),0)

zN(O) = zg.

For each N, (;l?ﬁ; represents a PID with finite dimensional state
constraint. Standard gradient projection and conjugate gradient
minimization techniques for optimization problems governed by ODE

E state equations (see [10]) may be employed to obtain solutions.

Technique 2.

-f Choose a sequence of finite dimensional approximating spaces

| Zy (as opposed to subspaces as was the case in Technique 1) with




projection-like mappings nN:Z -+ ZN. Define operators

\(Q):Zy + Zy which in some sense approximate (q) for each
qQ €2 (see [9]). Let C(z) and D(z) be rational function
approximations to the exponential (RFAE) ez, and consider the

following séquence of approximating PID:

2 . . j,PN PN o _
(¥P)y Given input {ug} ) €2§ R™ and observation
j=
. PN PN . . X X
(&3, . €>0<‘P ("?q =udP, &) = edP., i = 0,1,2,...0N,
J=

where p is that positive integer for which

pr < T < (p+1)r minimize:

~ 0 0 0,2
JN(YN) = JN(q’ZON) = ICNZN(YN) * duN - EN‘wl +

oN pNy 2 T
EN |w

A pN-1 . . -
&gz (ry) + dug’- , Njéo | &z lny) + duf, - gqlw3

over ry = 2x any' subject to

X1 - c(Ref())zk + ED(F () By(a)uy, k = 0,1,2...0N-1
0
IN T %oN

where By(q)n = m\(B(q)n,0) for n € RM.

For each N, Cqﬁ?ﬂﬁ is a PID governed by a difference equation




and can be solved via standard numerical methods which are

readily available (see [10]). Under appropriate conditions on ZN

’
PN, oN(q),in Technique 1 (see [5]) and on Zy» Ty #y(a), C(2),
D(z) in the case of Technique 2 (see [9]), the following results

may be established.

Theorem 1. Suppose —{VN} (respectively {?N}) is a sequence of
solutions to the approximate problems (g@?)ﬁ (respectively

CQ@?%%). Then there exists a ¥ = (E,Eb) € T and subsequences

N N
k} k

Ty b= @y Ty )} and (759 = (@ ,Z,¥)} such that

(a) ﬁNk q i q a)

Ny
(b) ;k EONk > %, in z (3, > 3Z, in 1)

where w; : ZN + Z denotes the Moore-Penrose generalized inverse
k k

of ™ (see [8]). Moreover, in both cases Y will be a solution
k

to problem (w). If the solution to problem (%) is unique,
then the sequences {7N},'{7N} themselves converge to Y in the

above sense,

In both Techniques 1 and 2, schemes satisfying the conditions
required to establish the veracity of the above theorem may be
realized via the construction of ZN,pth{N(q) or ZN’ LINE Jﬂﬁ(q)

based upon finite difference or spline approximations (see [3],[7],[9]).
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The RFAE C(z) and D(z) can be chosen from among a subclass
of the Padé approximations to e* (see [9]). Proofs of the
convergence stated in the theorem rely heavily upon results from
functional analysis and linear semigroup theory.

We have tested the above techniques on a number of examples

s gyt TR SR R NN

(see [4] for extensive tests of Techique 1) using the '"averaging' and
"spline" state approximations of [3] and [7] respectively. We present
here a typical example to illustrate and compare results for the two

techniques.

Example

We consider the scalar equation
x(t) = aox(t) + alx(t—l) + u(t)

with step input u = x[l ) ? jnitial data x(®) =1, -1 <0 <0, and
o

observations c(t) = x(t). "Data" § was generated on ([0,2] by

. . . . %
integrating the equation exactly with true parameter values a, = .05

and aI = -4.0. (The techniques were also tested with "data" generated

by adding random noise to the true solution. The resulting parameter
estimates obtained are essentially unchanged from those obtained using
ndata" without noise.) For several values of approximation level N,

iterative techniques with startup values ag’o = ,03, aT’o = -3.0 were

used to solve the approximating problems (M?)%, and (_M?)ﬁ corre-

sponding to this "data" £ on [0,2]. The results obtained are
presented in tabular form below. In both techniques the AVE refers to

the "averaging" state approximation of [3] while SPL 1 refers to the

S 2T

g
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piecewise linear spline state approximations of ([7]. 1In Technique 2,
we used the Padé RFAE

C(z) = Pyy(2) = (1+ % z + 2%/12)/01 - % z + 2%/12)

and

1

D(z) on(% 2) = (1 - % 2+ 2%/8)

which correspond to time discretization schemes of approximation

index q = 4 (see [9] for details and further discussions).

TECHNIQUE 1

AVE SPL 1
N N N N
N ag ay a, a; .
2 1.0869 -4.6236 0995 -4.1639
4 6525 -4.3160 0417 -4.0523
8 3825 -4.1660 0439 -4.0222
16 .2245 -4.0898 L0449 -4.0151
32 .1384 -4.0505 L0454 -4.0133
TRUE
VALbES .0500 -4.0000 .0500 -4.0000
TECHNIQUE 2
AVE SPL 1
N 3N 21N 30N AN
2 1.1742 -4.9316 .1564 -4.3972
4 . .6325 -4.4671 .0045 -4.1682
8 .3368 -4.2838 -.0121 -4.1307
16 .2104 -4.1252 .0292 -4.0488 3
i

32 .1400 -4.0460 0474 -4.0089 i
TRUE 0500 -4.0000 .0500 -4.0000

VALUES
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The results obtained from our comparisons of Techniques 1 and 2
on a number of examples reveal that when the approximations reprented by
C(% ;yh) and D(ﬁ ;VN) in (5/99)5 are of an order comparable to
that of the scheme used in solving the ordinary differential equation
for zN in (&/99);, the parameter estimates obtained are comparable.
The implementation of Technique 2, which involves a simple difference
equation approximation for the delay equation, is, in many cases, quite
simple. For both techniques our studies indicate that the first order
spline methods of [7] lead to schemes that are superior in many
situations to those based on the averaging methods of [3] (see [4] and
[9]). Of course, when one employs the cubic spline approximations of
[7] (e.g., see [9]) even more impressive results are obtained.

The techniques discussed in this paper have also been used with
success for parameter identification in problems where the delays

Tty Ty =1 themselves are among the parameters to be estimated

\
(see [1), [4), [6] for Technique 1; numerical results for Technique 2
in this case along with proofs will appear in a forthcoming manuscript)

even in situations where %%— does not exist (for discussions of this
i

and its significance, see {1]). Finally, the methods are also
applicable to certain classes of nonlinear parameter estimation and

control problems (see [2], [6], [9]).
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