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ABSTRACT

Practical dynamic systems constantly face unpredictable fluctua~
tions and disturbances for which the Kalman filter has been shown to be
effective in estimating the states from the outputs corrupted by white

noises, This is the Kalman filtering problem. On the other hand,

the Linear regulator problem, which is the mathematical dual of the

Kalman filtering problem, plays an important role in modern optimal
control theory. Both problems can be formulated as quadratic synthesis
problems.

A geometric-series approach is used to approximate the expon-
entials of Hamiltonian matrices for the quadratic synthesis problems.
The approximants of the discretized transition matrices are then used
to construct piecewise-constant gains and piecewise time-varying gains
for approximating time-varying optimal gains and time-varying Kalman
gains. Simple and fast algorithms are developed and can be easily
implemented on a low cost minicomputer or microprocessor.

The proposed methods have been successfully applied to the
analysis of practical control systems,

Other new findings of this research are reported in the appendix.
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CHAPTER 1

INTRODUCTION

1.1 Historical Review

The development of control theory has become one of the corner-
stones in modern technology. Classical control system design is gener-
ally a trial-and-error process in which various methods of analysis
such as Nyquist, Bode and Routh~Hurwitz criteria were used iteratively
to determine the design parameters of a deterministic system, During
the postwar development, control engineers were faced with several
problems which required a very stringent performance. Many of the control
processes they dealt with became extremely complex., For example, the
design of spacecraft attitude with minimum fuel expenditure requirement
is not applicable to the classical methods. Such a problem has led to
a new formulation of an optimal control system., This system is as much
a branch of applied mathematics as of control engineering. Methods of
design require sophisticated mathematical tools such as differential
equations, calculus of variation and dynamic programming, The objective
of optimal control theory is to determine the coatrol laws which will
make a system satisfy its physical constraiats and at the same time
minimize the performance criteria. The practical applications of optimal
control ideas in the various space missions make the dream of investi-
gating the universe come true. In recent years, the rapid development
of powerful minicomputers and microprocessors makes the industrial
applications of optimal control systems popular, and they will undoubtedly
become increasingly important in the future. The linear regulator problem
and Kalman filter problem are reviewed as follows.
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1.2 Linear Regulator Problem

An optimal control problem can be illustrated in the following
fashion [1]:

Given a system equation,
x(t) = £(x(t),ult),t), (1-1a)

find an admissible control,u*(t),which causes the system to follow an
admissible trajectory,x*(t),that minimizes the performance measure ,

t

J = h(x(tf),cf) + I £ g(x(t) ,u(t),t)dt. (1-1b)

%o

u*(t) is called an optimal control and x*(t) an optimal trajectory.

If the system is linear and time-varying, its state equation

is:

x(t) = A(t)x(t) + B(t)ult) , (1-2a)

n nxn

where  xeR™, AeR™ ™, BerR™P and uerP

The performance index becomes

t
J = -;- xT(tf)H x(t,) + % I E L (0QO) R+t QIR uA) 1dA »

t
0 (1-2b)
where H and Q are real, symmetric, positive semi-definite matrices,

and R is a real, symmetric, positive-definite matrix. The initial

RTINS IR Te X R A I

P oA .
ST P SRS ) TR T NS

ih

U




3
time,to, and the final time,tf,are specified, and u(t) and x(t) are
not constrained by any boundaries. This is called a linear regulator
problem. The speed control system of a turbine-generator set in a
power station, and the level control system of plate glass manufacturing
are examples of such problems since the generator speed and liquid
level need to be as near a constant as possible. The

Hamiltonian of the system (1-2) is:

Hx(E) ,u() 35, 8) = 3 % (DQ(E)x(t) + F u (DR(D)u(D)

+ J:r(x(t),t) [ACE)x(£)+B(t)u(t) ] . (1-3)

By use of the Hamilton-Jacobi-Bellman equation [2], a necessary condi-

tion for u(t) to minimize H is that

B (26, 0(8),37,8) = 0 (1-4)
From (1-3) we have

B (x(6) ,u(0),35,8) = RO ()T (x(0),0) - (1-5)
Solving (1-4) and (1-5) for u*(t) gives

w(6) = R OB (O (x(0),8) - (1-6)

The minimum cost is of the form:

O AUPS WGP S A S 2 Y
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THx(e) = 2 X (OK(Dx() ,

4

(1-7)

where K(t) is a real, symmetric, positive-definite matrix that is to

be determined.

tion ,

It can be chown that K(t) satisfies the Riccati equa-

K(t) = -Q(£)-K(t)A(t)-AT (£)K(£)+K(t)B(t)R L ()BT (£)K(t) , (1-8a)

with boundary condition ,

K(tf) =H.

Substituting (1~7) into (1-6) yields

wk(t) = =R F(t)BT(£)K(t)x(t)

= ~L(t)x(t) .

(1-8b)

(1-9)

The block diagram for the linear regulator problem is shown in Fig. 1-1.

|

Y

B(t)

AP

)

|

AN

A(t)

b———-—-—-—.‘-—-——d

—)

FIGURE 1-1. BLOCK DIAGRAM FOR LINEAR REGULATOR PROBLEM
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From (1-7) the linear regulator problem is to maintain the state vector
close to a constant without an excessive expenditure of control effort,
Such a property can be extended to the linear tracking problem, which
keeps the state vector following some specific function. An example of
this will be the control system for a radar antenna, whose axis is to
be kept aligned from the line of sight to an aircraft flying past with

constant angular velocity.

If we apply the optimal control, u*(t), obtained in (1-9), the

optimal trajectory x*(t) will be:

x*(t) = A(x)x*(t)+B(t)U*(t)
= [A(t)-B(t)L(t)]Ix*(t)

= [A(E)=B(£)R™F(£)RT (LIK(E) Ix*(t) (1-10)

whose poles are eigenvalues of A(t)+B(t)L(t).
£
For observable control systems, the performance index is often
regarded as a weighted measure of the output vector and control vector.

Assuming, without loss of generality, that the output vector is
y(t) = c(t)x(t) , (1-11)

and the quadratic cost function is given by

~ t A
J= 3y ey (e 5 f Eiy" ey (mrMyu) 1ar 5
t

0 (1-12)

after substitution of (1-11) in (1-12), this yields

B TR L Y, e T R T TN

a3 .
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t n . |
= ; [ £ [X?(A)CT(A)Q(A)C(A)x(k)+uT(A)R(A)u(k)]dA . (1-13)
t
£

Note that by choosing |

H = CT(tf)ﬁc(tf) and (1-14a)

Q(t) = cT(e)Q(e)ce) , (1-14b)

(1-13) and (1-2b) are exactly the same, The choice of ﬁ, a and R in
(1-12) determines a relative weighting of the various terms. a, i

must be real, symmetric, positive semidefinite matrices and R must be a
real symmetric positive definite matrix., Once the designer has speci-

fied a, ﬁ and R, representing different weightings in (1-13), the

optimal closed-loop system will be

x*(t) = [A()-B(E)L(E) ]x*(t) (1-152)

y(t) = Cx(t) . (1~15b)

KW

ESN

If the resulting transient response is unsatisfactory, the designer

may alter the weighting matrices,a and R, and try again. The use q&”én
’-’

optimal observer to realize the optimal control law is discq;tﬁa in

(2. 4""'

¥

1.3 Kalman Filter Problem s

a

In Section 1 we considered only systems which were determin-

S N D S N IR NI e oeees e e
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7

istic, in the sense that all inputs could be specified exactly, and all
outputs could be measured with unlimited precision. These assumptions
are mathematically convenient and have led to many powerful and useful
theoretical developments. In practice, of course, they cannot always
be satisfied. Input and output transducers are subject to unpredict-~
able fluctuations and disturbances, and communication channels are
corrupted by all manner of interference. Such uncertainties are
present in all physical systems and are usually referred to by the term,
noise. In some cases the noise is inconsequential, and a deterministic
analysis will suffice, In others, however, the effect of the noise is
too great to be ignored and it must be modeled explicitly. The process
of analysis and design of these systems needs to be modified. The most
commonly used model for this purpose is the stochastic system model.
Stochastic control theory was developed during the Second World
War to synthesize fire contxol systems and radar tracking systems. The
propounder of filtering and prediction theory (Wiener-Kolmogorov theory
[3j) plays a very important role in the solution of stochastic optimal
control problem. Its disadvantage is that it requires the solution of
an integral equation (the Wiener-Hopf equation). In realistic problems
the Wiener-Hopf equaticn seldom has analytical solutions, and it is not
easy to solve the equation numerically. Nevertheless, the use of the
digital computer for both analysis and synthesis has profoundly influ-
enced the development of the theory. XKalman and Bucy [4], [5] made it
possible to solve prediction and filtering problems recursively, which
is ideally suitable for digital computers., The results of Kalman and

Bucy can be applied, not only to the stationary processes, but also to

. W e x4

r Ak e st A e as
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nonstationary processes. Using the Kalman-Bucy theory, the covariance

of the estimation error is governed by a Riccati equation. The Kalman
gain (or optimal gain) can be obtained by solving an initial value
problem for the Riccati equation which is similar to the one encounter-
ed in the optimal control of a deterministic system with quadratic
performance index as discussed in Section 1. The state estimation
problem and the linear quadratic control problem are, in fact, mathe-~
matical duals. This result is of great interest from both the
theoretical and the practical points of view. If one of the problems
is solved, we can easily obtain the solution of the other by invoking
this duality (see Chapter III).

Now consider a stochastic linear system of the following form:

x(t) = Fx(tHDuw(t) (1-16a)

d(t) = Hx(t)+v(t) , ' (1~16b)

owe

where FeRgxq, Dequz, ueRpxq, stg, weRz, veRP and deRrP, w(t) 1is call~

ed the input noise, v(t) is called the output noise, they are 2

3

assumed to have zero means and to be white, and 5

i

5

Efw(t)] = 0 (1-17a) ;

}

E{v(t)] =0 (1-17b) £
Elw(t)ul(1)] = Q5 (t-1) (1-17¢)

E[v(£)v (1)] = RS (t-T) (1-174) ;

. e e s re———
my—




9

E[w(t)vi(T)] = 0 (for all t,T) . (1-17¢)

Note that the differential equation in (1-16) is defined only if we

accept the notion of continuous-time white noise. In discrete~time

systems, white noise is well defined,and the problem does not arise.

The initial state of the system (1-16) at time,to, is usually

assumed to be a random vector, x(to) = X5 with mean,E(xo),and co-

variance :

Py = E{[xo-E(xo)][xo-E(xo)]T} R (1~18)

which is also assumed to be uncorrelated with the noise processes w

and v.
Consider now the problem of estimating the state x(t) of (1-16)

at time t>t,, using the noisy measurement data {d(t"): toit'<t}. To

determine an estimate ,x(t) ,of x(t),it is common to form the state error

vector:

~

x(t) = x(t)=x(t),

(1-19)
and then minimize the mean-square error ,
Efa'x(t)]? = E[a*%(t)¥X (t)a]
= S E[3(t)X (t) ]a, (1-20)

where aTi(t) represents any linear combination of the state variables.

——rm—
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It 1s assumed that

x(ty) = Elx(t)] . (1-21)
The covariance of the estimation error is defined as

p(t) = E{[R(t)-EG(t) | [X(t)-EG(D)I"} , (1-22)
and the estimator model is given by

x(t) = Fx(t)+K(t) [d(t)-Hx(t)] . (1-23)

Subtracting (1~23) from (1-16a) yields the differential equation for

the state estimator ,

*(E) = Fi(t)+Dw(t)-K(t) [d(t)-Hx(t)]
= Fx(t)-K(t) [Hx(t)+v(t)-Hx(t) J+Dw(t)

= [F-K(t)H]X(t)+Dw(t)~K(t)v(t) . (1-24)
From (1-19) and (1-21) it can be shown that
E{x(t)] = 0. (1-25)

Therefore, (1-22) and (1-20) may be rewritten as

p(t) = E[X()X (t)] (1~26)
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E[ax(t)]% = alp(t)a. (1-27)

It has been proved [6] that by choosing the gain parameter as

K(t) = -p(O)HR T , (1-28)

the optimal estimation error covariance,p(t),is the symmetric, semi-
definite solution of a nonlinear, time-varying matrix differential

equation known as a Riccati equation,

p(t) = Fp(t)+p(t) F+DQD ~p(t)H R “Hp(t) (1-29)

P0 is the covariance matrix of the initial state X, and is given in

(1-18),

The estimate ;(c) is unbiased since its averaged error (1-25)
is zero, and it is optimal in the sense that at each time,t, its mean-
square error is smaller than that achieved by any other linear esti-
mator. If we also make the fairly common assumption that the initial
state and the two noise processes satisfy Gaussian (or normal) prob-
ability distributions, then the mean-square error is less than that
achieved by any other estimator, linear or nonlinear.

The block diagram for a stochastic state estimator problem is

shown in Fig. 1-2. Further discussions may be found in reference [71,
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(8], and [9].
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FIGURE 1-2. BLOCK DIAGRAM FOR

STOCHASTIC STATE ESTIMATION PROBLEM
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CHAPTER 11

DISCRETIZATION OF CONTINUOUS-TIME SYSTEM MODEL

2.1 Reasons for Discretization

The accurate description of most practical systems often requires

high-order ,continuous-time state equations. As a result, the simulation,

realization and design of these systems will need to find an explicit

solution of differential equations., For a linear, time-invariant system,

it is possible to find an analytic solution, However, if the solution
is required at many points (e.g., for graph plotting) and if the state
vector is at all large, it is exceedingly laborious if done manually.
A simpler and much more efficient way to compute the solution is to

convert the continuous-time system equation into discrete-time system

equations which can be easily implemented by using a digital computer
or a microprocessor. Yet finding an exact discrete-time state equation
representation is impractical for a large system. Approximation is

often used to reduce the computational burden,

2.2 Continuous~-Time System Model and Discrete~Time System Model

Consider the system represented by the continuous-time state

equation:
x(t) = Ax(t)+Bu(t) (2-1a)
x(0) = Xg (2-1b)

The exact solution of (2-1) will be

13
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t
x(t) = eAch + ! eA(t_A)Bu(A)aA , (2-2)

0

where eAc = ¢(t) is called the state transition matrix of the system,

For practical consideration [10], we are interested in stair-

case inputs, or

u(t) = ulkD) 2 ulk) (2-3)
for k = 0,1,2,3,..4
and T = a sampling period

with KT<t<(k+1)T .

Substituting (2-3) into (2-2), we find

K k-1
x(k) = ¢°(T)x(0) + } &(k=j-1)Lu(j), (2-4)
J=0
where
x(kT) & x(k)
A
x(kT+T) = x(k+1)
O(kT-§T+T) & o (k-j-1)
¢k(T) 4 [¢(T)]k = the continuous~time state transition matrix
and

T
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om = e = ] & oan? . (2-5)
4=0

By letting o = t-A, the L-matrix is

T -]
Ax, 1 3
L= I e Bdo =T ) - (AT)YB
0 =0 G+t

= ("8l (2-6)

For ease in implementation and manipulation, we are interested

in representing a continuous-time state equation by a discrete~time

state equation:

x*(k+1) = Dx*(k)+Eu(k) (2-7a)

x*(0) = x(0) , (2-7b)
where

x*(KT) 2 %% (k) =x(kT)

X% (KTHT) 2 st (k1) =x(KT) .

The solution of (2-7) is :

k-1
x*(k) = D¥x(0) + J p¥I-t

3=0

Eu(j) - (2-8)

Comparing (2-4) and (2-8), we maintain that x*(k) will be equal to x(k)

e o
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if we choose

D = &(T) = ™F (2-9a)

and E = [¢(T)-I]A‘13. (2-9b)

D is defined as the discrete~time state transition matrix.

2.3 Transition Matrix Approximation

From {2-5) we know that ¢(T) is an infinite series whose exact
value is difficult to obtain when the dimension of A matrix is high.
Approximated representation is thus required. A natural question is:

how accurately can we approximate $(T)? One popular method is to

truncate the infinite series, i.e.,

da(T) = j§0 Lé%%i (2-10)
When k = 1,2,3,4,5, (2-10) becomes
da(T) = I+AT (2-11a)
= T+AT + —— (AJ‘) (2-11b)
= I+AT +-—— (AT) + (AI) (2-11c)
= T4+AT + —— (AT) + L (A’l‘) + (A'r) (2-11d)

1 2 .1 3,1 4 .1 5
I+AT + 57 (AT) + 37 (AT)” + 7 (AT)  + 57 (AT)
(2~11e)
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If k is sufficiently large, a satisfactory approximation may be
obtained. However, the approximation error may become serious if the
higher order terms in the infinite series have a greater influence on
the evaluation of ¢(T). Such a situation may occur when the number
of terms or the sampling period is not properly chosen. This kind
of shortcoming can be complemented by the geometric series technique

[{11]. Now rewrite ¢(T) as

o(1) = AT
= 1 2 1 b I S j+l
= I+AT + 35 (AT)® +...+ T (AT)Y + REY (AT)
1 j+2 1 j+3 1 j4n
+ GT (AT) + TG (AT) +o00t -_—(j+n)! (AT)
+ ... (2-12)

Keeping the first (j+l) terms in the series of (2-12) and approximating
the other terms of the series by a geometric series with a weighting
factor (1/(3"+j!)) for the term (A.T)j+n rather than 1/(j+n)! (=1/(j+n)

(34n-1)...(j+1)+j!) for the same term, we obtain a more accurate model:

-1 i ® i
¢(T)=jz LGV _ (AT)" (2-13a)
b i! (1~-3)
120 173 3 NeID
37t ant | @nd 1 -1
= 120 1T g0 (L= D] (2-13b)
- i1 -
- (1 --% an) 17 + 121 23%4?%%7 @ty (2-13¢)
- 2-13d
1)bj , ( )
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for T < j/||a]]

j=1,2,3,... .

Note that the second summation term in (2-13a) is a geometxric series.

The subscript of Db in (2-13d) indicates that the value of the factor

j is to be used in the infinite series, For each D ., the correspond-

bj
ing Ebj can be attained from (2-9b). The approximated modes of Dbj
and Ebj for j = 1,2,3,4,5 are listed as follows:
D,, = (I-AT)’l (2-14a)
bl
1 ,...~1 1
Do = (I- 5 AT)” (I+ 5 AT) (2-14b)
1,..-1 2 1 2
D3 = (I- 3 AT) (L4 3 AT+ E (AT)) (2-14c)
R P 1 2,1 3 -
D,y = (I- 7 AT) (I+ 7 AT+ ¢ (AT)“+ 37 (AT)”) (2-144)
D, . = (I~ i AT)'J'(I 4 A’I‘+ (AT) 2, 1 (AT) 3, L (AT) )
b5 5 5 15 120
(2-14e)
and
E . = T(I-AT)-IB (2~15a)
bl
E,, = TU- 171 (2-15b)
2 2
L e TR 4 -
E 4= T(I- 5 AT)  (I+ T AT)B (2-15¢)
B, = T(- % AT) L1+ -— A’l‘+ 7 (AT) 3)p (2-154)
£ ~1(- 1At 2 ame L i X ands. (2-15¢)
“b5 5 10 15 120

o
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Given the continuous-time system matrix A and input matrix B, the

approximated discrete-time system matrix Dbj and input matrix Ebj can

be calculated by using (2-14) and (2-15). The roundoff errors between
the exact mode and the approximated mode increase as ||A||T increases.
In order to control these errors, we use a scaling and squaring tech-

nique. An alternative form of (2-9a) is:

(1) = el = (eATi)i, (2-16a)
where T, % 1/1 i=1,2,3,... . (2-16b)
From (2-5), we get

oo = (] 3 )iy (2-17a)

- I;Z:o TG (2-17)
S1] e andt for 4= 1,2,3,... . (2-170)

3=0 (1) (1)

The infirite series inside the bracket of (2-17c) can be approximated

by either truncating the series as in (2-10) or applying a geometric
series approach as in (2-13). Consider first the case of truncating

the infinite series:

k
0,(1) = [ ] — L anid (2-18a)
¢ 320 (9 N
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- [1+-} @an)}* whenk = 1 (2-18b)
= [I+ (AT)+ ——— (AI) ] when k = 2 (2-18c)

2t (i)

¢« o o o o

0f course, the more terms of the Taylor series that are taken, the
better the approximation will be. The effect of scaling can be easily
seen by considering the case of £ = ) and 1 = 2 in (2-18b) and (2~18c).

When 1 = 1 (i.e., no scaling is used),

3 (1) = L+aT (2-19a)
= T+AT+ —— (AT) (2-19b)
I+A'L‘+ (AT) 3 Loan?d, (2-19¢)

when 1 = 2 (i.e., scaling is used),

0 (1) = 1+AT+-41— (aT)? (2-20a)

M R (7 et

- I+AT+-%- (AT)2+% (A1) 3+ —61-5 (ar) (2-20b)

= I+AT+ = 2 (AT) + —-(AT) + 192 (AT) + 192 (AT) + 2304 (AT).

(2-20¢)

R TR

Comparing (2-19a) and (2--20a), we observe that both retain the first

L

two dominant terms of the Taylor series, but (2-20a) has an extra term,

A NESERE JEN

(AT)2/4,which is an approximation of the third term,(AT)z/Z!, of the :
A
%
| :
;
5
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Taylor series, Therefore, (2-20a) 1s a better approximation than
{(2-19a). In the same fashion, comparing (2-19b) and (2-20b), we find
that both equations have the first three terms of the Taylor series in
(2-5), but (2-20b) provides two more important terms,(AI)3/8 and
(AI)4/64.which are the approximations of the respective fourth and
fifth terms,((AT)3/6 and (AI)A/ZA),of (2-5)., From the above compari-

sons we conclude that (2-20) gives better approximations than (2-19)

does.
If we use a geometric series approach to find the value of the
gseries in the bracket of (2-17), ®(T) becomes
j=1 L @ L
o m = (] —4D__. ] — (A“;:zj & (2-21a)
£=0 (17)- (A1) =3 (L7)-(37 7). (3D
-1 £ 3
.0 D, (?T) - 3-}-1-“)‘1]1 (2-21b)
220 (£7)- (A1)  (17)- (31
=1 .
= ({1~ 747 ary s U antp, -
3 2=1 (i) (3) (1)
for T < 1°3/]|al| (2-21d)

i=1,2,3,...

j = 1’2’3”00

where ||A|| 1s a matrix norm and [I- 3%; (A1)1"Y is a generalized geo-

metric series. Note that when i = 1, [I- % (AT)] 19 a geometric series

as that in (2-13b). Thre approximated discrete transition matrix D and
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input matrix E, for i = 1

and (2~15). When i = 2, the D's and E's matrices for j = 1,2,3,4,5
will be:
1 2.-1
Dyy [I—A’I‘+7’- (AT)"] (2-22a)
= 1 .__ 4+ 2 1 2 -
Do (I- = AT+ (AT) ] [ 7 AT+ T¢ (AT)"] (2-22b)
- __. 2
Dd3 = [I- 3 AT+ (AI) ] [I+ AI+ (AT) + (AT) + 576 (AI) ]
(2-22c)
AU UV Gty JO W |
Dd4 = [I A AT+ 64 (AT)"] “[I+ A AT+ 4 (AT) + 4 (AT) + 128‘AT)

1 5 1 6
+ 1535 (AD+ g5 (A1

22

and j = 1,2,3,4,5 are listed in Eqs. (2-14)

(2-224)
- _ 1 4
Dys = [I- § AT+ 35 )21 Lo e * AT+ 100 (AT) %+ = 200 1) 3
+ 22 an L ands =2 an® -1 )’
4800 soo 115200 115200
+ e (AT)°) (2-22e)
3686400 ’
and
- 1 1 2,-1.. 1 -
By, = TlI- 3 AT+ § (D174 (1- £ AD)B (2-23a)
oo 1 ___ _
Ey, = T(I~ 3 AT+ 7 (AT) 21713 (2-23b)
g =Tu-lm»——mn1 [+ & am+ L am) %+ 2 a1y 33m
43 3 6 6 6
(2—23c)
10 b gm?ite L 2
By, = TLI- § AT+ 37 (AD*)7HI+ 7 AT+ 27 64 (AT) 2+ =2 128 a1)3
RN S (AT) by L (PT)SIB (2~23d)
153 36864 g
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- T[I- & AT+ 2-12.03 o0 3 a2, 59 3
Egs = TII- § AT+ 355 (AD) ) T[I+ $5 AT+ 555 (AT) % 2355 (AT)

17

1 1
115200

5 6
(AD)™ Ti5300 4T ™ 3gagao0 T8

+'§%6 (at)+
The boundary conditions for the choice of convergence of the
sampling period T in (2-13d) and (2-21d) are different from each other
by a factor of i, Therefore, by using the generalized geometric series,
one can use a larger sampling period as long as we use a larger scaling
factor 1. This is an important property which makes possible the on~
line calculation by applying microcomputers or microprocessors, because
small computers exchange the price with the speed and capacity.
The approximation ¢d(T) in (2-21), not only retains the first (j+1)
dominant terms of the Taylor series in (2-5), but also approximates the
rest of that infinite series. Therefore the accuracy of ¢d(T) is much
better than that of ¢c(T) in (2-18),which preserves the first few terms
(depending on how many terms we choose in the bracket), approximates
some terms thereafter, and truncates all higher order terms. For

example, when { = 1 and j = 2,

6 (1) = L4AT +.% ar)? (2-24a)
1=l 1
¢d(T) (I- i AT) (1+ 5 AT)
- thar+ 2 (an B 2 (anr 3= e =G0+,
221 231 241
(2-24b)

When 1 = 2 and j = 2,

[T D e T

B T




1 1 2,2
¢c(T) = [I+~E AT+-§ (AT)"]

= I+AT+ (AT) + 2 (AT) + 3 3 (AT) (2~25a)
272 272

1 -1 1 2
¢d(T) = [(I--Z AT) ~(I+ Z-AT)]

1,2, 1 1
= AT+ 5 (AD 2 - ) 2— an% 2 an)is... .
) 22.(%) 232 24, 58,

5
(2-25b)
Rewriting (2-5) for the comparison of (2-24) and (2-25) with the exact

discrete transition matrix, $(T), we have:

1
2

O(T) = L+AT+ = (AT)%+ (A1) %+ —— (A1) by — L am)+...
2 4 15
(‘9 23 *3 'Qf')
(2-26)
It is obvious from (2-24)~(2-26) that the first three dominant terms

of all five equations are identical, and the coefficients of the remaining
terms in (2-24) and (2-25) compared with (2-26) give the conclusion

that a better discrete~time state transition matrix can be constructed
by using the generalized geometric series rather than using the scaled

truncating method. '

The matrix ®(T) can also be obtained by modifying eAT as

follows:

1 1
-3 AT 2 AT

AT & (e Y (2-27)

¢(T) = e

i AT l-A’l‘
where e and e can be acquired by using the truncating model
in (2-10), or the geometric series model in (2-13). The corresponding

discrete system matrices D and E are:

.-
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1, .1 J i
0.1 = | {cw Gn71  _ent

1 1 (2-28a)
1=0 (27)- (1)) i=0 (27). (1)
E = [Q (T)-1]A~ B = [ z ﬁ:ll__ﬁ__l_
i=0 (2 ) (i)
{ 3 T 1B,  (2-28b)
i=0 (2 )‘[(21+l)l]

where INT[(j-1/2] represents the integer part of the real number (3-/2

and

D=¢ (T) = { z ("l) [j i(i l)] (AT)i}“l*
i=0 (2) (3 ) €8))
3 2
(y L=id-n] @ty (2-29a)

1=0 Y- 3. @)

3
z=[%u»n5%~r{z‘*i[ji“1” L
=0 (2

i=1 (2) (3 ) (11)

(2-29b)
For j = 1,2,3,4,5, the approximate models are:
= Loyl 1 -
el = (- 2 AT) ~(I+ 2 AT) (2-30a)
1 1 2.~-1 1 1 2 _
a2 = [I-'E AT+ 3 (AT)"] “[1+ 2 AT+ 3 (AT)"] (2-30b)

[I—-l AT+-— (AT) - —§ (AT)3]-1[I+-% AT+ %-(AT)Z+ %5 (AT)3]
(2-30¢c)
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= [1- L 1 2_ 1 3,1 by-1... 1
Dy [T 5 AT+ 3 (AT) i3 (AT) "+ 334 (AT) '] ~(1+ 5 AT
+ = (A1) + 5 (A1) 3 L 384 (A1)*] (2-30d)

1,0l pm2 1 003 1 b 1 5.-1
D5 = [I~ 5 AL+ § (AT) "= 25 (AD)™+ 337 (AT) - 5= (AD)’]

{1+ 5 4+ 3 (D% 22 (anH oL 25 (AD°]
(2-30e)
B, = T(I- 5 A) B (2-31a)
B, = T(I- £ ar+ 2 (amy?17%s (2-31b)
B, ¢ Tl §ame § 0% 35 G021 2 an®is (eate)

1 1 2
Ee4 = T[I- 2 AT+ 3 (AT) "~ 4 (AT) + 384 (AT) ] [I+ (AT) ]B
(2-31d)
1 1 5,-1
Ee5 = T[I~ 5 A’I'+ (A'l‘) - (AT) + 384 (AT) 3840 (AT)"]
(I+ 4 (AT) + 1920 (AT) ]B. : (2-31e)

Note that (2-30) and (2-31) are obtained from (2-28). As for (2-29),

the D's and E's become:

1 ,m=Llor, 1 -

Dy = (I- 5 AT) ™ (I+ 5 AT) (2-32a)
L, 1 2.-1. 1,1 2 )

Dy,  [I- 7 AT+ 7 (AD 1[I+ 5 AT+ 3¢ (AD°) (2-32b)

e Iooan?e <L a3 tegs L
Df3 = [I- 2 AT+ 72 (AT) "~ 144 (AT)") "[1+

(2-32¢)

Ry W ———

7 2 1 3
‘2‘ AT+ 7—2' (AT) "+ -1—47; (AT) 7}

o e~
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s Lol 2 5 31 4.1 1
Dy, = [I- 3 AT 7 (D% 22 (D™ 3= 017 1+ L an
7
+ L an) 2, 3 384 (A1) + 2 1536 an*) (2-32d)
._ 23 13 4 1 -
Des = [I- 5 AT+ 555 am)*- 1200 (1) 5332 9600 A1) - o200 ATT1 T*
1,23 13 1
[I+ 5 AT+ 555 (AT) T 1200 a0+ 5225 9600 (AT) “ G 19300 (a1)°]
(2-32e)
1. .-1
B, = T(I- £ 4T)7'B (2-33a)
1.1 2.-1
Re, = TlI- 3 AT+ 3 (AD)°]7'B (2-33b)
E., = T{I- l-A'r+l— (AT)2 (AT) ] [I+ (AT) ]B (2~33c)
£3 2 72 144
17 2 52
By, = TII- 5 AT+ &7 (a1)*- 4 (AT) 3+ 2 1536 Aan*1 1+ =25 @n?s
(2-33d)
1 1 -
Egs = TII- 7 AT+ 555 (AT) - 1200 (a1)% 5635 9600 (any*- 19200 4T)7]
(+ 2 600 T2 L 9600 (an)*1B (2-33e)

Comparing (2-30) and (2-32) with (2-11) and (2-14), we conclude that
the modified transition matrix in (2-27) gives a better result than the
original transition matrix in (2-5)., In addition, the modified eA'r
implies a bilinear representation for the transition matrix D. This

bilinearity is useful in solving problems with large and small eigen-
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] Furthermore, we put forward the best approximation for the

state transition matrix in (2-5):

¢, (1) = (2-342) |

- [(e;% AT )-1(j oy o (2-34b) |

= Q Py (2-34c) |

‘ T, = T/n (2-34d) ;
O, = (1= 5oy (D I+ T el — (D] (2-34e)

1=1 (27) (D1 @")

jfl (j=1)

1
P, = [I+ 55— (AT) }[I+
in 2:jn =1 2. @w - @b

anl] (2-345)

for j = 1,2,3,...

n=1,2,3,..,

with T < (2:3-n)/]|A|]. (2-34g)

Equation (2-34) can be regarded as the scaling and squaring model for (2-29a)

Hence a larger sampling period can be used, and the accuracy is improved.

For convenience, we list some approximants (¢ n for j = 1,2,3,4,5);

3

1 -1 1 n
¢1n = [(I- In AT) ~(I+ % AT) ] (2-35a)

HER e e  aam SN a—
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n

1 1 y I
¢, = {[I- Z= AT+ —— (AT)"]” [1+ ——-AI+
2n 2n l6n2 16n
(2-35b)
—1—5-(AI)2- 5 (AT) 3171 %; AT
72n 144n

L @an’)®

1
9 n {[1- o AT+

+ 2 (AT) + (2-35¢)
72n 144n

- 1 3
) 0= {{x 5o AT (AT) "+

+ L a2 =
64n 384n

2 (AT) + 3
64n 384n

7 (AT) 4l
1536n

[1+ —— ~ AT+ ——5 3 (AT)3+ — (AT) ]}

1536n
(2-354d)

o = {[I- Loape 23 ] (ar)>- 12
1200n

2% 500n

3,13 4
3 (AT) "+ — (AT)

9600n
———1-§ (1’1 [1+.%; AT+ 23— 23— an) 2,19 L2 (am) 3, 13
19200n 200n 1200n 9600n

+—i— (a0’ 1),

(2-35¢)
19200n

Note that the coefficients of two mat:i.. polynomials in each ¢, in

jn

(2-35) are identical except for signs. As a result, ¢jn can be eval-

uated faster than other approximation methods, and the computational

error in evaluating the approximate transition matrix may be minimized.

2.4 Summary
The above discussion may he summarized as follows:
1.

The e<act transformation from continuous-time system (Eq. (2~1))

into discrete~-time system (Eq. (2-7))uses the rr ation !

D = &(T) = et

E = (D-I)A“IB

T

-y

A(AT)
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under the assumption that the input is a piecewise constant in-
put (the case of pilecewise linear input will be discussed in

Chapter 1V).

Seven different approximations for ¢(T) are derived. ¢a(T),
QC(T) and ¢e(T) in (2-10), (2-18) and (2-28a) respectively

use truncating method, whereas ¢b(T), ¢d(T) and ¢f(T) in (2-13),
(2~-21) and (2-29a) respectively use the geometric series
approach, Qc and Qd are obtained by scaling and squaring ¢a

and ¢b, while ¢e and ¢_ are found from Qa and ¢, by applying

£ b

(2-27).

¢g(T) is the best approximant of ¢(T) since it has largest
convergent range, minimum computational error, and fastest
calculation speed. In addition, the peculiar bilinear matrix ex-
pansion format is particularly useful in solving a stiff
state-space equation [12] which has both large and small
eigenvalues for which the Runge~Kutta fourth-order integration
method [13] fails., This is due to the fact that the Runge-
Kutta method approximates the Taylor series matrix expansion

by taking the first five dominant terms only, whereas ¢8(T)
uses, not only the first several domlnant terms, but also an

infinite number of other approximate terms.

Other approximation techniques for the transition matrix &(T)

can be found in [14].
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CHAPTER III

APPROXIMATED LINEAR REGULATOR AND KALMAN FILTER

3.1 Introduction

In Chapter I, a linear regulator problem has been illustrated as
one of the optimal control design techniques that have general appli-
cations in deterministic systems. A regulator problem is defined as
an optimal feedback control system that will drive the states or ocui-
puts to the neighborhood of the equilibrium conditions. However, most
real dvnamic control systems have disturbances and measurement noises.
It is not possible, for example, to model a disturbance by an analytical
function. The answer to the problem of modeiing disturbances is to
describe them as stochastic processes. The Kalman filter has been
shown to have applications in stochastic control problems [6,15] and
is particularly effective in the estimation of system states contamin-
ated by white noise. One of the difficulties in the determination of
the Kalman filter is the computational burden encountered in computing the
filter error covariance matrix for use in obtaining the gains. Conse-
quently, approximation methods discussed in Chapter II are used to
obtain a suboptimal state estimation which can be easily implemented
on a low cost minicomputer or microprocessor.

For the deterministic optimal linear regulator problem [Eq.
(1-2)1, which 1s the mathematical dual of the optimal stochastic-state
estimation problem {Eq. (1-16)], Kleinman {16] et al. have proposed a
very elegant approach in solving the suboptimal linear regulator problem
by using plecewise-constant gains. Chen and Shiao [17] have devised a

Walsh function approach for developing a piecewise-constant gain to
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approximate the time-varying Kalman gain, while Rac [18] has improved

the computational speed of the Walsh function approach via the block-pulse
function technique. In this chapter the generalized geometric series
approach and scaling~squaring technique mertioned in Chapter II will

be used for developing piecewise-~constant gains and piecewige-linear
gains for approximations of the optimal gains and Kalman gains in the
linear regulator problem and the state estimatioan problem,respectivel;.
Also, simple and fast algorithms are presented for the implementation

of these problems on a computer.

3.2 Time~Varying Optimal Gain

Rewriting the optimal linear regulator system in (1~-2) as

follows:
x(t) = Ax(t) + Bu(t); x(ty) = x; (3~1)

where x(t), u(t), A and B are vectors and matrices of approoriate

dimensions. For a finite time t_, the quadratic loss function,

£

t

J = %’[ £ [xT(t)Qx(t)+uT(t)Ru(c)]dt, (3-2a) ,
t ¢
0 :

is minimized using the optimal control law (1-9):
-1.T,
u(t) = -L(t)x(t) = ~R "B"A(t) (3-2b)

where the time-varying optimal gain is:

L(t) = Rflarﬁ(c) , (3~2c)

e A Wt £
.




and the adjoint state variable A(t) is equal to

At) = p(t) x(t) (3-2d)

p(t, satisfies the following Hamiltonian matrix equation [19]:

x(t) [A R k() A |x®

il L T = M (3-3a)
-Q -A A(t) At)

]

and the boundary conditions are specified as:

x(to) Xy
= (3-3b)

p(th 0

Instead of solving the time-varying optimal gain L(t) from a
Riccati equation [20] by off~line computations, we caan solve a linear
two-point-boundary~-value problem [19] for the L(t). The procedures
are reviewed as follows :

The solution of (3-3) is:

- ¢(t,t0) k(to)

x(t;] . x(to)
h(t)J

@ll(t,to) ¢12(c,to) x(to)
il PN ~ (3"1’8)
¢21(t,to) ¢22(t,t0) A(to)

A I S U P VS

-




where the continuous transition matrix .

3(:,:0) =
Partitioning a(t,to) and substituting t = ¢

Mep) = 821(cf,:0>x(c0>+$22(cf,cO)A(;
Using (3-2d) and (3-3b), we find

Meg) = "agi(tf’to)$21(tf’c0)x(t0)’
From (3-4a),

= ¢ll(t,to)x(co)+¢lz(c,co)l(t

A ~ l\“l ~ .
{¢ll(c ’to)-(blz(t’t0)¢22(tf’t0)¢21 (tf,to) Jx(t

¢21(t,tO)X(to)+¢22(c,to)A(a

A ~ A-’l ~
= [4)21(’:9 to)"‘bzz(c,to)q’zz(tf’to) QZL(tf’to) ]x(to)
therefore
~ 8, (t,t )=, (6,£ )8 (e ¢ )8, (£t )]
2170707 22 ol oo Mt g/ Moy thee Bl

[¢ll(c,to)-¢12(t,to)¢

(3-4b)

(3-5)

(3-6)

(3-7a)

(3-7b)

2(Egrtg) by (et ) Lex(e), (3-8)
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Hence p(t) ie found as:

A ~ A l\_l A
P(E) = (8, (£,80)-8y, (1,608 (t , )8y, (Epst0)]

A A 2=] 2 -1
[(bll(t'CO}"(DIZ(t’tOMZ?(tf’tOWZl(tf’to)] B (3‘93)
The time-varying optimal gain is
-1, T%
L(t) = R "B p(t), (3-9b)

and the optimal state trajectory is given in (3-7a).

3.3 Time-Varying Kalman Gain

Furthermore, we review the continuous stochastic-state estima-
tion problem. Consider the linear time-invariant continuous stochastic

system given as:

x(t) = Fx(t) + Dw(t) 3 x(ty) = x

0 (3-10a)

d(t) = Hx(t) + v(t), (3-10b)

where x(t)ERq, d(t)ERp, Fequq, DEquz, HeRpxq, w(t)eRz, v(t)ERP; w(t)

and v(t) are zero mean stationary white noise processes having the

properties:
E[w(t)w’ (T)] = Q8 (t-1) Q>0 (3-10c)
E[v(t)vI ()] = RE(t-T) R>0 (3-10d)
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E{w(t)vi(T)] = 0 (3-10e)

The best linear least squares estimate of the state vector is given by

the stochastic state equation [Section 2 of Chapter I]:

x(t) = Fx(r)+K(t) [d(t)-Hx(t)] (3-11a)

x(to) = E[x(tO)] , (3-11b)
where ;(t) is the estimated state and the Kalman gain is:

K(t) = P()H'RT. (3-11c)

P(t) is the covariance of the estimation error.

Introduce the vector z defined as the solution of the differen-

tial equatioen:
. T T
z(t) = -F z(t)-H u(t) ; z(to) =25y (3-12)

then the estimation problem is equivalent to the problem of finding a

control signal for the dynamical system (3-12) which minimizcs the

quadratic performance index:

t
J= —%— zT(tO)fS(to)z(to) + % I £ 2T ()DQD  z(t)+u” (£) Ru(T) ]dt.

) (3-13)

Consequently, the state estimation problem becomes the mathematical

dual of the optimal control problem,and the optimal control law is thus ;

T P
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equal to

u(e) = -k H3(0)2(t) = k¥ (e)z(e), (3~14)

Similar to (3-3a), we can form the following Hamiltonian matrix equation.

2(t) S S S A |2®f
. = T =1 (3~15a)
A{t) DQD F A(t) At)
with boundary conditions,
Aeg) = ple)z(t,) (3-15b)
Pleg) = B{lx(eq)-Ex(e)) 1(x(g)-Ex(t )17}, (3-15¢)
and the adjoint state variable A(t) satisfies
A(t) = p(t) z(t), (3-16)

where p(t) is the covariance matrix,

The solution of (3-15) is;

z(t) ~ Z(CO)
= ¢(t,c0)
A(t) A(to)

wlz(t,to) z(to)

L?Zl(t,co) ¢22(t,to) A(to) ,

)
{- e A s 3, S
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where the continuous transition matrix 1is:

. Mt )
B(t,e) = e . (3-17b)

After partitioning the matrix in (3-17a) and using the relationship in

(3-15) and (3-16), we obtain:

B(E) = By (6, by, (6,6 )B(E) [0, (£, £ )40, (E,e VP () 17
(3-18a)

Note that (3-18a) is different from (3-9a). When te in (3-13) is a

finite time, the time-varying Kalman gain is

K(t) = P(t)HR > (3-18b)

Substituting (3-18) into (3-11) yields the optimally estimated state,

x(t).

3.4 Optimal Regulator and Kalman Filter Approximation

In Chapter II, several approximation methods for the transition
matrix are discussed. The newest and probably the best one among them is
shown in (2-34), Since both (3-4b) and (3-17b) can be treated as tran-
sition matrices, and due to the duality of stochastic-state estimation
and deterministic optimal regulator, we can extend (2-34) to construct
a plecewise-constant gain and a piecewise time-varying gain for approxi-
mating L(t) in (3-9b) and K(t) in (3-18b). As it shall be seen later,
the proposed method improves the accuracy and computational speed of

the existing methods [17,18], and the approximate gains obtained can be

e e T T
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implemented on low-cost microprocessors or minicomputers for on-line
suboptimal control and approximate estimation [21,22] of a wide class
of systems,

If the exact transition matrices,a(t,to) in (3-4) and E(t,to)
in (3-17), can be obtained by off-line computation, the exact time-
varying optimal gain L(t) in (3-9b) and the exact time-varying Kalman
gain K(t) in (3-18b) can be determined for optimal control and estima-
tion., Moreover, off-line computation can be achieved by using a huge
and expensive digital computer, but it may not be practical to imple-
ment it on a small and low cost minicomputer or microprocessor because
of its slow speed and limited capacity. For this reason, approximants
are often determined and implemented on a mini/micro computer for
on-line suboptimal control and approximate estimation. Chen and Hsiao
[17] approximated g(t,to),but not 6(t,t0),via a Walsh function approach,
while Rao [18] approximated $(t,t0) via a block-pulse function approach.
Considering practical engineering constraints, we choose the modified
geometric series approach with scaling and squaring, which is a class
of Paae approximation method [14], to approximate both 8(t,t0) and
E(t,to). This method will improve the accuracy and computational speed

of the existing methods [17,18].

A general continuous~time state equation,
Y(t) = MY(t) ; ¥(ey) = ¥(0), (3-19a)

is used to represent (3-3a) and (3-15a). The solution of (3-19a) is:

1(t) = % ¥(0) = ¢(t) Y(0) , (3-19b)

L T T — P -—
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Mt R
where ¢(t)(= e "] 18 a continuous transition matrix. To use the recur~

sive feature of a discrete~time formulation and programmable micro-
processors or minicomputers, the continuous state equation in (3-19a)

is often converted to an equivalent discrete-time model as:

Y(KT+T) = GY(KT) ; Y(to) = Y(0). (3-20a)
Thus, the discrete-time solution can be rapidly determined as:
K
Y(KT) = G Y(0), (3-20b)
where G = eMT & ¢d(T) (3-20c)
o) = ¢5e) = ()% - o8 (3-20d)
t =K, K-=0,1,2,... . (3-20e)

T(= t/K) is the sampling period and @d(T) is a discrete transition
matrix. If off-line computations of ¢d(T) are not available or not
desired (for example, the self-tuning control problem [23] and the
adaptive control problem ([21,22]), and the on-line suboptimal control
or approximated estimation using a microprocessor or a minicomputer

is permissible, then the ¢d(T) is often approximated by a matrix poly-
nomial or a rational matrix polynomial. Once the approximation of G
has been determined, the approximate discretized solution of (3-19)

becomes ¢

Yd(KT) = GKYd(O) 3 Yd(O) = Y(0), (3-21a) i

- o —

- —
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G = <I>d(’1‘) (3-21b)
Yd(KT) = Y(t) at t = KT (3-21¢)
Using (2-34), we get the best approximation of G:
-1 1
-= Mr 5 MT
G =em {[e 2 n]—1[62 "t
.ol pn A
= an o - Gjn (3-22a)
for j =1,2,...
n = 1,2,... ’
where T 4 T/n
n
S S 3 enty-nem?t
QJn [IZq (2) (3) (n) MT][12q+ izl (21)(1)(1!)(ni)] (3-22b)
j-1 . i
A 1 (j-1) (MT)
i Uagt @@ It L ) wanah
T < (2in)/)|M|] . (3-224)

I2q is a 2qx2q identity matrix, ||M|| is a matrix norm of M and the
rational matrix polynomial [12q~ E%E M‘l‘]"n is a geometric series. Now
we shall investigate the accuracy and computational speed of the pro-
posed method compared with other existing methods.

When n = 1, Gjn

T e e, AR S ke v s s
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(for j = 1,2,...) in (3~22a) are the approximations of the eMT obtained
by taking the first (j+2) dominant terms and an infinite number of the

other approximated terms of the Taylor series matrix expansion.

For
example, when n = 1 and j = l; G11 is given by:
= -1yt 1
Gll [I2q 3 MT] [IZq+ 3 MT] (3-23a)
2, ¢ _1
=1, e+ em3 ) 2= omd (3-23b)
29 21 j-1
j=3 2
T < 2/||M|], (3-23c)
the exact Taylor series matrix expansion is
o«
c=eTnr 4+ i om¥ T L (3-24)
2q 21 y=3 3!

Observe that the first three dominant terms in both (3-23b) and (3-24)

are identical and the remaining terms differ by their weighting factor

1/¢23™1) 1n (3-23b) and 1/(J1) in (3-24). Shieh [24] et al. have shown

that the discrete-time solution in (3~21), having Gll(=G) in (3-23), is

identical to the approximated solution of (3-19) obtained by using

Walsh function approach [25] and the block-pulse function approach [12].

Since Gll is a special case of Gjn in (3-.2), the implication is that the

gains designed via the existing methods (17,18] are the special cases

of the modified geometric series with the scaling and squaring method.
For practical implementation of the designed approximate opti-

mal gains and Kalman gains on a microprocessor, which needs a large
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sampling period due to its slower operation, a more sophisticated
equivalent model (Gjn an j>1 and/or n>l) is required. For instance,

if letting j=1 and n>1 in (3-22), we have:

PG RS o
Gln N an Pln
{[1Zq 3 m]‘l[12q+ 3 Mr)®
= {1, $ur 17, +-%‘-MT I (3-25a)
T < 2n/||M|| (3-25b)
or T < 2/|[M[]. (3-25¢)

f‘-.

Comparing (3~23c) and (3-25c), we observe that the samping period T

in (3-23¢) has been reduced to Tn (= T/n, n>1) in (3-25¢). As a rasult,
the accuracy of the- approximation Gln in (3~25a) is better than that

of Gll in (3-23a). Thus, the proposed method haé significantly reform-
ed the accuracy of the existing methods [17,18] for evaluating 6(:,:0)
and L(t). Also, the range of convergence of the geometric series in
(3-25b) has been increased to n times that in (3-23b). From this ob- ;
servation we can conclude that a larger sampling period can be used

if a more sophisticated model is chosen, Furthermore, we see that both
Gll and Gln are in the bilinear matrix expansion format which can be
easily applied in solving a stiff state~space equation [12]. Equations,
(3-22b) and (3-22¢), can be rewritten as follows:

b
A
=[ +
n 2q 1.2.

(- 1)1(32~12+1) om”, (3-26a)

Q. |
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A S Aty omt
Pag = gt .2 n
J 1 4=1 Y-GS U @M

1. (3-26b)

Note that each term in an and Pjn is equal except for signs. As a
result, Gjn can be evaluated faster than other classes of the Pade

approximation, and the computational errors in evaluating the approxi-

mate transition matrix may be minimized. These improvements are another

reason for choosing a geometric-series approach (a class of Pade
approximation approach [14]) for transition matrices approximation.
The Gjn matrices for j = 1,2,3,4,5 are shown in (2-35). Sub~

stituting any one of them into (3-19) yields an approximate discretized

transition matrix ¢(t) at t = XT. Using this $(KT), we can determine

the approximate discretized L(t) in (3-9b) and K(t) in (3-18b). The
desired piecewise-constant, approximate optimal gain (ipc(t)) and the
piecewise-constant, approximate Kalman gain (ﬁpc(t)), derived from a
rectangular rule for continuous system control and estimation, are:

ch(t)

[}
»

L(3T) = L(t) ; T <t < (G+1)T, ]

]

0,1,2,...,m1

(3~-27a)
and

Ko () = KGD)

R

K(t) 3 T <& < (j+UT, j = 0,1,2,...,m1,
(3-27b)
where m(=tf/T) is the number of sub-intervals with sampling period T

and a finite t.me tf of interest., If a trapezoidal rule is applied,

the piecewise-constan* gains are:

e g <2s
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Lo (8) = 5 LUBDALGD] « L(e),  JTE<UHDT, § = 0,1,2,000,01

(3-28a)

and

Ko (8) = 3 [KGTDHKGED ] = K(E)  JISE<EHDT, 3 = 0,1,2,...,00L,

(3-28b)
To improve the accuracy of the approximate gains in (3-27) and (3-28),

we use new plecewise time-varying gains such as:

1’

Lo (8) = LED¥ 3 [LUT-LED 1 (-31) = L(E) (3-29a)

and

K, (8) = KU+ § KUTHD-KUD 1 (e-3T) = K(B), (3-29b)

where jT<t<(j+1)T and j = 0,1,2,...,m1.

. (
To reduce the number of piecewise gains [ch(t), Lpt‘t)’ Kpc(t) and
Kpt(t)] from m to £, we further approximate the plecewise gains. The

average gain of £pc(t) in (3~27a) between the sampling period T*(=nT,

n>1l) is;
g 1 (jtl)n_l
D =3 T LAD; JTRECEHITH, § = 0,1,2,...,001,
i=jn

(3-30a)

where t_ = o,

2 = m/n is the number of intervals with sampling period

[UURSIFR

o r— - —— -
P




T*(=nT) and n is the number of subintervals in each interval.

The average gain of ch(t) in (3~28a) becomes:

. L (-1
L_(t) =35 } [LGATHD)HL(IT) };  JT*<E<(J+1)T*,
pc 2n i=in -
(3-30b)
Moreover, the average gain of Lpt(c) in (3-29a) is:
LY (6) = LUTA)* 5 [EETHIN-LUTR 1 (e-3T%), (3-30c)
where  £(JTAHT*) = 2L' (£)-L(§T%) (3-30d)

and JTHSEC (JHL)T* jo=0,1,2,...,28-1,

In the same fashion, the average approximate Kalman gains between the

sampling period T*(=nT, n>1l) become:

(i+1)n-1

Kpc(t) = izjn K({iT)
(j+1)n-1
+ N
xpc(:) = 5= 1§jn [K(LT+T)+K(4T) ]

and K (6) = KUTO+ 5 [UTHIN-KGT]  (e-319),

where g(JTHT*) = ZKPZ(t)-K(jT*)

jT*ﬁL<(j+1)T* Iy j = 0,1,2’000,2’.1.

(3-31a)

(3~-31b)

(3-31c)

(3-31d)

3 =0,1,...,8-1

|
|
|
|
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The developed approximate optimal gains and approximate Kalman
gains in (3-27) to (3-31) can be implemented on the programmable digital

controller for on-line suboptimal control and approximate estimation

of a system.

3.5 Examples
Now we shall investigate one deterministic problem and one

stochastic problem to see how the proposed method improves the result.

Example 1., Deterministic Control Problem

Since the state estimation problem is the dual of the deter~
ministic control problem, we can use Kleinman's deterministic system
[16], which has been solved by using plecewise-constant gains, as an
illustrative example to test the aforementioned method.

The dynamic equation is:

x(t) = Ax(c) + Bu(t)

-1 0 O [_2
=l 0 0 2f x(t)+{ 2| wu(t), (3~32a)
0 -2 0 le

The initial conditions are:

x(0) = | -1 (3-32b)

The quadratic lost function is:

R N ™




t
J = -%- f £ (xTQx-#uTRu)dt
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2
- f ) [(xl-x2)2+u2]dt.

where Y(t) = [x(6) Me)1, ACt) = B(t) x(t) ana P(t

stitution, the M matrix becomes :

(3-33)
The corresponding state and costate equations are:
X Ao -1T] [,
Y = =
A -q AT A
[
X
= ¥ = MY, (3-34)
A

f) = 0. After sub-

[ -
A ~pr"1pT

-Q -AT

1 0 o 4 ~2
0 o0 2 4 =2

-2 2 g 0
2 =2 ¢ 0 2
0 0 o -2 0

i
+
L]
]
i
{
)
§
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|
The linear control law u*(t) is thus equal to [Eq. (3-9b)]: i
|
u* (t) = -L(t)x(t)
{
= -RUBYR () x(t) (3-36) I
{
The desired optimal state trajectory satisfies:
x4 (t) = (A-BL)x*(t) ;  x*(0) = x(0). (3-37)

Using (3-19)-(3~-22), we obtain the approximate discrete state model of the

continuous state model in (3-34) as:

YA[(J+1)T] = GY*(§T) 3 ¥*(0) = Y(0) (3-38)

where 3 =10,1,2,...,m+1 and m = tf/T.

|
The discrete system ma*vix G can be expressed by various approximations

obtained in Chapter II. Here we use the following fcur sets of G for

comparison :

Gl = [I--% MT]—l[I+-% MI] as n=1 in (2-35a)

(3-39a)
G2 = {[I- %'MT]-I[I+ % MT]}2 as n=2 in (2-35a) (3-39b)
1 1 2,1 1. 1 2,,2
Gy = {{1- 7 M+ e (MD)“1 (14 7 MI+ 27 (MT) 1}
as n=2 in (2~-35b) (3~39¢c)

i
i

l&wﬁ‘\i&”""“ N

|
|

:
L




50

el oam? L am3 Lo L e I amZe Lo o
Gy = [1- g M+ 57 ()™= gz (MO7] {1+ 3 M+ 55 0™ 377 (D7)
as n=l in (2-35¢). (3-394)

Multiplying G1 (1 =1,2,3,4) in (3-39) j times (j = 1,2,...,m) gives:
¢111(1T) ¢112(jT)
ja t § -

Gi ¢i(jT)- (3-40)

L.¢121(jT) %, ,,T)

The corresponding discrete feedback gains Li(jT) become:

L, (4T) = RflsTPi(jT), (3-41a)’

where

-1
ByUT) = 1915, UT)=035, T8 54MD) 415, (MDD I

-1 -1
(911 3T)~0;, (3185, (MI)Q, 5, (MDY ] 7, (3-41b)

Since the Li(jT) in this example is a 3x1 dimensional vector, we denote
each element of this column vector as Lli(jT)’ LZi(jT) and L3i(jT).
Tables 3-1, 32 and 3-3 show the optimal gains obtalned for Lli(t)’
LZi(t) and LSi(c) respectively, where t = jT, j = 0,1,2,...,m and m=64
or 8 or 4. From Tables 3~1 to 3-3 we observe that when a larger number
of intervals, m, is used, a better approximate result is achieved. In

addition, a better approximate model (Gi as 1>>1) results in a better
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discrete optimal gain. This implies that a larger sawpling period can
be used i1if a more sophisticated model is chosen.

Using the different Li's obtained from (3-4la) for m=64, 32,
16, 8, 4 or 2, we find the ch's in (3-28). From (3-37) the discrete
optimal state trajectoiy is attained. Consequently, the performance
indices (defined as Jci) for the various Li(t) can be calculated by
using the trapezoidal rule and are listed in Table 3~4.

rrom Table 3-4 we observe that a more sophisticated model gives
a more precise performance index.

To reduce the number of piecewise gains,an averaging technique as
shown in (3-30) and (3-31) is applied. Various performance indices,

J:i and J:i with m=64 and K = 2,4,8,16 or 32 in (3-30b) and (3-30c),

are listed in Tables 3-5 and 3-6, respectively.

Comparing the data in Tables 3-5 and 3-6 we observe that the
performance indices in Table 3~6 which use £ piecewise time-varying
gains are better than those in Table 3-5,which use % piecewise-constant
gains. Also, comparing the performance indices in Tables 3-4 through 3-6,
we conclude that the performance indices in Table 3-5 and Table 3-6
(which use % piecewise gains where & = 32,16,...,2) are slightly larger
than those in the first column of Table 3-4 (which use m=64 piecewise-
constant gains). However, a smaller number of simplified piecewise
gains is used in Table 3-5 and 3-6. Note that Ai<m. Furthermore, the
performance indices obtained from £ simplified piecewise gains in
Tables 3-5 and 3-6 are better than those obtained from the same number

of piecewise gains in Table 3-4.
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i® 64 32 16 8 4 2

J, 1.68907 1.69223 1.70617 1.76519 2.01198  2.87484
J, 1.68850 1.68995 1.69708 1.72875 1.85897  2.31682
J., 1.68836 1.68938 1.69482 1.71977 1.82204 2.16286
J, 1.68831 1.68919 1.69407 1.71686 1.81097  2.13606

TABLE 3-4. THE PERFORMANCE INDICES OBTAINED BY USING ch(t)

1* 3 16 8 4 2

J:l 1.68909 1.68919  1.68956 1.69150  1.69945
J:2 1.68853 1.68862 1.68899 1.69093 1.69886
J:3 1.68838 1.68848 1.68885 1.69079  1.69871
Jta 1.68834 1,68843 1.68880 1.69074  1.69866

TABLE 3-5. THE PERFORMANCE

INDICES OBTAINED BY USING L:c(t) WITH m=64

TSN ¥ 16 8 4 2

Jf, 1.68907 1.68907 1.68913 1.68993 1.69915
J, 1.68850 1.68850 1,68856 1.68935  1.69855
Ji, 1.6883 1.68836 1.68842 1.68921  1.69840
s}, 1.6883L 1.6883L 1.68837 1.68916 1.69835

+
TABLE 3-6, THE PERFORMANCE INDICES OBTAINED BY USING Lpt(t) WITH m=64
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Example 2, Stochastic Control Problem

Congider a one-dimensional tracking problem

x(t)

d(t)

where xl(t) is

Fx(t) + Dw(t)

w(t); x(t) =

Hx(t) + v(t)

[1 0] x(t) + v(t),

(3~42a)

(3-42b)

a noise-free position function and xz(t) is a constant

velocity corrupted by a Gaussian white noise with covariance Q = 0.1,

The radar detects the position,xl(t),and is corrupted by a Gaussian

white noise with covariance R = 0.5.

w(t), and the measurement noise, v(t), satisfies;

Efw(t) 0’ (1))
E{v(t)v (T)]

E[@(t)vT(T)]

The initial condition

x(0) =

L}

Q8(t-1) = 0.1 8(t-1)

R6(t-T) = 0.5 &(t-1)

The velocity state disturbance,

(3-43a)

(3-43b)

(3-43c)

(3-43d)
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From Eqs. (3-15) through (3~17), we have
- -
, -F' HR
M= ;
!_ o
J
~ -
0 2 0
-1 0 0
= 0 1 (3~44a)
0 0.1 0o o
L -
and
o(r) = M7, (3~44b)
The estimated init{al conditions are chosen as :
R 0
x(0) = (3-45a)
0
The corresponding covariance matrix becomes :
0
p(0) = (3-45b)
0 1

By applying (3-19) and (3-20) and using the four approximation modes

in (3-39), we can derive the Kalman gaing Kli(t) and KZi(t) for t = 1,2,3,4,
where t = T, § = 0,1,2,...,m and m = 200 or 8 or 4, The result is

shown in Tables 3-7 and 3-8 for Kli(t) and KZi(tL respectively., Sur- }
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prisingly, all estimated states obtained by using various modes and

various piecewise states give good estimation. In Figures 3-1 and 3-2,

the simulation results with G and Gl in Eq. (3-39a) are plotted. 1In
order to demonstrate the effect of averaging, the states simulated
from averaged piecewise-constant Kalman gains and averaged piecewise

time-varying gains are also included. Here the number of intervals

(=2) and the number of subintervals (=K) are chosen to be 8 and 25.
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CHAPTER IV

APPLICATIONS OF PIECEWISE LINEAR APPROXIMATION

In Chapter III, piecewise constant approximation and piecewise

linear approximation are used in finding the optimal gain and Kalman

gain. In this chapter, we shall focus on the application of piecewise

linear approximation.

Since the nineteenth century, the applications of piecewise con-
stant functions, such as the block pulse function [26] and the Walsh function,

[27] have been widely investigated by engineers in several fields,
including optical engineering (28,29], biomedical sciences {30,31],

commmication theory [26,32,33], control system [34,35) and stochastic

systems [36,37], The advantages of these plecewise constant functions

are that they introduce fairly accurate approximation techniques in
analyzing electrical cquipment and that they yield precise results

in the simulation and design of a real system. The purpose of this

chapter is to examine some important properties of plecewice linear

functions and their extensions in system simulation.

From (2-2) the exact solution of a continuous~time state

equation given in (2-1) is

t

x(t) = e*x(0) + J AN nyar, (4-1)

0
where the second part in the right~hand side equation is the convolu-

tion integral between eAt and Bu(t) for a causal system; therefore,

we can rewrite (4-1) as follows:

63
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x(t) = eMx(0) + [ eMpue-1)da (4-2)
0

t

Shieh [38] evaluated the states by using a rectangular approximation
of the input,u(t), which is equivalent to inserting a sampler and a
zero-order hold device before an integrator. The rectangular approxim-
ation, however, may be unsatisfactory when a stiff input is applied.
In this case we may approximate the input by a series of pilecewise
linear functions.

If t = KT and A in (4-2) is in the range [iT,(i+1)T] for

i=0,1,2,...,K-1, then u(t-A) can be approximated in the following

fashion:

u(t-A) = u(KT-A)
= uf (K-1-1)T )+ -%-{u[ (K=1)T]-u[ (K-1~1)T]} [KT~A- (K-1-1)T]

Here we use uj to represent u(jT) for simplificacion of the derivation. !

Substituting (4-3) into (4-2), we find:

t
x(t) = x(KT) = eAtx(O) + I eAXBu(t-A)dA

0

(1+1)T
e Bu(t-k)dk

A

%

Tx(0) +
AT

n

5
1=0
(1+1)'r ;
x(O) + 2 [
1

L la{uK ot T(uK T%-1- 1)[(1+1)T-A]d)\
K-1

eTx(0) + { 1 M1 (1-am) 14 By g +le® T (1+AT) 1A By
140 ai)
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A recursive relation is obtained from (4-4) by substituting t = (K+1)T,

nanmely ;

X[(K+1)T] = AEFDT

+ (e*T-(14aT) ]A-zBuK_ }

i+l

« AT AKT AGDT

K
x(0)+2 T
=1
+ (Ao (z+am) )A"ZBuK_ 141 1}
1,. AT -2
+ T[I—e (I-AT) A Buy

+ -%[e“-(nu) ]A.ZBuK_u
- eATx(KI)+Pll<U(KT)+MK+lU(K+1) \
where
M, = & (1-e"T(1-am) 14778

1. AT -2
MK+1 T {e""=-(X+AT) ]JA "B,

K
x(0)+ § % AT 1-eAT (1-aT) ]A‘ZBuK_ .
1=0

(1-¢*T (1-aT) )A’znux_ L

(4~5a)

(4=5b)

(4=5¢c)

However, by applying the piecewise constant approximation [38], the dis-

crete state solution can be expressed as:

X[ (K+1)T] = eAmx(KT)+Mu*(KT),

where

(4~6a)

,o— e A = .

s ne a s T

!, ey o



M= (eAT-I)A-lB (4-6b)

and
u*(KT) = —{u(K'l)+u[ (R+1)1}. (4-6c)

By using G as given in (2-14), the corresponding M, MK and Mey, are

formulated in Table 4~1.

If we choose the best approximation mode for eAI given in

(2‘34) » i.eo »

3P utog-n 1,,-n
= (- L ar (] L (AT )i
4 oy R

3-1
AT ) [1+ ] (3-1) @arHine, (4-7)

{(I+
23 =1 h-@ean B

By substituting (4-7) into (4-5b), (4-5c) and (4~6b), the results are:

M= T{I+ % G4 ¥ -ici-l)l’(AT oh
i=1 (2)(.1)(i!)

3
{3 [1‘("'1) l[j ’i(i"_)_'l (A'I' )i" *B (4-8a)
i=1 (2 ) {4 ) i1

v b ——— < Ao s W T v A -

’x‘;‘gm. . b Tl e 708 n
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N

-7 L= 1) ][j LU= 4 412, E [J2 1(1—1)1 T
=2 @hgHean n =1 2H-gH-an
(4~8b)
M.K = T{I+ :g: (-l)i'[j2'i(i_l;)] (AT )i}-—n*
* =1 @heghan F
3
) Ll-(-l)ﬁLj U] (42 D) H32 LU (g oLy,
=2 @b aHean =1 @b abH-an
(4-8¢)

The G, M, MK and MK+1 matrices as obtained by substituting j = 1,2,3,4,5
in (4-7) and (4-8) are listed in Table 4-2.

In order to see the varied results obtained by using piece-
wise constant approximation (abbreviated PC) and piecewise linear
approximation (abbreviated PL), we shall look into the following

linearized 2-shaft gas turbine model developed by Mueller {39]):

] - Tr1or 1

Xy -1.268  -0.04528 1.498 951.5| |x 0 O

X 1.00197 -1.957  8.52 1240 | |x 0 0 |]u
2| 2} 1
Xy 0 0 -10 0 %y 10 0 ||u,
x 0 0 0 -100 | |x, 0 100

- 4- L. 4 L5 L -

(4~9a)
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where

ul(t) = unit step input

uz(t) = ramp input.

The initial conditions are:

11(0)_ [0
xz(O) 0
x3(0) 0
x, (0) 0
4 L J‘

The exact state solutions can be found asg:

%) (£) = =541,752+714., 701t+549, 442¢ 1+ 34174¢

- 7.771e71+ 88326t 1 500m10t o 06100t

- 105,58¢e™1+88326t ) 40 -10t ) . -100t

x3(t) = l-e—mt

x,(t) = -0.01+t+0,0008e~L1 ¥174¢_g 00, -1.88326¢

+ 0.01e”300t

— - o (e .
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(4~9b)

(4-9¢)

(4~9d)

(4-10a)

(4-10b)

(4-10c)

(4-10d)
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For the sake of comparison , we choose the approximated state transi-

tion matrix as (n=2 in Table 4-2) :

Lo b oamy?1 e 1 oare L a2 -

G= (I- 3 AT+ 16 (AT)] “[1+ 2 AT+ 16 (AT)"]. (4-11)
The states obtained by using PC and PL approximations are listed in
Tables 4~3, 4-4, 4-5 and 4~6. Comparing these values with the exact
state values, we conclude that PL gives a better result than PC.
Therefore, if the polygonal hold, (a device for integration

using the trapezoidal approximation method [40]) can be realized, a

more accurate discrete-time state solution can be achieved.
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Time Exact X, Xy (Using PC) X, (Using PL)
!
0 0 0 0
0.02 0.08446 0.10736 0.08657 %
0.04 0.47723 0.49992 0.47736 ;
0.06 1,22978 1.25147 1.22925
0.08 2.34013 2.36100 2.33933
0.10 3.79942 3.81955 3.79844
0.12 5.59816 5.61758 5.59702
0.14 7.72708 7.74581 7.72580
0.16 10.1772 10,1953 10.1758
0.18 12.9398 12,9573 12,9383
0.20 16.0066 16.0234 16.0049

TABLE 4-3. COMPARISONS OF APPROXIMATED xl(BY USING
PC AND PL) WITH THE EXACT x

1
Time Exact X, X, (Using PC) X, (Using PL)
0 0 0 0
0.02  0.12230 0.15211 0.12496
0.06  0.66790 0.69748 0.66796
0.06  1.70049 1.72882 1.69966 ' |
0.08  3.21492 3.24226 3.21375
0.10  5.19778 5.22422 5.19637
0.12  7.63529 7.66088 7.63370
0.14  10.5144 10.5392 10.5126 . :
0.16  13.8227 13,8467 13.8207
0.18  17.5484 17.5716 17.5463
0.20  21.6804 21.7029 21,6782

i
i
|
TABLE 4~4, COMPARISONS OF APPROXIMATED X, (BY USING %

PC AND PL) WITH THE EXACT X, i




Time Exact X, X, (Using PC) X, (Using PL)
0 0 0 0
0.02 0.18127 0.18141 0.18141
0.04 0.32968 0.32990 0.32990
0.06 0.45119 0.45146 0.45146
0.08 0.55067 0.55097 0.55097
0.10 0.63212 0.63243 0.63243
0.12 0.69881 0.69911 0.69911
0.14 0.75340 0.75369 0.75369
0.16 0.79810 0.79837 0.79837
0.18 0.83470 0.83495 0.83495
0.20 0.86467 0.86489 0.86489
TABLE 4-5. COMPARISONS OF APPROXIMATED X4 (BY USING
PC AND PL) WITH THE EXACT X4
Time Exact %, X, (Using PC) %, (Using PL)
0 0 0 0

0.02 0.01135 0.00889 0.01111
0.04 0.03018 0.02765 0.03012
0.06 0.05 0.04752 0.05001
0.08 0.07 0.06750 0.07

0.10 0.09 0.08750 0.09

0.12 0.11 0.10750 0.11

0.14 0.13 0.12750 0.13

0.16 0.15 0.14750 0.15

0.18 0.17 0.16750 0.17

0.20 0.19 0.18750 0.19

TABLE 4-6. COMPARISONS COF APPROXIMATED x, (BY USING

PC AND PL) WITH THE EXACT x

4
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CHAPTER V

CONCLUSIGNS

A simple and fast algorithm is developed for approximate linear

regulator and Kalman filter problems,

After introducing the definitions for the linear regulator and the Kalman

filter, we establish piecewise-~constant and piecew’se linear approxima-
tioi 3 to sclve for the state transition matrix. A geometrical series
approach with scaling and squaring is used in approximating the expon-
ential of a matrix. Plecewise-constant gains and plecewise time-varying
gains for approximating a time-varying optimal linear gain and a time-
varving Kalman gain of quadratic Qynthesis problems can be solved
through this approach.

The proposed method greatly improves the accuracy and computa-
tional speed of the existing methods which use the Walsh function and
the block-pulse function. The developed suboptimal feedback gains for
a deterministic continuous system and the approximate Kalman gains for
a continuous stochastic system can be readily implemented on the low-
cost mic:onrocessors or minicomputers for on~line control and estimation.

The effectiveness of the plecewise-~linear approximation is
further demonstrated by examining the system simulation problem. A
transformation from a ¢rrtinuous~-time system cquation to a discrete-time
system equation is derived uvsing a piecewise-linear approximation technique.
The re.ul: is surprisingly accurate. The errors of simulating a linear-
izzd 2-shaft gas turbine model with only 11 samples are within 0.03
percent.

The Linear regulator prvoblem and the Kalman filter protlem are two of
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the most often encountered control problems. The proposed algorithm

has been found to be efficient in solving these problems. Potential

usefulness of this method in solving other problems remains to be ex-~

ploited.
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Determination of Equivalent Dominant Poles and
Zeros Using Industrial Specifications

LEANG-SAN SHIEH, MEMBER, 1EEE, YING-JYI PAUL WEI, MEMBER, EEE, HSI-ZEN CHOW, aNpD ROBERT E. YATES

Abstract— A graphical method and an analytical method are presenied
to determine the equivalent dominant poles and zeros of a systers using
assigned industrial specifications. A second-order transfer function
with two poles and one finite zero is used to investigate the relation-
ships between industrial specifications and the two poles and one finite
zero. Also, it is used to verify the rule of the thumb obtained from
Axeiby's empirical results. A frequency response data matching method
is proposed for fitting a low-order transfer function using the assigned
industrial specifications that are obtained from a given high-order
transfer function. Thus the equivalent dominant poles and zeros of

a high-crder system can be determined from the identified low-order
model.

1. INTRODUCTION

N the filter and compensator designs it is necessary and use-

ful to have a rapid method or a simple graphical method to
determine the poles and zeros that dominate the characteris-
tics of the transient response. These poles and zeros are called
the dominant poles and zeros that can be used to estimate the
dynamic behavior of the system response. In the literature,
the definitions of the dominant poles and zeros are ambiguous.
For example, the dominant poles are commonly defined as the
poles which are located near the imaginary axis (the jew axis)
or the poles which have the smallest absolute value when no
significant zeros appear. S~metimes a pole P, is defined as the
dominant pole [1] if IA). 5IP,l where P, are other system
poles. The roles of dominant zeros that are often neglected
in the literature become significant if the precise dynamic
characteristics of a system in the transient state are required.
The zeros not only contribute to the initial conditions of the
transient response but also increase the bandwidth in the fre-
quency domain; therefore, the roles of the zeros are as im-
portant as those of the poles.

As the technologies are progressing, the accurate description
of many physical systems results in a high-order transfer func-
tion that consists of many clustery poles and zeros in the s
plane. The poles near the jw axis may not be dominant poles
because the dominant effects on the transient response be-
havior of the poles are cancelled by the nearby zeros, and the
system response may be characterized by the collective efforts

Manuscript received July 13, 1978; revised January 25, 1979. This
work was supported in part by U.S. Army Missile Command, Redstone
Arsenal, AL, DAAK 00-79-C-0061, and U.S. Army Research Office
DAAG29-77-G-0143.

L. S. Shich, Y. J. Wei, and H. Z. Chow are with the Department of
Electrical Engineering, Universit:' of Honston, “louston, TX 77004

R. E. Yates is with the Guidance and Control Directorate, U.S. Army
Missile Research and Development Command, Redstone Arsenal, AL
35809.

of a group of clustery poles and zeros. This implies that the
poles and zeros which are not near the jw axis may dominate
the characteristics of the system response. Therefore, the
equivalent dominant poles and zeros, rather than the dominant
poles and zeros obtained from the geometric locations in the
s plane, become significant in the analysis and synthesis of a
high-order system. Furthermore, the design goals and the
nature of a high-order system are often characterized by a set
of control specifications [2] (called the industrial specifica-
tions) that are commonly classified as 1) the time-domain spec-
ifications, for example, the rise time and the overshoot, 2) the
frequency-domain specifications, for example, the bandwidth
and ine phase margin, 3) the complex-domain specifications,
for example, the damping ratio and the undamped ratural
angular frequency or the equivalent poles and zzros in the s
plane. If the relationships among the time-domain, frequency-
domain specifications, and the equivalent poles and zeros (the
complex-domain specifications) can be simply determined
from a simpie equation or a working graph, then the selected
poles and zeros in the design of filters and compensators be-
come meaningful, and the design processes can be greatly
simplified.

Ir this paper, a graphical method and an analytical method
are p:oposed to determine the equivalent dominant poles and
zeros using assigned industrial specifications. First, relation-
ships among various industrial specifications will be studied.
A second-order transfer function having two poles and one
finite zero is used as a basis for the investigation. Several
working graphs and mathematical expressions are developed
for the determination of the two dominant poles and one
dominant zero using the assigned industrial specifications. Then
the equivalent dominant poles and zeros of a high-order sys-
tem are determined by a new dominant frequency-response
data matching method. The equivalent dominant poles and
zeros thus obtained satisfy the exact assigned industrial
specifications.

I1. THE RELATIONSHIPS AMONG VARIOUS INDUSTRIAL
SPECIFICATIONS

In control system design, the design goals are usually ex-
pressed in terms of a set of industrial specifications, The place-
ment of poles and zeros based upon the assigned specifications
needs certain experiences. If the relationships among various
industrial specifications can be determined, then nonconflict-
ng industrial specifications can be assigned as design goals, and
the meaningful dominant poles and zeros can be selected for

filter and compensator designs. Thus an effective design
method may be developed.

0018-9421/79/0800-0125%00.75 © 1979 IEEE
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An empirical study on the relationships among various in-
dustrial specifications has been conducted by Axelby [3].
The empirical rules or the rule of the thumb, which link the
specifications i both time and frequency domains, are listed
as follows:

M =M, = e o

(1)
where M, 15 the maximum value of unit-step response, M), is
the maximum value of the closed-foop frequency response,
and ¢,, is the phase margin;
|
M, =-—
[

(1b)
where M, is the maximum value of the error of the unit-ramp
function and w, is the gain crossover frequency;

(I¢)

where w), is the peak value frequency or the frequency when
Mp, occurs;

Wp =W,

M, =, (1d)
where M, is the maximum value of the unitimpulse response;
3
l, ~—— 1
P @ (le)

where £, is the peak value time or the time when M, occurs,

1.8 .
fy=— (1£)
w(.‘
where ¢, is the time when the maximum error of the ramp
function with respect to its input occurs;

1

w

(lg)

te =
<

where 1, is the time when M, occurs.

Other rules of the thumb according to Truxal [4] are listed
as follows:

tywy =2 0.6m to 097

{th)
where ¢, is the rise time or the time required for the response
to go from 10 to 90 percent of its final value and w,, is the
bandwidth n rad/s;

(1)

td =

Ky

where t; is the delay time or the time required to reach 50
percent of its final value and K|, is the velocity error ccnstant.

Some other analytical results that repiesent the relationships
between the time-demain specifications (but not the frequency-
domain specifications) and the cumplex-domain specifications
have been developed and can be found in standard textbooks
[5], [6]. The most commonly used tunction for investigating
the relationships is

Y(s) w?

R(s) s*+2kw,s+w?

()
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wuere Y(s) and R(s) are the output and input functions,
respectively, and £ 1s the damping ratio and w, is the un-
damped natural angular frequency. From (2) we observe that
the zero of the system 1s located at infimty, and 1s not a
significant zero. Since the time-domamn specifications are cf-
ten used to define the characteristics of the transient behavior,
the roles of zeros become significant. Therefore, a better
model than that of (2) should be used to study the relation-
ships among the industrial specifications. The transfer func-
tion of a unit-feedback system that has two poles and one
finite zero is used as a basis for the investigatton. The pro-
posed closed-loop transfer function is then,
Y(s) TW,s + W} bys+b,

_—= T(s) = = — = ..B(_A_‘)
R(s) sPH 2w st Wl sPHaista, A(s)

s
T\ — ]t
_ (wn> - Ts* + |
Wy Wy

where s* is a normalized complex variable, a, and b, are con-
stants, and A(s) and B(s) are two polynomials. The normahzed
poles and the original poles are at

3f='$+/V1‘22 sl=‘§wn+/wn\‘l'£2

(3)

S§‘=‘$‘iv1 52 52=_£wn ianl 52 (48)
and the normahized zero and the original zero are at
] 0y
AT, <.} (4b)
T T

The open-loop transfer function G(s) of the system i (3)1s

s
K, {1+ -
()

Tw,s + wl
G(s) PR L A

= - = 5
sis + Qéw, - 7w,)) s(l +3‘> )

a
where K, = w,,/(2¢

a=(2

Comparing (2) and (3) we observe that a finite sero has been
inserted in (3). The zero contributes the initial condition at
the transient state, and it reduces the veloaty error at the
steady state. Also it provides an additional bandwidth in the
frequency domain, which increases the phase margin and im-
proves the stability of a system.

The derivations of the relationships among the industrial
specifications are shown as the foliowing seven relationships.

1] The Relationships Among M. t),. &, ©y.and 7 The unit-
step response of the system in (3) gives

7) 1s the velocity error constant if 7 < 2¢

Thw, and b =w,/7.

TW,S + W
Yis) = et T %on R ;
) s(s? 4 2Ew,s F wl) (62)
The inverse Laplace transform of Y(s) results in
Y(ty=1 e bent [cos wa V1 B
£ 7 -~
+\ﬁ~~ {5 stnw, VI £, (6b)
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Differentiating y(r) with respect to ¢ and setting the result
equal to zero yields

ty= (1r+ tan™! Iﬁ—)/(wn v1- E’). (6¢)

Substituting (6c) into (6b) and simplifying it gives the maxi-
mum value of the unit-step response

M, =1+e 8 ntp(r2 - 275 4 )12, (6d)

2) The Relationships Among M,, Wp, & Wy, and : Apply-
ing Higgins and Siegel’s complex variable differentiation

method [7], we can solve the peak value frequency w), from
the following equation:

LBy 1 a@)]
R‘{j [B(s) ds  A(s) ds ”,.,wp‘o' (79)
Thus we have

wp =w, V1 - 282
), ifr=0

7b
My, =1/QEV1-§ (7)
and
wp =% F1+VT+ 17 - a7 Ve
2 I}
MP=%[ (12+1)2_4E22_(T2+l) ’ ifr#0.
+28%7%] V2, (7)

3) The Relationships Among ¢y, we, &, wy, and 1: Using
the definitions of ®m and w,,

Om =(G(6)]; = j, +180° (8a)
and
G(5) s e jeo, = 1 (8b)
we have
(%) T+t 1) (‘;’T")
and
we = wn (267 - 282 + V(28 - ZEry 4 1]12, (8d)

4) The Relationships Among t,, M,, &, w,, and 1: The er-
ror signal e(r), which is the difference between the ramp in.

put () and the time response A1) of the same input to the
system in (3), is

2& -T 1 -k
= - — “‘,1' - g2
(1)  dw e [B cos w, V1 - £2¢

- Csin w, V1 - £34) (%a)

where
A=(1-£),B=(2%- (1 - $»),
C=(1- 28 +150/1- &

T - A i ¢ oo\ e e -

127

L

wn"l

¥ T T Lhg
0 0.25 0.5 0.75 &+ 1.0

Fig. 1. Relationships among My, §, w,, and r shown in (6d).

Differentiating e(r) with respect to ¢ and setting the result
equal to zero we have

tan™! [ﬂ]

t, = 9%
v wn \/1 ~ Ez T- E ( )
Substituting the ¢, into (9a) and simplifying it we have
M. = 28 - 7+ V(1 + 1% - 275} bombo] gy, . 9¢)

5) The Relationships Among t., M,, £, w,, and 1: Dif-
ferentiating the unit-impulse response y(f) of the system in
(3), J(t), and set:ing the result equal to zero, we have the time
t. at which the maximum valye occurs, or

to = ———tan"! [(1 - %)V - z’]
¢ waV1- 8 E-2rt2 47 |

Substituting ¢, into y (1) yields the maximum value of the unit-
impulse response M,, or

M= w,ente /T 25 1 1. (10b)

6) The Relationships Among K, £, w,,and : The velocity
error constant K, can be derived from the basic definition as

(10a)

K,=lims- G(s)=—2n
30 -

2

7) The Relationships Among wp, £, w,, ond 1: The defini-
tion of the bandwidth of a system is

T ety = 5 (12)

> if <2t (1)
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The analytical expression is

wp 2ol #7728+ 0+ DTV,

Most important ume-domamn and frequency-domain specifi-
cattons have been analyucally expressed m terms of £, w,,, and

- e -

e g m———
p— —

(13)

Fig 4 Relationships among 1/sim 9. £, w,,. and 7 shown m (8c)

3

. ¢S g N L -1 3

L. 5 Relationships among w,., £. wyy. and 7 shown m (8d).

7 which are the spealications in the complex domain. These
expresstons ar normalized and graphically shown in Figs. 1-
i1, If an industnal specification is assigned, the corresponding
£ and 1 or the cquivalent poics and sero in (4) can be deter-
mined rom the plotted curves. Also the curves in Figs. 12-
15 can be used to verify the rules of the thumb proposed by
Axelby [3]. Itis observed that the accuracy of the rules de-
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Fig. 7. Relationships among 1, £, wy,, and 7 shown in (9b).

pends upon the range of the damping ratio and the zero loca-
tion. Furthermore, from the developed working graphs, a set
of meaningful and nonconflicting specifications can be as-
signed for the design goals of a control system.

I{I. DETERMINATION OF EQUIVALENT DOMINANT POLES
AND ZEROS FROM A HIGH-ORDER MODEL

In the design of high performance control systems, quite
often several specifications are assigned as design goals, and the
corresponding, dominant poles and zeros are required. This is

- —— v - -

T T
0. 025 0.5 0.75 1.0

Fig. 8. Relationships among M,, £, w,;, and 7 shown in (9¢).

}-
Mt

H]
wy * 1
1 L1 ¥ L

0. 0.25 0.5 0.75 & 1.0
Fig. 9. Relationships among M,, £, wy, and r shown in (10b).

a problem of a high-order transfer function fitting using indus-
trial specifications. Shieh er al. [8], [9] have developed an
original synthesis technique to fit a second-order transfer func-
tion based on three industrial specifications. The Newton-
Raphson multidimensional method [10] was applied to solve
the resulting nonlinear simultaneous equations that can be
converted to a single variable quadratic equation. However, it
is well known that the Newton-Raphsorn: method will only con-
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Fig. 10. Relationships among ¢, £, wy. and 7 shown in (10a).

verge for a small range of starting values or the initial guesses.
It is also known that high-order nonlinear equations have
many solutions that depend heavily on the initial guess used.
For general nonlinear equations that cannot be converted to a
single variable equation, the Newton-Raphscn numerical
method may not converge to the desired solution using arbi-
trary initial guesses. In this paper, the original synthesis method
[8], [ 9] is extended for modeling a high-order transfer func-
tion using many industrial specifications; and an analytical
method is proposed for the estimation of the good starting
values. T'us the desired dominant poles and zeros can be de-
termined from the identified transfer function. The method
can be well illustrated using the following example.

Suppose that the poles and zeros that represent the follow-
ing given industrial specifications are required to be determined.

Type “1” system (14a)
w, the gain crossover frequency = 4.7 rad/s (14b)
¢, the phase margin = 45.6° (14c)
M, the maximum value of the closed-loop frequency
respoase = 1.5 (14d)
wp  the peak value frequency = 3.5 rad/s (14¢)

the bandwidth of the closed-loop frequency
response = 6.5 rad/s. (141)
The assignments of the specifications in (14) closely follow the
rules shown in (1). Therefore, the conflic.ed assignments can
be avoided. The first two are the open-loop specifications,
while the others are the closed-loop .nes. Three equivalent
poles and two equivalent zeros that represent the assigned
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specifications 1n (14) can be determined. The third-order
model is

L(Q =
R(s)

, K(s +z,)(s + z3)
Tis) = Iare

(s* + 2kw,s + wy)s + p)
_ b,sz +b2$+b3

s> +aisttastas

(15a)

where K, p, £, w,, 2,, and z, or the corresponding a; and b;
are unknown constants to be determined. Because the system
is a type “1” system, the final value of the unit-step response
of the system in (15a) is unity or

Y(£)|t s =lim s - R(s)Y(s)
30
. 1 b|S2+b23+b3 b3
=lims-{— {3 T ===
540 s/\s" ta, s itasta; a,

(15%)
or az = b;. (1%¢)
As a result, (15a) can be simplified as

Y(s) bys® +hys+a,
— = . 5d
R(s) 1) P +ays? +ays+a (154)
The open-loop transfer function G(s) is
bys® +bystay
G(s) = . 15e
©) s{s? + (a1 - by)s +(a; - by)) (15

RN




SHIEH eral : EQUIVALENT DOMINANT POLES AND ZEROS

6]

V ¥ T
0.5 0.75 10
Fig. 13. Relationships among M,, f.. and 1/w, shown in (1).

. er—— si e e e

131

Following the definitions shown in (14), we can construct

a set of nonlinear equations f,(a,. a3, @3. b,. b2) =0 fori=
1,2,---.5.

The definttion of w, is
IG(jew: )= 1. (16a)

The corresponding nonlinear equation 1s

fi(@y.a2.a3,b,.03) = (a; - b))2w¢ + {w] - (@, - by)w,)?

- (@ - byw})’ - bjwl=0.  (l16b)
The definition of ¢,,. can be expressed as
Om = 180° + fG(je,) . (17a)
The nonlinear equation is
f2ay. 82,85, by, b2) = baeo} () -by)
- (a3 - biwi)w} - az + by)
- tan 9y, [(a3 - &ywl)a, - b1)w,
+bywe(wl - a; +b,)} =0.  (17b)
The definition of wj, 1s known as
IT(jw,,)l=%. (18a)

The corresponding nonlinear equation is
f3(ar. az. a3, by, by) = (a3 - biwp)? +bjw}

- ey - ayw})? + (W} - aawp)?]

=0. (18b)
The definition of w,, gives
IT(jw)!
ditje)t - _, (193)
dw o= wp

Following Higgins and Siegel's complex variable differential
technique [7], we have the following nonlinear equation:

fs(ay, 83,83, by, by) = [2a,a50, - 2aiw),
- (a3 - 3w~ wh + a3w,)] [(a
- bywp)? + (baw,)?] + [-2a3b,w)

+2b}w) + biw, ) (a5 - aywd)?

(- W} +a,w,)*] = 0. (19b)
The definition of M, is
TG o =M. (202)
The nonlinear equation is
fS(aly aq, a3, blv b2) = (aJ - blw;)z +b§w;
- M3 (a3 - ayw})?
+ (w; - a,wp)’] =0, (20b)

Equations (16)-(20) are a set of high-order nonlinear simulta-
neous equations which are v~ry difficult to solve. The Newton-
Raphson method, which is available in most digital computers

N Rt
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Fig 14. Relatonships among w, . wp. and My shown s (1)

{11]. is used to soive the nonlinear equations. To obtaimn the
desired solution. and to improve the speed of convergence of
the numerical method. we have to establish a set of good start-
ing values. From the developed analytical expressions of var-
ous specifications or the working curves in this paper. we can
determine the corresponding two poles and one sero using
My = 1.5 and wp = 3.5. From the rule of the thumb in (1) we
observe that the M, and w, have ndirectly included the ap-
proximated respective ¢, and w,. The procedures are shown
in the following steps.

Step 1: Determine the normalized dominant poles or the £ in
(4a) using the curve drawn in Fig. 2, having -=0. From the
curve (7= 0) we read the damping ratio £=. 53, The normal-
1zed dominant poles and the dominant poles with w, = w,, =
3.5are

st= 035409368 s;= 1.225+3.278¢
57=-0.35-/09368 s5,= 1.225 ;3.2786. (21a)
The second-order model 15
w? 12.2

= . i
$P 4 2bw,s+w? s 2455+12.25° (216)

THs) =

Step 2: Determine a dominant zero using the specification
wp = 6.5 in (14f). The modified second-order model becomes
blS+(A),21 b|S+12.25

Tas)** = ez .
() s 4 2kw,s twl st 2455+ 12.25

(2lc¢)

The by can be easily determined by using the definition of
wy in (18a):

by =3.1781. (21d)

s e o g - -
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Thus a fow-order donunant model 1s determined. However a
third-order model 1s required. An extra pole and a nearby
sero are mserted into the second-order model 1 (21¢) to ob-
tam an approximate third-order model. or
(hys+wi(1.1s + 108w
T;‘(S) = s L.\,: - " - ~; o "—"-g”,-’j)“
(5% 2ewn,s twpls + 108w,
_3.495915? + 52.4067255 + 150.0625
2+ 14.75% + 42.26255 + 150.0625

(21e)

Using the coefficients i (2 1e) as initial guesses. a¥ = 14.7.a% =
422625, a¥ = 150.0625. bT = 3.49591, and b> = 52.406725,
and applying the Newton-Raphson method [11] to solve the
nonlinear equations in (16) through (20} yields the desired
solutions: a; =4.267162. a4y = 20.58799.4; =29.806197,b; =
3.188355. and &, = 15.561058. at 10th iteration with the er-
ror tolerance of 1078, The desired transfer functi- a1 is

3.1883555% + 155610585 + 29.806197
s +4 2671625% + 20.58799s + 29.806197
The dominant poles and zeros, which represent the assigned in-

dustral specifications, are determuned from the poles £, and
7er0s 2, in (22).

Ti(s)=

(22)

Py, = 1.849412756

2y = 1.208824622 +/3.828226318

Py= 1.208824622 ;3.828226318 (23a)
and

2= 4.880591402 +/3.68424378
4.880591402 j3.68424378. (23b)

4
n

—_— s S
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When the distribution of the poles and zeros of a high-order
transfer function is known and the reduced-order transfer
function that consists of equivalent dominant poles and zeros
is required, it is a model reduction problem. Recently, various
model reduction methods [12]-[15] have been proposed in
the frequency domain. However, their reduced models [12] -
[15], do not keep the assigned industrial specifications, which
are obtained from the original system. The preservation of the
exact frequency-domain specifications is essential in the de-
sign of filters and compensators using frequency-domain meth-
ods 5], [6], such as the Nyquist, Bode, and Nichols chart
methods. This proposed method can overcome the short-
comings of the existing model reduction methods. The
frequency-response data at wp, wp, &, and w, (the phase
crossover frequency of the open-loop system for the use of the
gain margin [5], [6] are considered as the dominant frequency-
response data. If some of these data are assigned (o determine
the corresponding reduc~d-order model, the equivalent domi-
nant poles and zeros ¢ be determined from the reduced-
order mode! that consists of the exact industrial specifications
assigned.

IV. CONCLUSION

A second-order transfer function with two poles and one
finite zero has been used to derive the analytical and graphical
expressions of various industrial specifications. For a few as-
signed industrial specifications, the corresponding two domi-
nant poles and one dominant zero can be determined from
the identified transfer function. The generalized second-
order model has been used to verify the rule of the thumb
proposed by Axelby. It has been obszrved that the accuracy
of the rule of the thumb depends on the range of the damping
ratio and the zero location. From the developed graphical
expressions, a set of meaningful industrial specificaticas can
be chosen and assigned as the design goals for the filter and
compensator designs. A dominant frequency-respor.se data
matching method has been developed to construct a low-
order transfer function using the assigned industrial specifica-
tions that are obtained from a given high-order system. Thus
the equivalent dominant poles and zeros of a high-order sys-
tem can be determined from the identified low-order transfer
function that has the exact industrial specifications assigned.
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More over, the proposed method in this paper has been
successfully applied to redesign the compensators of a stabi-
lized pitch control system <f a rzal semiactive terminal homing
missile [16]. The overall system characteristics of the rede-
signed missile [17] match those of the lower ordered model
obtained from assigned industrial specifications.
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Synthesis of optimal block controllers for multivariable
control systems and its inverse optimal-control problem

Y.J. Wei, M.Sc., and Prof. L.S. Shieh, M.Sc., Ph.D.

Indexing terms:  Multivariable control systems, Control-system svnthesis, Optimal control

Abstract

A new miethod is presented to synthesise optimal block controllers for a class of multivariable contro} systems
represented by the block companion form, The reverse process of obtaining the optimal block controller 1s used to

determine the block-weighting matrices of the quadratic performance index from prescribed control specifications.

1 introduction

The accurate description of linear time-invariant systems in
the time domain may result in m nth-degree coupled differential
equations, or an nth-degrec matrix differential equation with m x m
matrix coefficients' as

net

Y AD x =u (1a)

fel
n

y=3 D"« (1)
ing

and
N =ea;, i=1,2....n (i)

where y is an m x 1 output vector, u isanm x 1 input vector and x is
an m x | state vector. A, and C; are m x m matrix coefficients, and
the differential operator D = d/dt. When each imitial vector &, 1s an
m x 1 null vector, the corresponding frequency-domain representation
of eqn. 1 is an nth-degree matrix transfer function written as

Y(s) = T(5)U(s) (22)

where Y(s)and U(s) are the in x 1 output vector and the m x 1 input
vector, respectively, and the matrix transfer function T'(s) is

T(s) = N()D;' (5) = Di* (sNi(s) v2))

The matrix polynomials D,(s) and N,(s) with appropriate size are
right coprime, Dy(s) and N,(s) left coprime. Let us define

Di(s) = Iys" + 48" 4.+ A5 + A, 3)
Ne(3) = Cps™™ 4 Caeys™ 2 + ...+ Cis + €,

where A; and C; are m x m constant matrices. The corresponding first-
degree state equation in the controllable phase-variable block form or
in the controllable block companion form is

X = AX+Bu (4a)
y =CX;x(0) = X, “b)
where

m Im  Op 0, O, X,
0 0 1 0, 0, X.
A = m m m m , B = m , X = 2
_Al _Az _A3 "An lm Xn

(4c)
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C= [C] Cg e Cn] (4d)

The block elements Ay, Oy, 1, and C; are m x m constant matrices,
mxm null matrix, m x m identity matrix and m x m constant
matrices, respectively, The vector X consists of n blocks (X,
j=1,2,...,n)and cach m x 1 block X; consists of m state variables.
In this paper, we define the vector X as a block vector, Because the
state equation in eqn. 4 is formulated in the phase-variable block
form, the X is defined as a vector in the phase-variable block co-
ordinate. As a result, the X(0) is an mitial block vector. From a
conventional viewpoint, the same vector X is viewed as a vector with
nm state variables in a general co-ordinate. Therefore, the same state
equation in eqn. 4 is viewed as a state equation in a general co-
ordinate. In this paper, all the derivations arc based on the state
equation in the phase-variable block co-ordinate rather than a general
co-ordinate.

The objectives of this paper are described as follows:

(a) Obtain the optimal block-cont law u=—R™BTPX =—KX
(where the feedback-gain matrix K = R™ BTP consists of m x m

block elements K, i=1,..., n) to mimmise the quadratic per-

formance index

J= j: [XTOX + u"Ruldt (54)

-

for the dynamic system formulated in the phase-variable block
co-ordinate in eqn. 4. The T designates transpose, the weighting
matrix R is an assigned m x m positive-definite matrix, and the
block-weighting matrix Q is an assigned nm x nm nonnegative
definite-symmetric matrix with m x nt block elements Q;; = Q.
or

Qll QIZ e an
Qn QOn ... Can \
0= 2 22 2 - Q" (Sb)

in an. R anj,

The nm x nm matrix P is the positive.definite solution of the
steady-state Riccati equation?

PA+ATP+Q—PBRT'B'P = 0,, 5¢0)

The same P can be also solved from the following canonical form:?

ol Lo 2T G

G(=) = PX() = Opmx 1, X(0) = Xo (5d)
449
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It is noted that, if the pair [A4, B8] is controllable and the pair
{4, L] is observable (where @ =LLT), then the closed-loop
system is not only optimal but stable.

(b) Determine the block-weighting matrices @ and R of the quad-
ratic performance index in eqn. 5a if the optimal block controller
K is assigned or if the closed-loop poles (or the equivalent control
specifications®) of the optimal controlled system are prescnbed,

2 Linear optimal-block-regulator problem

In the conventional synthesis of the linear-regulator problem,
the state equation in eqn. 4 is viewed as a state equation in a general
co-ordinate. An optimal control law is then derived by solving eqns.
5¢ or 5d. In this paper, the state equation in eqn. 4 is consideted as a
state equation in the phase-variable block co-ordinate. The optimal-
block-control law is derived as follows.

Expanding eqn. 4 and adding a trivial identity yields

X, =X

X =X

i, =X,=X;

X = x, = —A X, A Xy —...—A X, +u (6a)
Rewriting the last equation in eqn. 6a gives

W= ALKy FAX AN+ X (6b)

Substituting eqn. 6 into eqn. 54, we have an alternate form of the cost
function as

F(X,u) = F(X,,X,,..., x{") = Fx') = 1x"70°x" (D)
where

0% Qn ... Oin ATR X,

Q;n Q;: ver O3 ATR X,
o = T =

Ont Q2 ... Qun AIR x{n v

RA, RA, ... RA, R X"

Q= Qu+ATRA; = Q]

The (n+ 1)m x (n+ 1)m constant matrix Q* is a block weighting
matrix with m x m block elements. Applying the gradient matrix
operations® to the quadratic cost function in eqn. 7 yields

Fy, = lln On 0,10°x"
d s
&—FX’ = (On In 010X
t 1
d" *__¥
T Em = (On O I]0° X" ®)
Substituting eqn. 8 into the following Euler’s equation®
d d? d"
Fy, ";FX’, '*'ZEF,?, "---'*'("’U"Z;FX,(") = Omxy ©)
we have
DiXy + Do Xy + D3 X3P L Dy X2 = Opyyy (102)
where
[Dl D, D, . D2nﬂ] = [Im Iy In ... (— l)"lm] X

0L 05 0h...0m ATR On ...0n On 0]
Om Q3 Q% - Qo Bn ATR ... 0w 0n On
Om O @t o Oong Bpey Bon -2 Om Om Op

Qn.n ALR On

R4, RA, R
(106)

Om Op Om -.- Qs Onz Qo ...
Op Op Op ...0, RA;  RA; ...

450

Expanding eqn. 10b we have
D, = Q) = Qy +ATRA,
Dy = Qi —Qn = Qu +ATRA; = Qyy —ATRA,

D!nﬂ =R (]00)

Taking the Laplace transform of eqn. 10a and neglecting the initial
conditions we have the matrix polynomial D(s):

D()X1(5) = [Dopar 8" + Dyps®™ ™t + ...
+Das + D)Xy (5) = Oy (it)

where Dygey = DJesr, k=0, 1,..., n and D, =-DYy,
k=1,2,...,n It is well known that the poles of the state equation
in eqn. 5d are symmetrically distributed about the origin in the
s-plane, so are the roots of the determinant of the matnx polynomial
D(s) in eqn. 1 1. Performing the spectral factorisation®? of the matrix
polynomial D(s) results n a stable matrix polynomial A(s) and an
unstable matrix polynomial A (—s), i.e.

D(s) = FTA(—s)TA(s)F (12)
where

R = F'F = Dy,
and
A@) = Lys" + E,s" + .+ Eys+ Ey

The required optimal-block-control law is then ob.ained from eqns. 65
and 12 as

u= [Kl K; ...K,.]X (13)
where
K = A{—E;, i=12,...,n

When the given system is not in a phase-variable block form, a newly
developed algorithm shown in Appendix 8 can be applied to obtain a
block linear transformation that transforms a class of state equations
in a general co-ordinate into the phase-variable block co-ordinate.
Thus the proposed method can be applied to determine the optimal
block controller.

3 Inverse optimal control problem

Given a sct of prescribed closed-loop poles, or equivalent
control specifications,> we wish to determine the weighting matrices
Q and R of the quadratic performance index in eqn. 5a by which
the controlled feedback system has prescribed closed-loop poles and
the feedback-control law is optimal. This is an inverse optimal-control
problem. Kaiman® initiated the inverse problem for a linear time-
invariant single<input system. Chang,® Tyler and Tuteur'® have
studied the problem via the rootlocus method, while Molinari,'!
and Anderson and Shannon'? have investigated the problem for a
multivariable system. All the developed methods are hased on the
system equation formulated in a general co-ordinate rather than in a
phase-variable block co-ordinate. Since the multivariable dynamic
system is formulated in a matrix differential equation, it is more
natural to investigate the problem in the phase-variable block co-
ordinate than that in the general co-ordinate.

It is well known that a feedback-gain matrix can always be ob-
tained to give a system with prescribed closed-loop poles if a system
is controllable. However, the feedback controller may not be optimal.
In this paper we determine the block-weighting matrices Q and R of
the quadratic performance index by which the feedback controller
not only provides the controlled system with prescrived closed-loop
poles but also performs optimally. The steps involved are described as
follows:

Step 1

Define a characteristic matrix polynomial A(s) of the desired closed-
loop system whose matrix coefficients consist of some unknown
parameters (for example, the damping ratio ¢ and the undamped
natural angular frequency w, etc.) to be adjusted. The A(s) is

A(s) = Ls" +Es" ' + ...+ Eas + £, (14a)
If the desired characteristic polynomial of the closed-loop system is
)™ = (" +dps™ ... +dys+d))™ (145)
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where d(s) is a polynomial whose coefficients consist of adjustable
parameters, The characteristic matnx polynomial becomes

A(s)=d(si, = I,s" +dpl,s" + ... +dyl,s +di 1,

(14¢)
where

Eg = (1(’,,,

Step 2
Construct a matrix polynomial D(s) using A(s) in eqn. 14

D(5) =Dyqa 8"+ Dyps? ™V + .+ Dys + D,
= FTAT(~$5)A(s)F
= FT[lps™" + (£ = Ed)stnt
4 (Egey —ETE, +ET_)s*"2 + .+ ETE\|F (15)
where Dy,,,, = FTF = R is a weighting matrix to be determined.

Step 3
Solve the block weighting matrices Q and R from eqns. 10 and 15
in terms of adjustable parameters, or

D:n‘l = FTF

Dy, = RA,—ATR = FN(E,~ENF
D, = Q) +ATRA, = Qu —ATRA,
= FT(E.TE: -‘E;I‘EI)F
Dy = Qu+ATRA, = FETE, F (16)
Step 4

Determine the requited block weighting matrices Q and R by ad-
justing the assigned unknown parameters such that R is positive
defini‘e and Q is nonnegative definite symmetric,

Th procedures can be well jllustrated by the following gas-turbine
examgle.

4 An illustrative example

Consider the following linearised two-shaft gas-turbine
model. 13"

Z, -1:268 —004528 1498 951'5]] z,
Z; 1:002 —1:957 852 1240 [zz
A 0 0 -10 0§z
24 0 0 0 —100 l24
0 o
N 0 0‘[1«,]
10 Of|u,
l 0 100 (179)
and
N 1 0 0 0][2
[y,} - [0 10 O] zs
23
z4 (17b)

The state equation in eqn. 17 is a system formulated in a general
co-ordinate. To apply the proposed method, a block-linear-
transformation matrix T is determined from the newly developed
method shown in Appendix 8. The block linear transformation is

z2=TX (18)
where
14:98 95150 : 0 0
_ 852 124000 : 0 0
18:5671 —2622-1 : 10 0
— 0005214 1368291 0 100

and X 15 i the phase-variable block co-ordinate and consists of two
block vectors (X,, { =1, 2) and each vector X, consists of two state
variables (x;,.7=1,2,i{=1,2) The state equation in the phase-
vatable block co-ordunate is

0 0
0

X1
%12
—_— - = — e e e e _-I —————— -
Xa4 - 18.5671 2622:1 : = 11-8567 262.21 1| x,,
X3, 0-005214 - 136-829: 0 —101-368] L x, ,

00
00 u,
lrs H
01 (190)
yl 1498 95150 0 0] [x,,
[yzl ~[85-2 124000 0 o} *i4
.
X34 (195)
where
[ 18:5671  —126221 [11-5567 ~262:21 ]
=12 0005214 136-829]’ 1o 101-368
(19¢)
¢ - [ 1498 95150, c. - [0 o]
852 124000 00 (194)

it is required to determine two optimal block controllers for the gas-
turbine system by using

(a) assigned weighting matrices Q and R of the quadratic performance
index
(b) assigned control specifications.

The procedures are described as follows:

{a) Optimal-block-controller design via assigned weighting matrices
The cost function of the state equation in the original co-ordinate
inegn, 17is

J = lJm {z70z + u"Ru) dt (20)
27

where Q =1, and R =1, that were suggested by Tiwari et al.'®
The corresponding cost function in the phase-variable block co-
ordinate is

= lj“ [X7TQX + uTRu)d! (21)
2%

where R =1, and

Q = 170T = [g'_'. _?_"]
Qzl Q22
78281776 119414615 ¢ 185671 — 521389
119414615 24436416630 | ~26221 136829
T Tiesent ~2¢221 i d0 T "0
—521389 136829 | 0 10000

From eqn. 10 we have
Dy Dy...05) = |1, =1, L)| Q% 0, ATR O, 0,
0, 0 0 AIRO;
0, 0; RA, RA, R
(22)
451

Nm—_-*




k - - ,\‘/J-—-..—q-

By expanding eqn. 22, D(s) in eqn. 11 becomes
D(s) = Ds* + D8 + ...+ D,

Rs* + (RA; —ATR)s®

+(RA, +ATR =01y —ATRAL)S

+(Quz + ATRAz = Quy — ATRA)s

+(Qn +ATRA,) = 0, (23)
where
0 =26221
05 = 13.1)4 =
262-21 0

[—2-03447 48684 ]
48684 — 8875596
0 52440924
Dz =
— 52440924 0
18172-92 11892776 ]
Y 111892776 2-44433 x 10"

Performing the spectral factorisation” on the D(s) gives

A(s) = Ls* +Es + E (24)
where

_ [172396 —261-906 46925 ~3929-922
- [0-30451 576-845] nes= [77-27215 156294-2]

From eqn. 13 we have the optimal block controllers in the block
co-ordinate and original co-ordinate as

u= A~ Ay —ElX

283576 —1307-82 ' 53829 0-3045)
- -[77-2774 156157-4: 0304513 475476 |
(254a)
= {4, ~E ‘A, - BTz
_ [-—0-36296 0:279346 : 053829 0-003045‘z
0-598572 0-795425 | 0-0304513 4-75476 |
(25b)
(b) The optimal-block-controller design via assigned control specifi-

cations
The design goals are specified as follows:

(i) static decoupling
(ii) final values of the unit-step responses are unity
(i) peak time ¢, that is the time required for the unit-step res-
ponse to reach the first peak of the overshoot is near 0-01s
(iv) maximum percentage overshoot is less than 10%,

To reach the first design goal, the characteristic matrix polynomial is
defined as

A(s) = hs* +E;5s +E; (26)
where
2%w, 0 w? 0
52=E" ]andlz‘,=[" ]
0 2w 0 w?

£ (damping ratio) and w, (undamped natural frequency) are unknown
parameters to be determined. To satisfy the third design goal we can
estimate w,, from the following rule of thumb in designs*® as

™ 34
t, 001
Also, from another rule of thumb,'® we can estimate ¥ to meet the
fourth design goal as

Wy =

2 300 rad/s (27a)

InM, In0)
Y o o e e 2 )
- 17 =075 (275)

452

= ——— —

The chotces w eqn. 27 inply that the closed-loop poles have been
assigned at

1 = ~fw, jw,/T=E = ~225 1719843 (27¢)
From eqn. 26 D(s) can be determined as
D(s) = FTAT(—5)A(s)F
= FUFs® +(2wi — 4822 )FTF? + WA FTF
= Rs* + (RA, —A{R)s®
+(RA, +ATR —~ Qg —~ATRAY)S
+(Qn + ATRA; - Qs —ATRAY)s
+(Qu +ATRA,)) (28)

For simplicity, let )2 = Qy; = 0,. Equating the matrix coefficients
of the same power of eqn. 28, we obtain the following matnx
cquations:

@R = F'F (29a)
(b) Ra, — ATR = 0, (298)
(¢) RA, + ATR — Qpy —ATRA, = Qu} — a8 W2)FTF
(29¢)
() ATRA; —ATRA, = 0O, 294d)
(e) Qu +ATRA, = W F'F (29¢)

R 15 an mx m symmetnic and posttive-defimte matrix which has
m(m+ 1){2 unknown elements to be determined. The left-hand-
side matrices in eqns. 296 and 29d are skew-symmetric matrices,
Expanding the matrix equations in eqns. 295 and 29d results in
m(m —1) simultaneous equations with m(m + 1)/2 unknown vari-
ables in R. In general, there are an infinite number of solutions.
However, if k independent simultaneous equations exist, and
k <m(m+ 1)/2, then we can assume [m(m + 1)/2—k] constants
to solve k unknown variables in R. The choice of the assigned con-
stants in R is a design freedom and a certain amount of experience
is helpful. In this example, we assume R;,, which is the first leading
diagonal element, is unity. Thus we can solve for R and Fin eqn. 29a
as

292934
= F'F (30)

1
k= [2-92934 51058-01562
where
0999916 5-737x10'5]
[0-0129466 22596

Note that R is a positive-definite matrix. From eqns. 30, 29¢ and
29¢ we can solve for Qyy and @, as
[ Wi~ 345:55808
) =

2929341 w3 + 7162905 ]
29293414 + 7762905 51058:0156 wf, — 76070451 X 10

(31a)
{ 47wl — 2w — 140-5813
9u = 2.929341(45 W}, — 2w}) — 2844.916
2929341(4¢ W}, — 2wk) — 2844-916
(318)

51058-0156(4¢%w} — 2w}) — 524561317-4

Substituting w, =300 and §=075 into eqn. 31 yields positive-
definite matrices @); and Q,;. Thus the optimal block controllers
can be easily found in the block co-ordinate and in the original
co-ordinate as

A1 —E A —E )X

u

899814329 2622'1 ) 438-1433 262:21

I
0005214  89863:17, 0 348-632 X (322)
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= (A —E, E A, —E,]T"z
- 17677

12182

135737 438143 2:6221
~0-21391 | 0

i)

The block- -weighting matnx Q in the block co-ordinate and the
weighting matrix Gn the original co- ordmate are

§1x10°  237277x10°1 0o 0
_|237277x 10 413569x 104, 0 0
- —-‘-b———§-5_-—;l_l7—(—)3:12“3718—50-_2~
0 0 | 318502 80169820 -
(33q)
and
3253160 ~ 24546101 472383 — 291217
— 2454610 1878440, ~33808 - 59383
S| Bae T e T T aissez |00
~ 291217 - 59383, 318502 8016982

1t 1s noticed that® any arbitrarily prescribed closed-loop poles or

32b
3 48632] 26)

To achieve the first and second design goals we add a forward-gain

matrix # as shown in Fig. 1. The H can be solved from the block C,
I egn. }9d or

il

\ [14-98 95150

}" [—198-42349 152-258]
"lss2 124000

3136336 —0-023971

(34)
Thus the design system is

»i(s) w"
y,(s) = FLES "Ew,,.\' + wn

_ 90000 1 0][Ri(9)

s* +4505+90000 0 1)] Ry(s)

For this real nontrivial system the designed system is not only static
decoupling but also complete noninteracting, and the final values of
the unit-step responses are unity. The peak time is 0-014s and the
maximum percentage overshoot is 1%. The simulation curves for umt.
step input are shown in Figs. 2 and 3. Comparing the design results
of the proposed method with those of McMorran'® and Tiwari er
al.,'* the present result gives less overshoot and less oscillatory res.

l(s)]
Riy(5)

(3%

TR

ponses.
control spectfications may not result in a positive-definite matrix R

and nonnegatlve -definite matrix Q. The constraints suggested by

Anderson? should be satisfied. In addition, some realistic constraints
to the amplitudes of the control signals, for example the limitations 1t
of the actuator amplitude and rate change of amplitude, should be
also examined. T
i /proposed method and McMorrans method
f y LI M T 005 o1 015 020
| gas-turbine system Y, s
l
o
Fig. 1
Structure of designed system
Y2
1 ,r S e’
%
't oo 005 010 015 020
[ )
Fig. 3 1
Y 0—-*-05 e Y Y -d.‘i - 020, Responses of various designed systems to a unit step in ry :};
o = ry=0 %
rp=1 \f’
McMotran's method .
~= == proposed method. § =0:75; w, = 300 %
~ — — proposed method. Q IiR=1, 3
) Tiwarl’s method: @ =/;;R=1, ,
3
% 5 Conclusion
S - - — A new method, based on a state equation in the phase- Y
Urr 005 00 7 os 020 variable block co-ordinate, has been presented to determine the -
proposed method s optimal block controllers for a class of multivariable systems. The
£, b reverse process of obtaining the optimal block controllers has been .
2 used to determine the weighting matrices of the quadratic perfor- “;
% mance index, P
4 Fig. 2 When a multivarizble dynamic system is formulated in a matrix K
3 y . . differential equation, the proposed method is moie suitable for the a¥
: Responses of various designed systems to a unit step in r Lo ! . .
%i; po f & ¥ pinn determination of the optimzl controllers than the conventional 3
X n=l approach. Also, it is simpler to determine the weighting matrices than 1*3
i =0 an’s method: the conventional approaches. However, the proposed method is limited %
3 ~ — ~ proposed method: £ = 6-75; w, = 300

to a class of multivariable systems whose state enuations can be
formulated into matrix differential equations or the state equations
in the block companion form.

===~ proposed method: @ = [ :R=1,
Tiwarl's method: @ = [ ;R =1,

.

.
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8 Appendix
Block linear transformation

Consider a class of completely controllable, hinear, time-
invariant, multi-input, multi-output system

%ot) = Aoxo(t) + Bou(r) (36a)

»(t) = Coxolr) (365)

where Ag ER" XN By ER"X™ Cy € RIX"s x,(1) € RPXY,

YOER u()€ R™* Y, Assume that [, m <n and n/m = k (an
integer) and define r = n — m. By a linear transformation

xo(r) = Tyz,(f) €

We wish to construct a state equation 1n the controllable block
companton form

4,(1) = Ayz,(1) + Byu(r) (384)
v = Gz () (38b)
where
Om Im Om Om...' On]
t
Om Om Inm Om o) Om
A,,:/l, !
A = TPAT, =|-2L2 | = e
Audn Om Om Om Om ... |n
_mLomom ol L2
| b, =D, =D, =D, ..., —Dy
(38¢)

0
B' = T;‘Bo =[ me],cl = COTI =[NI:N29-~~’NI¢’9

’m Xm
(380
A R X" AR ER XM A €RM X7 and Ay ER™X ™,
The constant matrices ;€ R™ X ™ and N,E R'* ™ are called block
clements ard the matrix J,y = I, X € R™ X7 is an identity matrix.
The matrices Op = Oy x m ER™ X ™ and O, x p, ER™X™ are null
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matrices, respectively. The cotresponding matnx transfer function of
eqn. 38 can be directly formulated as

Y(S) = [Nl +Nys+, .. 4 NkSk-IIIDI +Dys+ ...
F Dyt 41,5517 UGs)
= N (5)UGs) = T(s)U(s) (39)

where U(s) and Y (s) are Laplace transforms of #(¢) and p(r). and T,(s)
is a matnx transfer function.

The objective is to derive the lincar-transforisuion matnx 7; in
eqn, 37. Because Ty transfonns 2 stale equation in eqn. 36 to a block
companion form in cqn. 38, Ty is called as a block linear transform-
ation. We turther assume that the matrix B, in eqn. 36 can be

- . B
partitioned into the form of | =2
2
singular matnx. This can be accomplished by rearranging the sequence
of the elements in the state vector x4 (1) 1n eqn. 36. By applying the
first Iinear transformation

where By € R X ™ 45 a non-

xo(t) = K x,(1) (40)
where
K, = {err B..] wd Kt = [lrx, —B..B;.']

Opmxr Bn Omxr B

we have

(0 = Auxy () + Byuln) (41a)

»n = Cix (0 (418)
where
A, =K' A0K, =[f" /i"], B, =1<;'Bo=[o”""],

Ay An mXm

51 =C0K|»/In ER"X’; A—lz ER'xm,A-zl en Xr,ﬂnd
Ay €RTEM,

To obtain the required stamve equation in eqn. 38, we perform the
second linear transformation

.\'|(1) = K22|([) (42“)1
where
[ort 0, Orxm
Kz =l 1 Xm]‘ K{I - [QI X ] (42b)
"Q:Q;l [me Q: lme
and
IQT: 0F) = [g1,.. 0@ ! Grors- on). (429

T designates the transpose of the matrix. The unknown matrices
QT €R™ *7 (with r colunm vectors q;) and QT €RT* ™ (with m
column vectors gj) can be evaluated as follows.

From eqn. 424, 41a and 38¢ we have the matnx equation

Ki'A, = AK3! (430)
or
[Ql Orxm Ay Ap _{An An Q1 Orxm
Q: lme] [,’1’,, A_zz] - [Azx An] [Q: lme]

(436)

Expanding eqn. 43b yiclds

Qidy = A0 + 4,0,

Qdy =4y, (43c)
and

Q:4) +An = AnQ + 400,

Qz/l-n +An = An (a3d)

Performing a transposc operation on eqn. 43¢ and substituting eqns.
38¢ and 42¢ into it, we have the following recursive formulas:

Al = qmer  for i=1,2,...,r (442)
(44b)
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¢ L 4
and and
Algreme; =€ for i=12...,m (44¢) 1 070 O
where €' is the m x 1 unit column vector whose 1th element is unity, Lx, | Bu 0 1,0 0
and ali other elements are zeros. Eqn. 44 can be furth lified 4 K, = : =
dre zeros. Eqn. 44 can be further simplified as [ Bl B Bt tru
follows: a P Omxr! By 0 0: 10 0
(i) If k =2 then 0 0,0 100
and = A35)re for i=1,2,...,m (45q) Applying the recursive algorithm in cqn. 452, we have
Ime = Al for i=1,2,...,m (45b) o [14-98 852 ]" [l]
" q, ={Ap) e’ =
(ii) If k> 2, then : " 95150 124000 0
A-|7£ -t Opm x H
K =2
il @Iy O _ [—1 98423 X 10 ]
@ =t . rkes . fori=1,2,...,m (45c) 152258 x 10™*
AL (AN Om x 1 :
¢ IT  (ATyk-2 t - 1498 8527 0
Az (An) e q2 = (D) et =[ ) ] [ ]
195150 124000 !
and
’ Gmst = AN que-pmer for i=12,... ,mandj - 1:36336 x |0'5]
=1,2,...,k-1 (@5d) ~2:39708 x 107
When the square matrices in eqns. 45a and 45¢ are not singular, the and
¢y in eqn. 42 can be obtained. Note that the determination of ¢; —1-268 1002 —198423 x 1072
eqn. 45 only involves one inversion of a matrix. Thus the transform- 4, = 41q, = [ ] [ R
ation matrix T, in eqn. 37. which links the co ordinates x,(¢) in —004528 —1957 1:52258 x 10
l eqn. 36 and the required co-ordinates 2, (f) in eqn. 38, is
- -
%0 = KiKsz (0 = Ty, 0 (46) _ [ voneexio 2]
1t is believed that the block linear transformation T, is new. (—2:88984 x 10
I An illustrative example —r f--1-268 1-002 1-36336 x 10™S
Consider the dynamic equation of an actual gas-turbine system® ¢ = Aiid: = |—0-04528 —1.957) [-2:39708 x 107
which is completely controllable and observable.
l Ro(1) = Aoxo(1) + Bou(r) _ [~196893 x m-S] )
() = Coxo(D) [ey) [ 4073763 x 10°¢
where The transformation matrix K, in eqn. 42b 15
—~1268 —004528 1-498 9515 ‘ 0, : Orym
1002 —1957 852 1240 Ky == 57—
° 0 = 0, i lm X m
g 0 V] -10 0 '
o 0 0 0 100 —1-98423 x 102 1-52258 x 10°* ;0 0
T 136336 x 107 —2:39708 x 1076 ;0 0
00 | Ta0a16ax 107 —288984 x 107 T 0
8, = [gu] oo = [1 000 {—1-96893x 107 4073763x 107 10 1
B 10 0 0t 00
. " The block linear transformation Ty in eqn. 46 is
0 100
3 xo(n) = K\Kzz2, () = Tyz, (1) (50)
. n=4,l=m=2,r=n=m=2, and k=n/m =2, The block com-
panion form in eqn, 38, the corresponding matrix transfer function, 4000
of this system are required.
Applying the linear transformation in eqn. 40 yields the state 1498 95150 0 0
tion i .4
. cquationineqn.41 852 124000 0 O
s 6 () = t+B
#1() = Axi (0 +Byu() 18:5671 —26221 10 0
3 Yo = () (“8) —521380x 107> 136829 O 100
where
g The required block companion form in eqn. 38 is
~1-268 —004528 ' 1498 95150 4 P an-
- - I ; = + 51
(A | A 1002 —1957 852 124000 L) = Az O+ B Gn
R s el et S e e ¥ = G2, ()
! |
i 0 0 , 0 —100 | “her |
; 0 0 1 0
i
00 1 0lo o IS D R SRR SO
% Bi=ls-ol G = [0 1o 0] " 185671 26221 | —118567 26221
) 0 1 5214x 107 —136-83 : 0 -101-368
] PROC. IEE, Vol. 126, No. 5, MAY 1979 455
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h
0 0 1498 9515010 O
B, = |- C = I
1 ¢ 852 12400010 O
0 1

The corresponding matrix transfer function in eqn. 39 is

Y(s) = [Ny +Nys) (D) + Dys ‘*'1252].‘0(5)

456

fovere {r 3

(52

where

N, =

D, =

Dz=

|

1498

185-2

1856

0

95150 00
Nz =
124000 0 0

71

[ 11-8567

—2622-1 ]

|-5:214x 107 13683

—262-21 } {1 0
> II = l
101-368 0 1
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A geometric series approach to modelling discrete-time state
equations from continuous-time state equations

L. S. SHIEH{Y, R. E. YATES{, J. P. LEONARD}
and J. M. NAVARRO§

A geometric series approach for approximating the state transition matrix of a
continuous-time state equation by a diserete-time state transition matrix is developed
in this paper. A discrete-time state equarion is constructed for approximation of
the continuous-time state equation. 'The discrete-time state transition matrix is
modified to derive a generalized approximate munerical differentintor.  Also, it iy
shown that several commonly used conversion procedures are speeial cases of this
method.

1. Introduction

The accurate description of many practical systems often require high
order continuous-time state equations. As a result, the simulation, realiza-
tion and -lesign of these high order systems are difficult. However, if the
high order modelled continuous-time system can be represented by a discrete-
time state equation, the analysis and implementation can be more easily
accomplished by use of either a digital computer or a microprocessor. There
exist several methods for converting the continuous-time state equations to
the discrete-time state equations. Onc method involves analytical deter-
mination of the continuous-time state transition matrix of the system and
converting it to the discrete-time state transition matrix for obtaining an exact
discrete-time state equation. However, for a large system, this method is
impractical. Another popular method (Bosley 1977) involves determination
of an approximate transition matrix by truncating an infinite series that
represents the exact state transition matrix. The truncating error of this
approach depends heavily on the number of terms and the sampling period
used. Other methods have been based on Tustin model (Cadzow 1973),
Walsh function (Chen and Hsiao 1975) and Block pulse function (Shieh et al.
1978). These methods allow representation of a continuous-time state equa-
tion by an approximate discrete-time state equation derived from the trapezoid
rule. In this paper, it will be shown that the approximate model (Cadzow
1973, Chen and Hsiao 1975, Shieh ef al. 1978) so obtained is a special case of
the models proposed.

A geometric series (Sherwood and Taylor 1952) approach is presented in
this paper to approximate the discrete-time state transition matrix. Then
the approximate discrete-time state transition matrix is used to construct an
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1416 L. 8. Shieh et ai.

approximate discrete-time state equation. Also, the approximate discrete-
time state transition matrix is modified to derive generalized approximate
numerical differentiators (Jury 1964, Tou 1959).

2. Derivation of approximate discrete-time state equation
Consider the system represented by the continuous-time state equation

() = Az(t) + Bu(t) }

2(0)=c

(1)

where u(t) is the continuous-time input function.

For practical consideration (Jury 1964) we are interested in staircase
inputs, or
u(t)=ukT)

Au(k)

for k=0,1,2,..., and T=a sampling period and k7 <t < (k+1)7.
The solution of eqn. (1) is

z(k + 1) = O(T)a(k) + Lu(k) (2a)
or

k-1
(k) = O(T)(0) + ;go Gk~ j—1)Lu(j) (20)

where
2(kT) A 2(k)

2(kT+T)Lz(k+1)
OkT ~jT-T)AD(k-5-1)
®(T)* =the continuous-time state transition matrix

© k
=[exp (AT)]":[ jgo % (AT)’] (2¢)

A
=0 (F+1)!
=[exp (AT)—1]A-*B=[®(T)~-1]4-B 2d)

T
L= { exp (Aa)Bda=T (ATYB
0 i

where
a=T-2A

For ease in implementation and manipulation we are interested in repre-
senting a continuous-time state equation by a discrete-time state equation :

Zo*(k + 1) = Day*(k) + Bu(k)
} (3a)
z,*(0) =2(0)
where
2 ¥ ET) A xg* (k) 22 (kT)

2 * (kT + T) Bz ¥k + 1) x3(kT)
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Modelling of discrete-time stale equations 1417

The solution of eqn. (3 a) is

L=
2*(k) = D*z(0) + Zl D¥=i-1Bu(j) (3b)

=0
where

DE={D*(T)]* is the discrete-time state transition matrix
=[O = [exp (AT}

E=[D-I1)A"'B=[¢(T)-1)47'B (3d)

A natural question is how accurately can one approximate ®(7') by D? One

popular method is to approximate ®(7') in eqn. (2¢) by truncating the
infinite series; i.e.

1
¢(T)=1+AT+% (AT (AT)3+-413 (ATYo+...

(4a)

I+ AT (4b)

z1+AT+$(AT)2 (4¢)

g1+AT+212(AT)2+§l!(AT)3 (4 d)

;I+AT+-1—(AT)2+,L(AT)3+1(AT)4 4e)
2! 3! 4!

>

If a sufficiently large number of terms in eqn. (4a) is used, a satisfactory
approximation may be obtained. However, the approximation error depends
heavily on the number of terms and the sampling period used.

This paper introduces a geometric series which accurately approximates
the infinite series in eqn. (4 @). Now, rewriting eqn. (4 a)

O(T)y=oxp (47T)

i 1 1
=1+AT+2-!(AT)2+...+ﬁ(AT)’+(j+])! (AT)y+
I ita
+(j+2)! (AT)i+2+(j+3)! (ATY 3 +...
K j+n
e (ATY+n ... (5)

Keeping the first (j + 1) important terms in the infinite series of eqn. () and
approximating the rest of the terms in the equation by a geomctric series
with a weighting factor 1(j)(j!) for the term (A T)/*" (rather than 1/(j +n)!=
H(i+n)j+n~1)...(5+1)(4!) for the same term) in eqn. (5), we have an

(3¢)

o
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1418 L. 8. Shieh et al.

accurate approximate model ; i.c. the approximate model of ®,*(T) using
the proposed geometric series is

O XT)= I+.4T+ (AT)+ +—(AT)+——-—(~1T)"1

By
1
—— (4 TY+2 4 ATy+3 4
e 4D 3)( 7o A
gy AT Ga)

—’+AT+  (ATP 4. +—(AT)1[1+J AT
+-§(AT)2+3(AT)3+...+._£’7(AT)"+_“] (6 by

—I+AT+ (AT +—-(AT)' [1--AT] (6 c)

1 i-1
=|J-2 T Ty 3 .
( j 4 ) [1+ Z (j)(z') (A )] for T < j[|j 4] (6d)

e=]
AD; forj=1,2,3,... (6 ¢)

where | 4] is a matrix norm.

Note that the infinite series in the brackets of eqn. (6 b), or the term
(= (1{j)AT] in eqn. (6¢), is a geometric series. The subseript of D in
eqn. (6¢) indicates the value of the weighting factor j to be used in the
infinite series.

For example, when j =2, eqn. (5) can be approximated using the method
of eqn. (6) by

O(T) = 1+AT+~(AT)2 —(AT)" —(-lT)* —(AT)5 (7a)
=1+AT+2—!(AT)2+ :i }%(AT)" (7 b)
;1+AT+21!(AT)2+E,)—;%(AT)3 (22)(2')(117’)

+(_2W2T)(AT)5+"' (7 c)
-—[+AT4-§(AT)2+ 5 (AT + (AT)‘+ 3 (AT + (71d)
=1+A4AT+—~ ,(AT) + Z 5= I(AT)i (Te)
=1+ AT+ }(AT) [1+}AT+-—(AT) 55 (ATP+ } (70

J il A e i, o tpr =
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Modelling of discrete-time state equations 1419

=14+ AT +}(AT)RI ~}AT) 1g)
=(I-}ATY Y I +34T) for T <2/ A} (7h)
ap, (71)

The infinite series in the bracket of eqn. (7 f) is the geometric suries. Com-
paring equs. (4 ¢), (7 e) with (7 b) we note that the (irst three terms in all three
equations are identical, but the other terms differ by their weighting factors.
That is, zero in eqn. (4¢), and 1/(2/-1) in eqn. (7¢) and 1/j! in eqn. (7 b).
Both eqns. (7b) and (7e¢) are infinite series. Clearly eqn. (7¢) is more
accurate than that of eqn. (4 ¢).

In a like manner, when j =3, we have

O(T) =14 AT+ 2 (AT 43 (ATP+ T, = (ATY! (8a)
: . ji=1 0t

€0

g1+AT+§li (AT)2+-1- (AT) +

31 (86)

& w40

=I+AT+51-| (A’!')2+-:;7 (AT» [1+§AT+—;—2 (AT)‘-’+...] (8 ¢)

=1+AT’+%(AT)2+§7(AT)3(I—§AT)-1 (8 d)
=(1~-3AT) I+ 34T+ }(AT?] for T <3/| 4| (8e)
= G*(T) 85
4D, (89)

Comparing eqns. (4 d), (8 b) and (8 a) we note that the first four terms in all
three equations are identical, while the others differ by their weighting
factors : zero in eqn. (4 d); 1/(3-3)(3!) in & n. (8§ b); and 1/j! in eqn. (8 a).
Also, comparing eqns. (7 e), (8 b) and (8 a), we observe that eqn. (8 b) consists
of one more important term, (1/3!)(A7)%, than that of eqn. (7e) and the
approximation of (1/(3/-3)(3!)\}(AT) in eqn. (8} to {1/j!)(ATY in eqn. (8 a)
for j=4, 5, ... is better than that of (1/2/~1)(AT') in eqn. (7 ¢) to (1/!)(AT)
in eqn. (8 a) for j=4, 5, .... Therefore, the approximate model in eqn. (8 e)
is more accurate than the model in eqn. (74). The approximate models of
Dy, for j <1, 2, ..., can be obtained from eqn. (6 d) and are as follows :

Dx(I-AT)4D,
2(I-3ATYYI+3AT)A D,
(I - YA I +3AT + H AT} 2 D,
(- 3AT) I +3AT + AT+ 4(ATP1 A D4
(I -$AT) NI +3AT + H(AT)? + ATV + ths(AT )4 2 D?
... (9 )
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1420 L. S. Shiek et al.

D, in equ. (9a) is a commonly used model {Cadzow 1973, Chen and Hsiao
1975, Shich et al. 1978, Jury 1964, Tou 1959). In general, the larger i used
in eqn. (6) provides a more accurate model.

Substituting the approximate models D; in eqn. (8 a) into eqn. (3 d) yields
the input matrix E, or

E=(D;,~1)A-'B
~T(I-AT)'BAE,
~T(I--}AT)'BAE,
> T(I-}ATY Y] +}AT)BAE,
=TI -}AT) I +}AT +4(AT)R)BLE,
T = bATy I + AT +J(AT) + Ths(ATV B2 B,

= (9 b)
An alternate form of eqn. (3) is
x*(k + 1) = Ge*(k) + Hu(k) (10)
x*(0) =z(0)
The G can be obtained by modifying the exp (A7) as follows :
Gzexp (AT)=[exp (—3AT)]"1exp (3AT) (1

An approximation of exp (}AT) and exp (—3}AT) can be obtained from
eqn. (6) by replacing T in eqn. (6 d) by 1T and — 3T, respectively. Finaliy,
we have

Gafexp (—3AT)exp (34T) (12 a}

o 1 -1 IS (=14 -9) ,])“
=([I+2JAT] [ + 3 Eom A
x([I-——— AT]- [1+ s —Qli)—(AT)i]) (125)
2y i (2O

A@, forj=1,23,.. (12¢)
Ag 1Py forj=1,2,8,.. (12d)
where
1 S (=1 —i) ]
={]-— AT || ! —— " (4T} 1
4 [ % ][ t A (2%‘)(@!) “ (12
1 i-
P,= — 4Ty 1
‘ [“% AT][ + T, ! )] a2
The approximate system matrices G; for j=1,..., 4 are
Gy =[I-}AT N+ AT)=Q,* P, (13 a)
Go=[1-3AT + f(ATP NI+ 3AT + H(ATP?)=Q,* P, (13 b)
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Gy=[I - 34T +-5(AT) - tha(4T)]™
X1+ AT +5(ATP +Tm(ATP] =€y Py (13¢)
Go=[I - 3AT +5(AT)* - s3:(AT) + isa(AT)]
XL+ AT +55(AT) + (AT + sa(A D))= Py (134)

The approximate input matrices H; for j=1, ..., 4 are
H,=[G;-114"'B (14 a)
or
Hy=T[I-}AT}'B (14 b)
Hy=T[1-}AT + 4&(AT)*]'B (14 ¢)
Hy=T[1-34AT +5(AT)? - t5x(A TP ++5(AT)?)B (14 d)

Hy=TU~ AT +&(4T) - xiz(ATP + rdsu(4 T4
X [I +-;37_;(AT)2]B (14 ¢)

Noting that the coefficients of @; and P; in eqn. (13) are identical except for

signs, we will derive a general equation for an approximate numerical
differentiator.

3. Approximate numerical differentiator

When «(t) in eqn. (1) is a given input function in the analytical form or in
discrete form, the input function wu(f) is often approximated by a trapezoid

rule
w2 el a5)
where
u*(k) 2 u*(kT)
The approximate discrete-time state equation is
a*(k 4 1) = Ge*(k) + Hu*(k) (16 a)
=Q;! Pa*(k) + Hu*(k) (16 b) .

where ¢ and H are shown in eqns. (12) and (14 «), respectively. For example,
if G=G, in eqn. (13a) and H=H, in eqn. (14 b) are used, we have

oMb+ 1) = (= JATY NI + A TYe*(k) + T - JAT)Burk)  (17) ;

Equation (17) can be derived from eqn. (1) by using the Walsh function and
the Block-pulse function approaches (Chen and Hsiao 1975, Shieh et al. 1978).
Therefore, it is seen that the approximate discrete-time model obtained by the
- above approaches is a specit.] case of the models presented in this paper. !
) Since the coefficients of @; and P; in eqn. (13) are identical except for signs, !
¥ we can derive a generalized approximate numerical differentiator as follows. i
e Taking the z transform of eqn. (1) when u(f)=continuous input functions
yields
‘ 2[a(t)] = AZ[x(1)] + BZ{u(t)] (18a)
i« SE2
’ i A b T - P q
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1422 L. 8. Shieh et al.
or
Z{z(kT)) = AZ{x(ET)] + BZ{u(kT)) (18 4)
2[2(t)) = Z{#(kT)]
=2z2(2) ~ 22(0) = Ax(z) + Bu(z) (18 ¢)
Also, taking the z transform of eqn. (16) for j=1 we have

ZxXk+ 1)) =@yt PiZ[x*(k)]+ H Z[u (k)]
or

22*(2) —22*(0) = (I = }AT) (I + }AT)x*(2)
+T(I-3AT)B. (“ Do asd)

Rearranging eqn. (18 d) yields
2 (z-1)

767D a*(z )—T( +1‘(I LAT)2(0) = Ax*(z) + Bu(z) (19)
Comparing eqns. (18 ¢) and (19) we have
o 2 =1 2

Bl 23 oy ) 7 ey U HATRO) (20)

Equation (20) is the approximate numerical differentiator which is often used
to determine the inverse Laplace transform of a continuous-time state equa-
tion (Jury 1964, Tou 1959). The general representation of the approximate

numerical differentiator, based on the approximate models presented in this
paper, is

4
TS P -rip,+ Q) 3 S o)
_AT(Pj—Qj)_ Qj 7 (z+1)x(0)
—-24(P;- Q) ¢ (z: 5 z(0)  (21)

where P; and @; are shown in eqn. (12).

For example, if G=G,=0Q,"* P, and H=H, in eqns. (13) and (14) are
used, we have

B2+ ATV 3 o o4

~-[{-3AT + fg(AT)Z] Tt 1) —— 2(0) (22)
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4. Illustrative example
Consider an unstable continuous state equation :

Z(t) = Az(t) + Bu(t)
2(0) =1, (23)

12 2 0 1 [(t)
A= , B= , z0)=| |, =)=
3 —4 11 1 ,(t)
and u(!) is the unit-step functions.
The discrete responses, a(kT) at k=0, 1, ..., 4 and
T=}<2/(|3]+|-4]) =%,

using the approximate numerical differentiators for j=1 and 2 in eqn. (21)
are required.
When j=1 in eqn. (12) we have

Q1=I“%AT
P1=I+J_;AT}

The corresponding approximate numerical differentiator can be obtained
from eqns. (21) and (24)

where

(24)

2% AP QP+ Gy) T 24
~24(Py= @)™ @ 5 =)
_2(=1) 2 2
_-T--(-z+l)x*(z)-7(l—§AT) ——-(z+1)x(0) (25)

Taking the z transform of eqn. (23) and substituting eqn. (25) into it we
have

za*(z) —22(0) = (I = 3AT) I + 3 A T)x*(2)

+T(I-3AT)B (-"—;-2 ulz)  (26)

The corresponding discrete state equation is
a*(k+1)=(I -3AT) M +3AT)x*k) + T(I - L AT)"1 Bu*(k)

= Gya*(k) + Hyu*(k) 27
where

1-461538 0-410256 0-666666 0-051282
Gl = ﬂ/nd Hl =

0-615384 0-436897 0-333333 0-179487
and

w(k 4 1) +u(k)

u*(k)= 5

s R s Lt S SO S - - e e - -




1424 L. S. Shieh et al.

Equation (27) is a commonly used model (Shieh et al. 1978, Jury 1964, Tou
1959). When j=2 in eqn. (12) we have

Qo=1- AT + (AT)?

(28)
P,=1+1dT + J(AT)?
The approximate numerical differentiator in eqn. (21) becomes
e o2 =1
B =+ (AT g5 26
2 =z

—{I- ; 2] 2%

(=347 + §(AT)]. T(z+1)“’(0) (29)

The corresponding discrete state equation is
a¥e+ ) =[I= AT + (AT M + AT + 4(AT)?Ja* (k)
+ T ~3AT + 4(AT) ) Bu*(k)
= Gpa*(k) + Hu*(k) (30)

where
1-456106 0-393909 0:653061 0-051830
Gy= and H,=
0-590865 0-471331 0-326531 0-171039
and
2
The exact solution of eqn. (23) is
,(t) =3} exp (2) —f5 exp (- 5t)— ¢ (3l a)
%y(t) =4 exp (2¢) + 3% exp (—5¢) - ¢ (31 )

The responses at the sampling instants k=0, 1,..., 4 of the exact solution and
the two approximates are shown in Table 1 {state x,(£7")] and Table 2 [state
2,(kT)]. From Tables 1 and 2 we note that better results are obtained with
the improved model.

Exact solution Approximate solution !
k 7
Eqn. (21 a) Eqn. (27) Eqgn. (30) ;
{
0 0-00 1 1 1 !
1 0-25 2-544 2:589 2:556 i
2 0-50 5-006 5145 5040 :
3 075 9-042 9-380 9123
4 1-00 15-689 16-436 15-867

Table 1. Comparison of state z, (k7).

v . A A M N g Sy g




Modelling of discrete-time state equations 1425

Exact solution Approximate solution

k T
Eqn. (31 b) Eqn. (27) Eqn. (30)

0 0-00 1 1 1
1 0-25 1-558 1:564 1:560
2 0-50 2:728 2-788 2:742
3 0-75 4728 4:894 4768
4 1.00 8:046 8-419 8135

Table 2. Comparison of state z,(kT’).

5. Conclusion

A geometric series approach has been presented for determination of a set
of approximate discrete-time state equations from the continuous-time state
equations. The approximate discrete-time models have been modified so
that a generalized approximate numerical differentiator can be derived. It
has also been shown that several commonly used conversion procedures are
special cases of the method given in this paper.

We have also shown that the proposed geometric series approach approxi-
mates the exponential matrix infinite series in eqn. (5) by taking a finite
number of dominant terms and an infinite number of the other terms of the
matrix series expansion rather than taking a finite number of dominant
terms only. However, the method requires a matrix inversion and the
approximate models are valid only in the region where the geometric series is
convergent, that is the sampling period 7T for the models in eqn. (6) is limited
to T<j/||Afi. These are the limitations of the proposed approach.

Despite these limitations, the proposed models can be effectively applied
to perform the numerical integrations of stiff functions because the most
commonly used model (i.e. G, in eqn. (13 @) and H, in eqn. (14 b) (Cadzow
1978, Chen and Hsiao 1975, Shieh 1978), which is the lowest order model
proposed in this paper, has been successfully used for evaluating the responses
of stiff functions (Chen and Hsiao 1975). Furthermore, a higher order model
that uses a larger weighting factor j makes possible the use of a larger
sampling period 7. This observation can be verified from the fact that 7T
is proportional to j (i.e. T <j/| 4|l in eqn. (6)). This result will greatly increase
the flexibility in determining the common sampling period among various sub-
systems of a large sampled-data control system.
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A method for modelling transfer functions using dominant
frequency-response data and its applications

L. S. SHIEHY, M. DATTA-BARUAfY, and R. E. YATES}

This paper presents a fundamental method for modelling transfer functions using the
basic performance specifications and frequency-response data at the dominant
frequencies. A set of non-linear equations is constructed from the definitions of the
basic performance specifications, the dominant frequency-response data and the
unknown coefficients of a transfer function. A Newton~Raphson multidimensional
method is applied to solve the non-linear equations. Four methods are given to
construct approximate representations of the desired transfer functions for the
estimation of good starting values to ensure rapid convergence of the numerical
method. The applications of the proposed method are: (1) developing a standard
model andfor a transfer function of a filter or a compensator using the specified
domirant frequency-response data ; (2) identifying the transfer function of a system
from available experimental frequency.response data; and (3) reducing high-order
transfer functions to low-order models using dominant frequency-response data.

1. Introduction

The nature of the transient response of a system is often characterized by a
set of performance specifications in the time domain such as the settling time
and the rising time. In the frequency domain, another set of performance
specifications (Gibson and Rekasius 1961) is used to represent the charac-
teristics of the system performance. The bandwidth and the phase margin
are typical examples of the frequency domain specifications. In designing
compensators and filters, and in predicting the nature of time response of a
system, practicing engineers are often interested in the dominant poles. These
can be converted to a damping ratio and a natural angular frequency specified
in the complex plane. These specifications are often called the complex-domain
specifications. The engineer is also interested in various error constants (for
example, the velocity-error constant), which represent the characteristics of
system performance in both time and frequency domains (Truxal 1955). The
frequency-response data at the frequencies of the frequency-domain specifica-
tion are considered as the dominant frequency-response data in this paper
because these data characterize the nature of the system responses. For
example, the phase margin (¢,,) of a system at the gain-crossover frequency
(w,) is often used as a measure of additional phase lag required to bring the
system to the verge of instability. Also, if the phase angle of the open-loop
system at the w, is near — 180°, then the response of the closed-loop system .will
be oscillatory.
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1098 L. 8. Shieh et al.

In the design of a control system in the frequency domain, the specifications
dissussud abuve vt uie dominant frequency-response data are usually considerea
as design goals. Various frequency-domain or complex-domain approaches
(Nyquist 1932, Evans 1953, Bode 1954, Thaler 1973) have been developed and
widely applied in industry for compensator designs to achieve desired perfor-
mance. The most popular design methods are those based on the Nyquist
(1932) plot, the Bode (1954) design, and the root-locus method (Evans 1953,
Thaler 1973). To improve the efficiency of the design methods, it is advan-
tageous to have the design goals expressed as mathematical functions or
transfer functions (defined as the standard models). Once standard models
have been ascertained, the corresponding time-domain specifications and
temporal responses can be determined from digital or analogue simulations of
the standard models. Also, the frequency-response data of the desired com-
pensator can be determined from Nyquist plots or Bode diagrams by comparing
the frequency-response curves of the original and the desired response models.
The required filters and compensators (Del Toro and Parker 1960, Thaler 1973)
can then be easily determined.

Empirical rules or rules of the thumb that link the specifications in the
time, frequency, and complex domains have been developed by Truxal (1955),
Del Toro and Parker (1960), Axelby (1960), and Seshadri (1969) ¢ al. From
these results, it is observed that most time-domain specifications and complex-
domain specifications can be approximately converted to frequency-domain
specifications. Some of these frequency-domain specifications are phase
margin (¢,,), maximum value of the closed-loop frequency response (i),
gain-crossover frequency (w,), peak value frequency (w,), the bandwidth (w,),
and velocity-error constant (K,). Other important frequency-response data
are : (1) the real part of the open-loop transfer function G(jw) at the phase-
crossover frequency (w,) which has been used to define the gain margin (G ) ;
(2) the real part and imaginary part of the closed-loop function (7'(s)) and the
open-loop function G(s) at s=jw 2 jwy=j0. The data at w =0 often indicate
the final value and the type of the system. Ina type 1 system, I,,[G(j0)] has
an infinite value, while Re [G(j0)] has a finite value from which an asymptotic
line (Del Toro and Parker 1960) can be drawn in a Nyquist plot ; (3) the corner
frequencies in the Bode plot of G(jw) in the regions of w=w, where
20 log |G(jwey)|= +15dB, and w=w, where 20log |G(jwe,)|=—15dB.
Chen (1957) has shown empirically that the open-loop poles and zeros of a
system can be approximated by retaining the Bode plot in the regions of the
+ 15 dB boundaries. Some dominant frequency-response data are indicated
in Fig. 1.

Through use of the above dominant frequency-response data, a basic method
is proposed in this paper for modelling various transfer functions. First, a set of
simultaneous non-linear algebraic equations, based on basic definitions of the
dominant frequency-response data and the unknown coefficients of a desired
transfer function, is constructed. Then the Newton-Raphson method
(Carnahan et al. 1969, IBM 1977) is used to solve the non-linear equations.
However, as is well known, the Newton-Raphson method will often only
converge for a small range of starting values; therefore, four methods are
developed in this paper for estimating good starting values so that the numerical
method (IBM 1977) will converge rapidly to the desired solution.
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Figure 1. Nyquist plot of an open-loop system G(s).

The applications of this method can be classified as follows.

(1) When the design goals are prcdescribed by the dominant frequency-
response data, which may be obtained from the frequency-doinain
specifications (Gibson and Rekasius 1961) or equivalent ones (Truxal
1955, Del Toro and Parker 1960, Axelby 1960, Seshadzi e al. 1969),
and a standard transfer function is desired, this is a design problem.
Chen and Shieh (1970) and Wakeland (1976) have proposed analytical
methods for the compensator fitting. However, their methods are
limited to filters and compensators in which the unknown ceefficients

can be solved by a quadratic equation. The method of this paper
overcomes this difficulty.

(2) The transfer function obtained in this paper is the function of the original
system. When dominant frequency-response data can be obtained
from experimental data of a practical system and the mathematical
function of the system is desired, this is an identification problem.

(3) When the dominant frequency-response data are obtained from a given
high-order transfer function and various low-order approximate models
are required, this is the model reduction problem. The reduced models

3 obtained in this paper have the same selected dominant frequency-
e response data as the original system. Thus, the design processes in the
o frequency domain can be greatly simplified.
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2. Modelling non-linear equations

Given a transfer furction 7'(s) of a unity ratio feedback closed-loop system
bo+bis+hat+ . +hom nle)  Of)

T(8)=ao+(118+a2«92+ +an8"—-17(5— 1+6(s)

(1a)

where n(s) and d(s) are the numerator and denominator polynomials, res-
pectively, and a; and b, are constants. If the system is a type ! system, the
open-loop transfer function G(s) is

G(s)—K(l +ey8+Co8%+ ... +0,87)  p(s)
TSl +dis+des+ ... +d87) g(s)
where p(s) and ¢(s) are the numerator and denominator polynomials. K, {, ¢,

and d; are ccnstants. K is a velocity-error constant (K.) if I=1.
The equations for dominant frequency-response data are :

(10)

(1) System type is determined from

G(jw,) =Re [G(jwo)] + JI [ F(jwy)] at wy=0 (2a)
or

G(j0)=Re [G(;j0)]

by for a type 0 system (2b)
T(j0)=-"
0
Re [6(j0)] = K (e, ~d;)
Tal61j0)] =0 for a type 1 system (2e)
. by
T(j0)= =1
(2) Phase margin gives
$n=180°+ LG(jw,) (3a)
where
|G(jeoc)| =1 (3)
w, is the gain crossover-frequency.
(3) Gain margin yields
1
» | Re 16w, )] e
where
L G(jw,)= —180° (4 b)

w, is the phase crossover frequency.

(4) M,=|T( jwp).l =maximum value of the closed-loop frequency
response (5 4a)
where
d|T(jw)| _
T oy " (59)

W=y

w, is the peak value frequency.
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(s o) =7 (6
where w,, is the bandwidth.
(6) |Gljwea)| =56 (7a)
or
20 log |G(jw)|= +15dB at w=w,, (7b)
and
|G(jweg)| =018 (7¢)
or
20 log |G(jw)|=—16dB at w=w,, (74d)

A set of non-linear equations can be formulated from the basic definitions
of the assigned dominant frequency-response data in (2)-(7). The procedures
can be illustrated by using the following example. The dominant frequency-

response data in (2¢), (3), and (4) are shown in Fig. 1, which are marked as
A, B, and C and given as follows :

(1) Re [((jwo)]= —2'1 and I [G(jwy)]=00 abtwy=0rad/s

or T(jwe)=1 at wy=0rad/s (8a)
(2) Re [G(jw,)]l= —1:6 at w,=1-9rad/s (85)
3 L G(jw,)=—180° at w,=1-9radfs (8¢)
(4) b =180°+ L G(jwr) =567 ab w,=32 rad/s (8d)
(5) |G(jwe)|=1 at w,=3-2rad/s (8¢)

Five conditions are given in (8). Therefore, various transfer functions with

five unknown coefficients can be constructed. Assume that the desired
transfer function 7'y(s) is

b+ b;8 +bys?
@y + @8+ Ay8% + ay8°

Tq(s)= (9a)

From the conditions in (8 @), it may be observed that the system is a type 1

system. Therefore b,=a, Also, to simplify the equation we let a;=1.
Thus, we have

_ Gy+ba+b,8?

T"(s)_ao+als a8t + 88 (96)

The corresponding open-loop transfer function Gy(s) is
K(1 4¢,8+4c,8%)
o AT T ) 10

Galo) 8(14-d,8+dys%) (10)

where
K~a1‘b1, c,-—ao, cz-_“o’ dl_al—bx and bz—al_'bl

. rmate
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Following the basic definitions and the assigned data in (8) yields a set of
non-linear equations :

(1) The assignment in (8 @), or Re [G(j0)]= — 21, gives
filags @y, ay, by, by) =ab; ~b 2 —aya, +agh, +2-1(a; = b;)* = (it a)
(2) The specification in eqn. (8 b), or Re [G(jw,)]= ~1'5 at w,=1-9, yields

falay, @y, ag, by, by) = (@ —by)(@y — 3:61b,) — b, (@, — by ~ 3-61)
—1-5[3-61(ay—b,)® + (¢, ~ b, — 3-61)*] =0 (114)

(3) The condition in (8 ¢), or L G(jw,)= —180° at w,=1-9, gives

13(Ggs @y, @y, by, by) =3-61b,(ay —by)
+(ty—3-61b,)(a, —b,—3-61)=0  (Il¢)

(4) The specification in (8 d), or ¢, =57° at w,=3-2, yields

fa@g, @y, @y, by, by) =10-24by(a, ~b,) + (@ — 10-24b,)(a; — by — 10-24)
—0:319 402 24[{a, — by)(a, — 10-24b,)
—~by(a, —b, ~10-24)]=0 (11d)

(5) The assignment in (8 e), or |G(jw,)| =1 at w,=3-2, gives

f5(@gr @y, @y by, by) = (@ — 10-24b,)? + 10-24b,2
— 104-8576(a, — b,)2 ~ 10-24(a, ~b, — 10-242 =0  (1le)

Equation (11) is a set of high-order simultaneous non-linear algebraic equations
which are very difficult to solve. Considering the availability of the computer
program package (IBM 1977) (called the Z systems) in many digital computers
for the solution of non-linear equations, the Newton-Raphson multidimensional
method is suggested for solving these equations. However, it is well known
that the Newton-Raphson method will only converge for a small range of
starting values or the initial guesses. A set of good initial guesses must be
determined for rapid convergence of the numerical method. Four methods
are proposed for these good initial guesses.

3. The initial guess

It is well known that high-order non-linear equations have many solutions.
The solution and the speed of convergence of a numerical method depend
heavily on the initial guesses or the starting values. In this paper, the Newton-
Raphson method is suggested for solving the non-linear equations. The

following methods, depending on the applications of interest, are proposed for
good initial guesses.

3.1. Initial guess by a synthesis method

Suppose only the dominant frequency-response data in (8) are available
and an approximate transfer function T,*(s) of the desired Ty(s) in (9b) is
required. The T,*(s) is

ag* +by* 54+b,* ?

T,*(s)=
a7le) ag* +a,* s+a* 82+ ¢°

(12)
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where a;* and h;* are the starting values of the numerical method. The steps
to obtain (12) are summarized as follows :

Step 1. Determine a second-order approximate transfer function 7',*(s)
using ¢,,=57° and w,=3-2radfs in (8d) and (8¢). This T,* (s) is

2
Wy

T*(s) = —mpi—
2(6) 84 28w, 8 + wy?

(13 a)
where £=the drmping ratio and w,=the naturai angular frequency. Two
non-linear equations, which are constructed from the basic definitions of w,
and ¢,,, can be obtained. 'These non-linear equations can be converted into a
single variable (¢ or w,) high-order equation from which the roots cen be
determined. Using this approach, we have £ =0-0498 and w,=3:2079. The
poles that can be considered as the dominant poles of a system can be deter-
mined from the characteristic equation in (13 @). The dominant poles are

8y,9= — bwy £ jw, /(1 - £2) = —0-1598 + j3-2039 (13 b)
Thus, (13 ¢) becomes

10-2909

)= 13
P8 = 31045 £ 10-2900 (13¢)

Step 2. Construct a third-order approximate transfer function 7';*(s) by

inserting in it a pole (s= —p) and modifying the term in the numerator of
T',*(s) so that the final value of the T'3*(s) equals to unity, or

Puw,? 10-2509 P

*(o) = =
Ta"te) (8% + 2fw, s +wp?)(s+ P) " (s2+0-3194s+ 10-2909)(s + P)

(13 d)

The unknown constant P can be casily determined by using the condition in
(8b), or Re [G(jw,)}= —1'5 where w,=1-9. Thus, we have

P =4-5401 (13 )

Step 3. Establish another third-order approximate function 73**(s) by
inserting a zero in (13 4) with an unknown constant b,*.

b* s+ Pw,? b;* s +46-7216
1 n 1 #

1 kK (5) = = 13
T5™s) (%4 22w +wy?) s+ P)  (st+0-3194s + 10-2909)(s + 4-5401) 3h

The b,* can be determined by using the condition in (2¢) and (8a), or
Re [G(j0)]= —2:1. The b,* is

by* = 32:4038
Hence, we have
46:7216 + 32-4038s

*k(g) 13 4
‘ Ty**(s) 467216 4 1174108 + 4-85958% + 83 ( )

& o

Equation (13 %) can be considered as an approximate function of (12) by
assuming b,*=0. The initial guesses in (12) are ay* =46-7216, a,* =11-7410,
a,*=4-8595, b*=32-4038, and b,*=0. Using these constants as starting

TR SR

PP

-~

s e o gt B

- e

P A

- SR n e P

it sk

Kopitisevmd.

— -




1104 L. S Shieh et al.

values for the numerical method yields the desired coefficients in (9b), or
a,= 6378 070, a, = 10-462 220, a, = 1-259 008, b, = 20-556 61, and b, =0-243 466.
The desired transfer func!ion is

e ————— e

6:378 070 + 20-556 615 + 0-243 166s?

T6) = 5378 070+ 10-262 2205 + 1250 008 £ 50

(14)

The Newton-Raphson method (IBM 1977) converges at the 9th iteration with
the error tolerance of 10~¢. Equation (14) has the exact frequency-response
data specified in (8).

3.2. Initial guess by complex-curve fitting and continued fraction methods

The problem of finding unknown coefficients of a transfer function as a
ratio of two frequency-dependent polyromials has been investigated by Levy
(1959). His method minimizes the sum of squares of the errors at arbitrary
experimental points. We present a simple method to determine the approxi-
mate coefficients of a transfer function using the real parts and imaginary parts
of available limited frequency-response data. A low-order model is often
determined because of data limitation. The low-order model is then expanded
into a continued fraction of the Cauer svcond form to obtain a set of dorninant
quotients. Then some non-dominant quotients are inserted into the continued
fraction to obtain an amplified-order model (Huang and Shieh 1976) which is
the desired approximate transfer function for the use of the initial guess.

Consider the transfer function

bo+bys+bys®+ ... +b,s™

T*3) =
) l+a,5+a8%+ ... +a,8"

(15 a)

where a; and b; are unknown coefficients to be determiued. Substituting
8= juw, into (15 a) we have

(bo - bzwkz + b4wk4 - bswk" + .. .)

+J (b, — b+ bg® — by T+ )
(l - azwkz 'l‘ a4wk4 - (Lemka.-{- .o .)

+ j (@0 — g ® + Ay — ayeo "+ L)

T*(joy)=

= R(wg) + j Uwp) = By + j1,, (16 b)

when R and I, are the given real and imeginary parts of the 7'*(s) at the
available frequencies w;. Maltiplying both sides of (15b6) by the common
denominator and separating the real and imaginary parts, and also equating the
respective real and imaginary parts, yiclds

bo - bzwkz + b,,w,;‘ - bswk“ + ... + alfkwk + aszwkz
-asl,‘wka—a4Rkwk‘+ "'=Rk (16 G)
and

blwk b bawka + b5wk5 b b7wk7 4+ ... - alewk + azlkwkz
+a3Rkwk3—a4lkw,_.‘+ e =1k‘ (15 d)
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In matrix form, (15 ¢) becomes

where 2 =n+m[2+1 if m is even and 2 =n+ (m +1)/2 if m is odd.

Substituting @; obtained in (15e) into (15d), we have another matrix

equation to solve for b, 1=1, 3,5, ... .

3 5 7
w, w; —w, b,
3 5 .7
Wy  —wy Wy Wy by
—.3 5 T
w3 wy Wy Wy bs
w, =-w? wb -] by,

((apl 0, + @, Byw,?) = (@p] 0y + @y Bywwi®) + ...)
(o] gwq? + @y Ryw,) — (0] yp? + @ Rowp®) + ...)

(aplyw, + 0, Byjw,?) = (@] yw 2+ Ay Ryw 3) + ...)

where w, %=1, ay=1; k=m and y=(m+1)/2 if m=o0dd; k=m-1
m[2 if m=even. In this example, the available data are

wi=wy=0, Ry=T(j0)=1, I,;=0
wy=w,=19, R,=Re [ﬁ%] =2.9684,

I,=I, [é‘-&“-’%} ~0-0252
wy=w,=32, Ry=Re [%]wmm,

I,=1, L%“}’%&]: ~10-4316

1 "‘wlz wl‘ bad wle Ilwl le12 — 11(013 -_ lel‘ . bo 7
1 —w? wyt —wf Lw, Ryuws® —Iw® —Ruwyt . || b,
: 3 3 4
1 —wy? wyd —awyt lIyw, awg® = Iyws® = Rawgt . b,
1
@
|1 ~w,? 0! -l Lo, Rw?® -lw?® -RBw?.]| a,]

1105
"R,
‘RZ
Ry
| (15e)
| R,

(15 1)

and y=

(1)

J

Since only three values are available, the approximate function 7',*(s) is

by+by8

%* . A M
Ty*e) 1 44,8+ a,s?

(17 a)-

Substituting the data at w,, and w,, and w, in (16) into (16 e) yields by=1,
a,==0-0388, and @,=0-1839. Then substituting @, and the data at w; into

R A e TS B P A kW B 7
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(15 f) gives by =2-8907. Because the desired approximate function in (12) is a
third-order function, T',*(s) should be amplified by using the continued fraction
method (Huang and Shieh 1976) as follows.

T,*(s) is first expanded into a continued fraction of the Cauer second form
to obtain a set of dominant quotients : &y =1, hy= —0-3507, hy= — 0-9651, and
hy;=16-0725. Then the order of T,*(s) is amplified to the third order by
inserting non-dominant quotients h;=100 and kg=0-1, or

Tk(s) = 1 + 289073 B | . 1
2 ) = 003885 + 0- 183052 PRI P
hy+ hy+
s 8
hy + ho+
8 3
h3+— h3+
h, 8
by
8
h _—
5+h3
)= 54+3885 + 162:6914s + 15-8219s2 A7)
T YT 543885 + 7+5830s + 10-21465% 4 82

Huang and Shieh (1976) have shown that the amplified-order model is a
good approximation of the original low-order model if the inserted positive
quotients k,> 1 and h;,, < I where 7 is an odd number. Using the coefficients
in (17 b) as initial guesses we have the desired coefficients in (14) at the 15th
iteration (IBM 1977) with the error tclerance of 10-6.

If much experimental frequency-response data, including the dominant
data of a system, is available and the transfer function of the original system is
required, this is an identification problem. In this case, a set of non-linear
equations, based on the basic definitions of the dominant data, can be con-
structed and can be solved by the Newton~Raphson method. The initial guess
can be determined by using the dominant data and others in (15).  Since many
data are available, a high-order approximate transfer function can be deter-
mined. Therefore, the use of the continued fraction method (Huang and
Shieh 1976) is not necessary.

When a high-order transfer function of a system is given and various
reduced-order transfer functions are required, this is a model reduction problem.
In the frequency domain, numerous methods (Chen and Shiech 1969, Shieh
and Goldman 1974, Hutton and Friedland 1975, Sharnash 1975, Lal and Van
Valkenburg 1976) have been proposed for model reduction. The continued
fraction methods (Chen and Shieh 1969, Shieh and Goldman 1974), the Routh
approximation method (Hutton and Friedland 1975), the time-moment
matching method (Shamash 1975), and the frequency-moment matching
method (Lal and Van Valkenburg 1976) are the typical examples. These
methods have been critically compared by Decoster and Cauwenberghe (1976).
The new method presented in this paper can be used to obtain the reduced-
order models which have the exact dominant frequency-response data as those

of the original one.  This method can be called a dominant frequency-response
data matching method. The procedure is as follows.
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Step t.  Plot the frequency-response curves to determine the data at the
dominant frequencies wg, w,, W, ey, Weas Wy, and wy,.

Step 2. Formulate a low-order model with unknown coefficients, and

write a set of non-linear equations based on the basic definitions of the data
at dominant frequencies.

Step 3. Determine a set of good starting values by using the synthesis
method or the complex curve fitting method, and solve the non-linear equation
by using the Newton-Raphson method. Thus, reduced-order models can be
determined. Comparing the reduced-order models obtained from the proposed
method with those of the existing methods (Chen and Shieh 1969, Shieh and
Goldman 1974, Hutton and Friedman 1975, Shamash 1975, Lal and Van
Valkenburg 1976), we observe that the model obtained in this paper is superior
to existing methods in that the reduced model has the exact dominant frequency

response as the original. As a result, an engineer can design a control system
more efficiently in the frequency domain.

Since the original high-order transfer function is available, an existing
method (Chen and Shieh 1969) can be applied and modified to obtain an
approximate transfer function for the determination of the initial guess.

Two
additional methods for initial guess determination are as follows.

(3) Initial guess by a continued fraction method (Chen and Shieh 1969).

Consider the high-order transfer function in (1 ). The function can be
expanded into a continued fraction and various reduced models obtained by
discavding some of the quotients, or

by+b8+ ... +b,8™ n(s)

T(8)=a0+als+ . agst d(s) (18a)
_ 1
by — (18 b)
h2+'.'.‘
1 hy
S Tt (18¢)
hl+h—2
1 - h2h3h4+(h2+h4)8 (18 d)
- b+ s Rohohahy+ (hihy + hihy + hofig)s + 8%
o ——
byt —
hy+—
3 h4

114

Using the coefficients of the approximate model in (18) as the initial guess for
the numerical method, we have the desired reduced model. However, the
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approximate model in (18) may be unstable even if the original system is stable.
The continued fraction method (Chen and Shieh 1969) can be mo< fied by the
following new method. !

(4) Initial guess by a mixed method of the continued fraction approach and *
Gustafson’s (1965) method.

Assume the reduced model of the original system in (18 a) is l

bo* +b,* s+ ... +bn—l*sp—l._n*(8) a,=1 (19 a)

T, *s)= = ,
p'(0) Gp* +a* s+ ... +a,*s?  d¥s) T

— -

A matrix equation (Chen and Shieh 1970) can be constructed from the dominant
quotients Ay, ¢=1, 2, ..., p, obtained in (18 ) and the unknown coefficients a;*
and b;* in (19 a) as

(b]=[H][a] (195)
where
[@]T={ay*, a)*, ..., a,,*] (19¢)
(BT =[bo*, by*, ..., by *] (194d)
[H]={H,]'[H,] (19¢)

where T designutes transpose,

[k, 0 O 001 00 . 0 0 T 1 0 0 . 00 1
1 A, O 00 0% 0 . 0 0 01 0 . 00
= @ Lk - 000 1Tk . 00 0 0 1 0 0
2710 0 1 00 0 0 1 0 0 0 0 0 00
| 0 0 0 I 2, 1L 0 0 0 | | 0 0 O 0 hy |
1 0 0 0 071 0 0 0 0 [1 0 0 0 0]
0 hy O 0 0 01 0 0 o 010 0 0
(H,]= 0 1 &y 0 0 0 0 A, 0 0 0 0 1 00
L I 1 00 0 01 0 0 0 0 0 0 0
| 00 0 . 1 A gL 00 0 . 1 Ay, | | 0 0 0O 0 Ay | :
The a;* in (19 ¢) can be determined from the coefficients of the polynomial that )
is obtained from the product of the dominant eigenvalues of the d(s) in (18 ). i
When the dominant poles of d(s) cannot be clearly identified or the poles of

d(s) are not available, the paper and pencil method suggested by Gustafson
(1965) can be applied to construct the d*(s) or to determine a;* in (19 ¢). Then, :
substituting the a;* into (19 b) yields the required n*(s) or b,* in (19 a). The )
steps determine the d*(s) are shown as follows.

AT

Pt cashtingd f il




Pintashade il o

“ws oo

rN

Method for modelling transfer functions 1109

Step 1. Construct a Routh (1877) array using the coefficients a; of d(s)
and the Routh algorithm. The a, are expressed by double-subscripted notation
a; ; for obtaining the general algorithm. The Routh array is

L a a
11 =0y =0y g ala, g... ap )
_0n
L=
a
21
r A
o1 =y A La, , g3 =0Cp_p -
_%n
yp =L
Ay

Y
02— 8y AR, yay Gy
=%
@y

A
Ay L gg~ Yollay By L @gy—yyllyy

L (20 @)
an—2,1 an-z,z
y — Cp—2,1
n—g="———
Apa,1 i
/ i n—1,1 Op_1,0=0q
n—1,1 :
Ya-1= i
Qy1 \ ;
i On,1
@, LA
Y= a
n+h.t N
Cni1,1=% J
In general a; ;=@;_p 44y — Yio@iy,5415 2=1,2,..., =8, 4, ...
Yi=041/041,1 (20 )

Step 2. Construct various approximate low-order polynomials d;*(s) from
the last row and the next to last row, and so on in the Routh array.
For example, the ith order approximate equations are

d*(8) =@y, 18+ pyy,1=8,,18+8=0 wheni=1 (20 ¢)

A*(8)=@p 1,188+ 0y 18+ 0y 2 =0y 182 +a, 18 +2,=0 wheni=2 (20d)
and
d3*(8) =p_g,18° + Uy, 18° + g 98+ 8.
=@, 0183+, 1824+, 5.8+a,=0 wheni=3 (20 €)

Since the original system is asymptotically stable, all y, are positive values.
The approximate polynomials d*(s) are always the Hurwitz polynomials.
Moreover, Gustafson (1965) has shown that relationships exist between the
coefficients of d;*(s) and the time-domain moments. The normalized poly-
nomials can be determined by dividing each coefficient in d;*(s) by the coeffi-
cient of the highest order term in s. The approximate transfer function 7',*(s)

m——_
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in (19 a) can be considered as a reduced-order model of the original high-order

system.

In this paper, we use it as the initial guess for the numerical method

for determining the reduced order model that has the exact dominant frequency-

response data as the original system.

4. An illustrative example

Consider the unit ratio feedback closed-loop transfer function of a stabilized

real misgile system (Bosley 1977)

’ 14 ’ ! 5
T(8)=k(bo+b1s+ v b5 8%)

Qo +ay8+ ... +ays!

where

1y =8-802 158 509 x 1018,
ay= 2911 920 56 x 1018,
a,=6-667 397 031 x 1018,
ag=9-360 329 977 x 1022,
ag=2-976 950 696 x 108,
1o =1923 554 x 105,
and

I =1-494 523 312 x 1011
b’y =5-889 609 375 x 107,
by =1-058 045 299 x 107,

Ye—1715 193 3 x 105,

(21 a)

a,=2-419 047 424 x 1019
ag=2-420 405 431 x 1018
a5 =9-749 923 212 x 1014
a,=6-231 675 318 x 101°

ay=9-316 239 04 x 105
ay=1

b’y = 3-084 598 703 x 108
b'y=3-357 065 095 x 10
by=1

——— -

e o o —ma e~

The second order and the third order reduced-order models which have some

of the dominant frequency-response data of the original system are required.
The open-loop transfer function G(s) of the system is

5
G(s)= kfeg+e8+ ... +€5813>
8(go+gss+ ... +0108"%)

(21 b)

- yg———
-

where

Jo= —2:190 952 724 6 x 1019,
g,=2:370 233 311 x 1015,
gy=9-748 428 689 x 1014,
g¢=6-231 675 318 x 1019,
gs=9-316 239 04 x 108,
J1o=1
and

ke=1-494 523 312 x 101
€o=5-889 609 375 x 107,
ey=1-058 045 299 x 107,
e,=1715 193 3x 103,

gy = — 1442 378 55 x 1016
g = 6-641 763 067 x 1018
g5 = 9-360 329 977 x 1012
g,= 2976 950 696 x 108
go= 1923 554 x 10

ey =3-084 598 703 x 108
eq=3:357 065 095 x 106
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Note that (/(s) is a non-minimum phase function ; its Nyquist plot is shown in
Fig. 1. The dominant frequency-response data are chosen and given in (8).
The set of non-linear equations are shown in (11). The initial guesses shown
in (13 k) and (17 b) yields the required third-order reduced model in (14), or

0:243 46652 4 20:556 61s 4 6378 07
Ty¥(s) = g Z 0 . (22 a)
s34+ 1-259 008524 10-462 225 4 6:378 07

1f the continued fraction method (Chen and Shieh 1969) in (18) is used, the
approximate reduced model is

0-6920s% + 19-4692s + 3-7376

TSU*('S)= =y
§%4-0-9488s% 4 10-1661s + 3-7376

(22 b)

Using the coefficients in (22 b) as starting values for solving the non-linear
equations in (11) yields the desired coefficients in (22 a) at the eighth iteration
(IBM 1977) with the error tolerance of 10~ . If the mixed method in (19)
and (20) is used, the normalized approximate denominator in (20 e) is
dg*(s) = 83 + 0-952452 + 1019245 + 3-7455 (2 ¢)

The 1,*(s) obtained from (19) is

' ng*(s) = 0-70665% + 1951555 + 3-7455 (22 d)
'The approximate transfer function by the mixed method is

0-706652 + 19-51355 + 3-7455

Ill
§3+0-952452 + 10-1924s + 3-7455

*( o) -
A

sm (22 6)
If the coefficients in (22 e) are used as starting values, the Newton-Raphson
method (IBM 1977) will converge to the desired solution in (22 a) at the eighth
iteration with the error tolerance of 10-%. The unit step response curves of
various reduced models and the original system are compared in Fig. 2. All
three reduced-order models give very satisfactory approximate time response
curves. However, only the 7',*(s) in (22 «), which uses the method of dominant
frequency-response data matching, has the exact dominant frequency-response
data as the original ¢ystem.

If w,=3-2rad/s, ¢,,=57° and Re [(/(j0)] = —2:1 are chosen as the domi-
nant data, the second-order reduced model obtained by the proposed method is

3:339 517s+9-224 24

P *(s) = 2
2"8)= 55302 8065 + 0.224 24 (23 a)

The approximate reduced models by the continued fraction method and the
mixed method are :

2479815 +4-8122
3 23
)= o 1580015 1 48122 0
and
16-3618s + 3-9328
, _ 23
amn™*(8) 82+ 6-5726s + 3-9328 =

+ ks A o

» g
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A S===— ORIGINAL 11TH ORDER SYSTEM: T(s)
1.0 \ O== ;;i;R?th:foEgE:EU;EgDm?E&(S BY THE CQNTINUEO FRACTION METHOD
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, \
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Ty (s)
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0 2 4 6

——t
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8 10 !

Figure 2. Time responses or original and third-order reduced models.

The unit-step time response curves of various reduced-order models Ty*(s),
Tp*(s), Tye*(s), and T, *(s) are compared in Fig. 3. It is observed that Ty*(s)
gives better approximation in the transient response than 7, *(s) and 7', *(s).

1’3'(5): == THIRD ORDER REODUCED MODEL BY THE PROPOSED METHOD

-
TZC(S):O—-'O SECOND ORDER REDUCED MIDEL 8Y THE CONTINUED FRACTION METHOD
l’z.(s)'b——é SECOND ORDER REOUCED MODEL BY THE PROPOSED METHOD

!2;(5):0---0 SECOND ORDER REOUCED MODEL BY THE MIXEO METHOD

T -

8 10 12 N % 1 (SEC)

Figure 8. Time responses of third- and second-order reduced models.
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5. Conclusion

A basic method has been developed for modelling transfer function using
dominant frequency-response data. When the specifications of the design
goals of a control system are assigned. the proposed method gives the standard
transfer function. Thus, the design processes in the frequency domain can be
significantly simplified. When the experimental frequency-response data of a
system are available, the proposed method can be used tc identify the transfer
function of the original system. Also, if a high-order transfer function is
given, various low-order models can be determined. The reduced models have
the same dominant characteristics of the original system. Four methods have
been proposed for estimating the good starting values for the solution of non-
linear equations. The nevr dominant frequency-response data matching
method, and the new mixed method that has the advantages of both continued
fraction method of Chen and Shieh (1969) and the paper and pencil method of
Gustafson (1965) have been developed for model reduction.
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Analysis and synthesis of matrix transfer functions
using the new block-state equations in
block-tridiagonal forms

L.S. Shish, Ph.D., and A. Tajvari
Indexing terms:  Linear network analysis, Linear systems, Matrix algebra, Polynomials, Stabllity criteria,

Transfer functions

Abstract: A new block-Routh array with block-Routh algorithm is developed to exitact the greatest common
matrix polynomial of two matrix polynomials that are not coprime, and to construct a block-transformation
matrix that transforms a block-state equation from a block-companion form to a block-tridiagonal form. The
newly developed block-state equation in the block-tridiagonal form is a minimal realisation of a matrix-
transfer function. Also, the ‘block-state equation is used to synthesise a driving-point impedance matrix. A
stability criterion is then derived to test the stability of a class of matrix transfer functions.

1 introduction

The accurate description of linear, time-invariant circuits
and systems in the time domain may result in m nth-degree
coupled differential equations, or an nth-degree matrix
differential equation with m x m matrix coefficients, as

n+1

; AD" () = r() (12)
=1

y@© = ‘Z‘BtD'-'xo(‘) (1b)
and .

DIx(0) = [  i=1,2,....n (1)

where ¥rend-R(s)are-tho-Laplace-trensforme-oi-nisiond

. dootom—and xo(7) is an m x | state vecior. A; and By are
m x m matrix coefficients and the diiferential operator
D=d|dt. When each initial vector |a;] is an m x 1 null
vector, 0, .4, the corresponding frequency domain repre-
sentation of the same system is an nth-degree matrix
transfer function written as

Y() = T(s)R(s) Qa)

where Y(s) and R(s) are the Laplace transforms of y(¢f) and
r(¢), respectively. The matrix transfer function 7'(s) is

7(s) = Dy(s) Dy(s)™! (2b)
where

Di(5) = Apoy$" + A" +. . .+ Ass+4A,
and

Dy(s) = Bps™ '+ B, s" 2 +.. .+ Bys+ B

When the matrix polynomials D,(s) and D(s) are right
coprime! and A,,, =1, the corresponding first-degree
state equation in the controllable block phase-varisble
form? (or in the controllable block companion form) is

L& = Ax+Br . .. . (3d)
y=Cx

x(0) = Opmx: ’ (3b)
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where

o o — e 5t pm v e | e s

L—Al "‘A: “'Ag "An
—om Xy
B=|0m|, x=|%
1 |
]
I, Xn
¢ = [B] Bz Bs... Bn]

The block elements Ay, Opy, Iy, By and Oppy xy B1E M X M
constant matrices, m x m null matrix, m x m identity
matrix, m x m constant matrices and am x 1 null vector,
respectively. The state vector x consists of # block vectors
(x,i=1,2,...,n). Eachm x 1 biock vector x; consists of
m state variables. The state vector x is defined as a block
vector, and its co-ordinates as block co-ordinates. As a
result, the state equation in egn. 3 is defined as a block-
state equation in the phase.variable block co-ordinates.
Without considering the special structure (the block-
companion form) of the state equation in eqn. 3, the same
vector x can be observed as a vector with nm state variables
in general co-ordinates. When a dynamic system is fermu-
lated in a matrix differential equation-or 2 matrix transfer
function, it is more natural and convenient to analyse and
synthesise such a system using the block state formulations
in block co-ordinates than in general co-ordinates. In this
paper, all derivations are based on the block state-space
formulations in various block co-ordinates.

The objectives of this paper are described as follows:

(i) Construct new block-Routh array and block-Routh
algorithm for extracting the greatest common matrix poly-
nomial of two matrix polynomials that are not coprime,
and for establishing a new block-state equation in a olock-
tridiagonal form, using a simple linear-block transformation.

(ii) Apply the obtained block-state equations for finding
the minimal realisations of a matrix-transfer function, for
synthesising the driving-point impedance matrix, and for
determining the «tability of a class of matrix-transfer
functions.
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2 Construction of a new block-tridiagons! matrix

Jury,® Anderson,* Barnett® and Takahashi® have shown
that a state equation in the phase-variable form can be
transformed into a scalar-tridiagonal form with complex
elements by extending the ideas of Chen and Chu,’ Barnett
and Storey,® Loo® and Power.’® However, their methods
deal only with single-input, single-output systems, and
involve complex numbers. For multivariable systems, Shieh
et al**'' have developed linear block transformations
that transform the block-state equations from the block-
companion forms into the block-Schwarz forms, which are
the special block-tridiagonat forms. However, their methods
are restricted to a characteristic matrix polynomial and not
to the matrix transfer function. A new block-Routh array
with block-Routh algorithm is developed to construct a
gimple linear-block transformation that transforms a biock-
statz equation from the block-companion form to a block-
tridiagonal form. The construction of the block trans-
formation involves the real matrix coefficients in both
numerator and denominator matrix polynomials of a
matrix transfer function,

In order to derive the recurrence algorithms, the block
elements A; and B; in eqn. 2 are expressed by the double
subscripted block elements Iy ; and D, ;, respectively, as

« When D,(s) and D, (s) are right coprime and Dy, = A,,, =

I,,, the block-state equation in eqn. 3 can be transformed
into a block-tridiagonal for.n using the following new block
transformation:

x =1T5!z )

where

— - v o e | e e s e e S S - e ——

T[ = Y e ——————— (7)

i
om e e e w2

L ' '

The new block-state equation in the block-tridisgonal
form is

z = TlAT;lZ"" T}B’ = G‘z +Elf (8a)
Dl./ = Apsz-§ J=12,...,n+} (40) y=Crilz = Fiz (8b)
= - where the system matrix G,(=T,AT{") is the block-
Ds,1 = Buer-s I=12....n (4b? tridiagonal matrix and is written as
!
- #ankanr) K, | o Om Om On |
]
(”u-zKZn-s)-l -(”2;--:‘2'--3)-! i Om Om Om Om
Om Om | ~(HyKq)! K3 Om O
.G‘ = . : -1 r “““““ _"i """""-":,— —————————— (8“')
Om Om : (HeKs) : ~(HeKs) K; O
' ——————————————— o ——— r
Om Om | Om | LK) | (K k3!
5 U
Om Om { Ow | Om | K | (LK)
L ! i ] i .
Te) = Dz(S)Dt(S)-’ . = [07» ’ Omp ——~~—Om Om Om (Kl_!)'] (84d)

= [{Bs" '+ B, 3"+ .. . +8]
X [Ape 3® + 4,80 4., 4+ 4,]7?
= [Du!'.'l +Du$n-z +... +Dz'”]

X [Dg;l’+D118”-I +... +D;'¢, ll-’ (5)

Fl - CT['
= [Om Om——~—Op Om Om In) (8e)

The ’ in eqn. 8d designates transpose. The block elements
D,,; in eqn. 7 and K; and H; in eqn. 8 can be obtained from
the following new block-Routh arzay with block-Routh
algorithm which is different from the matrix-Routh array
with matrix-Routh algorithm developed by Shieh and
Gaudiano,”?

IEEPROC., Vol. 127, P1. D, No. 1, JANUARY 1980
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The block-Routh array is

Dy, = Ay,
K, = D\,Dy
* Py = B,
-t
K, = Dy, D} Dy & D,; —K,Dy,
Dy 2 Dy ~H, Dy
Ks = Dy D

Dsy & Dy, -~ KyDy,
8 Doy~ HoDsy

Haip-q = D!n-).ln;l:-l.l<

K:n-l < Dzn-,_g
= Dzn-:.nbﬁ.:

Diny 8 Dipoy, s “”zn-zDzn-l.:

Hyp = D)n.ID;l‘IOI,I

D?ml,l g D:n‘i.z

The general block-Routh algorithm is
(i)
K, = DyD;} rankDy; = m
Dy; =Dy —=KiDyjoy f=1,2,...,n
H; = DyD;! 1tankDy = m
Doy =Dy joy—Hy3 ey, ]=12,...,n—1

Ky, = Dy, D}, )
fankDyyp y = m
Dyy3,y = Dy oy

"KluDln,/u

~.
J

= 1,2,3,...
Hy,y = Dl«z.lDl-ols.l
ek Sy, =m (i =2,4,6,...,2n—2
Dyyy,j = Dyag,gey
"Hh:Dln.!n
Dipsz,1 = Om

(9¢)

Ti.e construction of the block-Routh array in eqn. 9 can
be described as follows: arrange the matrix coefficients of
the given matrix polynomial D, (s) in eqn. 2 in the first row
of eqn. 9 and the D,(s) in the second row. A new matrix
K, is obtained by the matrix multiplication Dy, D3;! where
Dy and Dy are the block elements in the first column of
the array. . .

The block elements in the third row are generated from
the K; and the block elements in the first two rows as

IEEPROC., Vol. 127, Pt. D, No. 1, JANUARY 1980

Dy; = A, Dy = Any. Dy pey = Ay
,Dn = B,..| DU = Bn-: .

Dy; 4 D\y- K\Dyy Dy,
Dy 2 Dy~ HyDys Dy

9a
Ds; & Dy —K;D4y Dy .. (5e)
Dy & Dyy—H.Dsy Dy

Dzn-z.z

DM 1,2

follows: first, each block element in the second row is
premultiplied by X,;. Then, subtract each resulting block
from each block element in the first row. Finally, shift
each block element so obtained one column left and drop
the zero-first block element to form the third row,

The second and the obtained third rows are then used as
starting rows to generate the new matrix A, and the block
elements in the fourth row. The second and the obtained
fourth rows are used to generate the new matrix K; and the
fifth row. Also, the fourth row and the obtained fifth row
are used to generate the new matrix K, and the sixth row.

Repeating the processes of determining Ky and M4 and
the correspording rows to the 21+ 1 row yields the
complete array. It is noticed that the array exists if rank
Dy =mfori=12,...,and also that the block-Routh
array with the block-Routh algorithm is different from the
matrix-Routh array with the matrix-Routh algorithm devel-
oped for matrix-continued fraction expansion,'?

When any matrices D,,, are singular, the block-Routh
array become a numerically illconditioned case. The
original T'(s) will be modified according to applications in
such a way that the block-Routh algorithm can still be
applied. Various remedial methods will be suggested in the
latter Sections.

Since the block algorithm in eqn. 9 shows the com-
binations of a repeated process and an alternately repeated
process of the long divisions of two matrix pclynomials,
thz algorithm can be expressed by the recurve process as

()
T(s) = Di(s)Dy(s)
Ky = Dy(9)[sD2(9)]™' as s-ee
Dy(s) = Dy(s) — sK,D,(s)
Hy = D,(s)Di(s)™! a5 g
D4(s) = Dy(s) — H;D4(s)
(10a)
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(ii) "
Koy = Dy(9)[sDy45(s)) 7}
Dys3(s) = Dy(s)— 35Ky 1 Dya 2 (s)
Hpvy = Dysa(6)Dyas(s)™  as

Dy44(s) = Dyy3(s) = HyayDyoa(s)
Dzpsy(s) = O /
i=2,4,6,...,2n—2 (108)

The matrices K; and H; are called the block quotients, and
are different from the matrix quotients!? obtained from the

matrix-Routh algorithm except for the first two block
quotients,

Eqgns. 10a and b can be combined and simplified as

Di$)D1s2 () = Quar ()
—H4 D14 (5)Dyaa(s)™" | . _

as §>+o \

3> o0

i=02,4,...,2n—2
Qi4i(s) = Hih + 5Ky,
Do(s) & Dy(s)
D;yp42(s) 2 Opy (10¢)

Successively substituting eqn. 10c into T'(s) in eqn. 10a
yields

T() = Dy(s)D\(s)™ = [B1()D2(s)7']™!

[Q:1(5) —Hi' Dy(s)Dris) ']

1016)—Hy ' [Dy()Dafs) ']

[Q:(5) —H: ' [Qs(s) —Hi ' [De($)Da(s)'] 417!

[Q1(s) — H7 ' [Qs(s) — Hi ' [Qs(5)

—HM = H Qe (D7)
(104)

i=0,24..,2n—2

where

Qs s (8} = sKyyy +”t_¢12

Eqn. 104 is a Stieltjes-type® matrix continued fraction,
The counterpart of the scalar canonical form of eqn. 10d
has been developed by Field and Owens.*

When the block quotients K| and H; are given and the
ociginal matrix polynomials ate required, this is an inverse

problem. The reverse recursive relations in.eqn. 10 can be -

- applied -to-determine the original n atrix polynomiails and
listed as

®
D3piy(s) =0y and Dipyy(s) = Iy {11a)
(i)
D}, 2(s) = Hys3Dfs3(s) + Disa(s)
Df(s) = sKi4y Dfsy(s) + DPs(s)
D}, (s) = Hi ' [DF(s)— Df's2(s)]
=2n—2,2n—4,...,2 .
(115)

(iif)
D{(s) = sKyD3(s) + D3 (s) (11c)

The desired D, (s) and Dy (s) in eqn. 2 become

D;(s) = D3 (s) [(‘ﬁ’ K:I-i) ll,,,l-l

n -
D, (s) = D (s) {(‘lezl—x) ”2n] !
and
T(s) = D3 ()DY(s)™! = Dy(s)Dy(s)™!
The inverse block-Routh algorithm of eqn. 9 is
()

Dz.n*z, 1= om

(11d)

(11¢)

1)

F=12...
Dinest = InyDinss,s = Om I=23,...
(118)
H
Dissy = B1aaDiss,
01.02.14-1 = Dﬁa,l"‘”!n”&a,]u
Dy = Kiu1Dfsayy
D:‘,h: = Dfi3,) +Kl+1Di‘¢z,]u
Djyy,jey = Hit [Dl..lﬂ "Dl‘n,!]
i=123,.. i=2n—-2,2n—-4,...,2
{11h)

(iif)
D!‘,: = KDy
D1y = D3+ K\Dj jey

>
Sy
I

” -
’ Dl‘-l ‘rli K“‘l ”ZnJ ! j= 1'213'00‘
[ )
Dy, = D3, \I‘I Kz:-.)ﬂz,.} ! (1)
a2

From eqns. 9 and 1} we observe that the block-Routh
algorithm involves only real matrices generated from the
matrix coefficients in the numerator and denominator
matrix polynomials of a matrix transfer function. Also we
notice that only one block transformation is required to

-4sansform.-2a block-state_equation in eqn. 3 to a block-
.. . tridiagonal” matrix form in eqn. 8. We helieve that the

proposed blockstate equation in eqn. 8 and the block
transformation in eqn, 7 are new.

3 Minimal realisations of n:atrix transfer functions

In the analysis and synthesis of the matrix transfer function
of a multivariable system, the primary concerns are the
internal structure and stability of the system. When D, (s)
and Dy (s) in T(s) = Dy(s)Dy(s)"" are coprime, the realis-
ation of the T'(s) is minimal and ti:e stability of the system
can be determined from the scalar churacteristic polynomiai,
det [Dy(s)]. The minimal realisation is significant because
the minimum number of integrators can set up an analogue
or digital simulation of a matrix transfer function, and also
more information sbout the internal structure of the
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. To = [Fi, (RG), (Fi6]),

system can be obtaired than from the original formulation.
In the frequency domain, 2 matrix transfer function has
been realised using various Cauer forms of matrix continued
fractions.!?”* When the mth- and the (n — I)th-degree
matrix polynomials, Dy (s) and £,(s), are arranged into the
first two rows o the block-Routh array as shown in eqn. 9,
ths mairix-Routh algorithm’? has been applied to determine
2nm x m matrix quotients H'. It has been shown'? that
the state space equation with nmm x nm system matrix,
which is constructed using 2n matrix quotients H/, is a
minimal realisation of the T(s) in the first Caucr matrix
form. As a result, the D,(s) and D, (s) are right coprime,
Using the tame block elements in the first two rows and
applying the proposed block-Routh algorithm in eqn. 9
results in the same number (2n) of block quotients X; and
H,. Therefore, the block--tate equation constructed using
the same numbe: (2n) of block quotients with dimensions
m x m is a minimal realisation of the same 7'(s). As a result,
the block-state equation in eqn. 8 is completely controllable
and observable, and the D,(s) and D, (s) are right coprime.
It is noticed that only K, =H{, H, =H} and other
quotients are different.

An alternative way to show that the block-state equation
in eqn. 8 is a minimal realisation of T'(s) can be described as
follows: writing the controllability matrix (T,) and the
observability matrix (7, )*” in Kalman form result in

T, = [E,, G\E,, G{E,, ..., GI'E,}

Op O (KiKs ... Kap-y)™*
T O (KiK' ... x
Kt x e x

and
veer (FGPTN)']

Opm Om oo (HapKap-y .. HK))')?
T 0m (KD .. x
} x - x

where the xs dencte unspecified blocks.

Both matrices 7, and T, are block triangular matrices.
From the cross-diagonal block elemsuts in T, we find
that if rank K; = m, then rank 7, = nm and the system is
completely controlable. Also, from Ty we.find.that if rank
Ki=m .and. rank H;=m; then.rank T, =nm- and the
system is completely observable. Thus, we can conclude
that the system described in eqn. £ is completely con-
trollable and observable and it is a minimal realisation of
T(s) with minimal dimension nm if rank K; =m and rank
Hi=m. .

‘From the above conclusion we are now able to deter-
mine the condition that the block-Routh array exists. The
necessary (but insufficient) condition for the existence of
the block-Routh airay is that the g(= k/m) has to be an
integer, where k is the rank of T'(s), (which can be deter-
mined from the Hankel matrix!® or from the Gilbert’s
theorem,® and m is the input-output number. The suf-
ficient conditicn is not added into the necessary condition
because, for a rare case, some Dy, in the block-Routh array
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may be ill conditioned matrices even if ¢ is an integer. If
this is the case, the T(s) is decomposed into two parallel
subsystems 7T,(s) and 7T,(s) by using partial-fraction
expansion. The rank of T;(s) is chosen as m(q —1), and
that of T,(s) as /m, where / is a proper integer. The pro-
posed method can be applied to determine the minimal
realisation of each T,(s) and T,(s). Beecause~the—seniroh

Vaoh=thti-tanicTr(o)-msng-and-rant=TFr{s)wr~Thueir(s)
ot Mot othomrrrinitealcostioeti ;

When the ratio k/m is not an integer, or k=mgq +r,
the two paralle]l subsystems T, (s) and T, (s) shall be chosen
such that rank T, (s) = mq and rank T,(s) = 7. Thus I, (3)
can be realised by the proposed metnod and T,(s) can be
realised 2?! using any other metnods,'® such as the Gilbert's
method.® The .omposite state equation of the two parallel
subsystems is the minimal realisation of the T'(s).

In order to obtain the minimal realisation of a genera!
matgix transfer fuaction T'(s) that contains not coprime
matrix polynomials, we consider T'(s) as

T(s) = Da(s)Dy(s)"*
= [Dyys" 1+ Dyps" 2+ 4 D ]
X [Dys™ +Dps™ ..+ Dy ey ]t
= Py () C®IP () C8)]
= Py(5)P1 ()"
= [Pys™ '+ Pps™ 4.+ P, ,]
X [Pyus™+Pus™ + . +P ] (120)

where
CG) = CpoypS" T4+ Cpops" 7714 ...4C, (12D)

C(s) is a common matrix polynomial, and D,(s) and D, (s)
are not coprime. The realisation of T'(s) using D,(s) and
Dy (5) is not minimal, and the stability cannot be determined
from the scalar polynomial det [D,(s)] or det (S/~A] in
eqn. 3.

The C(s) can be extracted from the block-Routh array in
eqn. 9 as follows: when n =7, in eqn. 12, the block-Routh
array in eqn. 9 terminates normally, and C(s) = I,,,. When
n > r, the array will terminate prematurely. The C(s) can
be obtained from the last nonvanishing row in ¢qn, 9. For
example, if Dy, = 0y, then C(s) = Dap.y 38+ Da2p-1,2-
This can be verified from the following: when 2r block
quotients K; and H; are available, the matrix coefficients
Py ;and P, ;in'eqn.d2 can-bo.determined from the.reverse

‘- process-of the algorithm in eqn. 11, 0r

®
Prria(s) = O, Parper(s) & Iy (13a)
()
Pias(s) = HyyaPras(s) + Proa(s)
Py(8) = sKjsy Ppya(s) + Pras(s)

Pioy(s) = H P(s) — Pras(5)]
i=2-22r-4,...,2 (13b)
(iid)
Py(s) = sKyPy(s) + P3(s) (13¢)
23

L TR e Sl
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If the array terminates prematurely, the D,(s) and D, (s)
can be obtained in the same fashion as

®

D2rez(s) = Opm,
@
D Dyass) = HyaaDyas(s) + Dyoa(s)

» ~D8) = 8K141Dp43(5) + Dysy ()

Dy y(s) = Hi ' [Dy(s) = Dys 5 (5))

i=2r—22r—4,...,2 -

D341 6) = InnC(s) (140)

(14b)
(iii)
D\(s) = sKiDy(s) + Dy (s)
Substituting eqn. 13 into eqn. 14 yields
D2 s1(8) = Paray(5)C(s)
and

Dy(s) = Py(s)CG),

(14¢)

(15a)

i=2r—2,2r—4,...,2

(150)
Finally, we have
Dy(s) = P,(9)CG) (15¢)
Dy(s) = Pi(5)C(s) (15d)

Therefore C(s) is the common matrix polynomial of D, (s)
and D (s) which can be determined from the nonvanishing
row in the block-Routh array. The P;(s) and Py (s) are right
coprime and the realisation of T'(s) using P,(s) and P;(s)
is minimal. Thus, C(s) is the greatest common matrix
* polynominal.*” 3 The corresponding block diagram of the
minimal realisation of the T'(s) in eqn. 3 is shown in Fig. 1.
An alternative method. which uses the matrix-Routh
array but not the block-Routh array, has been proposed by
Shieh, et al.** to extract the common matrix polynominal
of the two matrix polynominals that are not coprime.

*n xn y
: : X X K? ‘le ] !
X by Xo-
n-! } g g
H-' 1'1m Ki - X .
H; ~
.21 Xa.
i . = Xn.2 '§'m n-2 W
7
%n-3 %n-3
H g &im e E 0

;h. 1 Bﬂlock diagram representation of the block-state equation
egn.

4 State-space ruiiution of driving-point impedance
mateix

When the input vector R(s) and the output vector ¥(s) in
eqn. 2 are observed as the input-current vector and the
output.voltage vector at the same port, the matrix transfer
function T'(s) becomes the driving-point impedance matrix
Z(s). The realisation of this positive real impedance matrix

via state-space approaches has been successfully developed
by Anderson and Vongpanitlerd.'s Multiwinding trans-
formers are mainly utilised for the realisations. Recently,
Takahashi et al.® have proposed an elegant method for
transfer-function realisations without using integrators.
However, they deal with only one-port networks. In this
paper, their method will be extended to realise the Z(s)
using the newly developed block-state equation in the
block-tridiagonal form, . )

The Z(s) of interest in this section is an RC driving-point
impedance matrix. The multi-port RC ladder networ'k
obtained from the Z(s) will be used as the plant in
synthesising the general matrix transfer function. The
block-state equation of a multi-port RC ladder network
in Fig. 2 is

0 = Gov + Egr (16a)
y = Fov (16b)
where
i
. [ CrVRR;IC V2 i CrVaR;I sV

———— b = — - . v " e . - . M S GAL S S A e S v

Go = Om C; 172 R; 1 Cz- 12
Om Opn
. O
Om
cz- II2R; 1 C; v
— C;"’(R;‘ + R;l )C{"’
Om
Om
m Om ]
m m
Om om ?

c”'_)l‘z R;l C; 172

—C 3R+ RRL ) 2

Ci VIR

(Cx-"f [, 7
O C}3y,
Eg=|Om|, o=[C"0
Om Ca%vn-y
| Om | L_C,,"’v,, i
Fo = [C7Y2 0 Opm Om Om Opm]}
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Note that Ry and C; are real, symmetric and positive-
definite matrices, so that

CLPRICTV? = (CXR{ €Y

= CrVAR O (17a)
CIVIR;ICTV? = (C7VIR;IC V2 (175)
and
G RP + R )G
= [CTV Ry + Rk GV (17%)

In other words, the system matrix G, is a symmetric matrix.
In order to match the block elements of the block-state
equations in eqns. 8 and 16, we perform the following
block transformation on the block-state equation in eqn. 8:

=T7'q (18)
where
- | i -
Om om A | om L Lx
Om Om . { L, Om
I, = . . . T T ’
’ Om Ln-l . Om Opm
L, Om . O Opm

The new block-state equation becomes

4 = TzG;T;’Q""T;E"’ = Ggl]*'Ezf (190)
y=FRTi'q=Fy (19b)
. where

[~ M, N,i Op Op - Om Opm
|

Ny =M Ny Op . O Op

G; = | Oy N, —M; Ny . 0Opn Om |,

Om Om .
Om O -

Ez = om

ﬂo’L

Fig.2 Multiport RC ladder network B s
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The recursive relations of the block elements L‘, M,N, K,
and Hy are as follows:

L,
M,

~

n

any nonsingular matrix
Li(H3Ky-1) 'L} i=12..,n
= [Li(Kyjo HyKyy-y) ' L7} V2
=12...,n—1
Liyy = NLKy,, 1=12,...,n—1 (20)

The square root of a matrix can be determined using the
method suggested by Frame.'® Comparing the respective
E, and F,; in n 19 with E, and F, in eqn. 16 yields
Ly =K}?* =CY% When the block elements X, N, and
M, are real symmetnc and positive definite, we can solve
the R; and C; by matching the block elements in the system
matrix Gp in eqn. 16 and that of G, in eqn. 19 starting
from the block elements My, N, M, and N,,... .

The K (= C,) is chosen as areal, symmetric and positive-
definite matrix in order that the synthesis of this capacitor
matrix C; can be performed by using multiwinding trans-
formers. Also, the block elements N and M, are restricted
as real, symmetric and positive-definite matrices so that G,
in eqn. 19 has real eigenvalues, owing to the symmetric
property of this matrix. In the following Section, it will be
further shown that the system in egn. 19 is asymptotically
stable. As a result, the real eigenvalues of G, are negative
real. '

Thus the RC driving-point impedance matrix can be
synthesised using multiport RC network. It is noticed that
the passive RC structures are different from that of Cauer’s
first form. Thus, extending the ideas of Takahashi et gl ®
and the newly developed block-tridiagonal form, a matrix
transfer function may be synthesised via block-state space
approaches without using integrators,

When the block-Routh array of an RC driving-point
impedance matrix Z(s) becomes an ill conditioned case,
the proposed remedial methods in Section 3 can be applied
to overcome the difficulty. The synthesised multiport RC
networks of the decom ?osed subsystems Z,(s) and Z;(s) are
connested in cascade’® because the Z(s)(= Z,(s) + 23 (s))
is a driving-point impedance matrix rather than a transfer-
function matrix,

When the driving-point impedance function of a one-port
network is of interest, the linear transformation 73 in
eqn. 18, and the system matrix G, in eqn. 19, can be
expressed in terms of scalar quotients k; and A, (instead of
K; and H,) obtained from the modified Routh array and
Routh algorithm in egn. 9. The linear transformation
matrix T, is

0 0
0 0
T;‘ 0 0

an-l 0
okt .. . hams

-

T — e e v s

i —




rererarge e S

D
0 ﬁho
ky
ks
N 0 0 @n

0 0 Q

~d

where iy = 1. The system matrix G, becomes

g 1
——— 0
kih, vk hak;
1 _ 1 1
VK kshy  Vkshiks
i 1
G; = 0 -
2 Vksheks kshg
L 0 0 0 ’
(220)
_ 1 _ 1
\/’?zn-ahzn~zkzn-x k:n-lhzn
The input vector £; and the output vector F, are
1 ¢
Eyz=j— 0 0 .0 0 22b
F, = L 0 0 0 0] (22¢)
S ) '

Note that the process to evaluate the elements in T,
and G, involves only real numbers rather than complex

...numbers,-as suggested by Takahashi et al.®

$ Stability of matrix transfer functions

When a multivariable system is represented by a matrix
transfer function, T(s) = D;(s)D,(s)"", and the stability
of the system is required to be determined, one often
converts this matrix transfer function into a high
dimensional state equation in general co-ordinates, and
determines the scalar characteristic equation. The stability
of this system is then determined either by directly apply-
ing the Routh criterion'? or application of Jury’s inner
theory® on the scalar characteristic polynominal. However,
itis tedious to determine a scalar characteristic polynominal
of a large-dimensional system. Furthermore, when D, (s) and
D, (s) are not coprime, the scalar polynomial obtained
is pot the characteristic polynomial. Several authors
have studied the stability of a multivarisble system from

26

the characteristic matrix polynomial. Papaconstantinou'®
suggested a recursive algorithm for indirectly determining
the stability of a matrix polynomial. Anderson and
Bitmead'® determine the stability of a matrix polynomial
by testing the lossless positive real of a rational transfer
function matrix which is derived from D, (s). Denman® has
also suggested a numerical method to determine block roots
of a matrix pulynomial which can be used to determine the

stability of « matrix polynomial. Recently, Shieh ez al 2+ !

have partially extended the scalar Routh criterion to the

matrix Routh criterion for testing the stability. All above

methods have assumed that D,(s) is the characteristic

matrix polynomial. In this paper, we develop a method to

test the stability of a2 matrix transfer function in which

D, (s) and D (s) may not be coprime. .
Performing the following block transformation:

4=Ti'w (23a)
where
T; = block diag. (J, il , I, jlm, - . .) (23b)
on eqn. 19 gives
© =T3GT; 'w+ ThEyr = Gyw+ Esr (24a)
Yy =FRT'w = FHuw (240)
where
IR
Ny —M, _i . O Oy,
Gy = {7777 . . ,
Opm Om ~Mp-y ~JjNp-,
Lf),,, Opy INs-4 -M,,-
L.k ]
Om
E; = .
Opm
e om p-
Fy = [Li' Op . O Opl
andj = /-1,
Now, consider the following quadratic equation:
v = wPw (250)
where

Since P is positive definite, v is positive definite. When N, =
Nj in eqn. 24, the derivative of v is

¢ = W'[PG; +G3Pjw = ~w'Qw (26a)
where

Q = 2 x block diag. (M, M;,...,M,] (26b)
and

M= M+ M2 i=12,...,n (26¢)
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If M; are real symmetric and positive-definite matrices, this
implies that Q is positive definite and the v m eqn. 25isa
Lyapunov function. From Lyapunov theory?' we can con-
clude that the system in eqn. 2 is asymptotically stable if
(i) N = N/ and M, are real and positive definite
(ii)det Ap,, and det A, in eqn. 2 have the same sign,
and are nonzero.
It is noticed that N; may be real or imaginary matrices; M,
may be nonsymmetric. A,,, and 4, are the matrix coef-
ficients of the characteristic matrix polynomial D,(s) in
{ eqn. 2, therefore the der A, , is the leading coefficient of
: s™ and det A, is the constant term in the scalar poly-
nomial det [Dy(s)]. When D, (s) and D, (s) are coprime, the
det [D,(s)] is the characteristic polynomial of the system.
} The necessary condition for the stable system states that
i det A,,, aud det A, should have the same sign. Even if
D,(s) and D,(s) are not coprime, we have the same block
quotients K; and H,, or the block elements N, and M,;
however, the det A,,, and det A, shall be replaced by
aet Pyy and det Py , .., which can be obtained from the

matrix coefficients of Dy (s), D, (s) and C(s) in eqn. 12 and
expressed as

[R—————

e e e e

det Py, = det [Ap,,Cyly-s) (27a)
detP,',,, = det [A]C;l] (27b)

When rank T'(s)(= k)isnot equal tomgq,(ork =mgq +r),
the block-Routh array becomes an ill conditioned case. The
T(s) can be modified by adding another stable matrix,
T3(s)(=K/(s + a) where K is a constant matrix with rank
K =m —rand a is a positive value), to form a new transfer
function matrix T*(s) such that rank T*(s) =m(q + 1).
Thus, the proposed method can be applied to determine the
block-Routh array and the stability of the system. When
k=mq and the ill conditioned case occurs, the T(s) is
modified by multiplying a stable diagonal matrix with
stable diagonal elements as (s + §)/(s + ), where § and a
are positive values. Thus, the proposed method can be
applied to determine the block-Routh array and the
stability. It is noticed that the stability of a multivariable
system is invariant under such modifications.

When the matrix transfer function is completely
decoupled such that A; and By in eqn. 2 are diagonal

matrices, then the recursive algorithm in eqn. 20 can be
further simplified as

My = (HyKy. ;) i=12,...,n (28q)

Ny = (Kygo1HyyKyy-y) V2 i=12...,n~1
(28b)
where Hy, K;, M, and N, are diagonal matrices.

If det Py, and det Py ., in eqn. 27 have the same sign
and the pairs {Il,, Ky} are positive: definite, then the
system in eqn. 2 is asymptotically stable. Furthermore, if
all K, and H; are potitive definite, then the system is not
only asymptotically stable, but also the poles and zeros of
each transfer function y,(s)/R(s) interlace on the negative
real axis of the s-plane. This can be verified as follows. Each
transfer function y,(s)/R,(s) can be considered as a driving-
point impedancc function. Comparing G; in eqn. 22a
and the G, in eqn. 16, we can solve the positive values
of R; and C;. The network realisation of the impedance
function is an RCtype ladder network® as shown in i
Fig. 2. Therefore, the y,(s)/R;(s) is not only a positive real
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function, but also the poles and zeros must alternate on the
negative real axis in the s-plane. From above properties we
are now able to synthesise a matrix transfer function,
T(s)=D,(s)D,(s)"" in eqn. 2, without using integrators
and multiwinding transformers. The steps are described as
follows:

Step 1 Construct m sets of independent one-port RC
ladder networks that contain any proper values of resistors
and capacitors. As a result, R; ard C;in Fig. 2 are positive-
definite diagonal matrices.

Step 2 Match the block elements in eqn. 16 and those of
M; and N in eqn. 19 to determine the diagonal matrices
H;and K, in eqn. 28 using Ry and C;.

Step 3 Substitute the obtained H; and K into eqn. 11 to
determine the matrix polynomials Df*(s) and D;*(s)
having diagonal matrix coefficients,

Step 4 Subtract the matrix coefficients of the same
power in D,(s) and D{*(s) to obtain the feedback block
gains and also the matrix coefficients in D, (s) and D3*(s)
to determine the feed-forward block gains in the phase-
variable block co-ordinates as shown in eqn. 3.

Step 5 Transform the above block gains from the
phase-variable block co-ordinates to the tridiagonal block
co-ordinates in eqn. 19 using the block transformations in
eqns. 6 and 18,

Step 6 Sum up the feedback block gains using one block

summer, and. the feed-forward block gains using another
block summer.

Thus, a matrix transfer function can be synthesised using
a state-space approach.

6 Hiustrative examples

Example 1

To illustrate the processes, we determine a block-
transformation matrix, a block-state equation in a block-
tridiagonal form, the stability, and the state-space realisation
of the following driving-point impedance matrix that is
represented by a matrix transfer function:

Y(s) = TG)R(s) (29
where
T(s) = Dy (s) Dy (s)™*
= [Dus+ Dy ][Dus?® + Dyys + Dy5] ™!

{( 1 —2\ (24 10\)]
= s +
-2 5/ \22 10
[(1 o) (165 68) (14 6)}'
X 9?4+ s +
0 ‘1 68 35 18 8

Note that D,(s) and D, (s) are not symmetric matrix poly-
nomials. The procedures can be shown in the following
steps:

Step 1 Construct the block-state equation in the block
companion form

x =.Ax+Br } (30a)
y =Cx '

27
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where

Az{o, 1,]=-<gg) ((l) (1))-
~Di3 =Dy
:(14 6)_/165 6253)

18 8/ 68 33

)
= [l 0) (7

Step 2 Construct the block-Routh array to determine
the block quotients. The block-Routh array is

1 0 165 68
Dy = Dy =
0 1 68 35

1—2) » (24 m)
\-2 s 27\22 10

(o 7

S
"

S
[

>

Y
|

4 2
_ _ 24 10
Dsy = Dy = (22 10) (306)
where
K. = D..D:! 5 2
1 = Dy Dy ‘(2 1)

= ounit = °)
2 3 0 1

K Dy, D} (2.5 s )
= =
’ no -6 145

o = popit <[ 08 -—o~2)
4 T Ha1isy -02 04

Since we have 2n(=4) block quotients and the block- .
Routh array (erminates normally, D,(s) and D, () are right
coprime.

Step 3 Establish the block transformation T in eqn. 7
(30¢)

'(10 4) (o oj‘
i {D" 02] 4 2 0 0
Tl S =
Dy Dy (24 10) ( 1 —2)
_22 10 -2 S_J

Step 4 The required block-state equation in eqgn. 8 is

X = T,"z

where

i =Gz+Er y = F2 (30d)
where
G [~ (HyK3)™! K;! ]
‘ -_—
| (H:K,))!'  —(HK,)!
i (140 130) (58 24)"
\ 58 54 24 10/
1 -2 1 -2
,(—2 5) (—2 s).
R N
0 0 0
E = ‘} =
K!

(1—2\)

...\—.2 5'.J

Fi =0, k) =[(g g) (; ?)}

Step 5 Evaluate M; and N, in eqn. 20 to determine the
stability. For the use of multiport network synthesis, we
choose

s 2 /21
Ly = K = =
2 1 1 0

“Thus, we solve M;, N;and L, as

(30e)

1 -2
M =1 IIK"L"=( )
1 1(2 l) 1 _2 5

31
Ny = [Li(KsH3K,) L7t Y2 '-'( )

11
L NL.K (—0'5 15 )
2 1l14s 1§ —35
M, = LK) 'L;! = (167 67)
2 1(HaK3)" "L 61 27

Since det Dys(=1) > 0, det D,3(=4) >0, N, =N1', and
M, and M, are real, symmetric and positive definite, the
system is asymptotically stable. It is interesting to note
that the poles of this multivariable system or the roots
of det[Dy(s)] are 55 =-—002739, 3, =~0'127864,
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53 =—5:88774 and 5, = —193-957. The transmission zeros
of this multivariable system or the roots of det [D,(s)] are
$; =—0-10315 and s, = — 193-89685.

Step 6 Compare the respective £; and G, in egn. 19 and
the K, and G, in eqn. 16 to solve R; and C;.

— Cl-llﬂ R;lcl-llz Cl_l
Go = [C{"’R;’C{m

= [ ~M M ] = G2
N‘ ~M;

Eo =[C1-"2] _ {LIK{I] _E
0, 0,

From eqn. 30f, we have

I:R;lcz-lll ]
2

— CVIR: + R GV

(301)

2

and C;. The network configuration is shown in Fig, 3. For
this RC driving-point impedance matrix, the matrix
Cauchy index due to Bitmead and Anderson®® can be
applied to determine the number of negative real roots and
the stability,

It is noticed that, in determining the stability of a
transfer function matrix, the N; may be real or imaginary
matrices, For example, if we use the same K; (defined
as K7) and H, (defined as H7) in eqn. 30b, and assign
K3 =—K, and Hy =—H,, we have the same L$(=L,),
M!(=M,), and M;' (= M,) as shown in eqn. 30e. Also, we
have the imaginary matrices L3(=jL;) and NP (=jNy).
Substituting K and H into eqn. 11 gives the transfer
function matrix T*(s) as

T°(s) = D3 (s} D)

5 2
L =K{? ="+ =K, =(2 l\)

1 0
Cl-l/1R;1c1-1/2 - M! "Rz - (0 1)

Cl-IIZR;l C;!n = Nl _,C2 = (2.5 —6)
—-6 1435

2 -1
CyVAR3' +R3NCTV? = My R,y = ( ) 1)

The structure of the multiport network is shown in Fig. 2.
Multiwinding transformers may be used to realise the R,

[D3s + D) [Df1s? + Dhys + D1~

[ 1 -2) (24 10)]
= s+
\-2 § 22 10

Since

f(l o) (165 68) (34 14)]"
X s+ s+
\0 1 68 35 26 12

(308)

0851 j0526 1
a
I 5l D2
-
[-]

-0526(0 .t 1

Y, =T,(C,| T, = oD,
[oam osm]
T, =

03826 —o09238/

on ]

Ctsszb
21

[uzu 0
] =
o o176

det D}y(= 1) > 0, det D}3(= 44) > 0,
N =N{'(= N, =iNy)

and both M*(=M,) and My’ (= M,) are real and positive
definite, then T*(s) is asymptotically stable. It might
be interesting to know the distribution of the roots of
det Dy (s). The roots are

8y = —0197735 +j0-160018,
—0-197735 —j0:160018,
~5-767861 and 3¢ = —193-8367.

From the roots we observe that there exists a pair of
complex poles in T*(s) and T°(s) is not an RC positive real

"

$2

£

v matrix. Of course, the system matrix G, in eqn. 19 is a 5
» = T, T, =, symmetric but not real matrix. K
. [09239 o-sm] ¢, =[5 8], _fooer 0 :

03827 —09239) " |6 145" | o u-mz] Example 2

Z,=T,R,7, =D, Determine the pair of coprime matrix polynomials (Py(s) .

r, . [05257  owsor) 2 -y 0382 0 and P,(s)), the common matrix polynomial C(s) in eqn. 12, s
*T owsor —osas) ™ T (12, 2 413] and the stability of the following matrix transfer function: ;

Fig.3 Realisation of Zpc(s) in example 1 Y(s) = T()R(s) (31 :

where

T(s) = Dy(9)Dy()" = [P2(5)C(5))[P1(s)C(8)) ™! = [Dys? + Dus+ Dy} [Dyys® + Dyys® + Dyys + Dy !

( 2 —1 (-— 333 338) (338 1*72)]
= 2+ s+ X
—4 3 -~ 141 147 146 74 .
2 1), (—1945 1983 1815 1177 169 86\]"
s+ s? + s + ;
0 1 —~811 826 753 492 73 37 3
n=3 and m =2,
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The block-Routh array is
2 1 — 1945 1983
D, = Dy, =
g 1 — 811 826
1815 1177 169 86
Dy = Dy =
753 492 73 37
b 2 -1 b (—333 338)
u = (-4 3\) N PR VY 147}
338 172
Dy =
R ( 2 —1) 5 (—— 167 169)
" lls 3 T\ -69 74
169 86
Dy, =

73 37

— 166 169
Dy =

169 86
Dy, =
-72 73 73 37

—332 338 338 172
Dy = Dy; =

—144 146 146 174
0o 0
Dy = (32a)
o (o o)
where

x(52 ”(10)
R VIR 7 \e 1

. 148 —3.44) u _(o-s 0)
*Tlorsa 3ss) 0 lo 0s/@2p)

Because all block elementsin the sixth row are null matrices,
the block-Routh array terminates prematurely. The greatest
common matrix polynomial C(s) is

C(S) = CgS+C1 = Ds|S+Dsz

—332 1338 338 172
= s + (320)
—144 146 146 74

It is intefesting to notice that the scalar polynomials,
det {C(s)] = 200 x (s? +3~0-5), is unstable. Using the
K;and H, in eqn. 32b and applying the algorithm in eqn. 13
yields the coprime matrix polynomials as

Py(s) = Pyys* +Pys+Pyy

(2'18 -—5'04) (5'74 ,0'28)
= :1 + s

072 —166 124 278
05 O
+ 32d)
lo o

and
Py(s) = Pys+ Py

074 —172 1 0
= ( s+ ( ) (32¢)
—0-76 1-78 0 1

Letting Ly =1, and substituting K; and H into eqn. 20
gives

w7

3 2 146 124
Nl = and Mz = .
2 3 124 106

Since the det Py;(=0-1) and det P;3(=0-25) have the
same sign, N; =Ny, and M; and M, are real and positive
definite, the system is asymptotically stable. It is interesting
to note that the poles of this multivariable system
are s, =—008561, s, =—0-1927, 53 =—6:020 and
$4 =—251+7, The transmission zeros that are the roots
of det [P,(s)] are s; =—0-3975 and 5, = — 251-6025. The
det [D,(s)) (= det P, (s) det C(s)) that consists of unstable
eigenvalues is not the characteristic polynomial of this
multivariable system,

7 Conciusion

A new block-Routh array with the block-Routi aigorithm
has been developed to extract the greatest common matrix
polynomial of two matrix polynomials that are not
coprime, and to construct 2 block-fransformation matrix
that transforms a block-state equation from a block-
companion form to a block-tridiagonal form. The newly
developed block-state equations are the minimal realisations
of. matrix transfer functions. A driving-point impedance
matrix has been synthesised using the structure of multi-
port RC ladder network using the block-state-equation
approaches. As a result, the extension of synthesising
matrix transfer functions without using integrators is
possible. Finally, a stability criterion based on Lyapunov
theory has been derived for the test of the stability of a
class of matrix transfer functions,

Since we have claimed that the matrix results obtained
in this paper are new, it might be interesting to adjust our
results from the matrix cases to the scalar cases which are
not well known. For single-variable systems, we believe
that the simple transformation matrix, which transforms a
state equation from a scalar companion form to a scalar
tridiagonal form by directly using the elements in the
newly developed array, is new. Also, we believe that
the derived stability criterion for the transfer function
dy($)/dy(s) (in which d,(s) might have both stable real
and stable complex roots and d,(s) might not be the
derivative of d;(s)), is new.

On the other Land, in converting the known scalar results
to the matrix cases, the following simple fact should
be noticed: the product of two real symmetric, and
positive- (or negative-) definite matrices (which are often
considered as a natural generalisation of positive (or negative)
numbers?®), often results in a nonsymmetric matrix, and the
product of two nonsymmetric matrices may result in a
symmetric matrix. For example, the scalar elements d; ; in
the first column of the array which is the counterpart of
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the block-Routh array are positive (or negative) real values.
It is not always true that the block elements Dy, in the first
column of the block-Routh array must be symmetric and
positive- (or negative-) definite matrices unless the function
of interest is a special one. This can be verified from the
block elements Dy, in Example 2. The above facts imply
that the extension of the known scalar results to the matrix
results is not always straightforward.

Finally, it might be interesting to compare the advantages
and disadvantages of the present block-Routh array and the
matrix-Routh array,!* We observe that both arrays use
similar algorithms but different processes. Therefore, both
Routh arrays might have numerically.ill-conditioned cases,
Also, we observe that the process in the block-Routh array
is more complicated than that of the matrix-Routh array.
However, the simple and new block-transformation matrix
that transforms a block-state equation from a block-
companion form to a new block-tridiagonal form of a
matrix transfer function can be directly formulated from
the block-Routh array but not from the matrix-Routh
array. As a result, many applications to circuits and systems
have been developed from the new block-tridiagonal matrix
that consists of the block quotients obtained from the
block-Routh array. Furthermore, the structures of the
system matrix, input vector and output vector of the
controllable and observable state equations oblained from
the block-Routh array are simpler than those of the state
equations obtained from the matrix-Routh array. We
believe that more applications to circuits and systems can
be generated from the present dynamic state equations.

One shortcoming of the method presented is that no
precise criterion is offered to ensure the existence of the
block-Routh algorithm although some remedial methods
have been suggested to overcome the ill-conditioned cases.
When an ill-conditioned case occurs, other algorithms, for
example, the elementary operation method® and the Euler
continued fraction method,?” are more effective in obtaining
the greatest common matrix polynomial, determining
whether two matrix polynomials are coprime, and checking
the stability of a matrix polynomial.
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1)

6)

8)

Corrections to “Analysis and Synthesis of Matrix Transfer Functions
Using the New Block-State Equations in Block-Tridiagonal Forms."

L. S. Shieh and A. Tajvari
p. 19 (left-hand column)

The phrase in the 9th and 10th lines of section 1 should read: where y(t)

is an mx] output vector, r(t) is an mxl input vector, and xo(t) is an mx]
state vector.

p. 20
The block element (H2K3)'] in Gy in Eq. (8c) should read: (HZK])'1.

p. 23 (right-hand column)
Delete sentences from the 7th line to the 11th line.

p. 26 (right-hand column)

The sentence in the 7th 1ine from the bottom of the right-hand column
should read: Since P is positive definite and N; are assumed to be ima-
ginary matrices, v is positive definite.

p. 27 (left-hand column)

The sentence in the 8th column should read: It is noticed that N; are
imaginary matrices;

p. 27 (left-hand column)

The following should be inserted between the 21st and 20th lines from the
bottom of the lower left-hand column: An additiona: sufficient condition
is that, if both N; and M are real symmetric matrices and Gy in Eq. (19)
is a real symmetric negative definite matrix, then the system in Eq. (2)
is asymptotically stable. This sufficient condition can be verified from
the fact that all eigenvalues of a real, symmetric, negative-definite,
system matrix G, in Eq. (19) are negative real.

p. 27 {left-hand column)

A phrase is inserted in the 12th and 11th lines from the pottom to read:
and the pairs {HpiKp;j_1} are positive definite and the pairs {(Kos541H24
KZi_])'] 2} are imaginary matrices,

p. 27 (left-hand column)
A phrase is inserted in the 10th and 9th lines from the bottom to read:

all Ky and H; are positive definite and G, in Eq. (19) is a real symmetric

negative definite matrix,

p. 28 (ri;nt-hand column)

A phrase is inserted in the 4th and 3rd lines from the bottom to read:
M] and Mg are reii symmetric and G,<0 in _Eq. (19),

p. 30 (right-hand column)

A phrase is inserted in the 9th and 10th 1ines.to read: same sign, N]=N{;
and M] and M2 are real and symmetric and GZ<0 in Eq. (19),
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Computer-Aided Methods for Redesigning the Stabilized Pitch Control System

iy

of a Semi-Active Terminal Homing Missile

) 1
L. S. Shlehl, M. Datta-Barua™, k. F. Yates2 and J. P. D:eonardz.

ABSTRACT

An unstable pitch control system of a terminai homing missile was formerly
stabilized using a high order stabilization filter that was realized using active
! elements. A new dominant-data matching method is presented to redesign the high-

order stabilization filter for obtaining reduced-order filters. As a result, the
l implementation cost is reduced and the reliability increased. An algebraic method
l is also applied to improve the performance of the redesigned pitch control system.

In addition, the proposed dominant-data matching method can be applied to determine
l a reduced-order model of a high-order system. Unlike most existing model reduction
meinods, the reduced-order mode]l has the exact assigned frequency-domain specifica-

tions of the original system. Computer-aided design methods can also be applied

tc design general control systems.
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A Geometric Serjes Approach for Appreximation of

Transition Matrices in Quadratic Synthesis

Leang S. Shieh,l Willon B, Wai,l R. E. Yate32

Abstract

A geometric-series approach is used to approximate the exponentials of

Hamiltonian matrices for quadratic synthesis prob ~ms. The approximants of the
discretized transition matrices are then used to construct piecewise-constant
gains and piecewise-time varying gains for approximating a time-varying optimal
gain and a time-varying Kalman gain. The proposed method is more accurate and
computationally faster thar. those existing methods which use the Walsh function

approach and the block-pulse function approach.
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