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EFFECTIVE SHEAR MODULUS FOR FLEXURAL AND
EXTENSIONAL WAVES IN AN UNLOADED THICK PLATE

INTRODUCTION

The propagation of straight-crested waves in flat plates is an important acoustical
and mechanical problem. The simplest of such problems is that of a plate in vacuum,
where the plate thickness is small compared with the wavelength of a wave propagating
parallel to the faces of the plate. In this case the phase speed of two types of waves can
be readily derived, namely bending or flexural waves and extensional or quasi-longitudinal
waves. The theory explaining these waves is indicated by thin-plate theory or classical-
plate theory. On the other hand one also finds application of exact theory of elasticity
to plates without restriction to small thickness, which leads to the so-called Lamb waves.

The simplicity of thin-plate theory as compared with the greater complexity of exact
theory prompts one to look for corrections in those cases where thin-plate theory gives
unacceptable results. Specifically, at high frequencies (or greater thicknesses), the phase
speed of bending waves grows beyond bounds and the phase speed of extensional waves
stays constant. Thus neither speed approaches the value for Rayleigh surface waves, as
one might expect on physical grounds.

To remedy this situation, Mindlin [1] adapted the ideas of Timoshenko for propa-
gation along bars to the case of plates, namely the introduction of the effects of trans-
verse shear stress and rotatory inertia. In his development, Mindlin introduces an effec-
tive shear modulus to account for the difference between the simplified shear angle profile
profile and the actual one. The ensuing corrective factor is fixed in such a way that the
phase speed approaches the Rayleigh wave speed asymptotically for high frequencies.

Although Mindlin succeeds by this manner in devising a viable alternative to the
Lamb wave solution, without the drawbacks of thin-plate theory, there is a certain un-
satisfactory aspect to the determination of the correction factor in the sense that its
value is imposed from outside the theory proper. This has been mentioned by other
authors, for example Cremer et al. [2]. Cowper [3] also discusses various criticisms and
solutions for the similar issue in the case of bars. In applications of the Mindlin-Timo-
shenko plate theory, it is not always appreciated that the introduction and evaluation
of a correction factor depend on the physical circumstances of the problem, and the
factor is certainly not a universal constant. As an example, in a paper on wave propa-
gation in a plate loaded with an incompressible fluid layer (surface waves only), Walter
and Anderson [4] state that the pertinent correction factor is the root of the dispersion
relation for Rayleigh waves for a solid in vacuum. However, the dispersion relation for a
fluid-loaded plate is not the same as for a plate in vacuum.

This state of affairs prompted the question of whether it would be feasible to de-
sign a new method of determining the correction factor based on the way it is intro-
duced into the theory. Instead of choosing the factor in such a way that it reproduces the
Rayleigh wave speed at high frequency, as was done by Mindlin [1], this method should

Manuscript submitted April 2, 1980.
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display the proper frequency dependence of the factor in such a way that at high fre-
quencies the Rayleigh wave speed emerges automatically. Once a method of computation
is found for a correction factor operating properly for the simple case of a plate in
vacuum, it is expected that this same method can be applied to more complicated cases: i
plates loaded by a fluid, on one or both sides; composite plates, possibly with fluid '
loading.

Originally the emphasis in the analysis was placed on the case of antisymmetric
waves only, in connection with Timoshenko-Mindlin theory. It appears that these waves
are more often referred to in hydroacoustical applications than symmetric waves. When
a sound wave in a fluid impinges on a plate, both symmetric and antisymmetric waves
are induced and it is necessary to know how the acoustical energy is divided over the
two wave types in order to calculate the acoustic radiation, reflection, or absorption.
Therefore, while embarking on a new evaluation procedure for the correction factor in
the Timoshenko-Mindlin theory, it became clear that a similar procedure should be
applied to the extension of the theory for extensional waves to greater plate thichnesses "
(or higher frequencies). An analysis of this type, from a different viewpoint, however, was
performed by Kane and Mindlin [5]. Their discussion does not stress the basic analogy
between the antisymmetric and symmetric waves that is an important feature of the
present study. A previous example of considering Timoshenko-Mindlin and Kane-Mindlin
theories simultaneously is found in the article by Walter and Anderson [4], referred to
above. Their study is of limited direct value for hydroacoustics, since the fluid loading the
plate is assumed incompressible and, as a consequence, only surface waves are admitted.
These authors do not give an independent evaluation of the correction factors.

In the present study, the first section gives a short tutorial introduction to the sub-
ject of elasticity theory and Lamb waves. This is followed by a discussion of thin-plate
theory, with the explanation of flexural and extensional waves. The subsequent deriva-
tion of plate stress equations of motion is still mainly tutorial, but emphasizes the analogy 3
between antisymmetric and symmetric waves and their differences, based on the parity
of the field variables. This approach leads to a rationale for the two types of waves. The
section on thick-plate theory describes the work of Mindlin for antisymmetric waves and
a parallel treatment for the case of symmetric waves.

The comparison of the thick-plate equations of motion with the corresponding equa-
tions in exact elasticity theory leads to a method of calculating a correction factor for
shear modulus both in antisymmetric and symmetric waves. The resulting phase speeds
possess the property desired from a viewpoint of physical intuition, namely that they
asymptotically approach the phase speed of Rayleigh surface waves at high frequencies.
Detailed formulae for the field variables from elasticity theory are given in Appendix A.

It would appear logical to extend this same approach to a comparison of other ap-
proximate terms in the equations of thick-plate theory with those of elasticity theory
and to establish additional correction factors. Certain difficulties were encountered in
this development and because of the tentative character of this theory, it is discussed
in appendices B and C to the main body of the report. These other correction factors
are helpful in the identification of the second root in the quadratic dispersion relation
with the first mode in the antisymmetric and symmetric Lamb waves.
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In the vast literature on plate theory there are various articles and reports that
show an outward similarity to the work reported here. The distinction between those
papers and the present analysis may be difficult to appreciate. Therefore in Appendix
D, a discussion is presented of the relation of the work reported here to other work
in approximate plate theory.

THEORY OF ELASTICITY APPLIED TO WAVE PROPAGATION IN PLATES
Theory of Elasticity
The basic equations of elasticity theory are derived in various texts (see e.g. Timo-

shenko and Goodier [6]). The relationships between the elements of the stress tensor o
and the strain tensor € are given by

0,.= he + 2Ge, Oy = Geyy
oy=)\e+2Gey Oy = Gey, 1)
g, =Mke + 2Ge, O,x = Ge,y

where
A\ = first Lamé constant
G = shear modulus (= u second Lamé constant)

e =dilation =€, + €, +¢€,.
The elements of the strain tensor are given in terms of the displacement vector s of a

particle with components u, v, w by

_du o w
€x ™ 3x exy_ay+ax
L w

€y 3y eyz_az+8y (2)
and _8w _ 0w du
€273z  Cax Tox Tz
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The equations of motion in terms of the stress components are

do, N 00, N a0, , _ ) 9%u
dx dy 0z ot?
90y: ?El + aoyz = E)Z—u (3)
dx Jdy 0z ot?
and 30,, 004, 8& _ 3w

ox Jy 0z

where p is the density of the solid.

Like any vector field, the displacement field s can be represented as the sum of an
irrotational field 84 and a solenoidal field s; (Helmholtz representation). Therefore,

$ =855+ S (4)
where curl sy = 0 and div s, = 0. As a consequence, for the dilation,
e = div s = div sg; (5)

and for the rotational displacement,

§2 = curl s = curl s_. (6)
Waves related to the variations of s 4 are indicated by dilatational waves; those con-

nected with s_ are called shear waves. Only in media of infinite extent do these waves

occur in a pure form: in finite media the two types mix as a consequence of the boundary

conditions. In fluids only dilatational waves can occur. The terms longitudinal and trans-

verse, respectively, have to be used with caution; a dilatational wave is longitudinal only

if it is a plane wave, and a shear wave is transverse only if it is a plane wave.

The displacements in a dilatational wave can be derived from a scalar potential ¢,
where

sy = grad ¢, (7)
and the displacements in a shear wave can be derived from a vector potential ¥, where

s, = curl ¥. (8)

s

Whenever one has a 2-dimensional wave propagation, only one component of the
potential ¢ is nonzero. This component is indicated by .
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For the case of a dilatational wave the dilatation e, the displacement vector s, and
the potential J are all solutions to the differential equation

’)2
(A+2G) + ? ’e,s,d-} =p i;tz *e,s,q;*. (9)

Similarly for a shear wave, the relevant wave equation for the rotational displacement
2, the displacement s, and the vector potential ¢ is

az

G *{Qsul=p— sy} (10)

E At
Notice in the above that the symbolic operator %, when operating on a vector, is given
only by the Laplacian form
02 0?2 0?2
Pe—r—+ 11
dx?  ay?  9z? an
E for Cartesian coordinates. For curvilinear coordinates this operator should be interpreted
as
-2 = grad div - curl curl. (12)
The wave equations show that dilatational waves propagate with speed
cq = [\+26)/p1 %, (13)

where ¢, is the phase speed of dilatational waves. Also, shear waves propagate with speed
1
s = (GIp)", (14)
where ¢ is the phase speed of shear waves.

It may be pointed out here that in general the elastic properties of solids may be
represented by two independent constants for which, thus far, A and G have been used.
Another useful set is Young’s modulus E and Poisson’s ratio v. The following conversion
will be extensively used below. The shear modulus is given by

E
G o)

(15)

and the “stiffness modulus” by

p) +2(¥=——(‘——LE 1-v (16)
(1+v)(1-2v) -

AR Adid we
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Lamb Waves

Lamb waves refers to the 2-dimensional straight-crested plane waves in a homogeneous,
isotropic plate in the direction parallel to the faces of the plate (see Fig. 1 for the
geometry). Notice that the thickness of the plate equals 2d. Some authors use the symbol
h for the plate thickness, e.g., Mindlin [1].

F _d{i_ [ _4? Fig. 1 — Plate geometry
d X

The derivation of the theory of Lamb waves given below follows clo *he develop-
ment of Viktorov [7a].

The waves can be most advantageously expressed in terms of the potentials ¢ and
in the form

¢ = [A, cosh(g2) + B, sinh(qz)] expli(wt kx)] ]
17

(i

Y = [D, sinh(sz) + C, cosh(sz)] expl[i(wt kx)]

The wave propagation velocity ¢, the phase speed, equals w/k, where w is the angu- j
lar frequency, k is the wavenumber, and the symbols q and s are given by

q2

and (18)

-k} = k? {1-(c/cg)?}

2

s k%-k2 = k? il-(c/cs)z},

where k4 and ks are the dilatational and shear wave numbers, respedtively,

I

wlp/(A+2G)1 % = k(clcy)

kg
and (19) 1

ky = w(p/G)" = k(c/c,) .

The subscripts a and s in the amplitudes A,, B,, D, and C, refer to the two possible
types of Lamb waves, antisymmetric and symmetric, These terms indicate the symmetry
character of the cross section of the plate (sec Fig. 2). Parity of the displacement func-
tions u and w with respect to the z coordinate is different for the two types: in anti-
symmetric waves u is odd and w is even, whereas in symmetric waves u is even and w

is odd. The displacement components are derived from the potentials by
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_% oy
W= ax "oz
and (20)
09 Ay
W=% " ax

SYMMETRIC

Fig. 2 — Lamb waves

The amplitudes are related through the boundary conditions, which are the values
for the normal and shear stresses applied at the two faces of the plate. These stresses are
found in terms of the amplitudes by means of Eqs. (1) and (2). This leads to the follow-
ing set of expressions for the stresses, using the definitions of Eq. (18);

0, = G{As(k2+sz)cosh(qz) + B, (k*+s?)sinh(qz)
- C, 2iks sinh(sz) - D, 2iks cosh(sz)}
(21)
0,5 = -GJA, 2ikq sinh(qz) + B, 2ikq cosh(qz)

+ C, (k*+s%)cosh(sz) + Dy (k*+s)sinh(sz)}.

The applied stresses for a plate in vacuum are zero. In that case the antisymmetric and
symmetric waves independently satisfy the zero boundary conditions, and thus

B, (k%+s?)sinh(qd) - C, 2iks sinh(sd) = 0
B, 2ikq cosh(qd) + Cq(k?*+s*)cosh(sd) = 0
A, (R*+s?)cosh(qd) - D 2iks cosh(sd) = 0

and (22)

A4 2ikq sinh(gd) + D,(k*+s?)sinh(sd) = 0.

7
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By elimination of the amplitudes from these equations, one arrives at the dispersion
relations

(k2+s%)? sinh(gd)cosh(sd) - 4k*gs cosh{gd)sinh(sd) = 0

for antisymmetric waves and
(k2+s%)% cosh(gd)sinh(sd) - 4k*gs sinh(gd)cosh(sd) = 0 (24)

for symmetric waves. At large values of kd both dispersion relationships approach the
same relation,

4k2qs - (k2+s%)? =0, (25)

which is the dispersion relation for Rayleigh waves defined as waves at the surface of a
semi-infinite solid. This is understandable since, for a plate thickness that is large com-
pared with the wavelength, the Lamb wave separates into two independent surface

waves. The Rayleigh wave corresponds to the root of Eq. (25) for which the ratio c/c,

lies between 0 and 1. A good approximation for this root is the expression (Viktorov (7b})

£ 087+112%

Cy 1+vp

(26)

This ratio varies from 0.87 to 0.95 when Poisson’s ratio v varies from 0 to 0.5.

For a fixed value of the thickness 2d and the frequency f, the dispersion relations for
Lamb waves have a finite number of real roots, corresponding to a finite number of
modes of propagation in the direction of the plate. There are infinite purely imaginary
roots that correspond to waves perpendicular to the faces of the plate and that decay or
increase exponentially parallel to the faces of the plate. Figures 3 and 4 show the dimen-
sionless wave speed c/c, as a function of the dimensionless wavenumber k.d for the
zero-order antisymmetric and symmetric Lamb waves, respectively.

10 ]
o8
06f
c/cg
04}
02
_ 1 1 | 1 1 e —i A.,‘J
o] | 2 3 4 5 6 7 8
kgd

Fig. 3 — Dispersion curve for zero-order antisymmetric Lamb wave,
with ¥ = 0.355 and v = 0.936

8
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0 - 1 S G S U TR SO IR
[ 2 3 4 5 6 7
kgd

Fig. 4 — Dispersion curve for zero-order symmetric Lamb wave, with
v = 0.355 and Tr= 0.936

APPROXIMATE THEORIES FOR WAVE PROPAGATION IN PLATES

Application of the theory of elasticity to wave propagation in plates leads to rather
complex expressions, expecially when composite plates and fluid loading of plates are
studied. Therefore, one attempts to build a simpler theory that makes use of the fact that
in plates one dimension is much smaller than the other two.

For the case where the dimensionless wavenumber kd is small, this theory ex-
plains the occurrence of two types of wave motions, flexural/bending waves and exten-
sional waves. These two types correspond to the antisymmetric waves and symmetric
waves, respectively, in elastic theory. The phase speed of bending waves is proportional
to kd, and the phase speed of extensional waves is constant. Thus, in neither case does
the functional dependence on kd correctly represent the behavior of the phase speed at
larger kd, since it is plausible on physical grounds that the phase speed of each type ap-
proaches the phase speed of Ravleigh surface waves. To correct this flaw of the thin-
plate theory, an extension of the theory has been developed indicated below by the term
thick-plate theory.

Mathematically, both thin-plate and thick-plate theories can be comprehensively
represented by the following series expansion of the displacement components in terms
of the coordinate 2 to the first order (Walter and Anderson [4]):

u(x,y,2,t) = Ulx,y,t) + 2¢,.(x,y,1)

v(x,y,2,t) = V(x,y,t) + 20, (x.y.t) (27)

wix,y,z,t)= W(x,y,t) +2x(x,y.t).
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The functions ¢, and ¢ have the character of angular rotations; the function x
represents a displacement per unit thickness.

Thin-plate theory follows by further restrictions on the functions ¢_, ¢y, and x — 1
restrictions that are discarded in the case of thick-plate theory. In genera’] the same func-
tion symbols will be used for time-dependent and time-independent functions, since the
dependence on time is assumed to be only in exponential form. Thus, for example, the
time-dependent displacement u(x,v.z,t) is alternatively expressed as u(x,y,z) exp(iwt).
Thin-Plate Theory: Bending (Flexural) Waves

Bending or flexural waves correspond to the antisymmetric Lamb waves. They are

mathematically represented by the part of the expansion Eq. (27) for which u and v are
odd functions of z and for which w is an even function of z. Thus,

u(x,y,z.t) = z ¢x(x,y,t)
v(x,y.2,t) = z ¢, (x.y.0) (28)

and

w(x,v,z,t) = W(x,y,t).

One might surmise that bending waves are predominantly governed by shear forces,
but the opposite is ture: the major elastic force is due to compressions and extensions,
as in the case for extensional waves. The difference with extensional waves is that here
the compression of a particle above the neutral plane is accompanied by an extension
of a particle below the neutral plane, and vice versa. The thin-plate approximation
emphatically excludes shear forces by making the assumption that €, y and €, are
zero, and thus the functions ¢, and ¢y are related to the function W by the equations

L4
¢ = ~ox
and (29)
_ v
¢y = Tay

Geometrically, this means that cross sections originally perpendicular to the neutral
beam will stay perpendicular to the neutral plane (see Fig. 5).

10
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e ST
by [ .
[ ‘\l ] } 4+ — Fig. 5 — Thin-plate bending wave
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AT

In thin-plate theory it is assumed for both types of waves that zero normal stress
on the faces of the plate implies that 0,(x,y,2,t) = 0. Equation (1) shows that if g, is
to be equal to zero, then one has (A+2G )ez + )\(ex+e ) equal to zero. Eliminating €

. . . y . . 2
between this expression and the expression for o, and o y in Eq. (1) results in

x = 17 (e, +v ey)

and (30)

+
% T 1w (& &)

4GO+G) E
AN+2G  1-v

with the substitutions =p.

A
7 and 53726)

An essential feature of approximate plate theory is that the equations of motion
(Eq. (3)) are integrated in the z direction, perpendicular to the faces of the plate. De-
pending on the parity of the displacement functions u, w with respect to the z coor-
dinate, some expressions of the set (Eq. (3)) become identically zero upon integration.
This explains the different way in which the modulus E/(1-v?) of Eq. (30) appears in
bending waves as compared with extensional waves. The stress 0, has odd parity with
respect to z for bending waves, and as a consequence its integral over the plate thick-
ness 18 equal to zero. Its role 1s taken over by the moment of the stress, leading to the
integral f_zd zoxdz. With the first of the definitions (Eq. (2)), the first expression in
Eq. (30), and the value for u from Eq. (28), this integral produces a “bending stiffness”
D given by

2Ed?
b= 3107 (31)

Another consequence of the introduction of moments, due to the parity of the rele-
vant functions, is that the wave equation for nending waves is not of second order but
rather fourth order, and is given by

11
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.4 W
D P = 2pd ? , (32)

where the function W can be replaced by any of the other field variables. (For a complete
derivation see, for instance, Cremer et al. [2b].) By inserting a traveling wave expression
for W into Eq. (32), one finds that bending waves are dispersive, with a dispersion relation
for the wave speed c,,

o2 = E(kd)® (33)

b 3p(1-?)
Thin-Plate Theory: Extensional Waves
Extensional waves correspond to symmetric Lamb waves. They are represented by
the part of the expansion (Eq. (27)) for which u, v are even functions of z and for which
w is an odd function of z. Thus,
u(x,y,z,t) = Ux,y,t)
u(x,y,2,t) = V(x,,t) (34)

and

w(x,y,2,t) = zx(x.y,t).

In the case of antisymmetric waves the assumption that the shear stress o, is zero leads
to the relations of Eq. (29) among the various functions. The analogous path for sym-
metric waves leads from the assumption that the normal stress o, is zero to a relation
between x, U, and W by using the expression for o, in Eq. (1), namely

1 av)
= - Rl 3
x A+2G (ax dy (35)

The relationships of Eq. (30) between stresses and strains in the x and v directions are also
valid here. Since the parity of o  in the coordinate z is even, the stress integral o dz ap-
pears in the equations, unlike the case of bending waves where the moment of stress is
needed. Thus the modulus E/(1-p?) in Eq. (30) determines the wave propagation, the

wave equation is of second order, and the phase speed for extensional waves p is inde-
pendent of wavelength. It is given by

E
c? = )
P p(1-v?)

Pictorially the waves display flat cross sections moving to and fro in unison, as
sketched in Fig. 6.

12
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Fig. 6 — Thin-plate extensional wave

PLATE STRESS EQUATIONS OF MOTION

The development of approximate theories for wave propagation in plates is effected
mathematically by integrating the equations of motion (Eq. (3)). This was mentioned be-
fore in connection with the discussion of thin-plate theory. In this section the derivation
of the integrated equations is given explicitly, to serve as a basis for the understanding of
the existing thick-plate theories and to give the background for evaluation of correction
factors in these theories. These integrated equations are often called plate stress equations.
Such an integrated set of equations does not by itself constitute a new theory or a sim-
plification. Approximate expressions for the basic variables as given in Egs. (27) and
possible further restrictions are discussed in connection with the thin-plate theories are
needed to make the mathematics more tractable.

Like any function, the displacement functions u, v, w may be written as a sum of
an odd and an even part with respect to the coordinate 2. Antisymmetric waves have odd
u, v and even w; symmetric waves have even u, v and odd w. The parity of the deriva-
tives of the stresses in Eq. (3), in view of Egs. {1) and (2), is such that upon integra-
tion across the thickness direction of the plate the first two equations contain functions
belonging only to the antisymmetric type, whereas the third contains functions belonging
only to the symmetric type. To obtain a complete set of equations for either case re-
quires forming integrated equations from the moment relationships, which follow from
Eq. (3) by multiplying every equation by 2. Thus two independent sets of equations are
derived (one for each type of wave), as is shown more extensively below. If one assumes
that the plate is not subject to external normal and shear stresses, the two types of waves
can occur independently. Nonhomogeneous boundary conditions cause a mixture of the
two types of waves. In this report only homogeneous boundary conditions are assumed.

For antisymmetric waves the moments are readily interpreted as torques of the
stresses and angular momenta of the displacements. Such an identification is not obvious
in the case of symmetric waves, and the moments appear only as mathematical moments
in the 2 variable of the various functions.

Antisymmetric Waves

In this case the parity of the functions w, o and o__ are even in z while u, v,

xz’

L4
0,,0,,and o__ are odd in z. Therefore, the pertinent plat'x: stress equations are those
where one takes the moment equation following from the first two parts of Eq. (3) and
the force equation following from the third part of Eq. (3). As a result, one finds that
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oM_ oM 'L :

X XY = x
% oy TP 5p
oM oM %L
ik LIS 2 = — 37
P rall S o @7
and
2
2Q, R aQy b a T,
ax  dy az ' {
where one introduces two bending moments Mx, M_, one twisting moment M__, two J

transverse shear forces Q_, Qy, one integrated vertical displacement T,, and two moments
of displacement L, Ly. These symbols are defined by the expressions

f +d +d
20 dz M f 20, dz
X -d x Yy -d Yy

+d
s = My = /; 20,,,dz;

X
L}

=
"

(38)

2]
®
it
S
NQ s‘
®
3
D
<
[}
&~
120 aQ
&

+d +d
. f zudz y

h
]

b~
]

and

Symmetric Waves

In this case the parity of the functions with respect to z is u, v, 0,, 0,, 0,, 0, even
and w, 0., 0, odd. Therefore the pertinent plate stress equations are those obtained by
the direct integration of the first two parts of Eq. (3) and from the moment equation
connected with the third part of Eq. (3). One finds that

14
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W, Wy P,
dx dy at?
2
Ny, O
ox dy at?
and
2
R, SRy 0L,
ax 3y z at?

(39)

in terms of three normal stress integrals Nx, Ny, Nz, one shear stress integral N, and

two shear stress moments R_, R_. Further, one needs two integrated displacements

T, Ty and one displacement moment L, :

+d

2,
[

2z
i

2,
"

ol
]

+d
Tx = f udz Ty f vdz;
-d -d

and

t~
]

+d
2 f zwdz.
~d

THICK-PLATE THEORY

+d
o . dz f 0,dz;
y L, 4
+d +d
. f zo,,dz R, f z0,, dz;
~d -d

+d
« f o,dz N, f 0, dz
-d -d

+d

+d

140

The set of integrated Egs. (37) and (39) for wave propagation in a plate, with the
definitions of Eqs. (38) and (40), do not constitute by themselves a simplification of the
problem. Only if one makes assumptions concerning the displacement components u, v, w

15
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that are plausible for a plate can one reduce these integrated equations to a form that is
readily solved. Such simplifying assumptions were already given in Eq. (27). Thin-plate
theory is characterized by further restrictions relating the functions ¢, 9, xto U, vV,

W in Egs. (29) and (35). Models of wave propagation in plates based on &e linear ex-
pansion of u, v, w in terms of 2z, Eq. (27), without further restrictions, are indicated by
thick-plate theory. Of course it is quite conceivable that one would try to retain terms of
higher order than the first in the series expansion of u, v, w to improve the accuracy of
the approximation. Such higher order models have so far not come to the attention of
the author (see also Appendix C).

Timoshenko-Mindlin Plate Theory

The dispersion relation for antisymmetric waves in thin plates, Eq. (33), has an un-
realistic property in the sense that the phase speed increases beyond bounds as kd becomes
very large, i.e., when the wavelength becomes small compared with the plate thickness.
The reason for this is that the entire plate cross section in the thin-plate model is sup-
posed to partake in a bending motion. As a consequence, the bending stiffness D in
Eq. (31) is proportional to the third power of the plate thickness. The plate becomes so
rigid when d increases that a disturbance is propagated instantaneously, which makes this
model not acceptable on physical grounds.

Timoshenko found a means of circumventing a similar nonphysical behavior of the
phas» speed in the case of bars. The same basic idea of Timoshenko was applied to plates
by Mindlin [1]. Physically, this idea amounts to restoring rotatory inertia to its role in
the wave propagation in the plate and to dropping the requirement that cross sections
originally perpendicular to the neutral plane remain so during bending. Both effects,
rotatory inertia and shear strain, were ignored in the derivation of bending waves in a
thin plate. Mathematically the proper equations are obtained by inserting the set of
Eq. (28) into the force, moment, and displacement integrals without the restrictions of
Eq. (29). This, with Eq. (30), results in

3¢, a¢y) (a¢ a¢)
= _x -5 M =D Y+ x1-
M, D(ax”ay y oy ey
3
y = 264 ( 39, +a¢y);
xy 3 dy  ox
- 4 aW - ' aW .
o, ~20a(fes) -2 (eo,); (41)
_ 2d® _ 2d®
Le = 3% Ly = 5%
and
T, = 2dW.
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The symbol ;" plays the role of an “effective shear modulus’ and accounts for the fact
that the linear expansion in 2 of the u, w functions is only an approximation. Without

its introduction the dispersion relation, although bounded, would not approach a value

plausible in the light of exact elasticity theory, namely the Rayleigh wave speed ¢, If

one writes

G'=KiG, (12)
the effective shear modulus is represented by a.dimensionless constant «, .
Further development of the Timoshenko-Mindlin theory consists in making the in-

sertion of Eq. (41) into Eq. (37), differentiating the first equation of Eqgs. (37) with respect
to x and the second with respect to v, and then adding the results (see Ref. 8 for detailsy.

. : g, 0o,
There results two equations in the quantities ¢ = -)—i + a—z‘— and W
ax ¥

3 a2
D - 23 Gdd - 2IGd AW = 3”3—"—%}

and (43)

2
UIGd[ 2W + d] = 2od Q,)t—gv .
C

By assuming a wave solution for & and W of the form expli(wt-kx}}, one finds the
dispersion relationship

1,s 2 _ 1 a2 22 22
;{;(Ld)zc '3(l‘d) czp ;\fcs K
i . =0. (49)
xfcz AN
which can be written as
1 202 2y 2 2y = 2.2 :
3 (kd)*(y* - 7,)(v -Ky) = KiY. (15)

The symbol v is used for the ratio c/c . The subscripts for ¥ follow the subscripts for
the phase speed c.

This equation is quadratic in the variable ¥?. The smaller root can be identified

with the zero-order Lamb wave. At low frequencies (i.e., kd close to zero) this root gives
a dispersion relationship

Y =—;‘(kd)’7,’,. or ¢ =cy, (46)

17
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which is the dispersion relation for bending waves in a thin plate (Eq. (33)), as one would
expect. This same root has a horizontal asymptote given by

¥? = xi. (47)

This result offers Mindlin the means to fix the value of k3, since it is physically plausible
that the thick-plate phase velocity would approach the phase velocity of Rayleigh waves,
which are waves occurring at the surface of a semi-infinite solid. This choice of k% does
not reproduce the fact that this correction factor should be frequency dependent. As a
consequence, it might be expected that the dispersion relation with this value of x? will
not be very close to the exact relation (Eq. (23)) at intermediate frequencies; but, indeed,
the agreement is quite good (see Tables 1—3).

Table 1 — Dispersion Relation for Antisymmetric
Waves According to Various Theories

kd v, I* v, 1t v, HIF
0.3 | 0.2319 0.2384 0.2387
0.9 | 0.5544 0.5449 0.5478
2.3 | 0.7963 0.7696 0.7766
39 | 0.8607 0.8294 0.8388
59 | 0.8795 0.8517 0.8626
75 | 0.8827 0.8602 0.8703
8.7 | 0.8834 0.8648 0.8737
10.1 0.8836 0.8690 0.8762

*] — Exact theory.
1-[1 — Thick-plate correction factor proposed in this

report.

HI — Thick-plate correction factor proposed by
Mindlin [1].

Note: v = 0.05
TR = 0.8837
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Table 2 — Dispersion Relation for Antisymmetric

Waves According to Various Theories

kd v, I* vy, 1t vy, 11
0.3 0.2721 0.2751 0.2763
0.7 0.5338 0.5245 0.5322
1.1 0.6801 0.6614 0.6758
1.5 | 0.7643 0.7384 0.7575
25 | 0.8602 0.8256 0.8496
45 | 09122 0.8773 0.9003
6.5 | 0.9240 0.8948 0.9142
85 | 0.9269 0.9041 0.9197
10.1 0.9276 0.9091 0.9220

*]  — Exact theory.

1‘[1 — Thick-plate correction factor proposed in this

report.

tlll — Thick-plate correction factor proposed by

Miadlin {1].

Note: v = 0.3028
Yp = 0.9278
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Table 3 — Dispersion Relation for Antisymmetric
Waves According to Various Theories

kd v, I* v, It v, 1r¥
0.3 0.4827 0.3196 0.3222
0.5 0.5998 0.4759 0.4841
0.9 0.7424 0.6642 0.6854
1.3 0.8180 0.7589 0.7893
1.9 0.8771 0.8279 0.8654
2.5 0.9064 0.8619 0.9016
3.3 0.9269 0.8866 0.9256
4.3 0.9397 0.9040 0.9400
5.3 0.9465 0.9147 0.9474
6.9 0.9517 0.9254 0.9533
8.9 0.9541 0.9332 0.9570
9.9 0.9546 0.9360 0.9580

*I — Exact theory.

Tll — Thick-Plate correction factor proposed by this
report.

*III — Thick-Plate correction factor proposed by
Mindlin {1].

Note: v =05
Y = 0.9553

Mindlin [1] does not consider the larger root of Eq. (45). In the section on gen-
eralized correction factors it is shown that this root can be identified with the first-order
mode in antisymmetric Lamb waves.

Symmetric Waves in Thick Plates

Although the symmetric waves in a thin plate do not have the singularity for kd = 0
of the bending waves, the constant phase speed c,, given by
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does not lead to the expected asymptotic behavior, for high frequencies, namely the
Rayleigh wave speed. This suggests that a correction should be developed for symmetric
waves in a thin plate parallel to the correction introduced by Mindlin for antisymmetric
waves in a thin plate.

Such an effort was indeed carried out by Kane and Mindlin [2] but from a dif-
ferent standpoint. The authors point out in their paper that, on the basis of thin-plate
theory, the characteristic vibrations of a finite plate are determined by the lateral dimen-
sions of the plate. If the diameter of a circular plate becomes small compared with the
thickness, the thin-plate theory does not give the proper low-frequency modes, and one
has to introduce thickness vibrations in order to obtain realistic values for the lowest
modes of vibration. This is a different line of inquiry than the one followed in this study,
where the mechanism of a thin-plate wave is considered in the transition from a true
volume phenomenon toward the surface waves of Rayleigh. Therefore a further discus-
sion of the Kane-Mindlin method will not be offered here. Instead, a development analo-
gous to the one above for the Timoshenko-Mindlin theory will be presented, leading to
the formulation of another effective shear modulus — in this case for symmetric waves
in a thick plate.

One is guided to this formulation by the parallel case of antisymmetric waves, as
developed in the section on Timoshenko-Mindlin plate theory. One enters the series
expansion (Eq. (34)) for the displacement components in terms of the coordinate z into
the integrals in Egs. (40) that represent integrals of stresses, moments of stresses, and
components of displacement. Of course, the thin-plate approximation (Eq. (35)) is not
applied here. The stress components are expressed in terms of derivatives of displace-
ment components by means of Egs. (1). The result is a set of equations parallel to
Eqgs. (41) for antisymmetric waves:

3U ., [N\ [V
N, = 2d(+26) |2 3
, x =20 )[ax+(7\+2c)(ay+x)]

w2+ () |
dy

A+2G ) \ox
A U . oV
N_ = 2d(A+2G + — 49
. = 24 )[x (x+2a) (ax ay” (49)
oU oV
N = —_—r——
xy ZdG(ay ox )
Z ' ax 2 " ax
R = Z24d3G"=2; R = Z4d3¢"-2
x 3 Ix y 3 dy
L, = 2d%; T = 2dU; T, = 2dV
z 3 X x ! y )
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In searching for a correction to extensional waves in thin plates, one would be inclined
to follow the successful example of the introduction of transverse shear and rotatory
inertia by Mindlin for antisymmetric waves, although admittedly the latter factor had
much less influence on the dispersion relation than the former. The major improvement
proposed by Mindlin is the introduction of an effective shear modulus G’ in the shear
stress integrals @, and Q. The corresponding integrals in symmetric waves are integrals
of moments of shear stress, R, and R_. It appears plausible to assume that a similar
improvement would result from introgucing another effective shear modulus G*' for
symmetric waves in the expression of these integrals, as is shown in Eq. (49). The fol-
lowing analysis shows the validity of this choice. A nondimensional correction factor is
introduced to represent this effective modulus by

G = K3G. (50)

Equations (49) and (50) are inserted into the equations of motion (Egs. (39)). If one
diff~ventiates the first equation of motion with respect to x, and the second with respect
to ¥, and adds the resulting equations, one obtains

L
32’

A+260)92 ¥ + Avix =p (51)

and the third equation of motion becomes

2
A +LidGa oty - (20 = Apd? X (52)

oU , 0V
here ¥ = —+——
where ox 9dy

Assuming that ¥ and x are represented by a straight-crested wave in the form
expli(wt-kx)], one obtains the dispersion relation

A+2G-pc? A
. ) = 0. (53)
A —3'K§G(kd)2 -'é’(pc2 Wkd)? + X + 2C

If one introduces the various wave speeds corresponding to the elastic moduli in this
equation and represents the wave speeds in dimensionless form by y = c/c,, then the
dispersion relation appears in the alternative form,

15 -7 AL - 2
= 0. (54)

e

73 -2 ch(kd)? —3v* (hd)? + 7}

3
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This dispersion relation is quadratic in the variable 42, as in the case of antisymmetric
waves. The smaller root can be identified with the zero-order symmetric Lamb wave.
At low frequencies (i.e., kd close to zero), this root gives for the dimensionless wave-
number

Y =4 =10 = 7). (55)

This is the phase speed for extensional waves, as derived in the theory of symmetric
waves in thin plates. This same root has a horizontal asymptote, given by

¥? = k3. (56)

Thus by a proper choice or definition of x, (as discussed below), one can ensure
that the phase speed in thick-plate theory (for symmetric waves) also approaches the
phase speed of Rayleigh waves. One sees, therefore, that the factor k, plays a similar
role in fitting the high-frequency end of the dispersion relation for symmetric waves, as
the factor k, did in the case of antisymmetric waves. Both are correction factors to the
shear modulus G.

dJust as in the case of antisymmetric waves, one can identify the second roo! of the
dispersion relation (Eq. (54)) with the first-order mode of symmetric Lamb waves. This
is discussed more extensively below.
EFFECTIVE SHEAR MODULUS IN ANTISYMMETRIC WAVES

The coefficient k? defining the effective shear modulus with respect to the actual
shear modulus in antisymmetric waves (Eq. (42)) was fixed by Mindlin [1] at a constant
value such that the phase speed asymptotically approaches the Rayleigh wave speed.

It is possible to derive the value of k? directly from theory by comparing the ex-

pression for the transverse shear force @, from the plate stress equations (Egs. (37) and
(38)) by utilizing Eq. (1),

+d
Q, = Gfezxdz, (57)

with the corresponding expression in the thick-plate equations (Eq. (41)) and using
Eq. (42),

W
Q, = 24} Gd(—g + ¢x). (58)

This shows that the correction factor x? should be defined by
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e (59)

The numerator in this definition can be obtained from exact elasticity theory. The de-
nominator contains the quantities that are the field variables in thick-plate theories. To
relate them to the exact theory, consider the defining equations (Eq. (28))

u(x,z,t) =z¢x(x,t)

and (60)

n

w(x,z,t) Wi(x,t).

It follows that the derivative of the vertical average displacement is given as

d
ow _1 ow
_—= —dz. 61
ox d_[ axdz (1)

The angle ¢_ is the average angle of rotation of a plate cross section. It appears plausible
to relate this average angle to the displacement component u from elasticity theory

through the expression
1 d
_ u
O _27/ - dz, (62)

This choice for ¢_ leads to the desired asymptotic behavior of the phase speed.
X

The detailed formulae for the quantities in the Egs. (59), (61), and (62), in terms
of the parameters of the Lamb waves, are given in Appendix A. From Eqgs. (A8), (A9),
and (A10) one can infer the asymptotic values for the parts of Eq. (59), considering
that for large argument the hyperbolic functions approach the exponential function.
Since for x»o, the hyperbolic integral, shi(x), defined as shi(x) = fg sinh(¢)/tdt, ap-
proaches the limit exp (x/x) (see Ref. 9), the value of ¢, in the denominator of Eq. (59)
can be ignored in comparison with the value of 3W/dx, in the high-frequency limit.

Then for kd—ce, one has
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d 242
1/ (C (R* +s%(s-q)
el € _dz — L PRI . i d 63
d A zx 42 s exp(sd) (63)
and
1 daw C,\ (k¥s-2k%g+s3)
1 x) z (—q-dz) 205 exp(sd). (64) i

As a consequence, the asymptotic value of the correction factor k? is given by

2, 2(s=q)(k?+s?)
ks + % - 2k%q

for kd — oo. (65)

On the other hand, the dispersion relation for Rayleigh waves derived in exact
elasticity theory, Eq. (25), can be transformed into the form

2s-q)(k* +s%) _ k*-§?
ks +s° - 2kiq K2 (66)

by algebraic manipulation. Since (k?-s?)/k? = 4? and the value of ¥? for Rayleigh waves
is the relative phase speed 7}’2, one see< by comparing Egs. (65) and (66) that in the limit
of high frequency,

k} = 7p, for (kd) — oo. (67)

This is exactly the proper high-frequency behavior of the correction factor. Here, how-
ever, the required high-frequency behavior is not imposed as in the Timoshenko-Mindlin
theory, but follows naturally from the definition of «? as given by Eq. (59), in terms
of results from exact elasticity theory.

The results of calculating the correction factor k, according to Egs. (59), (61), and
(62) are presented in Fig. 7. Three values of Poisson’s ratio were chosen to show the
variation of k, as a function of this parameter. The asymptotic value, equal to the
relative Rayleigh wave speed vp, is indicated by an arrow.

One can calculate the relative wave speed in the thick-plate approximation as a
function of the relative wavenumber kd from Eq. (45). If one chooses the constant value
K; = v proposed by Mindlin, the result is quite close to the exact dispersion relation,
Eq. (23). If one chooses for the correction factor k, in the dispersion relation, Eq. (45),
the frequency-dependent values from Fig. 7, the agreement with exact theory is less
favorable, except in a few cases. This comparison is shown in Tables 1, 2, and 3.
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Fig. 7 — Correction factor kK, for effective shear modulus in antisymmetric waves; (1) v = 0.05,
(2) v = 0.3028, (3) ¥ = 0.5. The arrow > indicates the asymptote.

EFFECTIVE SHEAR MODULUS IN SYMMETRIC WAVES

It is possible to derive an expression for the effective shear modulus in symmetric
waves in a way similar to the case of antisymmetric waves. Compare the expression for
the stress moment integral Rx as given in Eq. (40), utilizing Eq. (1),

d

R, = 2Gf ze,,.dz, (68)
0

with its expression as given in thick-plate theory, Eq. (49), utilizing Eq. (50),

=—§-d3K§Ga—X. (69)

R ox

X

This shows that the correction factor k3 should be defined by
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(70)
L (8_x
( 3 ) dx )
The numerator in this definition can be obtained directly from exact elasticity
theory. The denominator contains the variable x from thick-plate theory. To relate this
quantity to the exact theory, consider the defining Eqgs. (34),

u(x,z,t) = J(x,t)

and (71)

w(x,z,t) = zx{(x,t).

There are several ways to define the displacement coefficient x. The choice

d
ox _ 3 Jw
ax_ﬂz(ax)dz (72)
0

appears plausible and, moreover, leads to the desired asymptotic behavior of the wave
speed.

The detailed formulae for the quantities in Eqgs. (70) and (72), in terms of the
parameters of the Lamb waves, are given in Appendix A.

The numerator of Eq. (70) is given by Eq. (A19); and the denominator, as further
defined by Eq. (72), is given by Eq. (A20). Equations {A19) and (A20) are obtained by
integration by parts and, as a consequence, contain two parts such that the second part ts
smaller by one order in kd than the first part. Therefore, the second part is negligible
in romparison with the first part in the limit of large kd. Since, moreover, the hyperbohe
functions approach the exponential function for large kd, one sees that these first parts
become equal to the formulae (Egs. (A8) and (A9)) for antisymmetric waves, respectively.
Thus, the proof given before for the asymptotic value of the correction factor in antisym-
metric waves is the same for the correction factor in symmetric waves. This means that also
in the latter case k3 approaches the desired value 7‘,’{ for kd — = However, the behavior
of k} for intermediate and lower kd is unsatisfactory, in the sense that it does not stay
positive. This difference in behavior as compared with the case of antisymmetric waves
is due to the factors (kd)® + (sd)’ and (sd)’. The dispersion relation for symmetric waves
is such that these factors become negative for low values of kd. The conclusion, there
fore, has to be that the definition of ki according to Eq. (70) combined with Eq. (72)
does provide the correct high-frequency value, but it cannot be used for lower frequencies.
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Efforts to improve this situation should be considered against the background of general-
ized correction factors. This is discussed in Appendix B.

The dispersion relation according to thick-plate theory for symmetric waves, Eq. (54),
was computed using a constant value for k equal to yp5. The results are given in Tables
4, 5, and 6 and are compared with the dispersion relation for symmetric Lamb waves,
Eq. (24). One can observe that the agreement is not as good as the corresponding case
of antisymmetric waves, Tables 1 through 3.

Table 4 — Dispersion Relation for
Symmetric Waves According to
Various Theories

kd I* ut
0.1 1.4509 1.4509
0.5 1.4507 1.4508
0.9 1.4501 1.4505
1.3 1.4473 1.4499
1.7 1.3413 1.4479
2.1 1.1569 1.4347
2.5 1.0504 1.3329
2.9 0.9878 1.2340
3.3 0.9500 1.1653
3.7 0.9265 1.1138
4.5 0.9023 1.0449
5.7 0.8893 0.9873
6.9 0.8855 0.9557
8.1 0.8843 0.9365
9.7 0.8838 0.9208
13.3 — 0.9036
16.5 - 0.8967
19.7 — 0.8928

*] — Exact theory.

'rll — Thick-plate theory, a« ~ording to
this report, with constant factor

Ky = 7"'
Note: v = 0.05
Y, = 0.8837
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Table 5 — Dispersion Relation for
Symmetric Waves According to

Various Theories

kd I* /4l
0.1 1.6887 1.6933
0.5 1.6626 1.6841
0.9 1.5932 1.6601
1.3 1.4460 1.6158
1.7 1.2750 1.5465
2.1 1.1507 1.4586
2.5 1.0717 1.3698
2.9 1.0222 1.2928
3.3 0.9909 1.2305
3.7 0.9707 1.1810
4.5 0.9485 1.1106
5.7 0.9353 1.0480
6.9 0.9307 1.0124
8.1 0.9290 0.9904
9.7 0.9282 0.9722

13.3 - 0.9519

16.5 - 0.9437

19.7 — 0.9391

*] — Exact theory.
1'II — Thick-plate theory, according to

Note:

this report, with constant correction

factor Kk, = g

v =0.3028
Tp= 0.8278
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Table 6 — Dispersion Relation for
Symmetric Waves According to
Various Theories

kd I* il
0.0 - 2.0000
0.4 1.9467 1.9607
0.8 1.8017 1.8600
1.2 1.5986 1.7329
1.6 1.4012 1.6077
2.0 1.2519 1.4978
2.4 1.1519 1.4067
2.8 1.0872 1.3330
3.2 1.0455 1.2738
3.6 1.0181 1.2264
4.4 0.9874 1.1570
5.6 0.9683 1.0930
6.8 0.9610 1.0552
8.0 0.9579 1.0314
9.6 0.9563 1.0115
13.2 — 0.9799
16.4 —~ 0.9747
19.6 - 0.9747

*] — Exact theory.
1'll — Thick-plate theory, according to this
report, with constant factor kK, = Tr

Note: v 0.5
Tr 0.9553

CONCLUSIONS AND PLANS FOR FURTHER WORK

The main result of the study herein reported is the determination of a correction
factor for effective shear modulus in antisymmetric and symmetric waves in thick plates
by comparison with elasticity theory. This may be contrasted with Mindlin’s [1] ap-
proach for antisymmetric waves, whereby the correction factor is fit to represent the
high-frequency limit of the dispersion relation in such a way that the phase speed is
equal to the Rayleigh wave speed. The correction factor proposed in this report ac-
complishes this without recourse to arguments outside the theory proper, as in Mindlin [1]:
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it can be shown analytically that the phase speed based on this correction factor approaches

the Rayleigh wave speed asymptotically. This obtains both for antisymmetric and sym-
metric waves.

This approach can be extended to the correction of approximate terms in the thick-
plate theories other than the term represer.ting transversal shear. Certain difficulties with
singularities arise that have not been satisfactorily resolved thus far. The method promises
to more accurately identify the larger root in the quadratic dispersion relation from thick-
plate theory with the first higher mode of antisymmetric and symmetric Lamb waves

In addition to further study of this generalization of the methods in this report, the
next step contemplated at this time is the evaluation of correction factors for effective
shear modulus in cases where the plate is subject to other than homogeneous boundary
conditions: a plate loaded on both sides or one side by a fluid, a composite plate, and a
composite plate under fluid loading.

ACKNOWLEDGMENTS

The suggestion by Dr. Anthony J. Rudgers to reopen the case of effective shear
modulus is gratefully acknowledged. Our numerous discussions greatly contributed to
the formulation of the ideas presented in this report. The report greatly benefited from a
critical review by Drs. R.W. Timme and A.J. Rudgers. Supporting computations by Ms.
C.M. Ruggiero are very much appreciated.

REFERENCES

1. R.D. Mindlin, “Influence of Rotatory Inertia and Shear on Flexural Mutions of
Isotropic, Elastic Plates, Trans. ASME, Ser. E, J. Appl. Mech. 18, 31-38 (1951).

2. L. Cremer, M. Heckl, and E.E. Ungar, Structure-Borne Sound, Springer Verlag, New
York, 1972,
a. p. 109-115.
b. p. 95.

3. G.R. Cowper, “The Shear Coefficient in Timoshenko’s Beam Theory,” Trans. ASME,
Ser. E, J. App. Mech. 33, 335-340 (1966).

4. W.W. Walter and G.L. Anderson, “Wave Propagation in an Infinite Elastic Plate in
Contact with an Inviscid Liquid Layer,” J. Acoust. Soc. Amer. 47, 1398-1407 (1970).

5. T.R. Kane and R.D. Mindlin, ‘“High Frequency Extensional Vibrations of Plates,”
Trans. ASME, Ser. E, J. Appl. Mech. 23, 277-283 (1956).

6. S.P. Timoshenko and 4.N. Goodier, Theory of Elasticity, 3d ed., McGraw Hill, New
York, 1970, p. 11.

7. 1.A. Viktorov, Rayvleigh and Lamb Waves, Plenum Press, New York, 1967.

a. p. 67.
b. p. 3.

31




DUBBELDAY

8. M.C. Junger, and D. Feit, Sound, Structures, and Their Interaction, M.1.T. Press,
Cambridge, 1972, p. 152.

9. M. Abramowitz and L.A. Stegun, Handbook of Mathematical Functions, Nat’l. Bureau
of Stds., Applied Mathematics Series 55 (Government Printing Office, 1964), pp. 232-233.




APPENDIX A
{ FORMULAE FOR FIELD VARIABLES FROM ELASTICITY THEORY
The symbols used in this appendix are defined in the text of the report and also can
be found alphabetically arranged in the list of symbols on pages v-viii.
The dependence on time and x-coordinate of all variables occurs through a factor

expli(wt-kx)] that is not repeated in the following formulae. The amplitudes C, and
D, have the dimension of length squared,

q* = K [1-(c/cy)* ] s? = k2 (1-(cle,)? ]
(Al)
Cz _ E 7 _ E!I—V)
: s T ool € =7 :
. o(1+p) p(1-)(1-2v)

Antisymmetric Waves

For antisymmetric waves one uses the part of the potential ¢ that has odd parity in
z, and the part of the potential { that has even parity in z:

¢ = Ba sinh(gz) y = Ca cosh(sz) . (A2)

The value of ¢ for given kd follows from the dispersion relation for homogeneous
boundary conditions (Eq. (23));

T g S gy A

. (k?+s?)?sinh(qd)cosh(sd)-4k? gscosh(gd)sinh(sd) = 0. (A3)
’ From Eq. (22), '1se the relation ?
B, 2ikq cosh(qd)+C (k* +s* )cosh(sd) = O (A4)
to derive
Ll(ﬂ - 2_\11)
d d\ox 0z
(A5)

‘Cg<[(kd)2 +(sd)* ]cosh(sd)Sinh(qz)—Z(QC{)(Sd)Cosh(qd)sinh(sz)}

d? 2(qd)cosh(gd)
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dw _ 3¢ , 3%y _

?x 0xdz 0x?

(AB)
g,_{[(kd)2 +(sd)? ] cosh(sd)cosh(gz)-2(kd)? cosh(qd)cosh(sz)}
d? 2cosh(gd)
Ca 2 2 cosh(sd)cosh(gz)-cosh{(qd)cosh(sz)
= k
€zx ET[( d)” +(sd)’] cosh(qd) (AT)
[ (A8)
d . .
1 _ C 5 ) (sd)cosh(sd)smh(qd)-(qd)cosh(qd)smh(sd)]
_"—[ xde T gl eAT (ad)(sd)cosh(gd)
1 da )
(%4 =
d (ax
0 (A9)
C, {(sd)[(kd)2 +(sd)? ] cosh(sd)sinh(gd)-2(kd)? (gd)sinh(sd)cosh(gd) }
daz 2(qd)(sd)cosh(qd)
and
1 d
u =
o )
(A10)
-C'_l{[(kd)z +(sd)?] cosh(sd)shi(qd)--Z(qd)(sd)cosh(qd)shi(sd)}
d? 2(qd)cosh(qd) Ve

The hyperbolic integral shi(x) in Eq. (A10) is defined by

X

shi(x) =f L“;*idt (A11)
0

and is computed according to the series expansion
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. i x2n+l
shi(x) = —_— (A12)
= (2n+1)(2n+1)!

Symmetric Waves

For symmetric waves one uses that part of the potential ¢ that has even parity in z,
and the part of the potential { that has odd parity in z:

o= Ascosh(qz); Y= Dssinh(sz)

The value of ¢ for a given kd follows from the dispersion relation for homogeneous
boundary conditions (Eq. (24));

T T T T e Y e

(k? +s2)? cosh(qd)sinh(sd)-4k 2 gssinh(gd)cosh(sd) = 0. (Al4)

From Eq. (22), use the relation

A 2ikgsinh(qd)+D (k* +5* )sinh(sd) = 0 (A15)
F: to derive
i = l .@g -._ai) =
d d\ox 0z
(A16)
_Ils_{ [(kd)? +(sd)? } sinh(sd)cosh(gz)-2(qd)(sd )sinh(qd)cosh(sz)}
d? 2(qd)sinh(qd)
_aﬂ_ = ﬂ. <+ 82‘1/ =
Ax Ixdz  Bx?
(A17)
D {[(kd)2+(sd)2 ] sinh(sd)sinh(qz)-2(kd)?* sinh(qd)sinh(sz)}
{ d? 2sinh(gd)
e _ D Y [ sinh(sd)sinh(gz)-sinh(qd)sinh(sz)
zx E’f[(kd) +(sd)*] sinh(ad) (A18)
d
1 D
-d—2 zezxdz = ﬁ-[(kd)2+ (sd)?
0
(A19)

y [(sd)cosh(qd)sinh(sd)—(qd)sinh(qd)cosh(sd) . (qd)2—(sd)2 sinh(sd)

(gd){(sd)sinh(qd) (gd)*(sd)?

35




DUBBELDAY

o
‘—, f : <()-li- dz -
(."’l 0a
0
Ds, [(ee): 1 (sdd)? ](sd)(:osh(qd)sinh(:s'd";~2(qd)(kd)2 sinh(qd)cosh(sd)
J4? 2(qd)(sd)sinh(gd) (A20)

e TR
2(qd)- (sd)?

and

iy gy Lkd)? +(sd)® Isinh(sd)shi(gd )-2(sd ;' sinh(gd)shi(sd)]
)
0

2sinh(qd) |




APPENDIX B

GENERALIZED CORRECTION FACTORS

The principle by which the correction factors in the foregoing sections were derived
can be generalized to cover also the other terms in the equations of motion for waves
in thick-plate theory, Egs. (43) (51), and (52). Just as in defining the correction factor
for shear modulus, the procedure consists in comparing the integrals defined in Egs. (38)
and (40) with the thick-plate approximations, Eqs. (41) and (49), respectively. This shows
that the approximations M, and L, have essentially the same correction factor, while
the correction factor for T, is equal to one. Thus only one additional correction factor is
needed in the case of antisymmetric waves and is defined by

Ky =— (B1)

This correction factor is the same for the term representing bending stiffness as for the
rotary inertia in Eq. (43). Applying the same procedure to the case of symmetric waves
leads to two additional correction factors, one for the quantity N X

[a_u+ ()
l9x A+2G/ 0z)

= B2
Ki h a_U+ }\ X ( )
ox  A+2G
and one for the quantity N_,
()3
9z - \A+2G/ ox (B3)

Ke =T ( ) )au
X+ |——) —
[ A2G ax]

The correction factors for Tx and Lz are equal to one, provided x is defined as
x = 3/d? f_gd zwdz. The factors Kﬁ and K: are correction factors for the stiffness modulus

in the x and z directions, respectively. The subscripts of the correction factors have been
chosen such that those belonging to antisymmetric waves are odd (K1 , K3) and those of
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symmetric waves are even (K,, K4, K¢ ). Inserting the correction factors k%, k3 into the
equations of motion for antisymmetric waves (Eq. (43)) leads to the following dispersion
relation:

) 0- (B4)

Kk}

v?-x}

The smaller root of this quadratic equation is identified with the zero-order antisym-
metric Lamb wave. The larger root corresponds to the first-order Lamb wave. This wave
has a vertical asymptote if one represents the dispersion relation with vy as a function of
k,d, where k is the wavenumber of the shear wave corresponding to the given frequency.
By use of the relation k,d = vkd, Eq. (B4) is transformed into

2

|

1
k3(k, APy - k7 - 3 ki d)Pyl ki

=0. (BS)
K} v i
It is instructive to consider the behavior of this dispersion relation, Eq. (B5), at low and
at high frequencies for both roots. This is shown in Table Bl. For comparison, the limits
at low and at high frequencies of the dispersion relation from exact elasticity theory,
Eq. (23), are also given in this table for zero-order and first-order antisymmetric Lamb
waves, respectively. The comparison places constraints on the calculated values of the

correction factors at low and high frequencies.

Table B1 — Dispersion Relation for Antisymmetric Waves in the
Limit of High and Low Frequencies

kd Smaller Root Larger Root
Small vt = nfv,’, Asymptote for k.d at
(exact theory: v = v3) (kyd)® = 81} /K3

(exact theory at
(k,d) = n?/4)
Large v =« Y =1

1
(exact theory: 2

%) (exact theory: y> = 7})

Inserting the correction factors for symmetric waves into the pertinent equations of
motion, Egs. (51) and (52), leads to the dispersion relation
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2

7’ - K3 -k3(13 - 2)

= 0. (B6)
1 1
k(13 - 2) T3 (kd)? -5 (kd)?y? + K37}

The smaller root of this quadratic equation is identified with the zero-order symmetric
Lamb wave. The larger root can be identified with the first-order symmetric Lamb
wave. There is, again, a vertical asymptote if the dispersion curve is represented in the
form of v as a function of the dimensionless wavenumber k.d. Equation (B6) is then
transformed into
Y - Kkivg -ki(vg - 21
= 0. (B7)

R03-2) Tk d? -2 dP Y+ Ky

By solving for the two roots of this equation, one can again derive the behavior for
low and high frequencies and can compare the results with the exact theory for sym-
metric waves. This is shown in Table B2. If one computes the correction factor k? ac-
cording to Eq. (B1), where ¢ is determined by ¢ = (1/d)fg (u/z)dz, an essential cfifficulty
arises. Both numerator and denominator change sign at intermediate kd. Although the
values of k% for low and high frequencies are quite acceptable, the sign change does not
occur at the same kd; as a consequence, the correction factor goes to infinity at a certain
value of kd. No remedy for this anomalous behavior has been found. It is expected that
the same effect may occur in the correction factors k3 and x?2.

Table B2 — Dispersion Relation for Symmetric Waves in the
Limit of High and Low Frequencies

kd Smaller Root Larger Root
Small v? = x?,'y; Vertical asymptote at
(exact theory: 42 = 'y;) (kyd)? = 3kt

(exact theory: asymptote
at (k,d)* = 7?)

Large vt =k} Y = Kivh

(exact theory: v2 = v%) (exact theory: y2 = 7}?)
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APPENDIX C

QUADRATIC APPROXIMATION OF DISPLACEMENT COMPONENTS

The basic mathematical model leading to thin- and thick-plate theories is the series
expansion of the displacement components u, w in terms of the coordinate 2, perpendicular
to the phases of the plate. So far no higher terms than linear have been considered, as is
shown in Egs. (27):

u(x,y,2,t) = Ulx,y,t) + 2¢,(x,,t)
v(x,y,2,t) = Vix,y,t) + z¢y(x,y,t) (27)
w(x,y,2,t) = W(x,y,t) + zx(x,y,t) |
The problem encountered with the correction factor k% in symmetric waves, namely that
it becomes negative for low kd, prompted an effort to remedy this by inclusion of higher

order terms. Thus, for symmetric waves the proposed mathematical model for the dis-
placement coordinates would be

u(x,z,t) = U(x,t)(1+rz*/d?),
(C1)
w(x,z,t) = xz/d,

where r is an adjustable constant. The shape of the cross section with the assumptions of

Eq. (C1) is parabolic, corresponding to the visual suggestion of the symmetric wave de-
picted in Fig. C1.

SYMMETRIC

Fig. C1 — Lamb waves
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Inserting Eq. (C1) into the equations of motion of Eq. (37),

aM,+aM,y_ =pale

dx ay x at?
2

aMler ' aM ) a’L,

ox oy atr
with the definitions of Eq. (38)
+d +d
M, =j; z0,dz My =/; zaydz
+d
M- m,, =f 20, ,dz;
-d
+d +d
Qx =f 0,,dz Q, =f 0,,42;
-d d
+d

leads to the definition

41
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As before, there is some latitude in the choice of the new term rdl/. The following defim-
tion appears plausible, and its asymptotic behavior is such that the desired value for k3 at
high frequency, namely 7R as obtained before, is not influenced:

d

2rdU=dj/ l(‘,’—“) dz. (C3)
0 z \dz

This definition of k3 is an improvement in the sense that its value is positive over
most of the frequency region. The same problem arises, though, as was encountered with
the correction factors discussed in Appendix B, namely a sign change in the denominator
that causes the value of k2 to go to infinity at a certain value of kd.




APPENDIX D

COMPARISON WITH OTHER WORK ON APPROXIMATE PLATE THEORY

In the literature one finds other work on the subject of correction factors in
approximate theories for thick plates, for both antisymmetric and symetric waves. It
appears that the distinction between such papers and the present analysis is not easily
appreciated [D1]. The present study follows the introduction by Mindlin [D2] of a cor-
rection factor for effective shear modulus and proceeds to derve an analytic ex pression
for this correction factor, This is different from the treatment of Mindlin, who determines
the correction factor by fixing the high frequency limit of the dispersion relation by the
Rayleigh wave speed. In this study, an analogous treatment is applied to symmetric
waves in infinite plates and a corresponding effective shear modulus is obtained in this
case. This is essentially different from the work of Kane and Mindlin |D3] and Mindlin
and Medick, [D4] whose analyses apply to thickness vibrations in finite plates. Some
general comments on the classification of waves in plates are in order, to clarify the
distinction.

Solutions of partial differential equations, including the wave equation, are
determined by the given boundary conditions. A natural way of treating waves in an in-
finite solid is to distinguish dilatational and shear waves, since this reflects the general
property that a vector field can be represented as a sum of an irrotational and solenoidal
field. In an infinite solid the two waves can exist independently. In the study of waves
propagating parallel to the faces of a plate, where by definition the thickness of the plate
is small compared with the dimensions parallel to the plate, the dilatational and shear
waves are coupled. A logical division in this case is that of antisymmetric and symmetric
waves, based on the geometric appearance of the vibrating plate. The general theory of
Lamb waves is developed along this line of thought, and this is also the standpoint of
the present study since its object of study is the propagation of waves in extended struc-
tures. Each of these two wave types is composed of a dilatational part and a shear part.
A characteristic phenomenon in Lamb waves is the appearance of higher order modes
when the frequency is increased. The physical explanation of these higher order modes
is found in the occurrence of standing waves in the direction perpendicular to the faces
of the plate that are coupled to the traveling waves in the direction parallel to the
faces of the plate. These thickness modes can be divided into thickness-stretch and thick-
ness-shear modes. In the thickness-stretch mode the particles move perpendicular to the
faces of the plate. In the thickness-shear mode the particles move parallel to the faces
of the plate. Both thickness modes may occur in an antisymmetric and a symmetric
version.

One could obviously start one’s analysis by emphasizing the thickness modes and
treat the propagation along the plate as a secondary effect. This viewpoint is represented
in a review of plate theory by Mindlin [D5] who is mostly concerned with application
of the general theory to vibrations of crystal plates. It is the description of choice
in the analysis of vibrations in finite plates, in contrast to the study of propagation of
traveling waves in infinite plates. Therefore, it is clear that the thickness modes of
vibration play a major role in Refs. D3 and D4, where finite plates are considered,
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One may obtain an overview of the various wave types in plates by considering
the relationships between the amplitudes for antisymmetric and symmetre waves,
and the concomitant dispersion relations, similar to the discussion in Ref, D5, The
following equations are identical to Egs. (22).123). and (211 1n the main test,

The equations for the amplitudes of the antisymmetric waves, under homogencous
boundary conditions, are

B_(k* +s* )sinh(qd) - C, 2iks sinh(sd) =

(D1
B, 2ikq cosh(qd) + C (k*+s*) cosh(sd) =
with the accompanying dispersion relation for antisymmetric waves,
(k* +s%)? sinh(gd)cosh(sd) - 4k? gs cosh(gd)sinh(sd) = 0 {D2)

The equations for the amplitudes of the symmetric waves, under homogeneous boundary
conditions, are

A (k*+5%)® cosh(qd) - D, 2iks cosh(sd) = 0

(D3)
A, 2ikq sinh(qd) + D (k? +s? )sinh(sd) =
with the accompanying dispersion relation for symmetric waves,
(k? +s?)? cosh(gd)sinh(sd) - 4k? gs sinh(gd)icosh(sd) = 0. (D4)

The lowest frequency at which thickness modes may occur is determined by the
condition k = 0. This means, physically, that there is no wave propagation in the direction
of the faces of the plate: the laminae of the plate move in unison, in the direction of
the faces of the plate for thickness-shear modes, and perpendicular to the faces for thick-
ness-stress modes. The propagation speeds of the pertinent waves in the direction
perpendicular to the faces are the shear wave speed and the dilatational wave speed,
respectively. If k = 0, it follows that gqd = tkyd and sd = ik.d. One sees, then. that,
given k = (), the following combinations are solutions to l‘qs (D1) through (D4).
Antisymmetric thickness-shear is ohtained for B, =0, costhd)y=0,0rw =(2n + 1)
(:’2)cs/d. Antisymmetric thickness-stretch modes are obtained for C, = 0, sin(k d) =
or « = nnc,/d. Symmetric thickness shear modes occur for A, = 0,sintk d) = 0 or
w = nreg/d. Symmetric thickness-stretch modes occur for D, =0. tos(}\dd) =0, or
w = (2n+1)(n/2)c /d. Here n = 1, 2, 3.0 ¢ is the shear wave speed; and ¢y 18 the
dilatationa, wave speed.

The structure of the Egs. (D1) through (D4) leads to the question of what type of
waves will result if the condition k = 0 is rvpla('(*d by the condition k* +s* =0,
Sinee g2 = k2 - k . it follows that ¢? = for this type of wave. Given this condition,
the first posslhlht\ for antisymmetric waves is that B, = 0, and sin(k d’ "2) = 0, or

=nx "2¢ . This type of wave is indicated by the term vquzmlumlnal by Mindlin [D1].

sinee the .’l;npllhll](‘ of the dilatational part of the wave is zero in this case. Actually the
thicknessshear mode deserihed before would equally well qualify for this name for the
asime reason. The analogous complementing case can be found by \vttmg ¢, = 0 and

coshtgdy 00 The latter condition cannaot be satisfied, since here g2 2 0, )I\‘ - lr(’i, which
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is always positive. Therefore this case has no physical reality. In a similar way a symmet-
ric “‘equivoluminal” wave may be derive by setting A= 0, with cosh(sd) = o, which
leads to w = (2n+1)(n/2) ﬁcs/d.

In Ref. D5 Mindlin proposes a correction factor k to improve the correspondence
between approximate plate theory and exact theory. Mindlin develops his theory using
the classical power-series expansion method that originated with Poisson and Cauchy.

He adjusts the constant « in such a way that the first appearance of the thickness modes
occurs at the correct frequency. This leads to the value of n? /12 for his correction fac-
tor, for both antisymmetric and symmetric waves. Since the displacement components
in thickness modes vary in a harmonic way as a function of the coordinate perpendicular
to the plate, it would follow that expansion in terms of a Fourier series rather than a
power series promises a better correspondence between the approximate and exact theo-
ries. Employing a Fourier series expansion, however, is found to result in poor behavior
of waves traveling parallel to the face of the plate at high frequencies. Again, the latter
circumstance is of little importance if the object of study is vibrations of finite plates,

as in Refs. D3 and D4.

In an earlier publication [D2] Mindlin had introduced a similar correction factor to
improve the high-frequency behavior of the dispersion relation of the zero-order antisym-
metric mode (flexural wave) in approximate plate theory. There, he so fixes the factor
that at high frequency the wave speed approaches the Rayleigh wave speed. Mindlin com-
ments that thus a compromise has to be found between this high-frequency adjustment of
x and the low-frequency adjustment, which amounted to setting x equal to 72//12, as dis-
cussed before.

Here an important difference appears between the present study and the referenced
papers. In the present work, the emphasis is on wave propagation along an infinite plate,
represented by zero-order antisymmetric and symmetric waves, which correspond to the
smaller root of the quadratic dispersion relation for flexural and extensional waves in
thick-plate theory. Moreover the correction factor in the present report is not fixed at
either the high-frequency or low-frequency limit, but is found by comparison of the
integrals in the approximate theory with those obtained from exact elasticity theory over
the whole frequency range. No ‘““‘compromise” is needed, because here k is frequency
dependent, and moreover the low-frequency behavior of the zero-order mode (the smaller
root of the quadratic equation) is independent of the value of k. Thus both the high-
frequency and low-frequency behaviors are properly accounted for in the present analysis.

Kane and Mindlin [D3] analyze the behavior of extensional vibrations in plates at
high frequencies. One might surmise that their work is analogous to Mindlin’s study of
flexural motions in plates [D2] in the sense that a comparable treatment is applied to
symmetric waves, but that is not the case. The study of Kane and Mindlin is limited to
vibrations of finite plates, and as a consequence they fix the correction factor x at the
low-frequency end by assigning to it the familiar value 7? /A/12. An unfortunate aspect
of the basic approach of these authors is that the pertinent correction factor is intro-
duced into the differential equations of motion of elasticity theory (Eq. (20) in Ref.
D3). There is no valid reason to modify the fundamental equations of elasticity theory
used all through the literature. Instead, the correction factor(s) should properly appear
in the plate-stress equations, where approximations are introduced for the variation of
the displacement components as a function of the coordinate perpendicular to the plate.
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Mindlin and Medick [D1] expand on the ideas of Kane and Mindlm o several
respects.  In the first place, instead of using a straight power-series expansion, they use
an expansion in Legend.e polynomias for the displacement components. They expect
that such a series may improve the quality of the approximation and may simphfy the
: task of assessing the effect of truncation. In the second place, different correction fae-
: tors are introduced that are similar to the correction factors of the present study. How-
ever, these authors also make the point that the correction factors can be fixed only at
a finite number of points in the frequency range in order to improve the correspondence
between approximate and exact theories with respect to the dispersion curves, Quite
emphatically, Mindlin and Medick opt for improving the thick-plate theory at the limet
of zero kd, in order to improve the treatment of finite plates, for which the thickness
modes are the most important.

DA EeCiE R

In connection with the above discussion, the following point should be stressed.
In the study of waves in plates, one may concentrate on the propagation of traveling
waves along the faces of infinite plates or on the standing waves perpendicular to the
faces of the plates for finite plates. The two cases correspond to the smaller and larger
roots of the quadratic equations expressing the dispersion relations in thick-plate theory.
Considering the fact that the character of the motion in the two cases is quite different,
there is no reason to believe that one and the same correction factor would suffice in
both cases over the whole frequency range. Several correction factors are needed. Their
role in connection with the low- and high-frequency behaviors is listed in Tables D1 and
D2. One sees in Table D1 that the correction factor for the shear modulus in antisym-
metric waves «; does not influence the smaller root at low frequency. If one assumes
that the factor x; for the larger root has a limit of 1 at the low-frequency limit, the low-
fréquoncy limit of x, for this branch will be the familiar r2/A/12. Remember, though,
that this factor is computed here on the basis of that branch of the dispersion relation

,} that corresponds to first-order antisymmetric Lamb waves. Table D2 shows that for
symmetric waves the correction factor governing the behavior of thickness vibrations

; at low frequency (k) is not even the same nominal factor as the one that determines

, the high-frequency limit for traveling waves (x, in the smaller root).

|

F Table D1 — Dispersion Relation for Antisvmmetric Waves

in the Limit of High and Low Frequencies

Smaller Root Larger Root
Small kd y? o=l 7; Asymptote for kb d at
(exact theory: 7?7 = v, %) ('\’S(“: = ;,l;\]

’ {exact theory at

(l.‘s(t')2 = 7700

Large kd y? = x2 N )127
toxact theory: y? = 7;() (exact theory: 3o 7?\,)
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Table D2 — Dispersion Relation for Symmetric Waves in the
Limit of High and Low Frequencies

Smaller Root Larger Root
Small kd y? = k2 7; Vertical asymptote at

(kd)? = 3 k2 7}

6

(exact theory: y? = 42) (exact theory: asymptote

at (k,d)? = n?)

Large kd 7 = k2 v =l v

(exact theory: 72

%) (exact theory: % = 7}{,)

In conclusion, the present report is distinguished from Refs. D2 through D4 in the
following respects.

1. It presents a thick-plate theory for plates, for which the dimensions parallel to
the plate are considerably larger than the thickness, at such frequencies that the zero-
order antisymmetric and symmetric Lamb waves are the only ones of importance.

2. It gives a method of calculating the correction factor for effective shear modulus
in antisymmetric waves by comparing thick-plate theory with the results of exact clasti-
city theory, instead of fixing the correction factor at one point in the frequency range.

3. It presents a thick-plate theory for symmetric waves with a correction factor for
effective shear modulus, corresponding to thick-plate theory of antisymmetric waves; it
also gives a method of computing this factor by comparing thick-plate theory with the
results of exact elasticity theory, instead of fixing the factor at one point in the frequency
range.
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