LAUNDRY HEAT RECOVERY, USMA, WEST POINT

Stephen L. Jones

September 1980

Final Report

Approved for Public Release, Distribution Unlimited

Prepared for:

US ARMY FACILITIES ENGINEERING SUPPORT AGENCY
Technology Support Division
Fort Belvoir, VA 22060
Abstract

The purpose of this report is to determine the feasibility of retrofitting heat recovery devices to commercial size clothes dryers. Data used in the analysis was provided by the Energetics Corporation, Aurora, IL and the Energy Conservation Office, US Military Academy, West Point.
PREFACE

The purpose of this report is to determine the feasibility of retrofitting heat recovery devices to commercial size clothes dryers. Data used in the analysis was provided by the Energenics Corporation, Aurora, IL and the Energy Conservation Office, US Military Academy, West Point.

NOTICE

The contents of this report are not to be used for advertising, publication, or promotional purposes. Citation of trade names does not constitute an official endorsement or approval of the use of such commercial products. The findings of this report are not to be construed as an official Department of the Army position, unless so designated by other authorized documents.
CONTENTS

<table>
<thead>
<tr>
<th>Scope</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>1</td>
</tr>
<tr>
<td>Equipment</td>
<td>1</td>
</tr>
<tr>
<td>Requirements</td>
<td>1</td>
</tr>
<tr>
<td>Energy Recovery</td>
<td>1</td>
</tr>
<tr>
<td>Exhaust Airflow</td>
<td>2</td>
</tr>
<tr>
<td>Cold Weather</td>
<td>2</td>
</tr>
<tr>
<td>Moderate Weather</td>
<td>2</td>
</tr>
<tr>
<td>Hot Weather</td>
<td>3</td>
</tr>
<tr>
<td>Operating Assumptions</td>
<td>3</td>
</tr>
<tr>
<td>Fuel Oil Savings</td>
<td>3</td>
</tr>
<tr>
<td>Economic Analysis</td>
<td>4</td>
</tr>
<tr>
<td>Conclusions</td>
<td>4</td>
</tr>
</tbody>
</table>
1.1 DESCRIPTION

Conventional clothes dryers operate on a once-through airflow principle of 100% fresh air intake and exhaust discharged to atmosphere. Two methods to reduce the heat required to dry clothes are employed in equipment manufactured by the Energenics Corporation, which may be applicable to military laundry facilities. The first method uses a heat pipe type heat exchanger to preheat incoming air with energy recovered from the dryer exhaust. The second and newer method uses a microprocessor controlled recirculation technique to minimize the fresh air requirements. A third method is offered on new dryers from the original manufacturer which provides hot exhaust air to the burner in direct fired models to promote better combustion. This technique is not applicable to the steam heated types installed at West Point.

1.2 EQUIPMENT

A major requirement of any clothes dryer heat recovery system is high efficiency filtration of the exhaust air. Fouling of the heat exchanger or contamination of the load will occur unless virtually all lint is removed from the exhaust air steam. Both Energenics systems are equipped with two-stage exhaust filters to meet this rather stringent requirement.

The recirculation technique is advantageous in two respects; it eliminates the expensive heat exchanger and provides an "intelligent" microprocessor based controller. The "intelligent" controller should increase productivity and save energy by reducing cycle times. Exhaust is recirculated 100% at startup, rapidly bringing the dryer to operating temperature. The controller senses when a load is dry and terminates the cycle at that time. Varying load compositions and humidity conditions are automatically compensated for while minimizing energy consumption.

1.3 REQUIREMENTS

Installation of dryer heat recovery equipment requires a major alteration in ducting. After locating the filters and recirculation valve, ducting must be run to the filter from the dryer exhaust and to the dryer intake from the recirculation valve. If a dryer is steam heated and a cool-down cycle is desired, a solenoid operated steam valve is necessary. Duct insulation is required to minimize losses, particularly if the filter is located outdoors. A consideration in filter location is the requirement for emptying lint from the drop tube. It should be readily accessible to service personnel.

2.1 ENERGY RECOVERY

A water removal rate of .02088 pounds per minute per pound of dry air circulated is specified to be typical for satisfactory drying times.

Dryer exhaust conditions are about 210°F dry bulb and 120°F wet bulb, containing .058 lbs moisture/lb of dry air.
An exhaust and fresh air mixture must then have a moisture content not exceeding \(0.058 - 0.02088 = 0.0371 \text{ lb-h}_2\text{O/lb-dry air}\) for a satisfactory removal rate.

By a comparison of humidity ratios, the amount of exhaust that can be recirculated is determined for various weather conditions.

Exhaust Airflow

6500 cfm @18.4 ft\(^3\)/lb = 353.26 lb/min

enthalpy = 116 Btu/lb

Cold Weather

30°F dry bulb, 50% relative humidity, 0.0017 lb-h\(_2\)O/lb-dry air

enthalpy = 9 Btu/lb

\[x = \text{recirculated exhaust fraction}\]

\[1 - x = \text{fresh air required}\]

\[x
(0.058) + (1-x)(0.0017) = 0.0371 \text{ lb-h}_2\text{O/lb-dry air}\]

\[x = \frac{0.0371 - 0.0017}{0.058 - 0.0017}\]

\[x = 0.6288\]

62.9% recirculation \(x 353.26 \text{ lb/min}\)

222.2 lb/min recirculated

\[x \times 107 \text{ Btu/lb } \Delta \text{enthalpy}\]

23,775 Btu/min saved

Moderate Weather

60°F dry bulb, 50% RH, 0.0066 lb-h\(_2\)O/lb-dry air

enthalpy = 20.3 Btu/lb

\[x = \frac{0.0371 - 0.0066}{0.058 - 0.0066}\]

\[x = 0.5934\]

59.3% recirculation \(x 353.26 \text{ lb/min}\)

209.5 lb/min recirculated

\[x \times 95.7 \text{ Btu/lb } \Delta \text{enthalpy}\]

20,047 Btu/min saved
Hot Weather

90°F dry bulb, 50% RH, .0152 lb-h₂O/lb-dry air

enthalpy = 38.6 Btu/lb

\[
x = \frac{.0371}{.058} - .0152
\]

\[
x = .5117
\]

51.2% recirculation x 353.26 lb/min

180.9 lb/min recirculated

\[
x \times \frac{77.4}{Btu/lb} \triangle \text{enthalpy}
\]

13,999 Btu/min saved

3.1 OPERATING ASSUMPTIONS

40 hours/week
drying 40 minutes/hour
recirculating 50% of drying time
weather conditions:
3 months - cold
6 months - moderate
3 months - hot

<table>
<thead>
<tr>
<th>Cold</th>
<th>Moderate</th>
<th>Hot</th>
</tr>
</thead>
<tbody>
<tr>
<td>9,600 min</td>
<td>19,200 min</td>
<td>9,600 min</td>
</tr>
<tr>
<td>23,775 Btu/min</td>
<td>20,047 Btu/min</td>
<td>13,999 Btu/min</td>
</tr>
<tr>
<td>228.24 MMBtu</td>
<td>384.90 MMBtu</td>
<td>134.39 MMBtu</td>
</tr>
</tbody>
</table>

Total 747.48 MMBtu/yr

Heat content #6 fuel oil - 149,690 Btu/gal
x boiler efficiency .80

Available heat/gal 119,752 Btu/gal

Fuel Oil Savings \[
\frac{747,480,000}{119,752} \text{ Btu/yr} = 6,242 \text{ gal/yr}
\]
4.1 ECONOMIC ANALYSIS*

<table>
<thead>
<tr>
<th>Year</th>
<th>Fuel Saved</th>
<th>Fuel Cost/Gal</th>
<th>Cost Savings</th>
<th>Discount Factor</th>
<th>Discounted Savings</th>
<th>Net Present Worth</th>
</tr>
</thead>
<tbody>
<tr>
<td>'81</td>
<td>"</td>
<td>$.71</td>
<td>$ 4,432</td>
<td>.991</td>
<td>$ 4,392</td>
<td>$ 4,392</td>
</tr>
<tr>
<td>'82</td>
<td>"</td>
<td>$.81</td>
<td>$ 5,056</td>
<td>.973</td>
<td>$ 4,919</td>
<td>$ 9,312</td>
</tr>
<tr>
<td>'83</td>
<td>"</td>
<td>$.92</td>
<td>$ 5,743</td>
<td>.955</td>
<td>$ 5,485</td>
<td>$ 14,796</td>
</tr>
<tr>
<td>'84</td>
<td>"</td>
<td>$ 1.05</td>
<td>$ 6,554</td>
<td>.938</td>
<td>$ 6,148</td>
<td>$ 20,944</td>
</tr>
<tr>
<td>'85</td>
<td>"</td>
<td>$ 1.19</td>
<td>$ 7,427</td>
<td>.921</td>
<td>$ 6,840</td>
<td>$ 27,784</td>
</tr>
<tr>
<td>'86</td>
<td>"</td>
<td>$ 1.36</td>
<td>$ 8,489</td>
<td>.904</td>
<td>$ 7,674</td>
<td>$ 35,458</td>
</tr>
<tr>
<td>'87</td>
<td>"</td>
<td>$ 1.54</td>
<td>$ 9,613</td>
<td>.888</td>
<td>$ 8,536</td>
<td>$ 43,994</td>
</tr>
<tr>
<td>'88</td>
<td>"</td>
<td>$ 1.54</td>
<td>$ 9,613</td>
<td>.871</td>
<td>$ 8,373</td>
<td>$ 52,367</td>
</tr>
<tr>
<td>'89</td>
<td>"</td>
<td>$ 1.54</td>
<td>$ 9,613</td>
<td>.856</td>
<td>$ 8,229</td>
<td>$ 60,596</td>
</tr>
<tr>
<td>'90</td>
<td>"</td>
<td>$ 1.54</td>
<td>$ 9,613</td>
<td>.840</td>
<td>$ 8,075</td>
<td>$ 68,671</td>
</tr>
</tbody>
</table>

Assuming a $14,000 purchase price and $6,000 installation cost, a reclamation system will pay off in slightly less than 4 years. The cost/benefit ratio is 3.43 assuming a 10-year life. If a new filtration system is required for OSHA lint compliance, the extra cost of the recovery device will be amortized in about half the time as the complete system.

5.1 CONCLUSIONS

Based on the economic analysis and the Army goal to reduce energy consumption, the laundry heat recovery devices appear to be worthwhile investments.

Since most laundry dryers require considerable retrofit to comply with OSHA lint emission requirements in any case, the heat recovery option appears to be an especially attractive investment.

*Discount factors from '78 AFEP, 10% discount, 8% differential inflation rate.
Commander
USA Foreign Science and Technology Center
220 8th St. N.E.
Charlottesville, VA 22901

Commander
USA Science & Technology Information Team, Europe
APO New York, NY 09710

Commander
USA Science & Technology Center - Far East Office
APO San Francisco, CA 96328

Commanding General
USA Engineer Command, Europe
APO New York, NY 09403

Deputy Chief of Staff for Logistics
US Army, The Pentagon
Washington, DC 20310

Commander, TRADOC
Office of the Engineer
ATTN: Chief, Facilities Engineering Division
Ft Monroe, VA 23651

Commanding General
USA Forces Command
Office of the Engineer (AFEN-FES)
Ft McPherson, GA 30330

Commanding General
USA Forces Command
ATTN: Chief, Facilities Engineering Division
Ft McPherson, GA 30330

Commanding General, 1st USA
ATTN: Engineer
Ft George G. Meade, MD 20755

Commander
USA Support Command, Hawaii
Fort Shafter, HI 96858

Commander
Eighth US Army
APO San Francisco 96301

Commander
US Army Facility Engineer Activity - Korea
APO San Francisco 96301

Commander
US Army, Japan
APO San Francisco, CA 96343

Facilities Engineer
Fort Benning
Fort Benning, GA 31905

Facilities Engineer
Fort Bliss
Fort Bliss, TX 79916

Facilities Engineer
Carlisle Barracks
Carlisle Barracks, PA 17013

Facilities Engineer
Fort Chaffee
Fort Chaffee, AR 72902

Facilities Engineer
Fort Dix
Fort Dix, NJ 08640

Facilities Engineer
Fort Eustis
Fort Eustis, VA 23604

DIST 3
<table>
<thead>
<tr>
<th>Facilities Engineer</th>
<th>Facilities Engineer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fort Gordon</td>
<td>Fort Story</td>
</tr>
<tr>
<td>Fort Gordon, GA 30905</td>
<td>Fort Story, VA 23459</td>
</tr>
<tr>
<td>Facilities Engineer</td>
<td>Facilities Engineer</td>
</tr>
<tr>
<td>Fort Hamilton</td>
<td>Kansas Army Ammunition Plant</td>
</tr>
<tr>
<td>Fort Hamilton, NY 11252</td>
<td>Independence, MO 64056</td>
</tr>
<tr>
<td>Facilities Engineer</td>
<td>Facilities Engineer</td>
</tr>
<tr>
<td>Fort A P Hill</td>
<td>Lone Star Army Ammunition Plant</td>
</tr>
<tr>
<td>Bowling Green, VA 22427</td>
<td>Texarkana, TX 75501</td>
</tr>
<tr>
<td>Facilities Engineer</td>
<td>Facilities Engineer</td>
</tr>
<tr>
<td>Fort Jackson</td>
<td>Picatinny Arsenal</td>
</tr>
<tr>
<td>Fort Jackson, SC 29207</td>
<td>Dover, NJ 07801</td>
</tr>
<tr>
<td>Facilities Engineer</td>
<td>Facilities Engineer</td>
</tr>
<tr>
<td>Fort Knox</td>
<td>Louisiana Army Ammunition Plant</td>
</tr>
<tr>
<td>Fort Knox, KY 40121</td>
<td>Fort MacArthur, CA 90731</td>
</tr>
<tr>
<td>Facilities Engineer</td>
<td>Facilities Engineer</td>
</tr>
<tr>
<td>Fort Lee</td>
<td>Milan Army Ammunition Plant</td>
</tr>
<tr>
<td>Fort Lee, VA 23801</td>
<td>Warren, MI 48089</td>
</tr>
<tr>
<td>Facilities Engineer</td>
<td>Facilities Engineer</td>
</tr>
<tr>
<td>Fort McClellan</td>
<td>Pine Bluff Arsenal</td>
</tr>
<tr>
<td>Fort McClellan, AL 36201</td>
<td>Pine Bluff, AR 71601</td>
</tr>
<tr>
<td>Facilities Engineer</td>
<td>Facilities Engineer</td>
</tr>
<tr>
<td>Fort Monroe</td>
<td>Radford Army Ammunition Plant</td>
</tr>
<tr>
<td>Fort Monroe, VA 23651</td>
<td>Radford, VA 24141</td>
</tr>
<tr>
<td>Facilities Engineer</td>
<td>Facilities Engineer</td>
</tr>
<tr>
<td>Presidio of Monterey</td>
<td>Rock Island Arsenal</td>
</tr>
<tr>
<td>Presidio of Monterey, CA 93940</td>
<td>Rock Island, IL 61201</td>
</tr>
<tr>
<td>Facilities Engineer</td>
<td>Facilities Engineer</td>
</tr>
<tr>
<td>Fort Pickett</td>
<td>Rocky Mountain Arsenal</td>
</tr>
<tr>
<td>Blackstone, VA 23824</td>
<td>Denver, CO 80340</td>
</tr>
<tr>
<td>Facilities Engineer</td>
<td>Facilities Engineer</td>
</tr>
<tr>
<td>Fort Rucker</td>
<td>Scranton Army Ammunition Plant</td>
</tr>
<tr>
<td>Fort Rucker, AL 36362</td>
<td>156 Cedar Avenue</td>
</tr>
<tr>
<td>Facilities Engineer</td>
<td>Facilities Engineer</td>
</tr>
<tr>
<td>Fort Sill</td>
<td>Scranton, PA 18503</td>
</tr>
<tr>
<td>Fort Sill, OK 73503</td>
<td>Tobyhanna Army Depot</td>
</tr>
<tr>
<td></td>
<td>Tobyhanna, PA 18466</td>
</tr>
<tr>
<td>Location</td>
<td>Contact Information</td>
</tr>
<tr>
<td>----------</td>
<td>---------------------</td>
</tr>
<tr>
<td>Tööele Army Depot</td>
<td>Facilities Engineer
Tooele, UT 84074</td>
</tr>
<tr>
<td>Arlington Hall Station</td>
<td>Facilities Engineer
Arlington, VA 22212</td>
</tr>
<tr>
<td>Cameron Station, Bldg 17</td>
<td>Facilities Engineer
Alexandria, VA 22314</td>
</tr>
<tr>
<td>Sunny Point Military Ocean Terminal</td>
<td>Facilities Engineer
Southport, NC 28461</td>
</tr>
<tr>
<td>US Military Academy</td>
<td>Facilities Engineer
West Point, NY 10996</td>
</tr>
<tr>
<td>Fort Ritchie</td>
<td>Facilities Engineer
Fort Ritchie, MD 21719</td>
</tr>
<tr>
<td>Army Materials & Mechanics Research Center</td>
<td>Facilities Engineer
Watertown, MA 02172</td>
</tr>
<tr>
<td>Ballistics Missile Advanced Technology Center</td>
<td>Facilities Engineer
Huntsville, AL 35807</td>
</tr>
<tr>
<td>Fort Wainwright</td>
<td>Facilities Engineer
Fort Wainwright, AK 99703</td>
</tr>
<tr>
<td>Fort Greely</td>
<td>Facilities Engineer
Fort Richardson, AK 99505</td>
</tr>
<tr>
<td>Harry Diamond Laboratories</td>
<td>Facilities Engineer
Adelphi, MD 20783</td>
</tr>
<tr>
<td>Fort Missoula</td>
<td>Facilities Engineer
Missoula, MT 59801</td>
</tr>
<tr>
<td>New Cumberland Army Depot</td>
<td>Facilities Engineer
New Cumberland, PA 17070</td>
</tr>
<tr>
<td>Oakland Army Base</td>
<td>Facilities Engineer
Oakland, CA 94626</td>
</tr>
<tr>
<td>Vint Hill Farms Station</td>
<td>Facilities Engineer
Warrentown, VA 22186</td>
</tr>
<tr>
<td>Twin Cities Army Ammunition Plant</td>
<td>Facilities Engineer
New Brighton, MN 55112</td>
</tr>
<tr>
<td>Volunteer Army Ammunition Plant</td>
<td>Facilities Engineer
Chattanooga, TN 37401</td>
</tr>
<tr>
<td>Watervliet Arsenal</td>
<td>Facilities Engineer
Watervliet, NY 12189</td>
</tr>
<tr>
<td>St Louis Area Support Center</td>
<td>Facilities Engineer
Granite City, IL 62040</td>
</tr>
<tr>
<td>Fort Monmouth</td>
<td>Facilities Engineer
Fort Monmouth, NJ 07703</td>
</tr>
<tr>
<td>Redstone Arsenal</td>
<td>Facilities Engineer
Redstone Arsenal, AL 35809</td>
</tr>
<tr>
<td>Facilities Engineer</td>
<td>Facilities Engineer</td>
</tr>
<tr>
<td>---------------------</td>
<td>---------------------</td>
</tr>
<tr>
<td>Detroit Arsenal</td>
<td>Fort Hood</td>
</tr>
<tr>
<td>Warren, MI 48039</td>
<td>Fort Hood, TX 76544</td>
</tr>
<tr>
<td>Aberdeen Proving Ground</td>
<td>Fort Indiantown Gap</td>
</tr>
<tr>
<td>Aberdeen Proving Ground, MD 21005</td>
<td>Anville, PA 17003</td>
</tr>
<tr>
<td>Jefferson Proving Ground</td>
<td>Fort Lewis</td>
</tr>
<tr>
<td>Madison, IN 47250</td>
<td>Fort Lewis, WA 98433</td>
</tr>
<tr>
<td>Dugway Proving Ground</td>
<td>Fort MacArthur</td>
</tr>
<tr>
<td>Dugway, UT 84022</td>
<td>Fort MacArthur, CA 90731</td>
</tr>
<tr>
<td>Fort McCoy</td>
<td>Fort McPherson</td>
</tr>
<tr>
<td>Sparta, WI 54656</td>
<td>Fort McPherson, GA 30330</td>
</tr>
<tr>
<td>White Sands Missile Range</td>
<td>Fort George G. Meade</td>
</tr>
<tr>
<td>White Sands Missile Range, NM 88002</td>
<td>Fort George G. Meade, MD 20755</td>
</tr>
<tr>
<td>Yuma Proving Ground</td>
<td>Fort Polk</td>
</tr>
<tr>
<td>Yuma, AZ 85364</td>
<td>Fort Polk, LA 71459</td>
</tr>
<tr>
<td>Natick Research & Dev Ctr</td>
<td>Fort Riley</td>
</tr>
<tr>
<td>Kansas St.</td>
<td>Fort Riley, KS 66442</td>
</tr>
<tr>
<td>Natick, MA 01760</td>
<td>Fort Stewart</td>
</tr>
<tr>
<td>Fort Bragg</td>
<td>Fort Stewart, GA 31312</td>
</tr>
<tr>
<td>Fort Bragg, NC 28307</td>
<td></td>
</tr>
<tr>
<td>Fort Campbell</td>
<td>Indiana Army Ammunition Plant</td>
</tr>
<tr>
<td>Fort Campbell, KY 42223</td>
<td>Charlestown, IN 47111</td>
</tr>
<tr>
<td>Fort Carson</td>
<td>Joliet Army Ammunition Plant</td>
</tr>
<tr>
<td>Fort Carson, CO 80913</td>
<td>Joliet, IL 60436</td>
</tr>
<tr>
<td>Fort Drum</td>
<td>Anniston Army Depot</td>
</tr>
<tr>
<td>Watertown, NY 13601</td>
<td>Anniston, AL 36201</td>
</tr>
</tbody>
</table>

DIST 6
<table>
<thead>
<tr>
<th>Facilities Engineer</th>
<th>Facilities Engineer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corpus Christi Army Depot</td>
<td>Bay Area Military Ocean Terminal</td>
</tr>
<tr>
<td>Corpus Christi, TX 78419</td>
<td>Oakland, CA 94626</td>
</tr>
<tr>
<td>Facilities Engineer</td>
<td>Facilities Engineer</td>
</tr>
<tr>
<td>Red River Army Depot</td>
<td>Gulf Output</td>
</tr>
<tr>
<td>Texarkana, TX 75501</td>
<td>New Orleans, LA 70146</td>
</tr>
<tr>
<td>Facilities Engineer</td>
<td>Facilities Engineer</td>
</tr>
<tr>
<td>Sacramento Army Depot</td>
<td>Fort Huachuca</td>
</tr>
<tr>
<td>Sacramento, CA 95813</td>
<td>Fort Huachuca, AZ 86513</td>
</tr>
<tr>
<td>Facilities Engineer</td>
<td>Facilities Engineer</td>
</tr>
<tr>
<td>Sharpe Army Depot</td>
<td>Letterkenny Army Depot</td>
</tr>
<tr>
<td>Lathrop, CA 95330</td>
<td>Chambersburg, PA 17201</td>
</tr>
<tr>
<td>Facilities Engineer</td>
<td>Facilities Engineer</td>
</tr>
<tr>
<td>Seneca Army Depot</td>
<td>Michigan Army Missile Plant</td>
</tr>
<tr>
<td>Romulus, NY 14541</td>
<td>Warren, MI 48089</td>
</tr>
<tr>
<td>Facilities Engineer</td>
<td>Facilities Engineer</td>
</tr>
<tr>
<td>Fort Ord</td>
<td>COL E.C. Lussier</td>
</tr>
<tr>
<td>Fort Ord, CA 93941</td>
<td>Fitzsimons Army Med Center</td>
</tr>
<tr>
<td></td>
<td>ATTN: HSF-DFE</td>
</tr>
<tr>
<td></td>
<td>Denver, CO 80240</td>
</tr>
<tr>
<td>Facilities Engineer</td>
<td>Facilities Engineer</td>
</tr>
<tr>
<td>Fort Sheridan</td>
<td>Holston Army Ammunition Plant</td>
</tr>
<tr>
<td>Fort Sheridan, IL 60037</td>
<td>Kingsport, TN 37662</td>
</tr>
<tr>
<td>Facilities Engineer</td>
<td>Facilities Engineer</td>
</tr>
<tr>
<td>Baltimore Output</td>
<td>Baltimore Output</td>
</tr>
<tr>
<td>Baltimore, MD 21222</td>
<td>Baltimore, MD 21222</td>
</tr>
<tr>
<td>Facilities Engineer</td>
<td>Facilities Engineer</td>
</tr>
<tr>
<td>Bayonne Military Ocean Terminal</td>
<td>Bayonne Military Ocean Terminal</td>
</tr>
<tr>
<td>Bayonne, NJ 07002</td>
<td>Bayonne, NJ 07002</td>
</tr>
</tbody>
</table>
US Army Engr Dist, New York
ATTN: PANEN-E
26 Federal Plaza
New York, NY 10007

USA Engr Dist, Baltimore
ATTN: Chief, Engr Div
P.O. Box 1715
Baltimore, MD 21203

USA Engr Dist, Charleston
ATTN: Chief, Engr Div
P.O. Box 919
Charleston, SC 29402

USA Engr Dist, Detroit
ATTN: Chief, Engr Div
P.O. Box 1027
Detroit, MI 48231

USA Engr Dist, Kansas City
ATTN: Chief, Engr Div
700 Federal Office Bldg
601 E. 12th St
Kansas City, MO 64106

USA Engr Dist, Omaha
ATTN: Chief, Engr Div
7410 USOP and Courthouse
215 N. 17th St
Omaha, NE 68102

USA Engr Dist, Fort Worth
ATTN: Chief, SWFED-D
P.O. Box 17300
Fort Worth, TX 76102

USA Engr Dist, Sacramento
ATTN: Chief, SPKED-D
650 Capitol Mall
Sacramento, CA 95814

USA Engr Dist, Far East
ATTN: Chief, Engr Div
APO San Francisco, CA 96301

USA Engr Dist, Japan
ATTN: Chief, Engr Div
APO San Francisco, CA 96343

USA Engr Div, Europe
European Div, Corps of Engineers
APO New York, NY 09757

USA Engr Div, North Atlantic
ATTN: Chief, NADEN-T
90 Church St
New York, NY 10007

USA Engr Div, South Atlantic
ATTN: Chief, SAEN-TE
510 Title Bldg
30 Pryor St, SW
Atlanta, GA 30303

USA Engr Div, Mobile
ATTN: Chief, SAMEN-C
P.O. Box 2288
Mobile, AL 36601

USA Engr Div, Louisville
ATTN: Chief, Engr Div
P.O. Box 59
Louisville, KY 40201

USA Engr Div, Norfolk
ATTN: Chief, NAOEN-D
803 Front Street
Norfolk, VA 23510

USA Engr Div, Missouri River
ATTN: Chief, Engr Div
P.O. Box 103 Downtown Station
Omaha, NE 68107

USA Engr Div, South Pacific
ATTN: Chief, SPDED-TG
630 Sansome St, RM 1216
San Francisco, CA 94111

USA Engr Div, Huntsville
ATTN: Chief, HNDED-ME
P.O. Box 1600 West Station
Huntsville, AL 35807
USA Engr Div, Ohio River
ATTN: Chief, Engr Div
P.O. Box 1159
Cincinnati, Ohio 45201

USA Engr Div, North Central
ATTN: Chief, Engr Div
536 S. Clark St.
Chicago, IL 60605

USA Engr Div, Southwestern
ATTN: Chief, SWDEDE-TM
Main Tower Bldg, 1200 Main St
Dallas, TX 75202

USA Engr Div, Savannah
ATTN: Chief, SASAS-L
P.O. Box 889
Savannah, GA 31402

Commander
US Army Facilities Engineering Support Agency
Support Detachment II
Fort Gillem, GA 30050

Commander
US Army Facilities Engr Spt Agency
ATTN: MAJ Brisbine Support Detachment III
P.O. Box 6550
Fort Bliss, Texas 79916

NCOIC
US Army Facilities Engr Spt Agency Support Detachment III
ATTN: FESA-III-SI
P.O. Box 3031
Fort Sill, Oklahoma 73503

NCOIC
US Army Facilities Engr Spt Agency Support Detachment III
ATTN: FESA-III-PR
P.O. Box 29704
Presidio of San Francisco, CA 94129

NCOIC
US Army Facilities Engr Spt Agency Support Detachment I
ATTN: FESA-III-CA
Post Locator
Fort Carson, Colorado 80913

Commander/CPT Ryan
US Army Facilities Engr Spt Agency Support Detachment IV
P.O. Box 300
Fort Monmouth, New Jersey 07703

NCOIC
US Army Facilities Engr Spt Agency Support Detachment IV
ATTN: FESA-IV-MU
P.O. Box 300
Fort Monmouth, New Jersey 07703

NCOIC
US Army Facilities Engr Spt Agency Support Detachment IV
ATTN: FESA-IV-ST
Stewart Army Subpost
Newburgh, New York 12250

NCOIC
US Army Facilities Engineering Support Agency
Support Detachment II
ATTN: FESA-II-JA
Fort Jackson, South Carolina 29207

NCOIC
US Army Facilities Engr Spt Agency Support Detachment II
ATTN: FESA-II-BE
P.O. Box 2207
Fort Benning, Georgia 31905

NCOIC
US Army Facilities Engr Spt Agency Support Detachment II
ATTN: FESA-II-KN
Fort Knox, Kentucky 40121

Naval Facilities Engineering Cmhd
Energy Programs Branch, Code 1023
Hoffmann Bldg. 2, (Mr. John Hughes)
Stovall Street
Alexandria, VA 22332

Commander
US Army Facilities Engineering Support Agency
FE Support Detachment I
APO New York, NY 09081
Navy Energy Office
ATTN: W.R. Mitchum
Washington DC 20350

David C. Hall
Energy Projects Officer
Dept. of the Air Force
Sacramento Air Logistics Center (AFLC)
2852 ABG/DEE
McClellan, CA 95652

USA Engineer District, Chicago
219 S. Dearborn Street
ATTN: District Engineer
Chicago, IL 60604

Directorate of Facilities Engineer
Energy Environmental & Self Help Center
Fort Campbell, KY 42223

Commander and Director
Construction Engineering Research Laboratory
ATTN: COL Circeo
P.O. Box 4005
Champaign, IL 61820

Mr. Ray Heller
Engineering Services Branch
DFAE, Bldg. 1960
Fort Sill, OK 73503

Commander-in-Chief
HQ, USAEUR
ATTN: AEAEN-EH-U
APO New York 09403

HQ AFESC/RDVA
Mr. Hathaway
Tyndall AFB, FL 32403

Commander and Director
Construction Engineering Research Lab
ATTN: Library
P.O. Box 4005
Champaign, IL 61820

HQ, 5th Signal Command
Office of the Engineer
APO New York 09056

HQ, US Military Community Activity, Heilbronn
Director of Engineering & Housing
ATTN: Rodger D. Romans
APO New York 09176

Commanding General
HQ USATC and Fort Leonard Wood
ATTN: Facility Engineer
Fort Leonard Wood, MO 65473

SSG Ruiz Burgos Andres
D.F.E., HHC HQ Cmd 193d Inf
BDE
Ft. Clayton, C/Z

Energy/Environmental Office
ATTN: David R. Nichols
USMCA-NBG (DEH)
APO New York 09696

Commander
535th Engineer Detachment
P.O. Box 300
Fort Monmouth, New Jersey

NCOIC
535th Engineer Detachment, Team A
ATTN: SFC Prenger
P.O. Box 224
Fort Knox, KY 40121

NCOIC
535th Engineer Detachment, Team B
ATTN: SP6 Cathers
P.O. Box 300
Fort Monmouth, NJ 07703

NCOIC
535th Engineer Detachment, Team C
ATTN: SFC Jackson
P.O. Box 4301
Fort Eustis, VA 23604

DIST 10
NCOIC
535th Engineer Detachment, Team D
ATTN: SFC Hughes
Stewart Army Subpost
Newburg, New York 12550

Commander
Presidio of San Francisco,
California
ATTN: AFZM-DI/Mr. Prugh
San Francisco, CA 94129

Facilities Engineer
Corpus Christi Army Depot
ATTN: Mr. Joseph Canpu/Stop 24
Corpus Christi, TX 78419

Walter Reed Army Medical Center
ATTN: HSW-E/James Prince
6825 16th St., NW
Washington, DC 20012

Commanding Officer
Installations and Services Activity
ATTN: DRCIS-RI-IB
Rock Island Arsenal
Rock Island, IL 61299

Commanding Officer
Northern Division Naval Facilities Engineering Command
Code 102 (Mr. E.F. HUMM)
Naval Base
Philadelphia, PA 19112

Commander US Army Facilities Engineering Support Agency
Support Detachment I
APO New York 09081

HQ, USA Health Services Cmd
Bldg 2792
ATTN: HSLO-F
Fort Sam Houston, TX 78234

HQDA
(DAEN-MPE-E)
WASH DC 20314

Commanding Officer
Northern Division Naval Facilities Engineering Command
Code 10
Naval Base, Building 77
Philadelphia, PA 19112

Facilities Engineer
Fort Leavenworth
Fort Leavenworth, KS 66027

Facilities Engineer
Fort Benjamin Harrison
Fort Benjamin Harrison, IN 46216

Office of the A&E
ATTN: MAJ Johnson
Camp Ripley
Little Falls, MN 56345

Commander
US Army Garrison
ATTN: HSLO-F
Fort Myer, VA 22043

Mr. David White
Defense Audit Service
888 North Sepulveda Blvd.
Suite 610
El Segundo, CA 90245

Facilities Engineer
Bldg. 308
Fort Myer, VA 22211

NAVFAC
ATTN: John Zekan
Code 0833
Hoffmann Building
200 Stovall Street
Alexandria, VA 22332

DIST 11