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and a second-stage spool valve with mechanical feedback was found
to be the best two-stage fluidic servovalve configuration.

Future fluidic systems and subsystems will have to interface
with electronic controllers or central processing uanits.

This means that fluidic systems and subsystems must have dual
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signals may also be used to drive servovalves with first-stage
fluidic-~type amplifiers--that is, amplifiers with moving parts.
Finally, fluidic-type amplifiers are successfully being used in
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1. INTRODUCTION

Two=-stage fluidic servovalves are needed in fluidic control systems
requiring power actuation. Continuing studies have been conducted by
the U.S. Army Aviation Research and Technology Laboratories (AVRADCOM),
the Harry Diamond Laboratories (HDL), university researchers, and
industrial engineers to .improve servovalves' dynamic performance, power
consumption, reliability, and cost. At present, a fluidic input
servovalve consisting of a first-stage fluidic amplifier cascade and a
second-stage spool valve offers promise for fluid control systems that
require power actuation. This study consists of a review of first-stage
fluidic amplifier usage to date and the basic features of first-stage
torque motor flapper-nozzle valve hydraulic amplifiers and first-stage
hydraulic fluidic amplifiers. It also includes a comparison cof the
torque motor flapper-nozzle valve and fluidic amplifier in terms of
input power 1level, output power, frequency response, leakage flow,
temperature sensitivity, and reliability. Present trends in fluidic
input servovalve development are also discussed.

2. FIRST~STAGE FLUIDIC AMPLIFIER USAGE

Torgque motor flapper-nozzle hydraulic amplifiers are highly
developed and have been used as first-stage amplifiers in two-stage
electrohydraulic servovalves for nearly three decades. As early as
1973, fluidic amplifiers were used as first-stage amplifiers in two-
stage servovalves. A number of efforts will now be discussed in the
development of a two-stage fluidic input servovalve consisting of a
first-ytage fluidic amplifler and a second=-stage spool.

Three efforts to develop a two~-stage fluidic input servovalve using
a first-stage fluidic amplifier 1-3 yere sponsored by AVRADCOM as part
of its servoactuator development program. The program objective was to
develop reliable, 1low~cost servoactuators for use in hydrofluidic
stability augmentation systems (HYSAS). First-stage fluidic amplifiers
were used in the servovalves to increase reliability and reduce the cost
of servcactuators. Data were not reported on input power level, output
power, frequency response, and leakage flow for these programs using
first-gstage fluidic ampllrieirg. However, the results of these
development programs will be praesented.

ly, c. kent and J. R. Sjolund, Hydinfluidic Servoactuator Develop-
ment, Honeywell, Inc., Minneapolis, MN, United States Army Air Mobility
Research and Development Laboratory TR-73-]2 (May 1973).

27. K. Sjolund, Hydroflvidic Servoactuator Development, Honeywell,
Inc., Minneapolis, MN, United S&tates Army Air Mobhility Research and
Development Laboratory TR-76-25 (September 1976).

37. o. Hedeen, Investigation of a lLow=Cost Servoactuator for HYSAS,
Horneywell, Inc., Minneapolis, MN, United States Army Research and
Technology Laboratories TR-~78-30 (July 1978).
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The first development program was completed in 1973.1 A schematic
of the servoactuator used is shown in figure 1. The fluidic servovalve
portion of the servcactuator, shown within dashed lines, consists of a
first~-stage fluidic amplifier cascade (three stages), which drives a
second-stage spring-centered spool valve. In this two-stage, open loop,
flow=-control servovalve, actuator position is fed back to the input of
the first-stage cascade by a spool valve feedback transducer. The input
signal from the control system is amplified by a three-stage, fluidic
amplifier cascade before it is applied to the servovalve. A development
model was built and tested. The unit was functional; however, it was
noisy, 8 percent of full outpu%, and it had gain variation with fluid
temperature change. The second program was completed in 1976.2 The
servoactuator used in this program is shown in figure 2. The fluidic
servovalve portion of the servoactuator, shown within the dashed lines,
congsists of a first-stage fluidic amplifier and a second-stage spring-
centered spool valve. This is a two-stage, open loop, flow control
servovalve. Actuator position is fed back by a flapper-nozzle feedback
transducer. The input signal from the control system is amplified by a
single-stage fluidic preamplifier before it is applied to the
servovalve. This program was a follow-on to the 1973 program. A
development model was built and tested; its response was slightly lower
than the first model, and it had gain variation with fluid temperature
change.

The third program was completed in 1978.3 Schematics of the
servoactuators used are shown in figures 3 and 4. The fluidic
servovalve portion of the servoactuator, shown within the dashed line
(fig. 3), consists of a first-stage fluidic amplifier cascade (two
stages) and a second-stage spring-centered spool valve. Servovalve load
flow is fed back through orifice resistors to the input of the first-
stage fluidic amplifier cascade. This is a two-stage, closed-loop,
flow-control servovalve. The fluidic servovalve portion of the
servoactuator, shown within the dashed lines (fig. 4), consists of a
first-stage fluidic amplifier cascade (two stages) and a second-stage
spool valve. First-stage fluidic amplifier output flow used to drive
the second-stage spool valve is fed back through orifice resistors to
the amplifier input. This is a two-stage, closed~loop, pressure control

1y, ¢. kent and J. R. Sjolund, Hydrofluidic Servoactuator Develop~
ment, Honeywell, Inc., Minneapolis, MN, United States Army Air Mobility
Research and Development Laboratory TR-73-12 (May 1973).

23, R. Sjolund, Hydrofluidic Servoactuator Development, Honeywell,
Inc., Minneapoiis, MN, United States Army Air Mobility Research and
Development Laboratory TR-76-25 (September 1976).

37. 0. Hedeen, Investigation of a Low-Cost Servoactuator for HYSAS,
Honeywell, Inc., Minneapolis, MN, United States Army Research and
Technology Laboratories TR-78-~30 (July 1978).
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Both the flow
These units
1), and they

servovalve. Breadboard models were assembled and tested.
control and pressure control servovalves were evaluated.
had lower response and stiffness than the first unit (fig.
had gain and null change with fluid temperature changes.

to 4 it is seen that each development program

second-stage spool, flow=-control
control

From figures 1

involved a spring—-centered,
servovalve. The third program also involved a pressure
servovalve. Each development effort dJdemonstrated the feasibility of

using the first-stage fluidic amplifier, second~stage spool servovalve
connfiguration; however, fluidic amplifier gain change with temperature

was a problem in each effort.

INPUT FROM
CONTROL SYSTEM

Figure 1. Fluidic servoactuator
schematic with two-stage, flow-
control servovalve~--1973 program
(from H#. C. Kent and J. R.
Sjolund, Honeywell, Inc.,
Minneapolis, MN, United States

= Army Air Mobility Research and

Development Laboratory TR-73-
12, May 1973.)
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Figure 2. Fluidic servoactuator

schematic with two-stage, flow-
control servovalve~-1976 program.
(From J. R, Sjolund, Honeywell,
Inc., Minneapolis, MN, United
States Army Air Mobility Research
and Development Laboratory TR-76-
25, September 1976.)
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SCHEMATIC DIAGRAM

HDL sponsored a study of a single-axis hydrofluidic stabilization
system, a portion of which involved the development of a two-stage,
fluidic input, pressure control servovalve with a first-stage fluidic
amplifier and a second-stage spool valve. The servovalve schematic is
shown in figure 5 (p. 10). This is an open loop, pressure control
servovalve. The unpublished results of the development and testing of
the servovalve indicave that this servovalve concept is feasible,
although during system tests using maximum loop gain, considerable high-
frequency ringing occurred that was associated with the servovalve.
Performance was considered somewhat marginal under this condition. It
was concluded that fluidic system temperature insensitivity could be
obtained over the 40 to 180 F temperature range (~ 4 to ~ 26 C), where
no more than four amplifiers are used, by operating the fluidic
amplifiers in the turbulent regime. Additional studies of this
servovalve conficuration are in progress. These gstudies are also
sponsored by AVRADCOM and HDL.

3. FIRST-STAGE TORQUE MOTOR FLAPPER~-NOZZLE VALVE

The first-stage amplifier used in two-stage electrohydraulic
servovalves 1is usually of the type shown in figure 6. This type of
valve 1is also called a hydraulic amplifier. A study of its
characteristics will provide a useful reference for comparing first-
stage fluidic amplifier cascades. The torque motor counverts a low=-
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pover-level electrical input signal into a mechanical torque. The
torque applied to the flapper ars controls the output flow from the
double nozzle or four-way flapper valve. Some of the important
characteristics of the hydraulic amplifier are relatively low-level
input signal power, high-output power, good frequency response,
relatively low leakage flow, relative temperature insensitivity, and
reliability. Each of these characteristics will now be considered.

SPOOLVALVE ( - wj
r— 7 - -—; OL/rumn
I M ys | TORQUE MOTOR FO: o
: % . : = .
7 ]
I / ——)I— N\ /._iﬁ
I A | l——\m:zzns
) DOUBLE FLAPPER.
B 77 | NOZZLE VALVE P, LCAD ’
- Eﬁ' 70 :
I L ' LLL—‘_P‘-'—‘U"
| seavovawve | ]
L ] FIXED UPSTREAM
o o o —— o — ORIFICE

Figure 5. Two~stage fluidic pressure Figure 6. Hyaraulic amplifier
control servovalve with first-stage schematic showing torque motor,
fluidic amplifier and second-~stage double flapper-nozzle valve.
spool valve.
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3.1 Input Signal Power

A survey of commercially available two-stage rgervovalves used

in aerospace applications shows that input signal power, Wy, is in the
50- to 207-m¥ range.* The torque motor converts the low-level electri-

cal signals into torque on the flapper. Thus, the torgue motor
essentially acts as un electrical-to-mechanical interface; there is no
power gain. The torque motor drives the flapper of the double-nozzle

flapper valve,

3.2 Output Power

The flow curve of the flapper-nozzle valve output pressure
indicates its available output power. A typical flapper-nozzle output
cuxve for maximum flapper deflection is given in figure 7. This curve
was generated with the mathematical approximation shcwn below. This is
an approximation of the actual flapper-nozzle valve output pressure (Pm)
flow (Qm) relationship; the actual relationship is complicated and not

useful.5
P=-1—[20-28Qm2-4Qm|/5-Qm2], (1)

m 25
where

= nondimensional load pressure = Pm/Ps'
= ¥flapper supply pressure, Pa,

Pp = actual load y 2isure, Pa,

Qn = nondimensional load flow = qm/gffﬁg,
o = o % o2 W,

c = orifice discharge coefficient,

p = fluid density, kg/m3

9y = actual load flow, m3/s, and

D

= flapper fixed orifice diameter, m.

Nondimensional output power, W, is

W="PQ . (2)

YM., Guillon, Hydraulic Servo Systems Analysis and Design, Plenum

Press, New York (1969).

SJ. F. Blackburn et al, Fluid Power Control, MIT Press and John Wiley

and Sons (1960).
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PRESSURE, P,

Substituting the expression for P , equation (1), into equation (2)
gives W = £(Q,). Differentiating this expression with respect to Q and
setting it equal to zero gives an equation in Qm which can be solved for
maximum output power. Following this procedure gives Q = 0.3956 and P
= 0.4854 for maximum power output (see fig. 7). The expression for
maximum flapper output power, WQo is

W = 0.1920 g (Pg)3/2 . (3)

The maximum power gain, Gpo of the first-stage hyuraulic amplifier is

_ Mo _ 0-19209g(25)*/2 ()
T W Wy )

For a nominal flapper diameter of 0.25 mm (0.01 in.), discharge
coefficient of 0.65, supply pressure 10.35 x 108 pa (1500 psi) and Wy =
100 mW, the first-stage power gain Gp is approximately 100.
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3.3 Frequency Response

The hydraulic amplifier frequency response is determined by the :
torque motor input circuit and flapper valve dynamics. The amplifier
transfer function is

K
T = A , (5)

(-rms + 1)[(s/mn)2 + <2c/mn) s + 1]

where

.« L T R

ibee Rl s
S
e —— R e

W, = flapper-nozzle natural frequency, 1/s,
4 = flapper-nozzle damping ratio,
5 = Laplace transform variable, 1/s,
g Tm = torque motor time constant, 1/s, and
& Ky = hydraulic amplifier gain constant, m®/(ns) .

et

However, first~stage hydraulic amplifiers and second=-stage sSpool
dynamics are negligible in terms of the overall servovalve response.
o The overall servovaive response is primarily determined by the amount of
first-stage output power available to drive the second-stage spool i
valve., The spool drive flow, QP, required to give rated® servovalve
output flow at frequency, £, is

o5

i

T e e

= w
Qp Asxs v (6)
ﬂ‘? where
w 2, 1/s,
Ag = spool end area, m?, and
X3 = maximum spool displacement, m.

Rated flow is essentially maximum servovalve output flow from the
second-stage spool valve for a no-=load (or zero-load pressure drop)
condition. Maximum output flow can be achieved only for maximum spool
displacement. Thus, Xg is used in equation (6). If the first stage can
supply the required spool drive flow, Q_, then overall servovalve
response will be determined by minimal first- and second-stage dynamics .
and will be very fast. If first-stage output flow is less than Q_, ) i
servovalve response will be reduced accordingly.

®w. J. Thayer, Specification Standards for Electrohydraulic Flow
Control Servovalves, Moog Technical Bulletin 117, Moog, Inc., Proner
Airport, Bast Aurora, New York (July 1959, Revised June 1962).
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Maximum first-stage or hydraulic amplifier output flow, Qp, isS

P
S

T =
QF-4DZCD S (7)

Equating the maximum output flow from the hydraulic amplifier to the
regquired spool drive flow gives

P
=T 52 s

mASXS 7 D cD 5 . (8)

Solving for w gives 5

Ly S

(N
ool TmE | Y ®

S S

Thus, for a given spool end area, Ag, maximum spool displacement, X5,
and supply pressure, Pgs servovalve response, W, is determined by the

diameter, D, of the flapper orifices.

3.4 Leakage Flow

Servovalve null leakage flow, which is nominally less than 10
percent of the rated or no-load flow from the servovalve,7 will now be
considered. Null leakage flow consists of first-stage leakage flow or
tare flow and second-stage spool leakage flow. Tare flow, Qe is of
interest here, and for a double nozzle flapper8 it is

B
Q =2¢, (%) DZ‘/;§=2QF . (10)

Thus, it can be seen from equations (9) and (i0) that high servovalve
frequency response is achieved at the expense of leakage flow. Tare
flow is twice the maximum output flow from the hydraulic amplifier,

3.5 Temperature Sensitivity

The flapper-nozzle valve is relatively temperature
insensitive. Two aspects of the sensitivity of double flapper-nozzle

5J. F. Blackburn et al, Fluid Power Control, MIT Press and John Wiley
and Sons (1960).

’H. C. Morse, Electrohydraul ic Servomechanisms, McGraw-Hill Book Co.,
New York (1963).

84. E. Merritt, Hydraulic Control Systems, John Wiley and Sons (1967).
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valve fluid temperature will be considered--flow gain and null shift.
The linearized flow gain of the double flapper-nozzle valve (fig. 6) is®

A X}jAPL =0 Df "N\ p '

where C is the discharge coefficient of the annular curtain area
between the nozzle and flapper, and Dn is the nozzle diameter. The
discharge coefficient C £ 1is relatively insensitive to changes in
Reynolds number? (here due to temperature) with a value of approximately
0.63. Fluid density, p, 1is also essentially constant for changes in
fluid temperature; therefore, flapper flow gain is essentially constant
and not a function of temperature. The second consideration is flapper
valve null shift due to changes in fluid temperature. The null shift of
the flapper valve is temperature sensitive. However, most
electrohydraulic servovalves use a double nozzle flapper in the first
stage because the two nozzles make this configuration relatively immune
to changes in its null shift due to resulting changes in supply pressure
and/or ternpe.ra‘cx,\re.8 Two~stage electrohydraulic servovalves using a
first~stage flapper-nozzle valve typically provide normal performance
over the (- to 165~F temperature range, and limited response to input

commands at =65 F. «

3.6 Reliability

The reliability of hydraulic amplifiers has been continually
improved over the yea::s..10 The first major improvement was the use of a
double nozzle-flapper valve rather than the previously used single-
nozzle-flapper valves. This change reduced null offsets caused by
environment (temperature, pressure, etc.). The second improvement was
isolation of the torgue motor from the hydraulic oil. Both of these
improvements increased amplifier reliability. However, in spite of
these improvements, the hydraulic amplifier still has two failure modes
that lead to actuator “hardover,” which can result in a catastrophic
failure. A hardover actuator failure is the uncontrolled driving of the
actuator to one or the other extremes at maximum power. Actuator hard-
over can be caused by electrical short circuits in the torque motor
circuit and by the sudden blockage of one of the orifices (due to large=-
particle contamination) in the £lapper-nozzle valve. In both cases,

8H. E. Merritt, Hydraulic Control Systems, John Wiley and Sons (1967).

9A. Lichtarowicz and E. Markland, Calculation of Potential Flow with
Separation in a Kight-Angled Elbow with Unequal Branches, J. Fluid
Mech., Cambridge University Press, 17, Pt 4 (December 1963).

10g, H. Maskrey and W. J. Thayer, A Brief History of Electrohydraulic
Servomechanisms, American Society of Mechanical Engineering Journal of
Dynamic Systems Measurement and Control (Jure 1978).
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maximum hydraulic amplifier output power is applied to one end of the
spool, resulting in actuator hardover at maximum power. In many
aircraft applications, servoactuators control aerodynamic surfaces of
aircraft. In the event of a hardover failure, the aerodynamic surface
is forced to one extreme position and the pilot has little or no control
of the surface. In this instance, hardover failure can result in a

catastrophe.

4. FIRST-STAGE FLUIDIC AMPLIFIER

Two-stage, fluidic input servovalves are necessary components of
fluidic control systems requiring power actuation. These valves have
been the subject of continuing study since 1962. The objective has been
to develop a valve which would (1) accept low=level, fluidic input
signals, (2) have dynamic performance (frequency response) comparable to
two-gtage electrohydraulic servovalves, (3) be low in cost, and (4) be
very reliable. Many fluidic input servovalve configurations have been
studied (see appendix A). Most of the first-stage amplifier
configurations have involved the use of metallic bellows that act upon &
level bar so that pressure signals are converted into torque.
Servovalves wusing a first-stage bellows configuration have been
successfully demonstrated.}! Nevertheless, the use of bellows in the
first stage limits the valve's potential because the bellows (1) are
costly, (2) are very susceptible to rupture due to overpressure, and (3)
limit overall frequency response for high=-performance servovalves.1?
Therefore, there has been renewed interest in fluidics for first~stage
amplifiers. The fluidic amplifier ras no moving parts, low production
cost, and high reliability. The follewing amplifier characteristics
will be considered: (1) input siyuna) power level, (2) output power, (3)
frequency response, (4) leakage flow, (5) temperuture sensitivity, and

(6) reliability.

4.1 Input Signal Powe

Control systems with large dynamic renges are of interest here;
therefore, laminar proportional amplifiers (LPA's) will be vconsidered.
In general, LPA's have extremely low thresholds and can ke driven easily
by 100-mW (or 0.1 W) input signals.

1y, J. Banaszak and W. M. Posingies, Hydrofluidi: Stability
Augmentation System (HYSAS) Operational Suitability Demonstratior,
United States Army Air Mobility Research and Development Laboratory TR=

77=31 (October 1977).

12p, Lee and D. N. Wormley, Hydraulic Signal-Processing Amplifier
Performance in Position Control Systems, Massachusetts Institute of
Technology, Cambridge, MA, Harry Diamond Laboratories, HDL~CR-~77-191-1

( December 1977).
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4.2 Output Signal Power

Fluidic amplifier output power is indicated by its output
pressure flow curve. Figure 8 gives a typical fluidic amplifier output
curve where the amplifier nozzle width, by, height, h, and supply
pressure, P_., are 5 x 10~%m, 2.05 x 10%m, and 110 kPa, respectively.
Fluidic amplifier output curves (fig. 8) have an orifice
characteristic!3 and can be described by equation (11).

Qn =vy1 - ZPn ‘ (11)

where
fﬁ P, = nondimensional output or load pressure (Pn/Psa)’
f'| Psa = fluidic amplifier supply pressure, Pa,
Py = actual output pressure, Pa,
E Qn = nondimensional output flow qn/Qsa'
Qsa = fluidic amplifier supply flow, md/s, and

actual output flow, md/s.

ST A e
o]
=]
]

N AN PCWER POIT Figure 8. Fluidic amplifier output

Ems . characteristic.

137. M. Kirshner, Fluid amplifiers, McGraw-Hill (1966).
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Nondimensional output power w! is given as

| -
W PnQn . (12)

‘, Substituting the expression for Qs equation (11), into equation (12)

| gives W = £(P_ ). Differentiating W' = £(P ) with respect to P, and

\ setting this expression equal to zero gives an equation in P, for the
\ maximum power condition. Following this procedure jives

|

q

1 ’1 ,
Pn =3 and Q“ =43 (see fig. 8), or

1 1
P, =3 Pga 30 @ =43 9, (13)
where
= 3
%a = 9% Vpsa « m°/s !
= ,3 \/ 7
ga cDaAsa P . Yn/ /kg ’

c

Da amplifier supply nozzle discharge coefficient, and

—-

A

sa amplifier supply nozzle area (bsh), m2,

21 - R 7
Therefore, P, =3 Psa' 9 =43 9, \"sa , and maximum output power,

wcl, = (.1924 g (p ) 2, (14)
a 8sa;

This expression for maximum amplifier output power is very similar to

equation (3) for maximum output ; ower for the flapper-nozzle valve. The
maximum power output ratio- ¢ = W(IJ/WO’ is

3/2
gaf P
v = 1.002 _a[_si)_.-

9g( Ps)3/2

. (15)
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If the amplifier supply pressure P, 1s made equal to the flapper-nozzle
valve supply pressure, P and Cpa = C5s then ga/gf = (bsh)/(02/4), and
Y becomes

sl

(b _h)

(nD% /4)

Vv = 1.002 . (16)

Thus, the power ratio essentially becomes the ratio of amplifier sipply
nozzle area to flapper-nozzle orifice area. The nominal flapper orifice
diameter has a maximum value of 2.5 x 107%m (0.01 in.), and (b h) is (S
x 10™%m « 2.05 x 10"%m) for this type of application. For these nominal
geometries, the maximum output power ratio is

1
W
v = Wg' = (1.002)(2.08) = 2.09 . (17)

Thus, the fluidic amplifier operated at the same supply pressure as the
flapper~nozzle valve nominally has twice the maximum output power.
Maximum fluidic aqplifier power gain, Gp, is

1
AW Wi ’

From equations (4), (17), and (18) G, has a value
G, = 2,09 G_, = 200 ’

where w& is 100 mW. However, since the self-staged pover gain of
fluidic amplifiers is approximately 15, two or more amplifiers in series
will be required to achieve a power gain of 200.

4.3 Frequency Response

Frequency rcsponse of a typical LPA using hydraulic oil is
shown in figure 9,12 Ay.-'n, the overall servovalve frequency regponse
is basically determined by the amount of firgt-stage output power

12p, ree and D. N. Wormley, Hydraulic Signal-Processing Aamplifier
Performance in Position Control Systems, Massachusetts Institute cf
Technology, Cambridge, MA, Harry Diamond Laboratories, HDL=~CR~77-191-1
( December 1977).
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. available to drive the second-stage spcol valve. The required spocl
i drive flow for servovalve response, w, is given as WA X . The amplifier
L output characteristic, the lower curve in figure 10, gives the output
flow and pressure that it can provide. If the point describing the
v required sgpool drive flow, Q_, and pressure, P_, were plotted on the
output characteristic of a first-stage amplifier cascade and it fell to
the right of the curve, then the amplifier coculd not drive the spool to
obtain maximum servovalve response at frequency, w. In this insgtance,
another amplifier could be added in parallel to the last stage of the
amplifier cascade. The amplifier cascade output characteristic would
now be described by the upper curve in figure 10. Since point (Qp, '
P_.) is to the left of the upper curve, the amplifier cascade can drive
the spool to obtain maximum servovalve response at frequency, w (that

i
4
i
]

TR N T T L e

ﬁ”. is, servovalve response limited or determined solely by first~stage
Efi amplifier and second-stage spool dynamics).
-
L ! 4
L,
E: WL A ) SR
i.l’." } E
3 = LAMINAR PROPORTIONAL AMPLIFIER l
-
3 -]
: w 15r_
L‘ a
3 ] .
a 3
w 10 |
’ 4
] |
. 5 | ] | | i ] | | E
&.' 5 10 20 40 100 200 400 1000 ‘
b FREQUENCY (Hz)
. 0= A Do —y - #
E’é;'- — .gu r-
- ;g
- u“; -180 |~
S \
270 |
-360 |- 1
| | 1 1 i ] 1 | i
5 10 20 40 100 200 400 1000
FREQUENCY (Mz)
Figure 9. Single-stage fluidic amplifier block load, pressure-gain
frequency response characteristics. (Data from D. Lee and D. N.

Wormley, Massachusetts Institute of Technology, Harry Diamond
Laboratories, HDL-CR-77-191-1, December 1977.)
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14 2
Figure 10. Fluidic amplifier output

characteristics for single amplifier

(1) and two amplifiers in parallel (2).
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The fluidic amplifier and flapper-nozzle output curves are plotted

in figure 11, The fluidic amplifier output pressure flow curve (eq

(20),

qn/Qsa 2\11 -2 (pn/Psa) ' (20)

has been written in terms of the flapper pressure~flow characteristics

to give

an/2:08 9P = V1 = 2 (Pn/Pg) (21)

where P_, = Pg and g, = 2,08 gge. The fluidic amplifier has higher
maximum output power than the flapper-nozzle valve, as previously ncted;
however, if the required spool drive pressure flow point is plotted on
figure 11 and it falls to the right of the intersection of the curves,
then the flapper will be able to supply more output power than the

fluidic amplifier to drive the spool. 1If it falls to the left of the
intersection, then the fluidic amplifier can supply more output power to

drive the spool.

The magnitude of the required spool drive pressure and flow on
the first-stage output characteristic is important in terms of the type

s
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FLUNDIC AMPLIFER

Figure 1ll. Hydraulic and fluidic
amplifier output characteristics.

HYDRAULIC AMPLIFER

0 01 02 03 04 05 08 07 Ud 05 10
OUTPUT PRESSURE, P,

of spool position feedback that is used. Second-stage spool position
feedback may be achieved in three basic ways.

1. By placement of stiff springs at the spool ends that act to
center the spool against the pressure differential caused by the first
stage. This type of servovalve configuration can be seen in figures 1,
2, and 5. In each case the first stage 1s a fluidic amplifier, which
drives a spring-centered, second-stage spool valve. The servovalves
shown in figures 1, 2, and 5 are two-stage, open loop servovalves.

2. By direct position feedback, as shown in the two-stage,

electrohydraulic servovalve of figure 12. The first stage is a
hydraulic amplifier which has direct spool position feedback, and the
second stage 1s a spool valve. This is a two-stage, closed loop
servovalve.

3. By use of a mechanical spring to convert spool position to
a force signal which is fed back to the torque motor. This type of
servovalve configuration can be seen in the two-stage, electrohydraulic
servovalve, figure 13. The first stage is a hydraulic amplifier, which
drives a second-stage spool wvalve. This 1s a two-stage, closed loop
servovalve.B

84, E. Merritt, Hydraulic Control Systems, John Wiley and Sons (1967).
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a 0 s Wrwr/PERMANENT MAGNET

ARMATURE MOUNTED ON
STIFF TORSION SPRING _+—POLE PIECE

,/ti/’FLAPPER AND NOZZLES

_J

4 ™
IH - 5POOL
Q, = dA\leeu UPSTREAM

Lm— v — ORIFCE
Py 1 P
SUPPLY RETURN SUPPLY
Figure 12. Two-stage, flow-control electrohydraulic servovalve

with direct feedback. (Schematic from H. E. Merritt, Jochn
Wiley and Sons, 1967.)

The use of stiff springs at the spool ends provides an open
loop type of servovalve. Centering springs with very high stiffness
(large spring constants) are used so that the force required to move the
springs is much greater than the flow forces on the spool. 1In this way
the first-stage amplifier can drive the second-stage spool in a linear,
open loop manner .4 However, the use of stiff centering springs
necessitates a very high first-stage output pressure. Therefore, if the
required spool drive pressure for a given application were greater than
P1 {(fig. 11), then the flapper-nozzle first stage could provide greater
output power and thus higher overall servovalve freguency response than

l4p, Deadwyler and F. M. Manion, Design Considerations for Improved
Fluidic Input Servovalve Performance, Harry Diamond Laboratories HDL~TM-

79-4 (April 1979).
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the first-stage fluidic amplifier. If a first-stage fluidic amplirier
were used in this instance, a number of parallel amplifiers would be
required. The penalty here is additional leakage flow. An alternative
would be to use less stiff centering springs; the penalty here isg
reduced linearity.

~
rf ~ ~\ ) |- PERMANENT MAGNET

_+—POLE PIECE

ARMATURE MOUNTED ON
WEAK TORSION SPRING

JCFLAPPER AND NOZZLES

a2 2 ———————— Y\ LEAF-TYPE
_| —F L FEEDBACK
: — SPRING
— 1L
“~——{—SPOOL
L — 2 e CERLTOC
0, Q ORIFICE
P, ‘ l | P
SUPPLY RETURN SUPPLY

Figure 13. Two-stage, flow-control electrohydraulic servovalve
with mechanical feedback. (Schematic from H. B. Merritt, John
Wiley and Sons, 1967.)

Direct position and mechanical spring position feedbdck are
similar in that ©both provide a closed 1loop, position control
servovalve. A two-stage closed loop servovalve is desirable because it
allows for the best overall servovalve control. Two of the fluidic
servovalves described in section 2 are two-stage, closed loop
servovalves (see fig. 3 and 4), which have fluidic resistor feedback
circuits. The difficulty with this feedback technique is feedback
circuit temperature sensitivity. Spring position feedback has had the
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greatest impact on servovalve development--and by far the widest
use;4s15716 therefore, only spring @position feedback will De
discussed. spring position feedback (fig. 13) has been fully
described.? 1Its advantage 1is that much larger spool driving pressures
{or forces) are available to drive the spool than are regquired. There
is essentially no pressure drop across the spool, so that spool position
is controlled by spool drive flow.l® Using spring feedback, the
required spool drive pressure flow point will generally be to the left
of the intersection of the fluidic amplifier and hydraulic amplifier
curves (fig. 11), so that a fluidic amplifier first stage could provide
greater output power (higher overall servovalve frequency response) than
a first-stage hydraulic amplifier. Needless to say, mechanical spring
position feedback cannot be used with fluidic amplifiers as such,
because fluidic amplifiers with no moving parts cannot accept mechanical
inputs. However, in order to take advantage of the potential offered by
first-stage fluidic amplifiers and second-stage spool valves with
mechanical feedback, fluidic-type amplifiers with moving parts have been
developed (fig. 14, 15, and 16). The amplifier shown in figure 14 is
called an electrofluidic transducer or pin amplifier.17 The amplifier
mechanism is the mechanical deflection of the supply jet by the pin so
that a differential pressure is developed at the receiver ports.

The amplifier shown in figure 15 is called a fluidic deflector-
jet amplifier.!® The amplifier mechanism is the mechanical deflection
of the supply jet by the deflector such that a differential pressure is
developed at the receiver ports. The amplifier shown in figure 16 is

Y“M. Guillon, Hydraulic Servo Systems Analysis and Design, Plenum
Press, New York (1969).

84. E. Merritt, Hydraulic Contrsl Systems, John Wiley and Sons (1967).

15p, ¢. ~lark, Electronic Controls for Fluid Power, Hydraulics and
Pneumatics (June 1978).

16y, g, Thayer, Transfer Functions for Moog Servovalves, Moog
Technical Bulletin 103, Moog, Inc., Proner Airport, East Aurvra, New
York (December 1958, Revised January 1965).

179, 7. Harvey and J. W. Merritt, Electrofluidic Transducer (Pin
Amplifier), U.S. Patent No, 3,638,671 (February 1972).

18Moog Catalog, No. 261, Moog Inc., Proner Airport. Fast Aurora, New
York (n.d.).
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called an electro-fluidic transducer or amplifier.l9 The amplifier
, mechanism is the deflection of the supply nozzle such that the jet

5 emanating from the nozzle develops a differential pressure at the
3 receiver ports, This amplifier is wvery similar to the Jjet pipe
ﬁ valve.5 Each of these amplifiers is electrically actuated by a torque
: motor and has been used as the first stage in two-stage electrohydraulic
3 servovalves.l8/19 mwo of the servovalves are shown in figures 17 and
18, The two-stage servovalve shown in figure 17 has a first-stage
torque motor with a fluidic deflector-jet amplifier and a second-stage
spool valve with mechanical feedback. This is a two~stage, closed loop
servovalve. The two-stage servovalve shown in figqure 18 has a first-
stage torque motor and electro-fluidic amplifier and a second-stage
spool valve with electrical feedback. This is a two~stage, closed loop

servovalve. The use of fluidic=-type amplifiers in these
electrohydraulic servovalves attests to the important role fluidic
elements play in the present commercial servovalve market. These

fluidic applications also point to their potential for increased usage
in future commercial applications where reliability will be a wvital
aspect of system design.

Figure 14. AiResearch Electrofluidic
transducer or amplifier.

S K5 o il o W Ao i i Caanan i
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FLUIDIC AMPLIFER

S7. F. Blackburn et al, Fluid Power Control, MIT Press and John Wiley
and Sons (1960).

18Mo0g Catalog, No. 261, Moog lnc., Proner Airport, East Aurora, New
York (n.d.).

19robert Bosch Corporation, Electro-hydraulic Servovalve Series 0814- b
SMV2 and 0814-SMv3, 2800 South 25th Ave., Broadview, ILL (n.d.). 3
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DEFLECTOR

FLUIGIC AMPLIFIER

Figure 15, Moog deflector jet
fluidic amplifier.

bz, 2z

L
VAN

Py

Figure 16. Bosch electrofluidic

converter or amplifier (jet pipe). .l_ JET PIPE  SUPPLY NOZZLE

TORQUE MOTOR —
FLUIDIC AMPLIFIER TYPE
RECEIVER PORTS
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UPPER POLEPIECE

coiL

DEFLECTOR
FLUIDIC AMPLIFIER

FLEXTURE TUBE

P LOWER POLEPIECE

FEEDBACK SPRING
SPOOL

Figure 17. Two-stage, flow control electrohydraulic serxrvovalve
with mechanical feedback.

The two-stage servovalves shown in figures 17 and 18 have the
best fluidic servovalve configuration. They have closed loop feedback
control, which ensures the best overall servovalve control, the minimum
number of fluidic amplifiers in the first stage (less parallel staging
required) and a feedback technique that is relatively temperature
ingensitive, as indicated by servovalve specificaitons.le'19 A two-
stage fluidic=-input servovalve can be developed that employs this
configuration. It requires the development of an efficient pure fluid
means of moving the pin, the deflector, or the nozzle in the moving-part
fluidic=-type amplifiers described in figures 14, 15, and 16.

18Mo0og catalog, No. 261, Moog Inc., Proner Airport, East Aurora, New
York (n.d.)

19robert Bosch Corporation, Electro~hydraulic Servovalve Series 0814~
SMV2 and 0814-SMV3, 2800 South 25th Ave., Broadview, ILL (n.d.).
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Figure 18. Two-stage, flow-control electrohydraulic servovalve
with electrical feedback.
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4.4 Leakage Flow

i
YL‘ Tare flow for a first-stage fluidic amplifier cascade, Q,, is
the sum of the supply flows for each amplifier in the cascade. It is

In general, fluid amplifier leakage flow is greater than a comparable
1 flapper-nozzle valve, even if only one amplifier were used, becauvse its
' power nozzle area is normally greater than the flapper orifice area.

Thus .

B given as
o= ﬂ bg; VB + Py + o o o+ b g [P (22) _.
3 where Py = amplifier supply pressure for the ith stage, Pa f
| 2 {
e = f_ 7
é‘ 9 cDiAi o m’ /kg . 1
£ 3
E'f Cpy = ‘supply nozzle discharge coefficient of the ith stage, !
F' AR, = supply nozzle area of the ith stage, m?, and 1
E. by = number of parallel sections in the ith stage. j
¢
b
|
{

Qi = 2.08 gf\/Ps > Q =V§'gf Py o (23)

where *

Cpa = Cpe The minimud firet-stage fluidic amplifier leakage
flow is typically 65 percent of the rated or no-locad servovalve output

flow,.

4.5 Temperature Sensitivity

Fluidic amplifiers have gain and null temperature sensitivity §
as noted in section 2. The gain sensitivity of a first-stage fluidic ]
amplifier cascade can be reduced by using the minimum number of
amplifiers in the cascade. In addition, a number of temperature- h
compensation technique82°’21 have been developed to reduce amplifier ]

i Sl s

20g. Mon and H. Robinson, Temperature Compensation of Laminar
Proportional Amplifiers Using A Linear Resistor Bypass, Harry Diamond

Laboratories, HDL~TM-78-16 (September 1978).
2ly. M, Posingies, Advanced Fluidic Temperature Studies, Honeywell, 4
Inc., St. Louis Park, MN, United States Army Research and Technology- :

Laboratories TR-78-33 (October 1978).
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gain and null temperature sensitivity. However, most of these
teciniques reduce amplifier temperature sensitivity at the expense of
t.igher leakage flow. First-stage fluidic amplifiers operating in the
turbulent regime and moving-part fluidic amplifiers appear to be
relatively temperature insensitive.

4.6 Reliability

Fluidic systems have a proven record of reliability as a result
of operational gsuitability demonstrationsll and commercial
applications.22 The key element in fluidic gystems is the fluid
amplifier. 1Its supply nozzle area is relatively large (comparcd to the
flapper-nozzle orifice areas); therefore, it can operate with relatively
high levels of fluid contamination, Moreover, if the supply nozzle
should suddenly become blocked due to large-particle contamination, then
the amplifier will fail neutrally; that 1s, neither amplifier output
port will be driven to saturation. The control nozzle area may also be
blocked due to large-particle contamination. A sudden blockage of one
of the control nozzles will cause one of the output ports to be driven
to saturation. The sudden blockage of an output port will lead to the
same problem. However, the control nozzle areas and output port areas
are usually larger than the supply nozzle area. Therefore, the
probability of failures due to control nozzle and output port blockage
is low. These facts increase the reliability of fluidic systems and

reduce system filtration requirements.

Finally, the wuse of a first—-stage fluidic amplifier will
minimize the probability of actuator hardover, as described in section
3.6, because (1) the torque motor (with its potential failure mode due
to electrical short circuits) has been eliminated and (2) the fluidic
amplifier will generally fail neutrally.

5., COMPARISON BETWEEN FIRST=STAGE HYDRAULIC AMPLIFIERS AND FLUIDIC
AMPLIFIERS

The first-stage hydraulic amplifier and the first-stage fluidic
amplifier will be compared in terms of input signal power, output power,
frequency response, leakage flow, and temperature sensitivity. A
summary statement concerning the usefulness of first-stage fluidic

amplifiers is also given.

11y, J., Banaszak and W. M. Posingies, Hydrofluidc Stability
Augmentation System (HYSAS) Operational Suitability Demonstration,
United Army Air Mobility Research and Development Laboratory TR-77-31

(October 1977).
22y, 7T, Fleming and H. R. Gamble, Reliability Data for Fluidic

Systems, AiResearch Manufacturing Co., Phoenix, AZ, Harry Diamond
Laboratories HDL-CR-78-092-1 (December 1976).
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5.1 Input Signal Power

Both the first-stage hydraulic amplifier and the fluidic
amplifier can operate with input signal levels in the 100-mW range.

5.2 Output Power

The output power available from the flapper-nozzle valve and
from the fluidic amplifier are comparable; one can be greater than the
other over a portion of the ouput range or over the ccmplete range,
depending on the relative geometries and supply pressures. Figure 19
contains output characteristics for nominal geometries and various
fluidic amplifier supply pressures.

5.3 Frequency Response

The dynamics of both the hydraulic amplifier and the fluidic
amplifier are small compared to the overall dynamics of two-stage
servovalves. These first~stage elements determine overall servovalve
response primarily by the amount of output power they provide to drive
or control the second-stage spool. The output power of both these
elements is comparable; however, the hydraulic amplifier has higher
pressure recovery or available output pressure. This is an important
difference if the second stage is a spring~centered spool valve (and it
must be if the first stage is a fluidic amplifier with no moving parts),
because this type of second stage requires high spool driving
pressures. Since the hydraulic amplifier has high output pressure, it
has more output power to drive the second-stage spring-centered spool
valve over its maximum range to get rated servovalve output flow.
Comparable response can be obtained with a first-stage fluidic amplifier
by using additional amplifiers in parallel.

5.4 Leakage Flow

First-stage fluidic amplifiers will have higher leakage flow
than first-stage hydraulic amplifiers because (1) the fluidic amplifier
has a supply nozzle area that is generally larger than the hydraulic
amplifier orifice area and (2) more than one fluidic amplifier stage
will generally be required. First-stage fluidic amplifier leakage flow
is typically a minimum of 5 to 6 times greater than a comparable first-
stage hydraulic amplifier.

5.5 Temperature Sensitivity

First-stage hydraulic amplifiers are less temperature gensitive
than first-stage fluidic amplifiers. A fluidic amplifier cascade
operated in the laminar regime must be temperature compensated to
prevent gain and null changes with fluid temperature variations.
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However, recent studies indicate that a first-stage fluidic amplifier
cascade of no more than four amplifiers operated in the turbulent regime
may have temperature sensitivity comparable to the hydraulic amplifier
and not require temperature compensation. Moving=-part fluidic
amplifiers also have temperature sensitivity comparable to hydraulic
amplifiers.
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Figure 19. Output characteristics of hydraulic amplifier with
supply pressure Pg and laminar proportional amplifiers with
various supply pressures Pg,.
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5.6 Reliability

First-stage fluidic amplifiers are more reliable than first-
stage hydraulic amplifiers in terms of minimizing the probability of
actuator hardover failures. Actuator hardover failure is minimized with
the first-stage fluidic amplifier because (1) the electrical torgque
motor (which can develop short circuits and cause actuator hardover) has
been eliminated, (2) the minimum clearance areas of the fluidic
amplifier are generally larger than those of the hydraulic amplifier,
and (3) should a sudden blockage occur in the fluidic amplifier, it will
probably fail neutrally.

5.7 Summary

The first-stage fluidic amplifier is compsrable to the
hydraulic amplifier in terms of input power level, output power, and
frequency response. The hydraulic amplifier has less leakage flow and
is less temperature sensitive. However, the fluidic amplifier is more
reliable in terms of failure modes which can cause actuator hardover and
in its ability to operate with higher levels of fluid contamination. 1In
many applications, the increased reliability offered by fluidic
amplifiers more than offsets the disadvantage of additional leakage
flow. The problem of fluidic amplifier gain and null temperature
sensitivity may be overcome by (1) temperature compensation of fluidic
amplifiers operated in the laminar regime, (2) operating the fluidic
amplifiers in the turbulent regime, and (3) the use of moving=-part
fluidic amplifiers whose gain and null characteristics are relatively
temperature insensitive. The use of moving-part fluidic amplifiers
makes it possible tc use mechanical feedback from the second-stage
spool. This in turn reduces the number of fluidic amplifiers needed in
the first-stage cascade and thus reduces first-stage temperature
sengitivity and leakage flow.

Two-stage servovalves using first-stage fluidic amplifiers can
operate in high shock and vibration environments and with high levels of
fluid contamination. These advantages more than justify continued
development of first-stage fluidic amplifiers with and without moving
parts.

6« TRENDS IN FLUIDIC SERVOVALVE DEVELOPMENT

As stated in the previous sections, development of two-stage fluidic
input servovalves has been aimed at improved servovalve response,
leakage flow, reliability, and cost. However, the development of
microprocessors in recent years has introduced additional considerations
to valve development. First, the availability of low-cost, reliable
microprocessors means that most control systems will have some type of
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electronic controller. Fluidic systems and subsystems will therefore
have to interface with electronic controllers or central processing
units. The electronic signal could be converted to a hydraulic signal
and summed at the summing junction as another input to the fluidic
system. However, since microprocessor signal processing is faster and
more accurate, the signal should be introduced at the servovalve--
possibly with override capability. This means that fluidic systems and
subsystems must have dual input (fluidic, electronic) servovalves.Z3
The U.S. Army Research and Technology Laboratories (AVRADCOM) has let a
contract to develop this type of servovalve.

A second consideration is the use of microprocessors with fluid
power systeins. The most tempting use of microprocessors in electro-
hydraulic systems is to replace the analog or digital summing point and
to condition the error information for driving the hydraulic
controller .24 Microprocessor-level signals could also be used to drive
the low=input-power-level electrohydraulic servovalves with fluidic=-type
first-stage elements.!® Moreover, microprocessor-level signals could be
converted to hydraulic signals and used to drive fluidic-input, two=-
stage servovalves.

Finally, fluidic-type amplifiers that have moving parts are success-
fully being used in commercially available electrohydraulic servovalves
as noted in section 4.3. These servovalves have the advantage of high
reliability, particularly in high vibration and shock environments, and
can operate with low~level input signals.

7. CONCLUSIONS

A review of the developments of two-stage fluidic input servovalves,
using a first~stage fluidic amplifier and a second-stage spool valve,
indicates that this servovalve configuration is feasible, However,
fluidic amplifier gain and null variation with fluid temperature change
is a problem.

The first-stage fluidic amplifier 1is comparable to the hydraulic
amplifier in terms of input signal power levels, output power, and
frequency response. The hydraulic amplifier has less leakage flow and
is less temperature sensitive. However, the fluidic amplifier is more

19gobert Bosch Corporation, Electro-hydraulic Servovalve Series 0814=
SMV2 and 0814~SMV3, 2800 South 25th Ave., Broadview, ILL.

23,, P. Biafore and B. Holland, Fluidics--Feasibility Study
Electro/Hydraul ic/Fluidic Direct Drive Servo valve, Rockwell
International Corp., Columbus, OH, NADC TR-78033-60 (March 1979).

24R. H., Maskrey, Possible Uses of Microprocessors for Fluid Power,

Hydraulics and Pneumatics (June 1979).
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reliable in terms of failure modes which cause actuator hardover and its
ability to or:rate with larger sizes of particulate contamination. 1In
many applications the increased reliability offered by fluidic
amplifiers more than offsets the additional leakage flow. The problem
of gain and null temperature sensitivity may be overcome by (1)
temperature compensation of fluidic amplifiers operated in the laminar
regime, (2) operating the fluidic amplifiers in the turbulent regime,
and (3) the use of moving=-part fluidic amplifiers with gain and null
characteristics that are relatively temperature insensitive.

A two~-stage fluidic input servovalve with a first-stage,
mechanically actuated fluidic-~type amplifier and a second-stage spool
valve with mechanical feedback is the best €£fluidic input servovalve
configuration. The use of a mechanically actuated fluidic amplifier
makes it possible to use mechanical feedback from the second-stage spool
valve. (The servovalve thus becomes a closed loop, spool position,
control system.) This reduces the number of fluidic amplifiers needed
in the first-stage amplifier cascade and thus reduces the first-~stage
leakage flow and temperature seunsitivity. The development of this
servovalve configuration awaits the development of an efficient fluid
means of moving the mechanical actuator.

The development of microprocessors in recent years has introduced
additional considerations to valve development. First, the availability
of low-cost, reliable microprocessors means that most control systems
will have some type of electronic controller. Fluidic systems and
subsystems will therefore have to interface with electronic controllers
or central processing units. This means that £fluidic systems and
subsystems must have dual input (fluidic and electronic) servovalves. A
second consideration is the use of very low signal threshold fluidic
input servovalves with microprocessors. Microprocessor-level signals
could be used to drive existing electrohydraulic servovalves or could be
converted to hydraulic fluidic signals and used to drive fluidic input
servovalves.

Finally, fluidic-type amplifiers (that is, amplifiers with moving
parts) are successfully being used in commercially available electro-
hydraulic servovalves. These sgervovalves have the advantage of high
reliability, particularly in high shock and vibration environments, and
can operate with relatively high levels of fluid contamination.
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APPENDIX A--TWO-STAGE FLUIDIC SERVOVALVE
RESEARCH AND DEVELOPMENT




A literature search was initiated in counnection with this study.
The search revealed research and development studies of the following

two-stage fluidic servovalve configurations.

APPENDIX A,--TWO-STAGE FLUIDIC INRUT SERVOVALVE RESEARCH AND DEVELOPMENT

-

Reference No. Servovalve configuration Sponsord Date
First gtage Second stage
1 Bellows, flapper- Spool valve NADC 1962
nozzle valve (Honeywell,
Moog)
2 Vernjet amplifiers, Vortex amplifiers NASA (Bendix) 1965
Vurtex amplifiers
3 Venjet amplifiers, Vortex amplifiers NASA (Bendix) 1968
Vortex amplifiers
4 sellows, flapper~ Vortex valves AMRDL (GE) 1969
nozzle valve
5 Bellows, flapper=- Spool valve AFFDL (GE) 1970
nozzle valve,
amplifier cascade
6 Bellows, flapper=- Vortex valves AMRDL (GE) 1970
nozzle valve
7 Bellows, flapper- spool valve AMRDL, 1971
nozzle valve {Honeywell)
Bellows, flapper~ Vortex valves AMRDL 1971
nozzle valve (Honeywell)
8 Fluidic amplifier Spool valve AMRDL, 1973
casgcade (Honeywell)
9 Bellows, flapper- Spool valve NADC 1974
nozzle valve (Honeywell
Moog)
10 Bellows, flapper- Spool valve AFFDL 1975
nuzzle valve {Honeyweli)
11 Bellows, flapper- Poppet valves AMRDL, 1975
nozzle valve (Honeywell)
12 Fluidic amplifier Spool valve AMRDL 1976
cagcade (Honeywell)
13 Fluidic zmplifier Spool valve HDL (MIT) 1976
bellows, flapper-
nozzle valve
40
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APPENDIX A.--TWO-STAGE FLUIDIC INPUT SERVOVALVE RESEARCH AND
DEVELOPMENT (Cont'd)

Reference No. Servovalve configuration Sponsor?® Date
First stage Second stage
: 14 Bellows, flapper- Spool valve AMRDL (Honey- 1977
nozzle valve well)
15 Fluidic amplifier; Spool valve HDL (MIT) 1977
bellows, flapper=-
nozzle valve
v 16 Fluidic amplifier Spool valve AMRDL 1979
o cagcade (Honeywell)
. 17 Fluidic amplifier; Spool valve HDL 1979
. bellows, flapper-
nozzle valve
18 Fluidic amplifier Spool valve HDL (MIT) In progress
cascade
|
i 4AFFDL: United States Air Force Flight Dynamics Laboratory.
AMRDL: United States Army Air Mobility Research and Development laboratory.
NADC: United States Naval Air Development Center.
. NASA: National Aeronautics and Space Administration.
jl HDL(MIT): Harry Diamond Laboratories (Massachusetts Institute of Technology).

REFERENCES TO APPENDIX A
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Fabrication and Test of a Fluid Interaction Servovalve, M,
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2. Design,
N. Cardon,
{(May 1965).

cont? ke ey

3. Design, Fabrication and Test of a Flueric Servovalve, C. E. Vos,
National BAeronautics and Space Administration CR=-72388 (February
1968) .

4. Fluidic Vortex Valve Servcactuator Development, T. S. Honda and F.
S. Ralbovsky, United States Army Aviation Material Laboratories TR=-

69-23 (May 1969).

5. Research and Development on a Fluidic Servoactuator, J. R. Granan,
United States Air Force Flight Dynamics Laboratory TR-70-23 (July

1970).
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United States Army Air Mobility Research and Development Laboratory
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Harry Diamond Laboratories, HDL=-CR~76-223~1 (October 1976).
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United States Army Air Mobility Research and Development Laboratory
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Control Systems, David Lee and D. N. Wormley, Harry Diamond
Laboratories, HDL-CR~77-191-1 (December 1977).
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NOMENCLATURE

fluidic amplifier supply nozzle area for the ith stage, m?

spool end area, m?
fluidic amplifier surply nozzle area (bs « h), m?

number of parillel sections in the ith stage of a fluidic amplifier
cascade

fluidic amplifier supply nozzle width, m
hydraulic amplifier (flapper) fixed orifire discharge coefficient
fluidic amplifier supply nozzle discharge coefficient

hydraulic amplifier, flapper-nozzle curtain area  discharge
coefficient

fluidic amplifier supply nozzle discharge coefficient for the ith
stage

flapper fixed orifice diameter, m

flapper-nozzle orifice diameter, m

frequency, 1/8 (Hz)

CpaPsa Y2/p, fluidic amplifier supply flow coefficient

maximum fluidic amplifier power gain, watts/watts

Cp (ﬂ/4)D2 2/p, flapper-nozzle orifice flow coefficient, Vm7/kg
maximum hydraullc amplifier power gain, watts/watts

CDiAiV27p fluidic amplifier supply flow coefficient for the ith
stage, Vm;/kg

fluidic amplifier supply nozzle height, m

summation index, number of the individual stage of a fluidic
amplifier cascade

total number of stages of the fluidic amplifier cascade
hydraulic amplifier gain constant, m>/Nes

nondimensional hydraulic amplifier output pressure, pm/PB
nondimensional fluidic amplifier ouuput pressure, pn/Paa
kydraulic amplifier (flapper) supply pressure, Pa

fluidic amplifier supply pressure, Pa

actual hydraulic amplifier output p.essure, Pa

actual fluidic amplifier output pressure, Pa
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NOMENCLATURE (Cont'd) i
;% Qe hydraulic amplifier leakage or tare flow, md/s 3
?i Qle fluidic amplifier leakage or tare flow, m3/s ;
;‘E Qp waximum hydraulic amplifier output flow, m3/s !
5 | Q; fluidic amplifier supply flow for the ith stage, m3/s §
é,! Qm nondimensional hydraulic amplifier output flow ,
E#‘ Q, nondimensional fluidic amplifier output flow, q,/Qg, }
E?' QP spool valve drive flow, m3/s
%‘} Qga fluidic amplifier supply flow, md/s 1
ELI q; actual hydraulic amplifier output flow, md/s !
i.l q, actual fluidic amplifier output flow, m3/s { 3
i ; Laplace Transform variable, 1/s (Hz) i ]
g‘i T hydraulic amplifier transfer function, mﬁ/N « 8 f i
i' W nondimensional hydraulic amplifier output power, P :
é‘ w! nondimensional fluidic amplifier output power, PO, 1 i
5 L) maximum hydraulic amplifier output power, watts ? ;
o Wio maximum fluidic amplifier output power, watts i |
§ i w} input signal power to the hydraulic amplifier, watts ; '
- W input signal power to the fluidic amplifier, watts 3 ﬂ
F g xI maximum s ?
F 1 s pool displacement, m !
;[f £ flapper=-nozzle valve damping ratio 1
Ef, p fluid density, kg/m3 | k
' Tn toique motor time constant, s : ;
L] Hg/Hy i
w, anf, 1/s (Hz) %
w flapper-nozzle valve natural frequency | 1

W
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