ABILITY AND STRATEGY DIFFERENCES IN MAP LEARNING

Cathleen Stasz

August 1980

N-1569-ONR

The Office of Naval Research
This research was sponsored by the Personnel and Training Research Programs, Psychological Sciences Division, Office of Naval Research, under Contract No. N00014-78-C-0042, Contract Authority Identification Number NR 157-410.

The Rand Publications Series: The Report is the principal publication documenting and transmitting Rand's major research findings and final research results. The Rand Note reports other outputs of sponsored research for general distribution. Publications of The Rand Corporation do not necessarily reflect the opinions or policies of the sponsors of Rand research.
ABILITY AND STRATEGY DIFFERENCES IN MAP LEARNING

Cathleen Stasz

August 1980

N-1569-ONR

Prepared For

The Office of Naval Research

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
REPORT DOCUMENTATION PAGE

1. **REPORT NUMBER**
 - N-1569-ONR

2. **GOVT ACCESSION NO.**
 - AD-A091 847

3. **RECIPIENT'S CATALOG NUMBER**
 - 3

4. **TITLE (Work Subtitle)**
 - Ability and Strategy Differences in Map Learning.

5. **AUTHOR(s)**
 - Cathy Staszek

6. **PERFORMING ORGANIZATION NAME AND ADDRESS**
 - The Rand Corporation
 - 1700 Main Street
 - Santa Monica, CA 90406

7. **CONTRACT OR GRANT NUMBER(ES)**
 - N00014-78-C-0042

8. **DATE OF REPORT**
 - August 1987

9. **SPECIAL NOTATION**
 - Unclassified

10. **DISTRIBUTION STATEMENT (of this report)**
 - Approved for Public Release; Distribution Unlimited

11. **DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)**
 - No Restrictions

12. **SPECIAL NOTES**

13. **KEY WORDS**
 - Maps
 - Learning
 - Memory (Psychology)
 - Recall
 - Intelligence

14. **ABSTRACT**
 - See Reverse Side
Describes the influence of individual differences in ability and subject-selected learning procedures and strategies for acquiring knowledge from maps. Verbal protocols were obtained from 25 subjects selected for their differences on psychometric tests measuring spatial restructuring and visual memory abilities. These protocols indicated a number of learning procedures and strategies that subjects used to focus attention, encode information, and evaluate their learning progress while studying a map. High-ability subjects differed from low-ability subjects in their recall of spatial attributes of the map, use of imagery for encoding spatial information and adoption of attention-focusing strategies to guide their approach to the map-learning problem.
PREFACE

This Note was originally prepared as a paper for the proceedings of the NATO conference on Intelligence and Learning, held in York, England, in July 1979. It will appear as a chapter in M. P. Friedman, J. P. Das, and N. O'Conner (eds.), Intelligence and Learning (New York: Plenum Publishers, in press). The research summarized here was funded by the Office of Naval Research under Contract N00014-78-C-0042.
This Note describes the influence of individual differences in ability and subject-selected learning procedures and strategies for acquiring knowledge from maps. Verbal protocols were obtained from 25 subjects selected for their differences on psychometric tests measuring spatial restructuring and visual memory abilities. These protocols indicated a number of learning procedures and strategies that subjects used to focus attention, encode information, and evaluate their learning while studying a map. High-ability subjects differed from low-ability subjects in their recall of spatial attributes of the map, use of imagery for encoding spatial information, and adoption of attention-focusing strategies to guide their approach to the map-learning problem.
ACKNOWLEDGMENTS

The author gratefully acknowledges the contributions of Perry Thorndyke, whose collaboration made this research possible, and of Mark Peterson, who provided helpful comments on an earlier draft of this Note.
I. INTRODUCTION

The study of intelligent behavior in many task domains requires an understanding of the sources of individual differences which influence task performance. Two typical and important sources of individual differences are basic abilities (Cronbach & Snow, 1977) and the strategies that people use to perform a task (Johnson, 1978; Hunt, 1978). In this context, abilities are basic individual traits that are relatively enduring and resistant to change. Procedures and strategies, on the other hand, are assumed to be discretionary, trainable, and improvable with practice. This Note investigates how such differences influence the acquisition of knowledge from geographic maps. The research investigates expertise in map learning by analyzing differences between good and poor learners in terms of both their basic information-processing abilities and their self-selected learning procedures and strategies.
II. BACKGROUND

Map learning is a constructive process which produces a mental representation of the space depicted on the map. This internal knowledge representation stores many types of information, including names, shapes, locations, and distances. Since map learning is an active, intentional process, it may be viewed as a problem-solving task (Newell & Simon, 1972) with a goal of achieving some memory representation of the map. The learner applies procedures and strategies as problem-solving operators to produce the memory representation. These subject-selected procedures are specific techniques for selecting information from the map to study and for encoding the information in memory. The procedures are of three types: attentional, encoding, and evaluation. Attentional procedures restrict the map information that the learner attends to at any point in time. Encoding procedures, such as rehearsal or imagery, elaborate the information in attentional focus and integrate it with information in memory. Finally, evaluation procedures monitor the learner's progress by considering what information has been learned and what remains to be studied.

In addition to these procedures, people often adopt global strategies for approaching the overall learning task. For example, an individual may decide to first learn the spatial information on the map, and then learn the verbal labels associated with the spatial locations. An individual's strategy may determine, in part, the procedures he or she chooses for accomplishing the learning task.
In previous studies of map learning (Thorndyke & Stasz, 1980), we collected verbal protocols from subjects attempting to learn fictitious, yet realistic, maps (see Figure 1). On each of six trials, subjects studied a map for two minutes and then attempted to reconstruct the map from memory. During study, subjects thought out loud, describing their attentional focus, their study procedures, and their evaluations of their learning progress.

Analysis of these protocols identified 13 procedures that subjects employed for focusing attention, encoding information, and evaluating the state of memory. Large individual differences were apparent both in subjects' use of these procedures and also in their rate of learning of map information. A comparison of good learners (subjects correctly recalling at least 90 percent of the map information by the final trial) and poorer learners showed that subjects differed primarily in the use of a few study procedures. Three of the procedures that differentiated good from poor learners involved the encoding of spatial configurations of map information. These were imagery, pattern encoding, and relation encoding.

Our results and informal observations suggested that specific abilities might also influence the learning process. In particular, we conjectured that subjects' spatial ability, rather than the use of particular procedures, might underlie the observed differences in performance. Since procedures comprise relatively low-level processes for manipulating information, subjects' choice of procedures might depend on their underlying abilities. For example, the best map learner reported that he had good visual memory and frequently used imagery to
Fig. 1--The Town Map
learn and remember information. By contrast, the worst learner reported that he had never experienced having mental images. He used primarily verbal learning procedures, such as associating map information with previous knowledge. This subject did not attempt to learn the more complex spatial configurations on the map.

Ability differences might also influence subjects' skill at using a particular procedure. For example, we observed that poorer learners were frequently inaccurate in their evaluations, during study, of what they had already successfully learned. The evaluation procedure requires subjects to retrieve knowledge from memory and compare it to information on the map. In this process, subjects might evoke a mental image of stored knowledge for comparison with the map. This image may be clearer or more accurate for subjects with better visualization ability.

Finally, abilities may influence the selection of global learning strategies. In the map-learning task, all of the information to be learned is presented simultaneously rather than sequentially. Subjects must decide for themselves what information to learn first and how much time to spend studying each portion of the map. Individuals with spatial restructuring skill may employ strategies that subdivide the learning task. For example, subjects might adopt a divide-and-conquer strategy to help focus their attention on a subset of the information. They learn this information first, and then define and learn another subset. This strategy serves to structure the task into a sequence of smaller subproblems.
In sum, abilities appear to be a potentially important source of variation in map learning. The Thorndyke and Stasz (1980) results suggest how abilities and procedures might interact in the map-learning process: Procedure choice and successful procedure use might both depend on basic underlying ability differences. The present study was designed to investigate possible relationships between abilities, procedures, strategies, and map-learning performance.
III. METHOD

SUBJECTS AND ABILITY MEASURES

Twenty-five subjects were selected from an initial group of 94, based on their performance on a battery of standard psychometric ability tests. The tests measured field-independence (Witkin & Goodenough, 1977), which represents spatial restructuring ability, visual memory, general intelligence, and verbal associative memory. We selected subjects who differed in visual memory and spatial restructuring skill but had equivalent scores on tests of general intelligence and verbal associative memory.

PROCEDURE

Subjects were individually tested on a map-learning task. For each of two maps, a town map and a countries map, subjects alternately studied and reproduced the map. The town map shown in Figure 1 depicted the streets and landmarks of a small town. The countries map shown in Figure 2 portrayed an imaginary continent with countries, cities, roads, railroads, and large geographical features, such as rivers and a mountain. On each of six trials, subjects studied a map for two minutes and then used as much drawing time as they wished. During study, subjects provided verbal protocols of their study behavior, including the strategies and procedures they were using. Following the final trial on each map, subjects answered eight location and route-finding questions from memory.
Fig. 2--The Countries Map
IV. RESULTS AND DISCUSSION

Although we performed a variety of analyses of the relationships between abilities, procedures, strategies, and map learning, this Note focuses on analyses contrasting performance of extreme ability groups. (Other analyses are reported in Stasz & Thorndyke, 1980.) Since tests of field-independence and visual memory were highly correlated ($r = .66, p < .01$), most subjects fell into two extreme groups: relatively field-independent, high visual memory (HIGHs; $N = 10$), and field-dependent, low visual memory (LOWs; $N = 10$). Data from these subjects were used for all subsequent analyses.

To determine the relationship between ability and performance, recall scores between HIGH- and LOW-ability groups were contrasted. For each subject, map reproductions provided three measures of recall performance: proportion of map objects correctly reproduced (both spatial location and verbal label correctly specified), proportion of spatial information correctly reproduced, and proportion of verbal information correctly reproduced. Reproductions were scored at each trial. For each subject, mean recall was calculated across trials and maps.

Table 1 presents mean recall scores for the two groups. Mann-Whitney U tests, with sample sizes of 10 and an alpha level of .05, indicated that HIGHs recalled significantly more complete elements and spatial attributes than did LOWs. The groups did not differ significantly in recall of verbal attributes. These findings replicate those presented in Thorndyke and Stasz (1980), who found that good and
Table 1

ABILITIES AND PERFORMANCE

<table>
<thead>
<tr>
<th>Item</th>
<th>HIGHS</th>
<th>LOWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Item</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Recall (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Complete Elements</td>
<td>62.2*</td>
<td>50.2</td>
</tr>
<tr>
<td>Spatial Attributes</td>
<td>66.5*</td>
<td>54.0</td>
</tr>
<tr>
<td>Verbal Attributes</td>
<td>76.5</td>
<td>70.7</td>
</tr>
<tr>
<td>Procedures (mean occurrences)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Imagery</td>
<td>5.4*</td>
<td>3.0</td>
</tr>
<tr>
<td>Strategies (number of protocols)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Divide-and-Conquer</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Global Network</td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>Progressive Expansion</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Narrative Elaboration</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>No Strategy</td>
<td>4</td>
<td>10</td>
</tr>
</tbody>
</table>

*p < .05

Poor learners differed in recall of complete elements and spatial attributes, but not of verbal attributes. In general, subjects had little difficulty learning verbal information on a map. The present result extends those findings by demonstrating that subjects' visual-spatial ability may underlie differences in recall.

To compare procedure use between HIGHS and LOWs, the average number of occurrences of each study procedure was calculated across trials and maps for each subject. HIGHS subjects used all of the procedures that correlated with learning in this and previous studies (Thorndyke & Stasz, 1980) more frequently than did LOWs. However, only for the imagery procedure was this difference statistically significant. Thus,
the remainder of this Note will focus on differences in learning strategies.

Analysis of protocols and post-experiment interviews identified four strategies used by subjects. Each strategy entailed the use of particular procedures. In the divide-and-conquer (DC) strategy, subjects employed spatial partitioning to divide the map into distinct sections. Subjects would then study each section as a separate subproblem. Subjects focused their attention on a single area, such as the northwest corner of the map in Figure 1, ignoring information outside the area of focus. They adopted a variety of procedures to learn the information in the identified area. Having satisfied themselves that they had learned this information, they then moved on to study a new section. This process continued until all sections of the map had been studied. On final trials, sections were appropriately integrated to maintain feature continuity.

The global network strategy (GN) subjects used the conceptual partitioning procedure to create a basic spatial framework which covered the entire area of the map. Rather than focusing on geographical areas, as in the DC strategy, subjects identified a certain conceptual category of information, such as streets, cities, or geographical features, to establish their initial framework. In Figure 1, for example, a subject might first study vertical streets and large features, including the river, railroad track, and golf course. This initial framework acted as a point of reference for learning new information. Subjects learned new elements by associating them to the previously learned anchor points.
Progressive expansion (PE), the third major strategy, was characterized by subjects' systematic movement of attention across the map. Typically, subjects chose a starting point, such as the right side of the map, and studied as many adjacent elements as possible in the allotted time. On successive trials they systematically focused on and learned new elements, moving across the map in a slow progression and in a consistent direction.

A few subjects employed the narrative elaboration strategy (NE). While the DC, GN, and PE strategies relied on specific attention-focusing procedures, the NE strategy did not. NE strategists created verbal associations, such as a story or narrative to remember map elements and their relationships. For the map in Figure 1, for example, one subject invented and rehearsed the following narrative: The butler went to church and saw cedar trees in the park. Thus, he created an association among Butler Street, Church, Cedar Street, and Park Drive.

To determine whether strategy use was related to subjects' ability, the study protocols were sorted into one of the four strategy groups, or into the "no strategy" group. Table 1 shows that 80 percent of the HIGH subjects' protocols exhibited one of the three attention-focusing strategies. None of the HIGH subjects used the NE strategy, and only four protocols were classified into the "no strategy" group. By contrast, 50 percent of the LOW subjects' protocols showed no consistent strategy. Eight protocols contained attention-focusing strategies, and two protocols used the NE strategy. To test whether the use of attention-focusing strategies versus no strategy was significantly different for HIGHs and LOWs, Fisher's exact test was computed.
separately for each map. The tests indicated that the probability of chance differences at least this large in the tendency of the two groups to use a strategy is .08.
V. CONCLUSIONS

These analyses suggest that both abilities and subject-selected learning techniques are important sources of individual differences in map learning. Visual-spatial ability may underlie the use of effective procedures for learning spatial information and the adoption of attention-focusing strategies. Both of these learning processes contribute to successful map learning. Thus, three key characteristics identify good map learners: (1) They adopt an attention-focusing strategy; (2) they use imagery to encode spatial information; and (3) they have high visual-spatial ability.
REFERENCES

1. Dr. Robert Blanchard
 Navy Personnel R&D Center
 Management Support Department
 San Diego, CA 92151

2. Dr. Robert Breaux
 Code K-711
 NAVSEA/EQUIPCEN
 Orlando, FL 32813

3. Chief of naval Education & Training
 Liaison Office
 Air Force Human Resource Laboratory
 Flying Training Division
 William AFB, AZ 85224

4. Dr. Richard Elster
 Dept. of Administrative Sciences
 Naval Postgraduate School
 Monterey, CA 93940

5. Dr. Pat Federico
 Naval Personnel R&D Center
 San Diego, CA 92152

6. Dr. John Ford
 Navy Personnel R&D Center
 San Diego, CA 92152

7. Dr. Henry M. Halff
 Department of Psychology, C-009
 University of California
 La Jolla, CA 92039

8. Lt. Steven D. Harris, MCS, USN
 Code 6021
 Naval Air Development Center
 Warminster, PA 18974

9. CDR Robert S. Kennedy
 Head, Human Performance Sciences
 Naval Aerospace Medical Research Laboratory
 Box 29407
 New Orleans, LA 70189
10
Dr. Norman J. Kerr
Chief of Naval Technical Training
Naval Air Station Memphis (75)
Millington, TN 38054

11
Dr. William L. Maloy
Principal Civilian Advisor for
Education & Training
Naval Training Command, Code 00A
Ft. Sill, OK 7354

12
Dr. Kueale Marshall
Scientific Advisor to DCNO(N011)
CECIT
Washington, D.C. 20370

13
Capt. Richard L. Martin, USN
Prospective Commanding Officer
USS Carl Vinson (CVN-70)
Newport News Shipbuilding &
Drydock Company
Newport News, VA 23607

14
Dr. George Moeller
Head, Human Factors Department
Naval Submarine Medical Research
Laboratory
Groton, CT 06340

15
Dr. William Montague
Navy Personnel R&D Center
San Diego, CA 92152

16
Naval Medical R&D Command
Code 44
National Naval Medical Center
Bethesda, MD 20014

17
Mr. William Nordbrock
Instructional Program Development
Bldg. 9C
BET-PDCD
Great Lakes Naval Training Center
Illinois 60088

18
Ted M. I. Yellen
Technical Information Office,
Code 201
Naval Personnel R&D Center
San Diego, CA 92152
<table>
<thead>
<tr>
<th>Number</th>
<th>Contact Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>19</td>
<td>Library, Code P201L</td>
</tr>
<tr>
<td></td>
<td>Naval Personnel R&D Center</td>
</tr>
<tr>
<td></td>
<td>San Diego, CA</td>
</tr>
<tr>
<td></td>
<td>92152</td>
</tr>
<tr>
<td>20</td>
<td>Technical Director</td>
</tr>
<tr>
<td></td>
<td>Navy Personnel R&D Center</td>
</tr>
<tr>
<td></td>
<td>San Diego, CA</td>
</tr>
<tr>
<td></td>
<td>92152</td>
</tr>
<tr>
<td>21</td>
<td>Commanding Officer</td>
</tr>
<tr>
<td></td>
<td>Naval Research Laboratory</td>
</tr>
<tr>
<td></td>
<td>Code 2627</td>
</tr>
<tr>
<td></td>
<td>Washington, D.C.</td>
</tr>
<tr>
<td></td>
<td>20390</td>
</tr>
<tr>
<td>22</td>
<td>Psychologist</td>
</tr>
<tr>
<td></td>
<td>GNE Branch Office</td>
</tr>
<tr>
<td></td>
<td>Bldg. 114, Section D</td>
</tr>
<tr>
<td></td>
<td>666 Summer Street</td>
</tr>
<tr>
<td></td>
<td>Boston, MA</td>
</tr>
<tr>
<td></td>
<td>C2210</td>
</tr>
<tr>
<td>23</td>
<td>Psychologist</td>
</tr>
<tr>
<td></td>
<td>GNE Branch Office</td>
</tr>
<tr>
<td></td>
<td>536 S. Clark Street</td>
</tr>
<tr>
<td></td>
<td>Chicago, IL</td>
</tr>
<tr>
<td></td>
<td>60605</td>
</tr>
<tr>
<td>24</td>
<td>Personnel & Training Research Programs (Code 453)</td>
</tr>
<tr>
<td></td>
<td>Office of Naval Research</td>
</tr>
<tr>
<td></td>
<td>Arlington, VA</td>
</tr>
<tr>
<td></td>
<td>22217</td>
</tr>
<tr>
<td>25</td>
<td>Psychologist</td>
</tr>
<tr>
<td></td>
<td>GNE Branch Office</td>
</tr>
<tr>
<td></td>
<td>103C East Green Street</td>
</tr>
<tr>
<td></td>
<td>Pasadena, CA</td>
</tr>
<tr>
<td></td>
<td>91101</td>
</tr>
<tr>
<td>26</td>
<td>Office of the Chief of Naval Operations</td>
</tr>
<tr>
<td></td>
<td>Research Development & Studies Branch (OP-115)</td>
</tr>
<tr>
<td></td>
<td>Washington, D.C.</td>
</tr>
<tr>
<td></td>
<td>20350</td>
</tr>
<tr>
<td>27</td>
<td>Lt. Frank C. Petho, MSC, USN (Ph.D.)</td>
</tr>
<tr>
<td></td>
<td>Code 151</td>
</tr>
<tr>
<td></td>
<td>Naval Aerospace Medical Research Laboratory</td>
</tr>
<tr>
<td></td>
<td>Pensacola, FL</td>
</tr>
<tr>
<td></td>
<td>32508</td>
</tr>
</tbody>
</table>
28 Dr. Gary Fock
Operations Research Department
Code 55PK
Naval Postgraduate School
Monterey, CA 93940

29 Roger W. Bemington, Ph.D.
Code L52
BAMBL
Fensacola, FL 32508

30 Mr. Arnold Rubensteine
Naval Personnel Support Technology
Naval Material Command (09T244)
Bldg 1044, Crystal Plaza 65
2221 Jefferson Davis Highway
Arlington, VA 20360

31 Lt. worth Scanland
Chief of Naval Education & Training
Code N-5
NAS
Fensacola, FL 32508

32 Dr. Robert G. Smith
Office of Chief of Naval Operations
CE-567H
Washington, DC 20350

33 Dr. Alfred F. Smode
Training Analysis & Evaluation Group (TAEG)
Department of the Navy
Orlando, FL 32813

34 Lt. Richard Sorensen
Navy Personnel R&D Center
San Diego, CA 92152

35 Dr. Robert Wishes
Code 309
Naval Personnel R&D Center
San Diego, CA 92152

DEPARTMENT OF THE ARMY

36 BG USARDC & 7th Army
CDCSOPS
USAMREUE Director of GED
AFC New York 09403
37
Dr. Ralph Dusek
U.S. Army Research Institute
5001 Eisenhower Avenue
Alexandria, VA
22333

38
Dr. Frank J. Harris
U.S. Army Research Institute
5001 Eisenhower Avenue
Alexandria, VA
22333

39
Col. Frank Hart
Army Research Institute for the
Behavioral & Social Sciences
5001 Eisenhower Blvd.
Alexandria, VA
22333

40
Dr. Michael Kaplan
U.S. Army Research Institute
5001 Eisenhower Avenue
Alexandria, VA
22333

41
Lt. Milton S. Katz
Training Technical Area
U.S. Army Research Institute
5001 Eisenhower Avenue
Alexandria, VA
22333

42
Director
U.S. Army Human Engineering Labs
Attn: CHHE-DB
Adelphi Proving Ground, MD
21005

43
Dr. Harold F. O'Neil, Jr.
Attn: PLR-OK
Army Research Institute
5001 Eisenhower Avenue
Alexandria, VA
22333

44
Lt. Robert Sasmor
U.S. Army Research Institute for
the Behavioral & Social Sciences
5001 Eisenhower Avenue
Alexandria, VA
22333

45
Dr. Joseph Ward
U.S. Army Research Institute
5001 Eisenhower Avenue
Alexandria, VA
22333
DEPARTMENT OF THE AIR FORCE

46 22C3-04000

Requirements, Programs & Studies Group (AF/3DQH)
Office, ECS/Research, Development and Acquisition

47

Air University Library
AUL/LSG 76/443
Maxwell AFB, AL 36112

49

Lt. Earl A. Aluisi
Hq AFHRL (AFSC)
Brooks AFB, TX 79235

49

Lt. Genevieve Haddad
Program Manager
Life Sciences Directorate
AFCSB
Bolling Air Force Base
Washington, D.C. 20332

50

Lt. Ross L. Morgan
(AF/FL/LR)
Wright-Patterson AFB, OH 45433

51

Lt. Party Rockway
(AF/BBL/II)
Lowry AFB, CO 80230

52

370C TCHTe/TTGH
Stop 32
Sheppard AFB, TX 76311

53

Major Jack A. Thorpe, USAF
Naval War College
Providence, RI 02946

DEPARTMENT OF THE MARINES

54

H. William Greenup
Education Advisor (E031)
Education Center, NCDJC
 Quantico, VA 22134
DEPARTMENT OF DEFENSE

<table>
<thead>
<tr>
<th>Reference</th>
<th>Name and Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>55</td>
<td>Maj. Howard Langdon</td>
</tr>
<tr>
<td></td>
<td>Hq., Marine Corps</td>
</tr>
<tr>
<td></td>
<td>OTFJ 31</td>
</tr>
<tr>
<td></td>
<td>Arlington Annex</td>
</tr>
<tr>
<td></td>
<td>Columbia Pike at Arlington Ridge Rd.</td>
</tr>
<tr>
<td>56</td>
<td>Special Assistant for Marine Corps Matters</td>
</tr>
<tr>
<td></td>
<td>Code 1005</td>
</tr>
<tr>
<td></td>
<td>Office of Naval Research</td>
</tr>
<tr>
<td></td>
<td>600 W. Quincy Street</td>
</tr>
<tr>
<td>57</td>
<td>Lt. A. L. Siafsosky</td>
</tr>
<tr>
<td></td>
<td>Scientific Advisor (Code HD-1)</td>
</tr>
<tr>
<td></td>
<td>Hq., U.S. Marine Corps</td>
</tr>
<tr>
<td></td>
<td>Arlington, VA 20380</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Reference</th>
<th>Name and Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>58</td>
<td>Assistant Director (Environmental and Life Sciences)</td>
</tr>
<tr>
<td></td>
<td>Office of the Under Secretary of Defense for Research & Engineering</td>
</tr>
<tr>
<td>59</td>
<td>Central Reference Division</td>
</tr>
<tr>
<td></td>
<td>Defense Intelligence Agency</td>
</tr>
<tr>
<td></td>
<td>Attn: RIS-6B2A</td>
</tr>
<tr>
<td>60</td>
<td>Defense Technical Information Center</td>
</tr>
<tr>
<td>61</td>
<td>Lt. Craig L. Fields</td>
</tr>
<tr>
<td></td>
<td>Advanced Research Projects Agency</td>
</tr>
<tr>
<td></td>
<td>1400 Wilson Blvd.</td>
</tr>
<tr>
<td>62</td>
<td>Lt. Dexter Fletcher</td>
</tr>
<tr>
<td></td>
<td>Advanced Research Projects Agency</td>
</tr>
<tr>
<td></td>
<td>1400 Wilson Blvd.</td>
</tr>
<tr>
<td>63</td>
<td>Cdr. Van A. Niels, USN</td>
</tr>
<tr>
<td></td>
<td>Code 8TT</td>
</tr>
<tr>
<td></td>
<td>Hq., Defense Mapping Agency</td>
</tr>
<tr>
<td></td>
<td>building 56</td>
</tr>
<tr>
<td></td>
<td>Naval Observatory</td>
</tr>
<tr>
<td></td>
<td>Washington, D.C. 20305</td>
</tr>
</tbody>
</table>
MILITARY ASST. FOR TRAINING &
PERSONNEL TECHNOLOGY
OFFICE OF THE UNDER SECRETARY OF
DEFENSE FOR RESEARCH & ENGINEERING
WASHINGTON, D.C. 20301

OTHER GOVERNMENT AGENCIES

65 5700-0200C Department of State
66 5800-6100C Central Intelligence Agency

67 Dr. Susan Chipman
LEARNING & DEVELOPMENT
NATIONAL INSTITUTE OF EDUCATION
12th & 19th Street, N.W.
Washington, D.C. 20209

68 Dr. Joseph I. Lipson
SEDB #6-38
NATIONAL SCIENCE FOUNDATION
Washington, D.C. 20550

69 Dr. John Mays
NATIONAL INSTITUTE OF EDUCATION
12th & 19th Street, N.W.
Washington, D.C. 20208

70 Dr. Arthur Helmed
NATIONAL INSTITUTE OF EDUCATION
12th & 19th Street, N.W.
Washington, D.C. 20208

71 Dr. Andrew B. Holman
SCIENCE EDUCATION DEVELOPMENT &
RESEARCH
NATIONAL SCIENCE FOUNDATION
Washington, D.C. 20550

72 Dr. Joseph L. Young, Director
MEMORY & COGNITIVE PROCESSES
NATIONAL SCIENCE FOUNDATION
Washington, D.C. 20550

ADDITIONAL ADDRESSES

73 Dr. John E. Anderson
DEPARTMENT OF PSYCHOLOGY
CARNEGIE MELLON UNIVERSITY
PITTSBURGH, PA 15213
74
Dr. Michael Atwood
Science Applications Institute
40 Denver Tech. Center West
7933 E. Prentice Avenue
Englewood, CO 80110

75
1 Psychological Research Unit
Dept. of Defense (Army Office)
Campbell Park Offices
Canberra ACT 2600, Australia

76
Dr. Alan Baddeley
Medical Research Council
Applied Psychology Unit
15 Chaucer Road
Cambridge CB2 2EF
ENGLAND

77
Dr. Patricia Baqgett
Department of Psychology
University of Denver
University Park
Denver, CC 80208

78
Dr. Nicholas A. Bond
Dept. of Psychology
Sacramento State College
600 Jay Street
Sacramento, CA 95819 Non Govt

79
Dr. Lyle Bourne
Department of Psychology
University of Colorado
Boulder, CO 80309

80
Dr. John S. Brown
Xerox Palo Alto Research Center
3333 Coyote Road
Palo Alto, CA 94304

81
Dr. Bruce Buchanan
Department of Computer Science
Stanford University
Stanford, CA 94305

82
Dr. Pat Carpenter
Department of Psychology
Carnegie-Mellon University
Pittsburgh, PA 15213
83
Mr. John E. Carroll
Psychometric Lab
Univ. of No. Carolina
Cavie Hall 013A
Chapel Hill, NC 27514

84
Charles Myers Library
Livingstone House
Livingstone Road
Stratford
London E15 2LJ
ENGLAND

85
Mr. William Chase
Department of Psychology
Carnegie Mellon University
Pittsburgh, PA 15213

86
Mr. Michelle Chi
Learning E & D Center
University of Pittsburgh
3935 O'Hara Street
Pittsburgh, PA 15213

87
Mr. Kenneth E. Clark
College of Arts & Sciences
University of Rochester
River Campus Station
Rochester, NY 14627

88
Mr. Allan M. Collins
Eolt Beranek & Newman, Inc.
5C Boulton Street
Cambridge, Ma 02139

89
Mr. Lynn A. Cooper
Department of psychology
Uris Hall
Cornell University
Ithaca, NY 14850

90
Dr. Meredith P. Crawford
American Psychological Association
1200 17th Street, N.W.
Washington, DC 20036
91 Dr. Kenneth S. Cross
 Anacapa Sciences, Inc.
 E.C. Drawer Q
 Santa Barbara, CA 93102

92 Dr. Hubert Dreyfus
 Department of Philosophy
 University of California
 Berkeley, CA 94720

93 LTCOL J. C. Egganberger
 Directorate of Personnel Applied
 Research
 National Defence HQ
 101 Colonel By Drive
 Ottawa, CANADA K1A 0K2

94 Dr. Victor Fields
 Department of Psychology
 Montgomery College
 Rockville, MD 20950

95 Dr. Edwin A. Fleishman
 Advanced Research Resources Orqan.
 Suite 900
 4330 East West Highway
 Washington, DC 20014

96 Dr. John L. Folley, Jr.
 Applied Sciences Associates, Inc.
 Valencia, PA 16059

97 Dr. John B. Frederiksen
 Holt Jerznek & Newman
 50 Sculdon Street
 Cambridge, MA 02138

98 Dr. Alinda Friedman
 Department of Psychology
 University of Alberta
 Edmonton, Alberta
 CANADA T6G 2B9

99 Dr. E. Edward Geiselman
 Department of Psychology
 University of California
 Los Angeles, CA 90024
100 DR. ROBERT JUDAS
 LREC
 UNIVERSITY OF PITTSBURGH
 3539 O'HARA STREET
 PITTSBURGH, PA 15213

101 DR. Marvin D. Glock
 217 Stone Hall
 Cornell University
 Ithaca, NY 14853

102 DR. JAMES G. GREENO
 LREC
 UNIVERSITY OF PITTSBURGH
 3539 O'HARA STREET
 PITTSBURGH, PA 15213

103 Dr. Harold Hawkins
 Department of Psychology
 University of Oregon
 Eugene, OR 97403

104 Dr. Richard J. Neuer, Jr.
 27585 Via Sereno
 Carlsel, CA 92923

105 Dr. James R. Hoffman
 Department of Psychology
 University of Delaware
 Newark, DE 19711

106 Dr. Lloyd Humphreys
 Department of Psychology
 University of Illinois
 Champaign, IL 61820

107 Dr. Earl Hunt
 Dept. of Psychology
 University of Washington
 Seattle, WA 98105

108 Dr. Ray Inaba
 21116 Vanowen Street
 Canoga Park, CA 91303
109

LE. LAWRENCE B. JOHNSON
LAWRENCE JOHNSON & ASSOC., INC.
Suite 103
4545 42nd Street, N.W.
Washington, DC 20016

110

Dr. Steven W. Keene
Dept. of Psychology
University of Oregon
Eugene, OR 97403

111

Dr. Walter Kintsch
Department of Psychology
University of Colorado
Boulder, CO 80302

112

Dr. David Kieras
Department of Psychology
University of Arizona
Tucson, AZ 85721

113

Dr. Kenneth A. Klivington
Program Officer
Alfred P. Sloan Foundation
630 Fifth Avenue
New York, NY 10111

114

Dr. Stephen Kosslyn
Harvard University
Department of Psychology
32 Kirkland Street
Cambridge, MA 02139

115

Dr. Marlin Kroger
1117 Via Goleta
Palos Verdes Estates, CA 90274

116

Dr. Jill Larkin
Department of Psychology
Carnegie Mellon University
Pittsburgh, PA 15213

117

Dr. Alan Leagold
Learning E&D Center
University of Pittsburgh
Pittsburgh, PA 15260
Dr. Robert A. Levit
Director, Behavioral Sciences
The EDM Corporation
7515 Jones Branch Drive
McLean, VA 22101

Dr. Charles Lewis
Faculteit Sociale Wetenschappen
Rijksuniversiteit Groningen
Cube Boteringestraat
Groningen
Netherlands

Dr. Allen Munro
Behavioral Technology Laboratories
1845 Isleau Ave., Fourth Floor
Felicity Beach, CA 90277

Dr. Ronald A. Norman
Dept. of Psychology C-009
Univ. of California, San Diego
La Jolla, CA 92093

Dr. Jesse Orlansky
Institute for Defense Analyses
46C Army Navy Drive
Arlington, VA 22202

Mr. Luigi Petrullo
2431 W. Beechwood Street
Arlington, VA 22207

Dr. Martha Polson
Department of Psychology
University of Colorado
Boulder, CO 80302

Dr. Peter Polson
Dept. of Psychology
University of Colorado
Boulder, CO 80309

Dr. Elaine M. Ramsey-Klee
E-X Research & System Design
3547 Ridgecrest Drive
Calibu, CA 90265
Dr. Fred Seif
SESAME
c/o Physics Department
University of California
Berkely, CA 94720

Dr. Andrew M. Rose
American Institutes for Research
1055 Thomas Jefferson St. NW
Washington, DC 20007

Dr. Ernst Z. Rothkopf
Bell Laboratories
600 Mountain Avenue
Murray Hill, NJ 07974

Dr. David Rumelhart
Center for Human Information
Processing
University of California
La Jolla, CA 92093

Dr. Valerie Schneider
Dept. of Psychology
University of Illinois
Champaign, IL 61820

Dr. Alan Schoenfeld
Department of Mathematics
Hamilton College
Clinton, NY 13323

Dr. Robert J. Seidel
Instructional Technology Group
BUNCEC
130 N. Washington Street
Alexandria, VA 22314

Dr. Robert Smith
Department of Computer Science
Rutgers University
New Brunswick, NJ 08903

Dr. Richard Saow
School of Education
Stanford University
Stanford, CA 94305
136 Dr. Robert Sternberg
Depts. of Psychology
Yale University
Box 11A, Yale Station
New Haven, CT 06520

137 Dr. ALFRED STEVENS
ELECTRICAL & MECHANICAL
10 SCULCH STREET
CAMBRIDGE, MA 02138

138 Dr. DAVID STONE
LD 236
SUNY, Albany
Albany, NY 12222

139 Dr. PATRICK SUPPES
INSTITUTE FOR MATHEMATICAL
STUDIES IN THE SOCIAL SCIENCES
STANFORD UNIVERSITY
STANFORD, CA 94305

140 Dr. DAVID TOWNES
Univ. of So. California
Behavioral Technology Labs
1845 S. Ellen Ave.
Redondo Beach, CA 90277

141 Dr. J. OHLMAN
Perceptronics, Inc.
6271 Vareil Avenue
Woodland Hills, CA 91364

142 Dr. J. Underwood
Dept. of Psychology
Northwestern University
Evanston, IL 60201

143 Dr. DAVID J. WEISS
W66C Elliott Hall
University of Minnesota
75 E. River Road
Minneapolis, MN 55455

144 Dr. CHRISTOPHER WICKENS
Department of Psychology
University of Illinois
Champaign, IL 61820
Dr. J. Arthur Woodward
Department of Psychology
University of California
Los Angeles, CA 90024
145 ADDRESSES
170 TOTAL COPIES