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Display 2: Inner product representation of matrix

elements on the biplot of Display 1

Ya3°® =(Length of b,) x (Length of projection of a, onto b,)
Va3 * (Length of 93) x (Length of projection of a, onto 93)
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In this paper, I will discuss the biplot as a graphical
multivariate technique, and I shall start by showing what a
biplot is. I will then explain and illustrate its use in two
aéplications: (1) in inspecting data matrices and (2) in
diagnosing models to fit data. I will end by making some
comments on advantages of this particular method as compared
to other displays of multivariate data.

THE BIPLOT
A biplot (Gabriel, 1971, 1980) is a graphical display of

a matrix Y of n rows and m columns by means of markers
2102500002, for its rows and markers- 91,9_2,...,&“ for its
columns. These markers are chosen in such a way that the
inner product gigj represents y; 4, the i,j-th element of Y.
Now, if we assemble all the a markers as rows of a matrix A
and all the b markers as rows of a matrix B, then this inner
product relationship means that matrix product aB' represents
the matrix Y itself.

Let me make a remark about terminology. The prefix "bi"
in "biplot" does not refer to its being two-dimensional but
indicates that it is a joint display of rows and of columns
of the matrix Y. When we have an analogous three-dimensional
display, we refer to that ;s a "bimodel"; the prefix "bi"
again indicates that it is a joint display of rows and columns;
the ending "model" signifies that it is not plotted in the

plane but uses further dimensions.

- Display 1 -

A simple example of a biplot is given in Display 1. The
4 by 3 matrix Y can be factorized as the product AB', A being
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4 by 2, B' being 2 by 3. The biplot displays the rows of A,
i.e., a;,a;,a23 and ajs as well as the rows of B, i.e., bj,bj and
b3. The first row of A, i.e., the vector (2,2) is displayed as
the point ay; the second row (2,1) is displayed as the point ay
and the other two rows as points 25 and a,. The columns of B'

are displayed as arrows b,,b, and b,. The distinction between

arrow display for columns and point display for rows is con-
venient: The viewer immediately sees which are row markers

and which are column markers.
- Display 2 -

The inner product interpretation of this biplot can be
seen from Display 2 which shows two of the elements of Y.
Element Ya,3 is represented on the biplot by the inner product
of a, and b;. This inner product can be visualized by taking
the direction through vector 93 and projecting the vector a,
onto it. The projection of a, onto that direction is 3/VZ units
long; the length of b, itself is V2 units long; the product
is 3/VZ" x VZ = 3; hence, the inner product is -3, the negative
sign reflecting fhe brojection's being in the direction opposite
to that of the vector projected upon. Indeed, element Ya,3 is
equal to -3. For another example, take eiement y3'3= The
inner product of a, with.§3 is visualized by projecting a,
onto the direction through.§3. (This is the same direction
that was used before.) The projection is of length 3/2VZ;
the vector projected onto is of length V2 ; they are hoth
in the same direction; therefore, the inner product is

+3/2VZ x VZ = 1 1/2, which is indeed the value of Y3 3
' .

e e i
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The matrix ¥ could be biplotted exactly because it was
of rank two. In general, an exact biplot of a matrix is
possible only if the matrix is of rank one or two, because
the biplot itself is planar. For a matrix of higher rank
several steps have to be taken in order to display it by an
approximate biplot. The first step is to ;pproximate the
matrix Y by a matrix Y[2] of rank 2. The second step is to
factorize this rank 2 approximation Y[Z] as a product AB' of
a matrix A(nx2) and a matrix B'(me)' The third step is
to take each row of matrix A as a row marker a and each
column of matrix B' as a column marker b. These markers are
then plotted as an approximate biplot of the original matrix Y.
We next consider each of these three steps of approxi-
mation, factorization and display. The best known method for
lower rank approximation is due to Householder and Young (1938).
It minimizes the sum of squares of the deviations of elements
of Y from elements of the reduced rank matrix Y[Z]‘ However,
this method cannot be applied directly when weights are
involved. The elegant mathematical relations that were used
by Householder and Young break down as soon as one uses weighted
least squares and multiplies the squared deviation (yi,j'YIZJi,j)z
by a weight wi,4° An algorithm is available (Gabriel.and Zamir,
1979), which allows this more general approximation. For a
special kind of weights, Haber (1975) found an earlier solution.
Another method of fitting lower rank matrices is by adaptive
fits (McNeil and Tukey, 1975), and yet further methods might

become available.

Factorization of the rank 2 approximation Y[2] is always
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possible. Matrices A(nx2) and B mx2) that satisfy Y[z] = AB'
must exist. That follows from the definition of the rank

of a matrix. However, such a factorization is not unique. 1In
fact, if we post-multiply A by any 2 x 2 nonsingular R and pre-
multiply B' by the inverse R"L, the resulting (AR) (R"1B') factor-
ization is just as valid as the original aAB' factorization. We
therefore have a choice as to which factorization to biplot.
Note that transformation by a nonsingular matrix consists of a
rotation of axes, a scaling along the new axes and another
rotation, whereas the transformation by the inverse consists

of the same rotations with a scaling which is reciprocal to

the first one. This may help to give an idea of how different
factorizations and different biplots are related. (An illustra-
tion of alternative factorizations and the resulting biplots
was given by Gabriel, 1971).

The non-uniqueness of the factorization has some advantages
for the statistician, who may choose a factorization which has
desirable data analytic or statistical features. For instance,
one particularly attractive factorization is referred to as the
GH' factorization. This has orthonormal columns for G and
therefore satisfies Y'Y = HH', which is especially useful if
the rows of Y represent individuals and the columns represent
variables. Then Y'Y is n times the estimated variance-covariance
matrix, and so the inner products of the rows h of H in a GH'
biplot represent the covariances,and the squared lengths of
the h's represent the variances. The cosines between h-vectors

therefore represent the correlations between the variables.

This biplot is useful in many statistical applications.




INSPECTION OF DATA

Next, I consider uses of the biplot. I will first describe the
use of the biplot for inspecting data matrices. It is partic-
ularly useful for studying large data matrices, where eyeballing
the large collection of numbers is quite impractical. Biplot

display makes it much easier to see the main features of the

matrix. I will illustrate this with a moderate size example

because it is easier to present that in a paper. I should stress
that I will not use the biplot to analyze the data statistically,

and certainly not to test it for significance. Rather, I will

use it for "looking at the data".
- Display 3 -

Display 3 shows the table of per capita protein consumption
in 25 European countries: The rows are countries and the
cclumns are nine different sources of protein. This matrix
is bipiotted in Display 4 after the mean of each column has been
subtracted out. The points,or row markers, represent countries;
the arrows, or column markers, represent sources of protein.
This happens to be a GH' -biplot so that the lengths of the
arrows represent the variances of the different sources of
protein and the angles represent their correlations. The center

of this biplot is at the European mean, or centroid, of all

these sources of protein. The goodness of fit of Y[Z] is of
the order of 0.85; that is, the biplot displays 85% of the sum

of squares of the mean centered data matrix Y.

- Display 4 -
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Display 3: European protein consumption
(grams per head per day)

Meat  Pigs ' Pulses
(Grazing and ‘ ‘Star- Muts, Fruits |
ani- Poul- : chy 0il- Vege-
mals) ‘try - Eggs Milk Fish Cereals Foods Seeds tables
Albania 10,10 .1.40 0.50 - 8.90 0.20 42.30 0.60 5.50 1.70 -
Austria 8.90 1400 4.30 19.90 2.10 28.00 3.60 1.30 " 4.30
Belg. Luxem. 13.50 9.30 4.10 17.50 4,50 26.60 S5.70 2.10 4.00
Bulgaria 7.80 . 6,00 1.60 8.30 1,20 S670 110 . 3.70 4.20
Czechoslovakia 9.70 11.40 2.80° 12.50 2,00 34.30 5.00 1.10 4,00 !
Dennrark 10.60 10.80 3.70 25.00 ° 9.90 21.90 4.80 0.70 2.40C .
1 East Germany 8.40 11.60 3.70 11.10 $.40 24,60 6.50 0.80 3.60
Finland . 9.50 - 4,90 2,70 33.70 5.80 -26.30 5.10 1.00 1.40
| France - 18.00 9.90 3.30 19.50 S.70 28,10 4.80 2.40 6.50
Greece 10.20 3.00 2.80 17.60 §.90 41,70 2.20 7.80 6.50
- Hungary . 5.30 12.40 2,90 9.70 0.30. 40.10 4.00 S.,40 4.20
= Ireland 13,90 . 10,00 4.70 25.80 2.20 24,00 6.20 1.60 2.50
Italy . 9.00 §.10 2.90 13.70 3.40 36.80 2.10 4.30 6.70
Netherlands 9.50 13.60 3.60 ' 23.40 2.50 22.40 4.20 1.80 3.70 - |
Norway 9.40 4,70 2.70 23.30 9.70 23.00 4.60 1.60 2.70
Poland . 6.90 10.20 2,70 19.30 3.00 36.10 S.90 2.00 6.60
Portugal 6.20 3.70 1.10 4.90 14,20 27.00 5.9 4.70 7.90
Rumania 6.20 - 6.30 1.50 11,10 1.00 49.60 3.10 5.30 2.80
Spain 7.10 3.40 3.10 8.60 7.00 29.20 5.70 5.90 7.20
Sweden " '9.90 7.80 3.50 24.70 7.50 19.50 3.70 1.40 2.00
Switzerland 13.10. 10.10 3.10 23.80 2.30 25.60 2.80 2.40 4.90
United Kingdom 17.40 S.70 4.70 20.60 4,30 24.30 4.70 3.40 3.30
USSR 9.30 4,60 2,10 16.60 3.00 " 43.60 6.40 3.40 2.90
Nest Germany 11.40 12,50 '4.10 18.80 - 3.40 18,60 5.20 1.50 3.80
Yugoslavia 4.40 §.00 1.20 9.50 0.60 55.90 3.00 5.70 3.20
AVERAGE 9.83 7.90 2.94 17.11 4,28 - 32,25 4.28 3.07 4,14

Source: A. Weber (1973) Agrarpolitik im Spannungsfeld der internationalen
Emaehrungspolitik. Kiel, Institut fier Agrarpolitik und Marktlehzre
(Mimeographed). - :
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Looking at the configuration of the nine sources of protein,

the most striking thing we see is that there is a very large

variance for cereals and a somewhat large one for milk, but

that the variances are relatively small for all the other sources

of protein. The correlations are also interesting. On the left-

hand side of the plot are all the animal sources of proteins; 1
the angles between them are fairly small, which indicates high
correlations between animal sources. Countries with high protein i

consumption from meat appear also to have high protein consumption

from eggs, poultry, milk, etc. The marker for cereals is on the
right side of the biplot, at an angle of about 180° to the markers
for animal sources. Evidently, countries that have a high con-
sumption of protein from animal sources have relatively low con-
sumption of cereal protein and vice versa. Next, we note the
markers for fruit and vegetables (and for fish (?)) to be at
about 90° to both animal source and cereal markers. Apparently
these sources of protein are pretty much uncorrelated with

animal and cereal proteins.

It is interesting to consider which countries are typical
of each source, i.e., which countries have high consumption of
each kind of protein. For that purpose, the row markers can be
displayed by means of three different symbols -- 1 for Western
and Northern Europe, 2 for Eastern Europe, and 3 for Mediter-
ranean countries. This simple device makes it easy to see that
Eastern European countries are on the right of the biplot along
with cereals; these countries consume much protein from cereals.
Western and Northern European countries are on the left along

with markers for animal protein. Mediterranean countries are

partly towards the bottom of the biplot, which indicates that




:
4
|

-7-

fruit and vegetables, nuts, and fish are relatively important

sources of protein for them.

This example illustrates an important feature of the
biplot. It displays not only the configuration of the variables,
i.e., of the sources of protein, and the scatter of the individ-
uvals, i.e., of the countries, but it also relates the two. It
therefore is able to reveal, for example, not only that con-
sumption of cereal proteins is negatively correlated with con-

sumption of animal proteins, but -- and this is the special feature

of the biplot -- it also identifies countries which are typical
users of cereal protein and countries which mostly use animal
proteins. This joint display of countries and sources justifies
the use of the prefix "bi".

Another method of displaying particular groups of countries
on the biplot is the use of a concentration ellipse for the
points of each group of interest. (A concentration ellip;e is
the two-dimensional analogue of a mean ¥SD interval: It is
centered on the points' centroid and its "shadow" in any direc-
tion is a univariate mean *SD interval for the variate displayed
in that direction; see Dempster, 1969, Ch. 7.) The usefulness of
this concentration ellipse display is in summarizing a large

number of points of each group by a simple figure.
- Display 5 -

The biplot of Display 4 is shown again in Display 5 with
the countries' row markers replaced by concentration ellipses
for the three groups. This very clearly shows the Northern and
Western European group to be on the left, in the animal protein

direction; the Eastern group on the right in the cereal direction
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and the Mediterranean group to have a very elongated scatter
in the nuts, fish, fruit and vegetable directions. It is
obvious that the Eastern European group is much more hetero-
geneous than the Western and Northern European group and the
shape of the Mediterranean scatter makes one doubt whether

that should really be considered as a single group.
- Display 6 -

Use of concentration ellipses is of particular importance
when large sets of data.need to be displayed and there are
more row markers than can be displayed effectively. Display 6
shows a biplot of breast‘tissue samples which were analyzed for
enzyme activity. (The data are due to Dr. Russell Hilf of the
Department of Biochemistry at the University of Rochester.)
The activity of several enzymes énd other phenomena were
measured o2n each of several hundred breast tissue samples
which had also been classified into four diagnostic groups:
normal tissue (Group 4), cancerous tissue (Group l) and two
kinds of benign growths (Groups 2 and 3). When all the 700-odd
points were displayed on the biplot, it was very difficult to
distinguish the four groups of points. But the biplot with the
concentration ellipses of the four groups -- Display 6 =-- is
much easier to grasp. One sees a clear distinction between
the scatters of the cancerous and the normal tissues; each
shows different enzyme activities. The two benign growth groups

are intermediate between the preceding two in enzyme activities.
It is at times useful to consider only the variance-co-

variance configuration. Thus, in a GH' biplot one might omit




Display 6:

Biplot of enzyme activity data for samples of
breast tissuve with concentration ellipses for
four types of diagnosis :

1--INFILTRATING DUCTAL CRRCINEMA
2--FIBRBCYSTIC DISERSE
3--FIBROADENEMA DISEASE
4--NPRMAL BRERST




-9-

the markers for individuals (rows) and display only the
variables (columns) h-markers. This will be referred to as

a h-plot. One reason for wishing to ignore the individuals
could be that they might be mere samples, or replicates, from
a population -- and that it is only the population as an
aggregate that is of interest. At times, one might want to
use several h-plots and compare the variance-covariance con-

figurations of several different populations.
- Displays 7 & 8 -

An interesting example comes from the first randomized
rainmaking experiment in Israel. Days were randomly allocated
to have clouds seeded either in the North or in the Center
of Israel. Displays 7 and 8 are h-plots of the precipitation
in eight sub-areas of Israel -- Display 7 for Center-seeded
days, Display 8 for North-seeded days (Corsten and Gabriel,
1976). The two h-configurations are, at first glance, very
similar. At the top of each display is the h marker for the
South, then come the markers for the three sub-areas of the
Center of Israel, then,at the bottom of the displays, are the
markers for the North of Israel, and for the "buffer zone"
between the North and the Center. Both displays show that
there was high correlation between sub-areas within the North,
average correlation among the Center sub-areas and rather

low correlation between the Center and the North.
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Display 9: Means and error sums of squares and products of
anteater data

;i LOCALITY Nuggza z; M.E'gzN = zq SUBSPECIES

1 . SKULLS )

i 1. sta. Marta, Columbia 21 2.054 |2.066 | 1.621 | Instabilis

i? 2. Mina Geraes, Brazil 6 2.097 2.100 ] 1.625 Chapadénsis

iﬁ 3. Matto Grosso, Brazil 9 2.091 2.095]1.624 Ch;padensis

ii 4, Sta. Cruz. Bolivia 3 2.099 2.102 | 1.643 | Chapadensis
" 5. Panama 4 |2.002 |2.110]1.703 | chiriquensis

6. Mexico 5 2.099 2.107 | 1.671 | Mexicana
Total 48

Within localities sum of squares and products (42 4.f.)

2, Z, Zq
Zl 0.013631 0.012769 0.016438
'22 0.012769 0.012923 0.017135
Zq 0.016438 0.017135 0.036152

The variables 21,22,23 are common logarithms of, respectively,

basal length excluding the premaxilla, occipito nasal length

and greatest length of nasals

{
i
3

i
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Despite the overall similarity of the configurations of
North-seeded and Center-seeded days, some differences are
revealed by closer inspection of Displays 7 and 8. The most
striking difference is that the correlations are considerably
higher in the North when seeding was carried out in the North.

Also, when one compares the lengths of vectors on the two

h-plots, one readily sees that the variances of the Northern
sub-areas were larger when the North was seeded whereas the
variances of the Center sub-areas were larger when the Center
was seeded. The explanation for these findings may be that the
effect of seeding was (1) to make the seeded sub-areas more
similar to each other, and (2) to augment the variance of rain-
fall in the seeded area (the means were also augmented --

though this is not shown on the h-plots).
- Display 9 -

A somewhat more elaborate example is the data in Display 9
of three different cranial measurements of how subspecies of
anteaters collected at six geographical locations (Reeve, 1940,
quoted by Seal, 1964). The matrix that would be biplotted here
is the six by three table of the six sample means of the logarithms
of the three cranial measurements. Since these are averages of
samples, it is appropriate when calculating their rank 2 approx-
imation, to weight them by the sample sizes and the inverse of
the within sum of squares and products matrix. This weighting
is identical to that used in one-way multivariate analysis of

variance (Gabriel, 1972).

= Display 10 -
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On the resulting biplot, referred to as a JK'-biplot -

- ol "
i
e e e s e e e

Display 10 -- each point represents a sample from one location
and each arrow represents a log characteristic measured -- one
of the three variables. What is immediately evident is that

the three samples of sub-species Chapadensis are very similar --

i . they are very close together on this biplot. The location of
Chiriquensis and the 19cation of Instabilis are quite far from

¢ these three biplot locations and from each other. Mexicana is

! located between Chiriquensis and Chapadensis. Also, the general
direction of the variables is up and slightly to the right, hence
that is the direction of larger crania. This indicates that
Instabilis is a smaller type of anteater, whereas Chiriquensis,
Mexicana and Chapadensis are all larger. The difference

between Chapadensis and Chiriquensis, on the other hand, is

not one of overall size but one of a contrast between the

different variables. Chiriquensis is relatively larger on

the third variable -- greatest nasal length -- whereas
Chapadensis is relatively larger on the first two variables.
The two sub-species are thus seen to have different profiles
of the variables.

This JK' biplot differs from the GH' biplots described
above: Amongst other things, weights were used in fitting it.
However, because of the particular weights used, biplot dis-

tances represent Mahalanobis distances between the different

samples. Thus, the Mahalanobis distances between the Chapadensis
samples are small; the one between Mexicana and Chapadensis is

less then that between Chiriquensis and Chapadensis, etc.
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! - Display 11 -

i The Mahalanobis distance is closely related to Hotelling's

'1‘2 except that the latter is scaled by the sum of the reciprocals

T2 test between pairs of samples by drawing circles around the

'i of the sample sizes. It is possible to approximate the Hotelling
;

biplot sample markers, where the radii of the ¢ircles depend on

the critical point used for testing and on the sizes of the

! samples (Gabriel, 1972). This is illustrated in Display 11.

}@ The interpretation of these "comparison circles" is very obvious:
Circles which intersect show a non-significant comparison; dis-

| joint circles show a significént comparison; Thus, the three

circles for Chapadensis overlap very much with each other and

also with the Mexicana circle. This indicates that there are

no significant differences between the three Chapadensis samples,

nor between them and the Mexicana sample. Mexicana is not signif-

icantly different from Chiriquensis either. However, Mexicana is

significantly different from Instabilis. In fact, Instabilis

is found to be significantly different from everything else., B
and Chiriquensis is also different from Chapadensis. The
general conclusions would be (1) that Instabilis indeed differs
from the rest of the anteaters and is a smaller type; (2) the

larger anteaters are of at least two groups: One containing i

Chiriquensis, the other Chapadensis; Mexicana could belong to

either of these groups -- there are no significant differences

which would indicate to which.

2

2' The graphical test used here is an approximation to
L |
’ Hotelling's T°. In many cases such a Gaussian test may not

i

L
»
‘
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be valid and more robust tests might be needed. It might,
for example, be possible to carry out re-randomization tests
directly on biplots. We are currently t}ying out Mielke's (1976)
"multiple reponse permutation procedures" for that purpose.
Let me stress, however, that I see a very limited role for .
significance testing in the exploration of such multivariate
data. In most multivariate situations, we have a fair number
of -samples and a fair number of variables; and we are rarely
concerned with a test of an overall null hypothesis for all
samples and all variables. Instead we usually want to find
out what sort of differences exist and between which samples
they occur. We are trying to explore rather than to test.

Multivariate analysis is essentially an exploratory
technique rather than a confirmatory method. Indeed, by the
time one gets to the stage of confirmation and sets up a well-
defined null hypothesis for testing, one usually knows pretty
well which particular variable, or what linear combination of
variables,one is really interested in, so that the testing
becomes univariate and not multivariate. I submit that multi-
variate analysis is principally exploratory and that techniques
such as the biplot are usually very much more to the point

than most tests of significance.
DIAGNOSIS OF MODELS

Another use of the biplot is that of diagnosing models
which will fit a data matrix. This use is particularly important
because statisticians really have very few techniques available
for inspecting a data matrix and deciding what sort of model
will fit it, Statistics textbooks have ample material on how
to test a model once we have formulated it, but little or

nothing on how to select a model, except by trial and error.
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A biplot may be used to diagnose a model by looking
for a pattern on the display and then infer mathematically
what model that implies for the data matrix. For example, if
the row markers are seen to be collinear, and the column markers
are also noted to be collinear, and the two lines are at right
angles to each other, one may infer that an additive model will
fit the data closely, i.e.,yi'j = ay + Bj; for some set of
alphas and betas. If, for another instance, one observes
row markers and column markers to be oﬁ two non-perpen-
dicular lines, one can infer that a concurrent model fits

the data, i.e., Yi5 =0 + a.,B., for some n, ai's and Bj's.

3 i™3

(This, by the way,is a reparametrization of Tukey's degree-of-
freedom-for-non-additivity model.) Also, if one observes that
all markers, for both rows and columns,are on one and the same
line, it is obvious the matrix is a rank one and so the model

18 Y54 = 9384,

- Display 12 -

Display 12 shows these and some other rules of diag-
nosis derived by Bradu and Gabriel (1978). The first line
indicates that when the row markers are collinear, the data
may be fitted by a columns.regression model. (This model is due

to John Mandel (1961). It expresses each column as a linear

regression on given row effects “i)‘ The next line of Display 12
similarly shows that, when the column markers are collinear,

each row can be modelled as a linear regression on fixed column ]

B's. When both row markers and column markers are collinear,




Display

Some, biplot diagnostic rules

Row markers Col. Markers The model
a, Qj for yi,j is:
collinear - .+ a,6.
By *2id
columns
regression
- collinear ey + YiBj
rows
regression
collinear collinear p o+ Yisj
concurrent
(d.o0.f.n.a.)
collinear ¢ollinear ay + Bj
lines at 90° to each other additive

(Bradu and Gabriel, 1978)
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|

-15-

a concurrent model is diagnosed (as noted above), unless these
two lines are at 90° to each other, in which case an additive
model is diagnosed (as also noted above).

The rules of Display 12 apply even if some of the biplot
markers are not on these lines. 1In such cases, the diagnoses
apply to the subtable of the rows and columns whose markers
are collinear. This is guite a remarkable feature of the biplot.
It makes it possible to diagnose models not only for the entire
matrix, but also for any sub-matrices. Most importantly, all
these diagnostic indicators are very simple. The eye very
easily picks up a straight line, even when it fits only some

of the row markers or some of the column markers.
- Displays 13 & 14 -

Here are some further examples. Bradu and Grine (1979)
considered cranial measurements for a number of specimens of
fossils -~ Display 13. This table has a large number of
missing values, so that ordinary techniques for fitting were
inappropriate. Bradu and Grine therefore used the algorithm
developed by Gabriel and Zamir (1979) for weighted least
squares and introduced 0 weights for the missing values and
unit weights for present values. The resulting biplot is
shown in Display 14. It is quite remarkable how closely the
row markers cluster around one line and the column markers
along another line. Using the diagnostics of Display 12,
Bradu and Grine inferred that a concurrent model would fit the

data very closely, as indeed it did. We note, however, that
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the angle between the lines is very close to 90° and suspect

that an additive model would also have fit pretty well.
- Display 15 -

A more complex example is data of Gamma radiation
-~ Display 15 =-- classified by distance from the radiation
source, number of intervening plates, the metal of which
these plates consisted and two replications. This is a four-
way layout so one has to confound several classifications in
the rows and/or in the columns before one can display it in
a biplot, as that is a matrix display. One way of doing this
is to consider the data in the matrix form of Display 15,
with the metals, distances and replications confounded in the
rows, and only the number of plates appearing in the columns.
This matrix -- after subtracting the overall mean -- is
biplotted in Display 16, in which the column markers represent

numbers of plates, and each row marker represents a combination

- of metal, distance and replication.

- Display 16 -

The biplot -- Display 16 -- of the radiation data clearly
shows a linear pattern for the number of plates. The pattern
for the row markers is not so immediately obvious. However, if
for each of the ten distance x metal combinations, we average
two replications, we find that these ten average markers lie on
a non-rectangular lattice: The metals form two parallel lines

and the distances form another five parallel lines. What model




Display 15: Absorption of gamma radiation by lead and aluminum

[FRYR N

Distance Replic. Number of plates
Row {4 in ocm 1 3 6 ‘7_2 10
Lead
1 3.8 1.801 1.765 1.696 1.670 1.606
2 5.2 1,621 1.572 1.516 1.486 1.425
3 6.0 I 1.526 1.481 1.406 1.401 1.333
4 9.0 1,222 1.169 1.102 1.078 1.010
5 12.5 0.973 0.939 0.862 0.850 0.781
6 3.8 1.805 1.768 1.704 1.680 1.615
7 5.2 1.609 1.572 1.511 1.482 1.408
8 6.0 11 1.494 1.461 1.387 1.324 1.315
9 9.0 1,233 1.208 1.130 1.111 1:046
10 12.5 0.978 0.930 0.870 0.844 0.779
Aluminum
11 3.8 1.834 1.818 1.811 1.790 1.777
12 5.2 l1.632 1.613 1.600 1.603 1.597
13 6.0 I 1.599 1.482 1.476 1.454 1,447
14 9.0 1.249 1.224 1.204 1.211 1,179
15 12.5 0.976 0.971 0.966 0.960 0.943
16 3.8 1,916 1.913 1,884 1.887 1.871
17 5.2 1.732 1.723 1.698 1.696 1.674
18 6.0 II 1.632 1.624 1.592 1.588 1.579
19 9.0 1.344 1.341 1.312 1.311 1.290
20 12.5 1.118 1.118 1.106 1.086 1.066
" o , o , e —
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can be diagnosed from such a pattern? It may be useful to go
through the algebraic steps of modelling for this case. Start-
ing from any origin we can model the line for the column markers
Eb =aq + Apg, where Ap is a parameter for the number of plates P
and g is in the direction in which the column markers lie.

We can also model the row markers for the average of the two
replications as 2n, 4. = ¢q1 + *mi with parameter ¢d depending

on the distances d, and parameter ¥y,  on the metals m. Vector y
would be in the direction of the parallels for the metals
whereas § would be in the direction of the parallels for the

distances. To see the form of the model for the data, we

take the inner-product

' ’ ’
2malp ™ (Y * gl (et g
' ' ' '
‘¢d1 e + wmé. a + ¢d}‘p1£ + q’mkpé. E.'

This models the average yd,m,p. by an effect due to distance,
plus an effect due to metal, plus two multiplicative effects,
i.e., interaction terms, one of distance with plates and the
other of metals with plates.

However, there is still more to be gleaned from the
biplot of Display 16. The lines for lead and for aluminum
are virtually parallel and pretty much at right angles'to the
line for plates. In terms of our parametrizations, this
means the vector 8 is orthogonal to vector y. Therefore,
the inner product g'y is 2ero and that term vanishes from the
model. Defining n, = ¢dl'£' and oy = g'g + Apg'g, one obtains
the model Yd,m,p. = "a * ¥m%p- As ¥ takes on only two values,

this results in two additive submodels, one for each metal.
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The distance effects T4 are the same for both metals, but the

number of plate effects differ by a constant of proportionality.

Indeed this kind of model could be fittéd to these data. Note

also that this example illustrates diagnosis for subtables:

Rule four of Display 12 directly indicates an additive model

for the data of each metal. (See Kester, 1979, for further rules.)
Further parametrization could be effected by noting

that the distances along the lines through the column markers

were pretty much proportional to the number of plates and

therefore the parameters o_ could be expressed as linear in

p
the number of plates; similarly, the parallel lines for dis-
tances were spaced pretty much proportionally to the distances
from the source of radiation and so LP) could be presented as a
linear, or perhaps more precisely as a quadratic, expression
in the distance 4. The actual model that was fitted was an
elaboration of the above and included linear and guadratic

terms in the number of plates and in the distances from the

source of radiation.
This is not only an instance of successful modelling but

also shows the method by which a pattern observed on the biplot
is translated algebraically into a model for the data.

All the models that we have diagnosed so far have been linear
or bilinear in the various effects. It may be of interest to con-
sider an instance in which such modelling was not sufficient.

The example is one of mean monthly temperatures during the

24 months of 1951 and 1952 at 50 stations on the American
continents (Brier and Meltesen, 1976) The data were bi-
plotted -- Display 17 -- after the average temperatures for
all S50 stations were subtracted out -- goodness-of-fit was 96%.

(This analysis was carried out jointly with Mike Tsianco, 1980.)
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- Display 17 -

‘4

There is nothing particularly revealing about the scatter
of row markers for the stations in Display 17. But the column
ma;kers fan out in a rather systematic manner: At first sight
they would seem to be collinear and suggest a rows regression
model. However, the order of the different months is interest-
ing. It reveals a very similar configuration for the two years,
with January at the top, then February and December, then March

and November, and, somewhat farther down, April, October and

May, then June, August, July and September. What sort of model

does this suggest?
- Display 18 -

We note that the time sequence is systematic, going down
from January to February, then to March and further down till
June, then going up from July to December. This suggests that
the time sequence may really be three-dimensional, the up-down-up
movement on the biplot being complemented by a further change in
a third dimension separating spring from fall. It is therefore
worthwhile to fit a bimodel, i.e., a three-dimensional analogue
of a biplot, and look at the plane of the second and third
dimension, that is, essentially inspect the entire configuration
from the right-hand side. This is shown in Display 18 in which
the column markers are displayed on the plane of the second and
third axes of the bimodel. Now we see a clear elliptical pattern
from winter on the right, through spring at the bottom, summer
on the left and fall on top.
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- Display 19 -

;
;
1
:
i
i

Another way of visualizing this is by means of ellipses
fitted to the three-dimensional h configuration. Display 19
shows several projections of these fitted ellipses as viewed

from the front, that is along the first and second dimensions;

ORI, 53 S PR A

as viewed from the side, as we saw a moment ago; as viewed

from the top; and as viewed orthogonally to the plane of the
ellipse. (Note that in Display 19 the individual months are
- shown as averages for the two years and so there are only 12

markers instead of the 24 of Display 18. Also note that these

are not concentration ellipses.)

What can be inferred from this elliptic pattern about
models suitable for the data? What we are modelling by an
ellipse is the configuration of the h-vectors of the cH'
bimodel. Y is displayed by rank 3 matrix product GH', and
we are not considering the G factor but only the 24 columns of
H, each having three elements. These h's have an elliptical config-
wation which we may model as follows.gj=g_+ acosd,. + 8sin®

J
for three-element vectors u, a and § and angles 6,,...,08,,.

jl

R s

This familiar parametrization of an ellipse represents the i
the center by p, the major axis by a, the minor axis by g i

and the points along it by angles ej.

So far we have a model for the h's as observed on the
bimodel. But our real concern is to obtain a model for the

data matrix itself, i.e., for the elements yi,j' Now, the

j} bimodel representation is Yi,5 " gigj for a row g; of G and
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, one of the vectors gj.
E“.

of the latter, we obtain Yi,j =‘g;g + g;gcosej + gigsinej.

This can be simplified by the following reparametrization:

In view of the elliptical modelling

[] 1] . ]
ng = gju, ¥;cOs¢; = gjo and y;sing; = g 8.

2!

J

| ' The model then becomes Yi,j =ny

+ wicos¢icos¢j + wsinoisin¢
and, by the ordinary laws of trigonometry, that equals

é Yi,j =n; + wicoswi + ej). This simple harmonic model for

the data has thus been shown to have been diagnosed by means

of the bimodel.

'This model makes a lot of meteorological sense. ny is a
station average temperature; by the amplitude of the annual
harmonic variation in temperature, and when the model was fitted,
these amplitudes were found to be larger farther from the egquator
and smaller close to the equator, as one would expect (Tsianco,
1980). The harmonic cosine element has its phases in terms of
two arguments, L depending on the station i and 6. depending

]
on the month j. Tsianco found 8. to change from month to month

J
by almost exactly 2r/l12, as one would expect from the annual
cycle of temperature. He found the fitted values of o to be
much the same for all North American stations and again much
the same for 311.South American stations -~ Fhe difference
between the Northern and the Southern oi's was 7 -- which is

what one would expect since it is well-known that it is warm

in the North when it is cold in the South and vice versa.
This example has shown how inspection of a biplot/bimodel
may lead to observation of a pattern which can be modelled and

how such a model can lead to a model for the data themselves.

4
!

It has also shown that the resulting model is in accord with
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what we know about meteorology. Thus, biplot/bimodel inspec-
tion and consequent modelling for the data may give physically
appropriate models.

SOME GENERAL COMMENTS

It may be in order to state the sequence in which I think
display and modelling should be applied. One should begin by
fitting the biplot or bimodel to a data matrix; from inspection
of this display one might be able to infer a model or formulate
a description of the data. Before one could conclude that this
was an appropriate description, one should look at the residuals
and ask whether they might be related to the fit of the biplot
or the model, and/or whether they might be heteroscedastic. 1If
so, one should look for forms of re-expression in the hope of
yielding more homogeneous, less systematic, residuals from the
next £fit. This fitting, looking at residuals, re-expression
sequence should be iterated until one is satisfied that the
residuals are mainly noise.

Whilst doing these inspections of residuals, one should
not merely look at general patterns of residuals but also spot
outliers. In fact, this would seem to be an essential pre-
liminary stage in all inspection of data. If there are extreme
outliers, one must check the records from which the data came --
most of the time one would find gross errors which need to be
corrected. In some cases, unexplained outliers would remain.

It is extremely important to note unexplained outlying residuals

in reporting analyses, even if they are omitted from the follow-

ing fits and modelling because the methods of fitting might be
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unduly influenced by them. Scientists who are interested in

the data often find the outliers to be the most fascinating 5

and instructive part of the whole data set. We, as applied

mathematicians, enjoy finding patterns and fitting models and

get the satisfaction of mathematical elegance of presentation
i - of these regularities. But this may be of little interest to

the scientists who are looking for new and unexpected phenomena

¥ rather than for neat formulation of patterns with which they
are already familiar. It may well be that much of the progress
of science is in finding the unexpected, the outliers, and
being led to new ideas rather than in systematizing and para-
meterizing the familiar. |

Let me make some final remarks about biplot display in
comparison to a number of other techniques of data analysis.
There are a number of steps in biplot display. (1) We start
with a matrix Y. (2) We compute a reduced rank approximation
Y537 (3) We factorize that as Y ,; = AB'; and then (4) we
display the a's and b's in a biplot (or bimodel). Regularities
that are in the original data can generally be expected to
remain in the reduced rank approximation and therefore to be
expressed in the factorization and to appear as patterns on
the biplot. So matrix regularities will be displayed as biplot
patterns. But scientific inference must proceed in the opposite

direction. One observes the biplot patterns and tries to infer

about the data. This is possible to the extent that the steps

of approximation, factorization and display are reversible. Indeed,




display is reversed by visualization and factorization by inner-
product multiplication. But the approximation step is reversible
only as well as the goodness of fit of the reduced rank approxi-
mation. Often these approximations are very'close and then one
can say that the steps back from tﬁe biplot to the data can be
retraced almost exactly. A number of examples have been pre-
sented above which show how one may parameterize a relationship,
or pattern, on the biplot and then retrace the steps to see
what model suits the data matrix.
The possibility of reproducing the data, at least approxi-
mately, from the biplot/bimodel display, is a unique feature
of this particular method. There are a number of other methods,
such as multidimensional scaling or correspondence analysis, in
which one starts from a matrix, calculates a function of the
matrix, e.g., interpoint distances, correlations, etc. and then
. produces some map of these distances or correlations by metric
or non-metric methods. If there are regularities in the data
then these maps of distances or correlations should reflect
them. But we cannot even approximately retrace the step from
the map of distances, or correlations, to the original data.
This is because the distance, or correlation, functions which
have been used to summarize the data are generally not one-to-one
functions. Hence one cannot reproduce the data. One may model
the distances, or correlations, but one cannot model the data

by any of these other methods. The biplot seems to be unique

in that it permits going back the extra step to the original :
data.
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In summary, two main uses of the b%plot have been pre-
sented. One is to inspect data matrices and look for patterns
and relationships. In that use the biplot is very similar to
several other methods. The other use of the biplot is to

diagnose models to fit the data. For that purpose the biplot

seems to be unique.
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