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ABSTRACT

Ocean internal waves induce magnetic flelds by virtue of
motion of conducting sea water relative to the geomagnetic field.
Measurements of such internal wave 1induced magnetic fields by
sensitive magnetic instruments below the ocean surface require
use of a protective enclosure or buoy. In this paper an anal-
ysis 1s presented of the effects of the enclosure on the mag-
netlic flelds and their spatial gradients when the enclosure
(buoy) is spherical.

Explicit analytical results are presented for the magnetic
field and the magnetic field gradients for the case in which
the sphere radlus is small both in relation to the spatial
period of the internal wave field and in relation to the depth
at which the buoy 1s submerged. In additlion, analytical results
are presented for the temporal spectra of magnetic field gradi-
ents as these would be measured within the buoy when towed at
speeds substantially greater than the maximum group velocity of
the internal wave field.
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I. INTRODUCTION AND SUMMARY

The measurement of magnetic fields and magnetic field gra-
dients in the ocean that are induced by the relative motion of
sea water with respect to the geomagnetic field typically re-
quires that the measuring instrument be enclosed in a measure-
ment chamber or buoy. For example, when the instrument 1is a
superconducting gradiometer (SQUID sensor) the minimal enclosure
would be the cryogenic unit itself. The major contributors to
the induced magnetic flelds are believed to be ocean surface
waves and internal waves, the latter providing the dominant con-
tribution at frequencles below about 1 mHz for a moored sensor.
Whereas formulas for computing the induced magnetic fields in
the ocean are available [1], no analysis appears to have been
1 carrled out for estimating the effects of the enclosure on the
,] detected magnetic field.

PRI W

Basically, the buoy would introduce two types of disturb-
ances: fluctuations of the magnetic field arising from the
localized flow pattern dictated by the hydrodynamic properties
of the buoy, and perturbations due to the sea water-air discon- ?
tinuity at the boundary of the enclosure. The latter effect |
arises from the requirement that the normal component of electric |
current as well as the normal component of velocity vanish at
the buoy surface.

4a

The induced magnetic field within the buoy is determined ]
essentially by an integral taken over the entire volume occupled |
by the velocity fileld exterior to the buoy. If, as would nor-
mally be the case, the volume occupied by the internal wave
} ‘ field 1s much larger than that occupied by the local flow around
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the buoy, it is reasonable to suppose that the contribution to
the induced magnetic fleld from the local flow velocity fileld
may be neglected.

A more severe perturbation would be that due to the discon-
tinulty at the buoy bounding surface. One readily convinces
himself of the importance of thils effect if one recalls that
the asymmetry of the gradlents of the magnetic fileld in the
water 1s removed once the measurement is carried out in air
(i.e., within the buoy): rotating the axis of a hypothetical
SQUID sensor in air by 90 deg would produce no change in the
measured gradlent, whereas different results would be obtained
if such a rotation were carried out in sea water. This is
simply a consequence of the fact that the curl of the induced
magnetlice field vanishes ldentically in air, but not in sea
water, where there exist localized electric currents.

In this paper an analysis 1i1s presented of the effects of
the discontinulty at the buoy walls on the magnetic filelds and
gradients induced by internal waves 1in the ocean. An exact
solution for the flelds within a buoy of arbitrary shape appears
rather difficult. Here, for simplicity, the buoy 1s modeled as
a sphere. Although this shape hardly constitutes a practical
contour for a submerged instrument package, it does provide a
fairly tractable model for estimating the general trend of the
boundary effects. In addition, the methodology can provide
guldance for future analyses of more realistic shapes. Even
in the case of the sphere, an exact solution 1s not trivial.

The approximations underlying the present analysis are that the
sphere radius is small by comparison with the spatial wavelength
of the unperturbed internal wave field and by comparison with
the depth of the buoy below the ocean surface.

The first of these two approximations is equivalent to
assuming that the unperturbed internal wave fleld 1s essentially
constant over the volume of sea water displaced by the buoy.

2
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For spatial wavelengths of principal interest herein (1,000
to 100 meters), thils is certalnly a reasonable assumption.

The technlique of solution involves a perturbation expan-
sion in ascending powers of the sphere radius. When the sphere
radius is small in relation to the spatial period of the hydro-
dynamic flow fileld, only the first term of the perturbation
expansion needs to be retained. For notational convenience,
in the analytical development only the radius of the sphere a,
rather than the dimenslonless ratio a/A is referred to explic-
itly as the small expansion in parameter. (See discussion on
p. 44 following Eq. (122)).

In Sectlon II the general mathematical framework 1s set
forth. The rationale for the perturbation technique is devel-
oped in Section III and Appendix A. In Section IV an expres-
slon for the magnetic field is obtained which is valid in the
zeroth order approximation. The final result is embodied in
Eq. (72), which appears to bear a strong resemblance to the
well-known "cavity" definition of electromagnetic field quanti-
tlies in an extended medium. A formula for the "correction"
term involving the internal wave parameters explicitly is gilven
by Eq. (83), while the corresponding unperturbed field compo-
nents (i1.e., in the absence of the buoy) are given by Eq. (78).
These results show that the perturbation of the fleld due to
the buoy boundary is of the same order of magnitude as the
original field in the ocean.

In the zeroth order approximation the field is constant
within the buoy. Thus, 1n order to estimate the spatial gra-
dients, the next higher-order term must be retained in the per-
turbation expansion. The analysls is carried out in Section V.
The final result is given by Eq. (122). In Section VI this
formula 18 employed in the computation of magnetic field gradi-
ents, the general formula for which is Eq. (124). Despite its
complexity, the result admits of a simple physical interpreta-

3
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tion: the effect of the enclosure 1s to symmetrize the unper-
turbed gradient and to add a rotational shear term. The symme-
trization 1s in the form 1/2[Gég) + Gég)], where Géz) is the
gradient of the g-th component of the magnetic field in the
direction p, in the absence of the buoy. As noted earlier,

Gég) # Gég) in sea water, whereas in the buoy the gradients must
be symmetric in the indices by virtue of the vanishing of the
curl of the magnetic field in air. The net effect of the shear
term is harder to interpret. In some numerical calculations

performed thus far it appears to be small.

Equation (135) translates (124) into a formula in which
the dependence on the internal wave parameters is made explicit.
Unlike in the case of the magnetic field, Egs. (78) and (83),
the formula for the gradients cannot be interpreted as a sum
of an unperturbed quantity plus a perturbation term. Equation
(135) 1s used in Section VII to compute the correlation func-
tion functlons and spectra for ocean internal waves. Both
moored and towed situations are considered. In the latter case
the fast tow approximation 1s employed in conjunction with the
hypothesis of Milder as given in [l1]. The final formulas, al-
though quite cumbersome in appearance, reduce the computation
to a series of quadratures involving the Vdisdld frequency.

The detalled sequence of steps required to implement the spec-
tral calculations on a computer are presented in Appendix C.

Only a few numerical calculations using the theory here
developed have thus far been carried out. Figure 1 shows some
preliminary results for a unidirectlonal single frequency inter-
nal wave. The Vidisdlid frequency profile is assumed exponentially
decreasing with the maximum V&iséld frequency of .833 mHz at the
ocean surface and a decay constant of 1300 m. A first mode
internal wave of 1 meter maximum amplitude and a wavelength of
200 meters (frequency .716 mHz) 1s assumed. The amplitude of
the internal wave displacement as a functlon of depth 1s indi-
cated by the broken curve (peak at about 100 m depth).

4
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The spectral peak of the gradient is plotted for an integration
time of 1000 sec (Vaisdlid period = 1200 sec). The geomagnetic
fleld 1s assumed purely horizontal (equatorial zone) and along
the x direction (Fig. 2). The direction of travel of the inter-
nal wave relative to the geomagnetic fleld is denoted by w in
the figure. (w = 0, wave direction along the geomagnetic fileld, .
w = n/2, wave direction normal to the geomagnetic field). The

gradients are defined as follows: component xy 1s the derivatilve
of the y (vertical) component of the field along the x direc-
tion. (The coordinate system is shown in Fig. 2.)
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II. FORMULATION OF THE PROBLEM

The sea surface is assumed to be plane and sea water
occupies the region y < D, shown in PFig. 2. At a depth D we
assume a spherical enclosure of radius a, which, te the first
approximation, constitutes our model for a buoy containing the
magnetic sensing instrument (e.g., a superconducting gradiom-
eter). For the purpose of the following analysls the interior
of the buoy 1s fillled with air. Our objJjective is to obtain, in
the interior of the spherical enclosure, an approximation to
the magnetic fleld and its spatlal gradients that are induced
by the interaction of ocean internal waves with the geomagnetic
field. Analytical results for computing the induced magnetic
field in the ocean in the absence of an enclosure are presented
in [1]. The analysis presented herein relies heavily on the
results and notation employed in [1]. As in [1], we shall be
interested only in internal waves with periods much shorter
than the inertial perliod. Consequently, the vorticlty vector
Q(E’t) can be assumed parallel to the ocean surface. We denote
by Y(g,t) the fluid velocity so that

Q(Est) = V x Y(E’t) . (1)
We make the usual lncompressibility assumption and express the
fluid velocity in terms of the vector stream function g(g,t),
viz.,

V(r,t) = v x y(r,t). (2)

Unless germain to the discussion, we shall henceforth omit the
explicit dependence on time in the arguments of the velocity,
the vorticity and the stream functilon.

7
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FIGURE 2. Coordinate System.

In the course of the analysis we shall use Green's functions
of the Laplace equation pertaining to the regions within and
outside the sphere. We adopt the following notation. The
symbols S and P will be employed to denote the surface of the
sphere and ocean, respectively. The region inside the sphere
1s designated by VS‘ The water region between the surfaces S

and P is designated by VPS and the entire undersea region below

the ocean surface by VP. Volume integrals are indicated by the
integration region VS’ VPs or VP and by the volume element by
dv. Surface integrals are indicated, similarly, by the reglon
of integration S or P and by the surface element ds. The sur-
face of the unit sphere is labeled R and the corresponding sur-
face element dfl.
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The free space Green's functlon 1s designated by Go; i.e.,

Go(g, r') =TT - (3)

~ .

The Dirichlet Green's function that vanishes on both the sur-
faces P and S 1s designated by GD‘ The Dirichlet Green's
functions that vanish on P or on S alone are designated by GDP
or GDS‘ Similar designations, with N replacing D, are used for
the Neumann Green's function whose normal derivatives vanish on
the specifled surface or surfaces.

The vertical displacement of the ocean surface plays a
very minor role in the internal wave motion in the ocean. Con-
sequently, the boundary conditlon at the ocean surface will be
taken as Vy = 0. Also, the buoy will be assumed rigid so that

the normal component of fluld velocity on the surface of the
sphere must be zero.

We first review briefly the formulation for the induced
magnetic field in the ocean in the absence of a buoy. The
geomagnetic field is assumed constant and is denoted by §o° As
shown in [1], the electric current J, induced by the motion of
sea water, is given by

= - ' .
Jp = 0 [-Vé' + (B « V)ypl, (%)
and the electrostatic potential in the water is expressed by
o = ¢' - go ¢ '£P . (5)
The scalar potential function ¢' satisfies
V24 = 0. ~ (6)

The stream function YP is obtained from the vorticity W, which
we regard as a prescribed source function. Since

w= VxVxyp = VWeyp = Viyp, S
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we may use the gauge condition

v-wP=o (8)

~

to obtailn

iy, = - w. (9)

~

We solve (9) subject to the boundary condition on ?P that ensures
Vy = 0 at the ocean surface and is, at the same time, compatible
with the gauge condition expressed by (8). The boundary con-
dition on the scalar potential ¢' in (6) 1is obtained from the
requirement that the normal component of electric current (U)
vanishes at the ocean-air interface. When the vorticity w has

no vertical component, ?P is also purely horizontal and one

finds that

e o
3y 0OonP . (10)

One then concludes that V¢'
current becomes

1)

0 everywhere and the electric

J

Jp = o(B, * p (11)

In this special case the boundary condition ?P = 0 at P ensures
that V. = 0 at P. The solution of (9) 1is then given by

y
¥p =f Gpp w dv . (12)
Vp

One can show directly from (12) that the gauge condition (8) is
satisfied. This ensures that the vorticity w = VxVx_u‘JP with
Yp as computed from (12) is i1dentical with that prescribed in
the integrand. The induced magnetic field §P is determined
with the aid of the vector potentilal ép, which satisfies

2

V=A J

oP = "l-lo “P? (13)

10
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subject to the gauge condition

v . ﬁP = 0. (14)
The solution of (13) is
éP =/ L Gog av , (15)
Vp

§P = Vx{}.P . (16)

We now consider the problem of finding the magnetic fleld
in the spherical enclosure. We have

B=VxA (17)
with
A 1}[ By G, J dv, (18)
Vps

where the current g i1s to be determined from
{ = g[-V¢' + (§o . V)g]. (19)

The scalar potential ¢' is no longer zero, since 1in addition to
the boundary condition (10), one must have

3¢9’ -
_.3.19.;4.31' * (B, * Yy = 0. (20)

on the surface of the sphere. (Here i, is the radial unit
vector). We again consider only a purely horizontal vorticity
function. Consequently, at the ocean surface

Y = 0 at P. (21)

On the spherical surface we require 1r . Y = 0, or, equivalently,
3r-Vx1:-0 on S. (22)




We prescribe the vorticity function w in VPS and determine
Y from

-~

Vxng = w, (23)

subject to boundary conditions (21) and (22). An exact solution
of this problem 1s rather difficult. We shall be interested
only in a small spherical enclosure in which case one may employ
the following approximate solution:

g=fGD9dv. (24)

Equation (24) gives a stream function which vanishes not
only at the ocean surface but also on the surface of the sphere.
Although the latter condition is compatible with (22), the
divergence of ? turns out not to be equal to zero. Consequently,
the vorticlity as computed with the aid of (24) does not agree
with the vorticity originally prescribed in the problem. Instead,

one obtains

(i’actual = 7xV x/ GD w dv
Vps

= (VV°-V2)£ GD»‘f’ dV'=9 + VV;[ GD w dv . (25)
PS PS

As the radius of the sphere tends to zero, GD -+ GDP’ so that
the last number in (25) must be 0(a). Consequently, for a
small®* sphere, we have

(26)

Yactual ® ¥ -

¥I.e., small 1In the sense that the velocity field (e.g., the
stream function) 1is constant over the sphere volume.

12




We shall be interested in computing the magnetic fileld and
its spatlal gradients inside the spherical buoy when the radius
a is small. In thils case 1t is more convenient to deal wilth

the perturbed quantities B - BP’ A - AP, Y - wP. The first two
are related by

-~

B-Bp=Vx (&-4,). (27)
Because of (15) and (18)
A - éP = ”of (.Z-.Z )Godv - uof {PGodv, (28)
AT

Ves s

where the observation point r of the Green's function is inside
the sphere, i.e., |r| = r <a.




ITI. PERTURBATION SOLUTION UNDER THE
ASSUMPTION OF A SMALL SPHERE RADIUS

The free space Green's function Go given by (3) has the
power series expansion, when r < r',

Go(g’g') = Z (r') Pn(cos Y), (29)

where Pn is the Legendre polynomial of order n and y is the
angle between the vectors r and g'. It follows that for the
first term on the right in (28)

f (3-3p) G, dv -Z a, 7, (30)

v
where PS =0
H J=J
a (] ~ ~P
~n = I‘_T? ;Tl’_l*'—l- P (COS 'Y) dv' . (31)
v

PS
In (30) and (31) dv' has been written in place of dv to empha-
size that integration 1s with respect to primed variables asso-
ciated with Go and that the result of the integration 1is still
a function of the unprimed variables. Since Po 1 it should
be noted that a, = constant. It follows that

uovxf (3-3p) G, dv'= Z (Vx g +-2E —20)n, (32)
PS

n=1
In accounting for the second term on the right of (28) the
identity

/ V'x(G J,)Aav! -fi' x J,0.ds!
V o~P 4 ~r ~P"o (33)
S

15
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implies that

: = | . ] 1

| Vx‘[gP Godv' {V'x ‘IPGodv !}r X ‘IPGods . (34)
' S S

|

Then, using the power series expansion (29) for GO when r < r!

| and the expansion obtained by interchanging r and r' whenr > r',
‘ it follows that

0
1 n '
\7x./‘gP Godv' e r / _I-av X‘IP Pn (cos y)dr'aQ

] n-1 E
‘ n=0 Q ' r .-
{ s
j ! M oAFL /frv xJpPp (o8 YIT"" 4niag
| n=0 2 0
. |
! o n
| _ a r
: In <a) (}r X gP)Ir'=a Pn(cosy)dQ
| n=0 Q
i n
"I > /1 P aa+0(a°)
n a 1.0 x Jp(0) n(cos v)dQe+0(a s (35)
n=0 0 ‘
wheremo(az) has been written in place of functions of the form
a2 Cn (g)n. In deriving (34) use has been made of the con-

n=0
tinuity of J, to relate J_, on S to its value at the center of
the sphere, i.e.,

Iplaiag = Jp(0) + 0(a).

It follows from (27), (28), (32), and (35) that

n
}r (§-§P) :E: (ir ann)r

n=0 -
‘ : + a :f: L . 1«1 x J,(0)P (cosy)df + 0(a2)
I Mo Tm ng \e) J T r' T LP n Y '
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0
_u a n
= [} n o .
E (1'1:- qun)r + T"_E (a) QP(O)f}rxi.r,Pn(cos Y)aQ
Q

o
r
n=l n=0

+ 0 (a2)

’Z (1, + Vxo )r" + 0 (22). (36)
n=1

The last relation follows from the fact that the integral in
the penultimate relation satisfies

f}r x i,, P (cos y)da = 0. (37)
Q
This can be seen from the fact that, 1if }r is taken to be the
polar axis relative to the primed coordinates in (37), i.e., by
rotating coordinates in the integrand, then

x i '=1 is the azlimuthal unit vector

%r ~r ~o!

and

Pn(cos Y) = Pn(cos ). Since dQ = sin6ded¢ one
readily verifies that integration over a complete sphere ylelds
zero,

According to (36), on the spherical surface,

L] t 3 * L] n 2
}r g'r=a }r §P'r=a + g;; (}r VX Sn)rsaa + 0(a%)
= b,(0,4) + 0(a?). (38)
Since inside the sphere
V x g = (,

there exists a scalar function ¢ in terms of which

B=V?d (39)

~
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inside the sphere. Also

V-§=V2¢=o (40)

inside the sphere, and (38) and (39) imply that on the surface
of the sphere

3¢ .
3| peg = ,(6,8) + 0 (%), (41)

To find the magnetic field within the spherical enclosure,
it l1s only necessary to solve Laplace's equation for ¢ in Vs
subject to the boundary condition (41) on S. The solution for
small a does not vanish in the limit as a approaches zero, but
satisfies the Laplace equation boundary value problem with the

radial derivative of ¢ equal to bo(6,¢), a quantity given by

b (86,¢) = 1lim 1 + B |r=a + :E: <ir * Vxa )lr-a nt. (42)
a»0 [T ~ =1 -

In calculating the magnetic fleld 1inside the sphere for
small a, 1t is appropriate to use a power series in r, or rather,
g. Accordingly, the potential function ¢ is

-1
- 1 (r\ "
o=r ) L(D) 7z .0, (43) |
=1 E
a
where the zn(¢,e) are the terms 1in the spherical harmonic ex-
pansion®* of the boundary value:
g
¥
The Z (¢ @) denotes the sum deg(cose)eim¢, where dm are

m=-n (
sultable constants and P (cosB) are associated Legendre poly-
nomials.

18
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30 L~=a= D 2,(6,0) ~ b, (6,0) . (48)
n=1

The fact that the series in (43) and (44) are both missing
the term corresponding to n=0 1s a consequence of Gauss' theorem
and the fact that the divergence of any magnetic field is zero.
That is, the integral over S of the magnetic field's normal com-
ponent vanishes, but the same integral provides the coefficient
of the zeroth order term in the normal component's spherical
harmonic expansion.

According to (43),

«©

B=V o= :E: Pn(¢,e)gr + 20 zn] (g)n_l . (45)

n=1

In (45) the operator VQ 1s the angular part of the gradient
and is defined by

~ 3 1 3
Vo= 1938 * 5in6 I 3¢
19
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IV. EXPLICIT EVALUATION OF THE MAGNETIC FIELD TO THE ZEROTH
ORDER IN a

The coefficients in the power series (45) for the magnetic
field are obtained from terms in the spherical harmonic expan-
sion (U44) of the function ba(6,¢), given by

o
= () . n
ba(¢’e) - }r ?Plr=a +:E: (Er v xgn)r=aa ¢ (46)
n=1
The first term on the right of (46) is presumably known, and
is, in fact, to the lowest order in a, the radial component of
the unperturbed magnetic field at the center of the sphere.

The remaining terms must be obtained from the vectors an defined
by (31).

According to (19) and (11), the current appearing in (31)
is glven by

I-Jp = Iy * g (A7)
where
Iy =0 (By *» V) (y-yp)
and
gE = ~-g V ¢'.

It will now be shown that the term JE contributes a term of
order a to the magnetic field inside the spherical enclosure.
It will be found later that the contribution of gM is of order

one in a.
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Because of (27), (28) and (29) the contribution of Jp to
the magnetlc fileld § is

= - t t = 1] 1
‘ §E B0 v xf vé Godv uoof VGoxV¢ dv
¥ Vps Ves

= ' ' ' ' 1
uoof v Goxv¢ av uoc/ v x(GoV¢ Ydv! ]
Vps Vps 2

5 (48)

1] ? )
uoof n'xv¢ Gods .
P+S

The function ¢' in (48) is the solution of the boundary
value problem given by (6), (10), and (20) in which the normal 4
derivative of ¢' is given on S and P. It is shown in Appendix
A that the solutlion of a similar problem, in which the function .
rather than its normal derivative is prescribed on S and P can
be obtained approximately by ignoring the boundary condition ;
on P. The approximate solution 1s correct to the lowest order
in the ratilo %. A similar argument can be given for the case
in which the normal derivative 1s prescrlibed rather than the
function. Accordlingly, it can be asserted that the boundary
value problem determined by (6) and (20) gives ¢' correctly
except for terms of order %.
Thus, ¢' can be written in the form

n+2
¢' = '2 g———m Zn(¢,e)+0(%), (49)

n=0

(n+l)r




Mg o= e ok il

where the zn(¢,e) are the terms in the spherical harmonic ex-
pansion of the boundary value on S: i

9’ _ .
5 | =1, - (B, W)yl

r=a “r r=3°

Then Vé' has the form

1 i z a n+2 a:

3 ve! ~Z(;) En(¢,e)+ 0 (-D-), (50)
n=0

where

1
&n (6,0) = Zn(¢’e) ir - n+l Van(¢’e)'

Neglecting terms of order % in (50) is equivalent to drop-
ping the integral over P in (48). Then

Bp ~ uoi/r 1.0 x V¢'G ds". (51) g
S

From (50), (51), and the power series expansion (29) of Go
‘1 for an observation point inside the sphere it follows that

MM e i e i ameieain v ab e i o

gE L _al'._“ Z (aajn/ n (cos ) IpiX Sn(¢"e')dg' (52)
m,n=o Q

Since in (52) r < a, it follows that gE is at least 0(a), as
was to be demonstrated., Consequently, except for quantities

that contribute terms of order a to the magnetic field

3-3p~0 (B, * V) (y-tp). (53)

We must now examine the representation of the stream func-
tions y and yp. Since GD = GDP + GD - GDP’ Eq. (24) may be
written as follows:

Y -f GDP w dv -!:[ AG(_t)dV, (54)

PS PS
23
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where AG is the difference hetween the Dirichlet Green's func-
tion for the region with boundaries P and S and the Dirichlet

Green's function GDP for the region with the boundary P alone.
Similarly, we write the integral (12) as a sum of two parts:

Yp =/ GDPde =-( GDPtgdv +/ GDPde. (55)
A"

Vp PS s

Subtracting this from (54) we have

lg-\ffﬁf AGuw av jGDPde. (56)

PS S

It 1s convenient to express the various Green's functlons
in terms of a radlus vector

g(x,y,z) = x}x + y% +z1.Z

and its 1mage § in P,

[ 2 B

=r (x,2D-y,z).
Clearly, on P

gIP = r(x,D,2) = g(x,D,z) = glp (57)

Thus,

Gpp = Go(r>r")=Co(Tor"), (58)

since (57) implies that Gpp defined by (58) vanishes on P, both
terms on the right of (58) satisfy Laplace's equation, and Gpp
has the same singularity as Go when r approaches 5' in VP'

Making use of the expansion (29), one can obtain an esti-
mate of the second term on the right side of (56) by observing
that




S S

A

- e i iimiall
o ——

" o v p o .
e e b e

e T

0
1o 1 1 n 1 n A
JGDP‘f-’dv = E [_rn+1/ wr' Pn(cos y)dv'- }-T’;l,[ wr' Pn(cosy)dv']

n=0 \'4
S , S VS
n+l
= '?ﬁ H}_@(%) /QoPn(cos ¥)de,
=0
Q
+1
-(%51 w_ P _(cos §)aq | + 0(a3) (59)
T ~0 'n
Q .

where @, 18 the value of w at the center of the sphere and where
y is the angle between r and g' and ¥ is the angle between f and
r'. Because of (59), the second term on the right side of (56)
wlll be carried, simply, as a term of order a2 in comparison
with the first term whose order will also be obtailned.

It is shown in Appendix A that, to the lowest order in %,
AG~%?[-3‘ ; 2 ] (60)
/;u:éazrr'cosy+r2r'2 Ya'-2a°fr'cosf+ror! 2
Since
P >a
and in VPS
r' 2> a,

AG can be expanded in the power series

o 2.\n . © /.2 \n
Ac..a[L & \'p (cos y) - &, '(-a— P_(cos y)|.
lan G e ¥ - g ] e

25
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2, . +1
f AGwdv '~ hlf Z a [(%)'] 8 - P (cos Y)dv? -(a>‘ V/ii’_nqpn(cos Y)dv']
n=o . I,| rl .

PS PS

< 1 ;__l w ' 2
&a & I,)/ 2 avt + 0(a?)
PS

Hence, to the lowest order in a,

b-tp s G- b, 2

where u 1s the constant vector given by

B*I}?ﬁ £ av, (63)
PS
According to (53) and (62)
J - JP~ o a(go' 1'1'- ]-?o ’ }f')u, (64)
- - z v
r r

where, as usual, the vectors Er and }; are unit vectors in the
directions indicated by their subscripts.

Substituting (64) in
(31) yields

(s} ~ ~0Q ~r'

ou._a B 1 ' B . il\
(Iun+3 A2 ol P, (cos y)dv' u
A

PS

Since terms of order

Oip

are to be neglected, the integration
reglon VPS can be replaced by the region between S and a sphere
with the same center and radius D. Then the term involving r'
can be neglécted as well. The result will be

ouo '
f/ —m—+1—— P (COS Y)dr dﬂu,
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which, after neglecting terms of order % becomes for* n # 0

ou .
a ~ 0 - f E’o ;r.Pn(cos y)daq u. (66)

n ndra a

The integral on the right side of (66) can be simplified
by rotating coordinates, if necessary, so that the polar axis
of the coordinate system corresponding to the integration vari-
ables has the direction }r' Then the angle y becomes 68'., If

we express the geomagnetic field in the form 1}0 = $r Bor +
‘/Bog - Bozr[cos Big,-sin 8 .'~L¢], the quantity B - 1., may be

written as follows:

L] - 2
§° ;‘-r' Bo 'Bor sin 6' cos (¢'+ e)+B°rcos e'.
Thus, (66) becomes
ou, 2m frm 5 P 8)
Q) ~ —y B _"-B sin 8' cos(¢'+
n niral 1 ~0 l o or

* ] ) 1
+B°r cos 6! Pn(cos 8')sin 6'de'd¢

T
= cnloBor /Pn(cos 8') sin 6' cos 6' ds8'

= u
N~ ~
n2a 0
ou, B, 1 O¥oBor us n =1
= _1?1-_1_ ] x Pn(x)dx = <? ’
n2a 7 3
‘. =1 0 in 1,
L] "
ou,
%1~ 3 (:.l.r * ?o)!‘-” (67)

gn~°,n+1.

‘90 does not enter into the calculation of the magnetic field.
See (32)
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Then, according to (67),

agu
o .
Vxay ~ =2 VL, - B)x, (68)

But

* = l . - 1 . r
V(go -j:r) r V(go E') ;3. (§0 E)-n

(69)
= % (go'Borir)'
From (68) and (69) it follows that
gu
1, Vxay~ =241 xB cu, (70)

i, Vxa ~0,n $ 1.

Thus, for the boundary condition determined by (38), it
follows from (70) and (41) that, to the lowest order in a,

ou
a9 . 0 .
ba(¢’e)“53|r-a ~ 1 §P|r-a t = 1, x B, * ¥.

cu

° L ]
~}r’§(o)+_§_%rx§o |

ou,
=1, *[Bp(0) + -5 B, X ul, (71)

where §P(O) is thé unperturbed magnetic fileld at thé center of
the sphere. According to (71) the normal component of B on S,
to the lowest order in a, 1s equal to the normal component

i, * B of a constant vector § defined by

ou,
g = Bo(0) + —3- By x ¥ -

28
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The vector E whose divergence and curl vanishes in S and
whose normal component on S is i * B 1s the constant 8, itself.
This can be verified algebraically by expanding b (¢ 0), given
by (71), in a spherical harmonic series and substituting into
(45). 1In this case the series consists of a single term

Zq (6,6), the result of calculating the radial component of a
constant vector. Thus, to the lowest order in a, we have the
final result

(72)

Equation (72) states that the magnetic field inside a
spherical buoy of small radius 1s spatially invariant and is
given by the sum of the unperturbed field (as computed at the
origin of the coordinate system of the sphére) and a correction
term which 1is proportional to a volume integral comprising the
vorticlty function. The fact that the field inside the spherical
cavity 1s spatially invarlant is analogous to the situation that
arises when a dielectric sphere is placed in an electrostatic
fleld: there the fleld inside the sphere is also a constant.
Indeed, the presence of the factor 1/3 in the correction term
is reminiscent of the depolarization factor for the electro-
static field measured in a hollow spherical cavity in an ex-
tended dielectric medium. Thus, when n 1s the (relative)
medium dlelectric constant, the electrostatic field within a
spherical cavity is

'

where go is the incident (unperturbed) electrostatic field.

29
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We now relate Equation (72) to the parameters of the in-
ternal wave field. We denote the cartesian coordinates with
origin at the ocean surface by £&,n,z where n < 0 1s occupied
by sea water. These coordinate axes are chosen parallel to the
X,y,2 coordinate employed in the preceding discussion (see Fig.
2). We denote the instantaneous vertical displacement due to
internal wave motion by q(£,n,Z,t). The horizontal coordinate
pair (£,z) will also be denoted by the vector k,

k=¢1i +¢1..

3

We now introduce the two-dimensional Fouriler transform represen-
tation of q:

Q(Ean’t) =/f e-ig.f §(§,n’t)d2K3 (73)
e OO ~
where
R A;(_Ig) 10t A (K) -1Q.t
qK,n,6) =) 4(n) |g— e M- Dp—e . (TH)
n n i"n
The ¢n(n) are internal wave mode eigenfunctions satisfylng
a° 2(N%(n)
S ¢,(n) + K==L~ - 1]8,(n) = 0, (75)
dn Q
n
with the normalization
° 2
[w ¢n(n) ¢m(n)N (n)dn = & . (76)

A typical number of the sum in (74) can be interpreted as a
simple harmonic internal wave with angular frequency Qn travel-
ing in direction g/K, as indicated by the angle w in Fig. 2.
Each component internal wave 1induces a corrssponding partial
magnetic field waveform which we denote by §(n)(§,n,t). The
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actual fleld is then given by the superposition

B(n,n,t) -[/ e 1K€ B(“)(g,n,t)d21§ : (77)

In the following, we shall be dealing explicitly only with a
typical member B(n), and use the notation B(n) for the unper-
turbed field in the ocean. From [1], p. 54, one has

Bp™) = B + 1 él(,g) (78a)
~(n) X\l /o ;
?PH = ou, E i X~ 3 — . B U (K t), (78b)

- +
- L L K
Bpn’ -%[(?)%n * 1(_2_> %]' B, Up(K58), (780)

where
10t -10 t
+ n - n

Up(K,t) =AY (K) e ™ +A> (K)e ©, (784)

- n -
1t = K“f "M o, (n")an' + eK"f° eM¢ (nyan', (78e)
- kn " kn' kn £© -kn
L =e / e ¢,(n')an' - e nf e N ¢,(n")dn"’ . (78¢)

- 00 n

The subscript H in (78a) and (78b) is used to denote the fact
that thils vector 1s purely horizontal. These expressions gilve
the unperturbed magnetic field below the ocean surface. We
now obtain the perturbation due to the spherical enclosure, as
given by the second term on the right of (72). We first com-
pute y. When the location of the center of the sphere is ex-
pressed in terms of £,n,f (n = =D < 0) the integral may be
written as follows:
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_ 1 =N ® w(x+E, y+n, z+r)
- h_nf dy[f £ 5 M ; 52 dxdz
—o w J—oo X+ y° +z

m
- Pee J(n'-n)2+(£'-£)‘2+(c'-c)2

Using the 1ldentity

1 1 ® oo 2
= d°K e -K|n-n'|-1K-(k-x")
by (n-n")° + (E-£')° + (g-g")° <21r>2[.,,,L° 2K

we obtaln

-iK » « 0 n _ '
£~ ~ dn'w(n',K) e Kln-n l’

where

A o0 0 |
S(n',K) = 12ff K y(nr e,
= en? Lol :

From [1] one finds

2int
w(n',K) = 1(3nx1§)2n %2(_31 ¢,(n")U_ (K,t)

n

=Z Q(n)(n',lf).

n

the aid of (81), (79) may be written as follows:

® Lo . A
S L s

(79)
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where

2 0
i xX [U_(K,t) Klnent
O ,[w Il w2 (nye (nyan
2 n

From the differential equation (75) it may be shown that

K 2

0 ' ¢o_(n) ¢ _(0)
E 12f e-Kln-n I N2(ﬂ')¢n(n')d“' = N _ L_eKn. (82)
- ZQn A3 oK

) Thus, the correction term that must be added to (78) to account
for the effect of the enclosure is given by

, ou
< __O 4 =
3 3 go X U,
b
iou, K x| /o (M) $n(0)eKn
'3— Un(l_fst) % ¢ ?O }n - (%ﬂ. ?o) i K - 2K2 . (83)

Y]

Comparing this expression with (78) we observe that,
generally, the "correction" term is of the same order of magni- 1
tude as the unperturbed field.
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V. THE MAGNETIC FIELD TO THE FIRST ORDER IN a

Since in the zeroth order approximation the magnetic fileld
in the spherical buoy 1s constant, the (spatial) gradient of
the magnetic field is zero in this approximation. To obtaln a
numerical estimate of the gradient, the magnetlc field must be
& computed to the first order in a.

The magnetic field 1s determined by the currents EM and lE
as indicated in (47). It 1is shown in Appendix B that the com-

‘ bination of J, 1s 0(a®). Consequently, to find the field to

- within 0(a) we need consider only QM' The magnetic field is

determined by the a  defined by (31), since it has already begn

shown that the integral over VS contributes a term of order a“. '

According to (53), (56), and (61) the current that determines

the o depends upon vectors gn defined by

H = @ P_(cos y)dv'. (84)
ool
PS

The vectors gn can be written in the form

H =/ P (cos y) F (¢',8')dq, (85) ’

where




It is clear from (86) that for n = 0 or 1 F, is 0(1) in a, but
forn=2F_ 1is 0(log a). For larger values of n, i.e., n > 2,

P is 0 (a2-n).

Each cartesian component of En can be expanded in a sur-
face spherical harmonic series. The results leads to a vector
expanslon

P(6,0) =D 2. (6,0, (87)
m=Q

where gmn is a vector each of whose cartesian components is a
spherical harmonic of degree m. It follows from (85) and well
known propertles of surface spherical harmonics (cf. MacRobert,
Ch. VII) that

_ Uy U
H, = T gnn(¢’e)=§ETT gn(¢’e)’ (88)

where gn has been written in place of gnn'

From (56) and (62), neglecting terms of order a2 and of
order 2, 1t follows that

D’
o n \n+1
a a
R IED -g—nﬁ(;) z_(4,8). (89)
n=0

From (53) it follows that

® a2n+l
-.I - '-J:P ~ GZ rnw_' ¥n+1(¢’e)’ (90)
n=0

where

Y41(6,8) = === [(n+1)(L, * B )Z (4,8)-(B - V)2 (6,8)], (91)

is a vector each of whose cartesian components 1s a surface
spherical harmonic of degree n+l. This last statement follows

from the fact that each component of each term in the seriecs
(89) for ?"?P separately satisfies Laplace's equation and
st1lll does so after the operator (go + V) is applied.
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, - According to (31), then,

? ou . Y (¢',8")
, 0 2m+1 ~m+l ’ '
ﬁ | @ ~ . a /' — T3 P, (cos y)av

Vps

' ou + D sec ©
: N SRpC. o U RIXCE N ar ao

- m=0 f a r,m+n+1
;o ou m-n+1l /
S . ] 1
3 ~ ﬁ—— = ¥m+l(¢ ,0 )Pn(cos y)as i
; m=0 Q
Mo ¥ (e,0), (92)
4nc-1

whereln terms of order % have been dropped and the same prop-
erties of spherical harmonics used in deriving (88) have been
applied. It should be noted that for n = 1 or 2 Y is 0(1) in :
a, forn =3 Y is 0 (log a), and for n > 3 Y is O(a “ny,

According to (88) »

= 3

and therefore, according to (8%4)

=3 [ w
gl(¢se) 'r,".[ —-i_ cos vy dv' ~ Ei[ __2_ cos y dav'. (91})
ps T’
Thus, f
| Z, (¢,0) ~ Mg cos 6 + (El cos ¢ + u, sin ¢) sin @, (95) i
where 3

My = 7%/ _9._’2_ cos 8' dv', (96) 1




TR AP AT

My = F%_ ® cos ¢' sin 6' dv', (e7)
\' r'z
P
and
X u, =3 Y sin ¢' sin o' dv' (98)
g Mo ¥ = ~ sin ¢' sin &' adv'. 9
{ 4 r':
3 P
! Then

r
=1 . . ]
¥2 T3 ;L2(1r go)cos 6+ (%9 ?o)Sin 9!23
+[2(}r . §o) cos ¢ sin 6 - (}e . §o)cos ¢ cos o

| + (}¢- B,)sin ¢J uy + [2(}r° B, )sin ¢ sin 8

- (ie- go) sin ¢ cos 6 - (1¢°§°)cos ¢J Uy

(99)

According to (38), if the boundary term ba(¢,6) is supple-
mented by a quantity AB given by

- : 2
AB= (1, - V xa,).., a°, (100)

because of (92) and the order 1in a of Xn for n > 2, the terms

neglected in ba(¢,e) will be O (a3 log a) and higher. In order

to obtain the complete fileld correct to terms of order a, how-

ever, 1t 1s also necessary to replace the quantity QP(O) used ’
in (71) and (72) by §P|r=a correct to the first order in a.
Thus, the new boundary value ba(¢,0) is glven by

aBP oM, °

ou :
. o . ¢ m— .
b,(¢,8)~1,-Bp(0)+ 75 ipBxptal oam —— T 21, VXY, (650) [1ag

(101)
+ 0 (a3 log a),
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wherein the fourth term on the right side of the equation re-
sults from (92) and (100).

The fourth term on the right side of (10l1) i3 actually C(a)
rather than 0(a2) because of the curl operatlon. The expres-
sion

rxv. [r2 ¥2(¢ e)]= r3}r - Vx g2(¢,e) (102)

-~

i1s a homogeneous polynomial of degree two 1n the cartesian
variables x, y, and z because the cartesian components of
g2(¢,e) are all surface spherical harmonices of degree two. It
then follows (cf. Ref. 3, p. 1l40) that the fourth term on the
right side of (101) can be expressed as the sum of a surface
spherical harmonic of degree two and a surface spherical har-
monic of degree zero, i.e., a constant. That constant is the
integral over the unit sphere of the original term, for which
according to Gauss' theorem

r
J gr-v X gzdn =/ vV . (Vx Y Ydv = 0. (103)
S Vs

Hence the original term 1s a surface spherical harmonic of
degree two.

The third term on the right side of (101) can be written

aBp
at.: 3 Ir-o = afl, - V)g |r=0

3B [ @B
= . ;P . . _:il = i.-1
a[<1‘r X |r=0)(%r éx)*’ ir 3y T 0)("1' ~y)

= a |B,(4,0) + §(v * By 'Q]= a By(¢,0),  (104)

—
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where B2(¢,6) can be recognized as a surface spherical harmonic
of degree two because of the identity (B-4).

Here, of course,
B2(¢,e) is given by

3Bp
B2(¢’e) = ir’ EF_|P=O' (105)

These conslderations make it possible to write an expres-
slon, correct to terms of order a3 log a, for ¢, the function
that satisfies Laplace's equation subject to the condition
that on S its radial derivative is equal to the function ba(¢,e)
given by (101). Since the magnetic field inside the sSphere
is V¢, it is then given approximately there by

Uuo Guoar 1
g ~ §P(O) + —3—— §O X L.l + -15_ {(}r + E VQ i_r e V x ¥2(¢,9)
- ~p=g

1
correct to terms of order a.

Because of (104) 1t follows that
x(gy+r) +2(8_ . 1) +y(f3 1)

= 2 10
132(¢,e) > s (107)
r
where - .5 o5
~P - <P - 2p
f1 " 3 rl-so B2 = 55 =0, B3 = 55 lp=o - (108)
3

Then, according to (106), the contribution of B2(¢,e) to B can
be wriltten

1 1
r{i,* 5 VQ)Bz("”e) - "(Er* v

2 9 2

r

(TR HEE e

The vector operator in (109) can be written

1o .l 12
(3r+ivn) 5"‘7*31-(235 23:-)"

ko




? 1 r 1
k r

It is now useful to observe that relations such as

. X(gl . E‘) . %x(-e-l ¢ {') + x§1 - x(-@l y g) r (111)
é r r r I‘3 -
?i and thus, also,
3 x(8; * r) x(gy ° r)
& r.v - = - = = - —~ (112)
1 hold. |

Relations similar to (111) and (112) can be used to evalu- 4
ate (110). Thus, it follows that ]

A 1 _ l . !
r(%r t 3 VQ) B2(¢’e) -2 {[}xr + (Ex E) E]'gl \
+ [tar + (2

+ + (1. -

e (s

where I 1s the unit dyadic defined by

H

| R

B

N
e ]
N—

]
N
X
—_

-§3}, (113)

£ - l'x!.'x + .i.y?.'y + }ziz' (114)

It follows from (91) and (95) that, except for an addi-
tive constant,

Y

1 12(4,8) = U;(0,8)py + U,(6,0)u, + U3(6,6)y3, (115)

- A
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where
N
U1(¢’e) = g

y J\E

From (115) it follows that

1
= (f xV U1 Uy +rox v U2 Mo

From (116) it will be found that

L] r
S50 * I xrxB

r r

Similar relations hold, of course, for rx VU2 and r x VU3.
It then follows that

~

[r }r . ng ] = p ir * VX ¥2 . (120)

r=3a

From (110), (119), and (120) it follows that

1 . 2 Mg, £ (1L r . 92
(Er t3 Vn)(ir Vx’fzz 5 [2‘“ ;3( 2 - a




i L s

B .r yrxB
~0 ~ ~ ~0
+[< i} )3‘ A ] 23} (e

[l ) oo -
(121)
o (Fray) *ay (2 xm)H(ty - 2)E x2)*(% D)3 ] s
where (121a)
§1 = %z}y - zy}z’ iz = %y%x %xzy’ §3 = 1,1, - 1,3,

Expressions (113) and (121) can be substituted into (106)

to obtaln an explicit expression for the magnetic field. Then,
with

Bo= Bp(0),
the magnetic field can be written:

ou
= 0 i
P O P R [N

~
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20u
+l1r+ . + 0
[..yf Vﬁ] §3} _75_{[§o(§ x %x) + 5‘..‘x(£1 x §o)+ x_]éx?o

¢ (?o' E') §1] it [’:" (r X 3)
r Ix (? 12>~] 3P
s ey
+ (}30 : 5) §3] : 33} : (122)

The foregoling analysils shows that térms neglécted in the
approximations for the magnetic fleld and its gradlient are of
the same order as a” multiplied by the quantitiles H given by
(84). That is, the terms neglected are of the order of a" times
higher derivatives of the quantity

u(g,z,n) =4 G wdv'.
PS

As indicated in (79), the convolution theorem implies that the
horizontal Fourler transform g of u has the form

~ " ] - . - -n!
u(K),i/”Q(n K) =1 K + ¢« = K[n-n"]dn
NN B S

It follows that an nth order derivative of U has a Fourier

transform that 1s proportional to Kng(g). Thus, a condition
that might be imposed, justifying the magnetic fleld approxi-
mation used in this paper, can be stated as follows: the
vorticity spectrum is negligible except for the wave number
region in which Ka << 1. Because of the monotonic relation
between frequency and wave number, this condition is consistent

with the static approximation used in calculating the magnetic
field.

uy




VI. THE MAGNETIC FIELD GRADIENT

The magnetic field gradient qu relative to unit vectors

; 1l and i
;{ 1 n }q s defined by

Goq = G = 1.+ V(1. - B). (123)

If (123) is applied to (122) the result is

1 (). . . .
3 Gpqg = 2 (51 By * Ay - By + Ag ?3)

20’uO |.(

where

. A = (}q ) }x) Lt (}p ) }x) Xq’
j1 Ay = (}q ) fz) It (ép ) Ez) ~q’
{ 437 {q fy) * (}p }y) ~a’
e e L N T LR L A R

]

2 (2% * 2o *(la ) 7 B (L 1) 10 (B Bkt

¢ + . + * 1 B + 1 . B .
Ty = (zq Lao)szzy (zq 1)1px§o (zp ~)zqu (~p ~;&qxzy

Part of the expression (124) for the magnetic fleld gradi-
ent depends upon the vectors §1 which are related to the gradi-
ent Ggq of the magnet%c field in the absence of the sphere. It
1s useful to obtain qu both for the sake of comparison and for

the purpose of evaluating (124) in more detaill.
45

™
o
\o—/




As in Section IV, quantities in K (transform) space will be
labeled with a caret. Thus, the vectors §1 are defined as
| Fourier components of derivatives of the magnetic field even
though the 91 are defined only at the center of the sphere.

Employing (78) and changing the coordinates from £, n, g ;:
to x, y, 2 we have ;

oy (125)

Then, from (125) and the fact that

f
- | it follows that '
.'.‘ - i & 3/\ 3
A P
Bex = Tz oy |
and X (126)
R - 1Kk_ a8,
_ z T
Be, = T Ty
Now, let
3 3APx S -1B, 1, . (127)
L oy P— y -~
Then
~ ~ ~ A ag ]
Bi= Ky B By =K, 8y By =15 (128)
From (78c) it can be seen that
: " ou 0 |‘
‘ - 0 - | ~Kly-y'l s
,: BPy 2K _[; 1-1 K . B, +Boy ay] e ¢n(y')Undy',
| S
(129)

R ——
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: It follows from (127), (128), and (129) that

|

; 0 2

| ou, kR 3 -K|y-y'| '

6 =1 - . = T, +1T 5 1T 24, (y')U dy',
G =1 - v - B) =5 ( 1772 3y * T3 5,2 M 8y3>
(130)

! where
t —x 3 L]
| T, =1, (K- 1) (K - B,
|
5 (K- B)(K +» 1)(K * 1.)
. - . . 4 o> 30’ '~ Ip’ty gl .

; Ty = =1,y 1oy (K * B) 3 1oy (K - 15)Boys
;i
) L
3 = - — . . + . ™

T3 = lpylgyPoy = 22 [1py(§ 10K * By + (K - 1)(K lq)Boy]
T, = loyBoy (K = 1q),
4 2

The derivative operations in (130) can be carried out with
the ald of the following identities:

= e e KI5l < kin(y'-y) - n(y-y)7 7KIY-Y'

in e = Kly=y'l o _ogs(y-yr) + k2 KIVY'I (131)

9y ;
3 ive et ]

jL§ e = KIv=y'l o _ogst (y-yr) - k3e “Klv-¥'l

ay

[n(y=-y') = n(y'=y) 1,
where n(x) is the function defined by

n(x) _{ 0, y< 0

1, y> 0




pq = 2K

and 6(x) is the Dirac delta function. With the aid of (131)
equation (130) can be written

[T1/0+ 1KT2(/° -/3’)+ K2T3/0 + 1K3T4(/o"[y)} e Kly-y'| .
- 00 y - OO - 00 y @ k
x ZMy') U, ay’
n
-2KT, Z 6,(¥)U_ - 21KT, Zén(y)un‘
n n

O’Llo

0

0
ou 2 3 Y\ klyay?
2Ko T1+KT3/ +1(KT2+KTu)f_/' o—Kly-y'|
- O y 00
xz: 6,(y")U ay"
n

-2KT - .
3 z 6, (¥)U_ -21KT, E o ol
n n

(132)

For the magnetic fleld gradient inside the sphere (122) |

can be used. The result wlll depend upon the moment vectors ¥y ;
given by (97). *

Using the coordinate system with the origin at the water
surface rather than at the center of the sphere then (97) can
be written

I‘i/o./‘i/‘" gx' dx'dz'dy!
Hy = Y T ’
18 Lo Lo)w Tx %z 2a(yray)27372
‘t?_‘/"/‘-/'°° w2z '‘dx'dz'dy’
» [x 24z 24(y'-y)273/2 "’ |

48




A ST - e metop<atde ot s b Pt 7 AP vt e+ e e
—— i - e - o e ... . - n — ot

ponii - ahait

w(y -y)dx'dz'dy'
s (133)
1‘}_.[//“ 4z S+(y'-y)©1F 3

where it 1s assumed that the center of the sphere is at the
point with horizontal coordinates x = 0, z = 0, and the vertical
’_! coordinate y arbitrary. By considering the two dimensional
: Fourler transform with respect to x and z 1t can be shown that

i - ©re K o -Kl|y'-y|
¥ B1 7 '3§i‘f f ‘K}‘{/ e Q)(lf,y')dy'd21§, ?
‘ ) -0 o 00 - 00 |
(> K, ro -K|y'-y| ;
" - i ~ b
R A A T |

3 0 0 0 —Kly'-yl ) )
¥3 = 5/[ / e [-n(y'-y) + n(y-y")1 w(K,y')dy'da“K

- -3 (-] - L A
- ii_L//OE_Kly y'tg (K,y")ay'aK. (13%)
2 dy /o) K ~ ~

From (124), (127), (128), (129), (134), and (81) it is found i
that

=
n
L}

(o] 2 3 [ ;
A 1 3 3% 4 p, 32| g Kly'-yl a
Ghq ‘_/ 5% (L1t 3y * U3 - Ly 73 z 6, (y")U_
n

o | y oy
(135)
I 3| ~Kly'-vl Z¢ (y")
e n n H
where
ou
Ly = == (K« B (KA ¥R Ap0),




IR

-
]

=2
"

M2 =

The p,q dependence of apq

1ouo iou
‘-EEE{Kx(ﬂl . §)+Kz(§2 . 5)](5 . §O) - ==

ou
0 L .
T 52 | s T BB BIFIK (At KI+K, (B,

iou

- 0 )
Egi— (53 g)Boy’

Ou
0 - -
25K I:(Kzr‘lx Kxrlz)Kx+(Kzr2x er2z)Kz]’

o,
1§§K(-KZP3X+KXP3Z)'

* KBy

(o]
[(KxAly+KzA 2y>Boy

K - §0)A3y]’

au,

2 A3yBoy’

(136)

is determined by the p,q dependence

of the A, and Pi, which are defined in connection with (124).

Thus, the L
space, these indices are not exhibited explicitly here.

1 and the M

the aid of (131) ap can also be written

q

~ 0
= - '
%pq /:,,, A @, + KLkl D 071U 4y
n

1 depend upon p and q, although, to save

With

(o] Yy 2 -K[y'—y[ '
+['_/- L. + K°L,)e z: o (y')u_dy
w 2 2 4 n n
- n

o 1y
K ~Kly'~yl,2 2:
+[-.[°° 5 Mye N“(y") ¢
n

Q

-L U -L 1
3 ; *n (¥ )0n Ty Z ¢’n(y)Un.
n
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(y")u dy’

2
n

(137)
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VII. SPECTRA OF MAGNETIC FIELD GRADIENTS

~

In order to obtaln correlation functions <apq Grs>’ which

are used to determine the spectral characteristics of the mag-
netic field gradient, it 1s convenient to write (135) in the
form

épq =./f [A (y,y ):E: ¢, (vy"U, +B (y,y ):E: 0,(y") U, lay’,

- n 2 (138)

and

oKIy'=y (2

In (139) the quantities L1 and Mi depend upon the indices p,q.

With the aid of 1dentities derived in Appendix E of Ref.
1, 1t can be seen that the correlation averages of magnetic
field gradient components displaced in time are given by

agpgg = f

-l =00

[quw,y' YURCR S )] I RUREA
n

O R N S SR

tyR# " » n ' o (y")e (y")V
+[qu(y,y )BE (v, y")+AR (¥, ¥")BL (¥, >] A n
Q
n
] "
+[qu(y,y')B;s(y,y")]z ¢ (¥ ,)4¢"(y ) V! daytay",
n Q
n (140)
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where
10 (K)t -1 (K)=t
- 1 n n
vV = E‘Epn(lj)e + wn(-g) e ]

and
T = t'=t.

If the Milder hypothesis [1] is used in (140), this becomes

o
<G (0285 (t1)> =—Z:[¢, qu(y,’y')A;s(y,y")Z ol (K)W, (K, 7)o, (v )6, (y")ay dy"
n

(o] (o]
+/_;/_w [qu(y,y' )B;s(y,y")+A;s(y,y")qu(y,y'ﬂ

x 3 82 (W, (K, )0, (¥ (y")dy ay"
n

o [0 .
+fm[; Byq(¥s¥")BR(¥,9™) E Wo(K,T)e (y')e, (y")dy'ay”,
- n (141)

where

19 (K)t -1Q _(K)t
1
Wn(g,r) =é;E§ [I(g)e n + I(-K)e n ]- (142)

Now, define

Y, (y',y") = ; Q) Woo (y')e (y"),

A(V)( ' ° » " 1 gt "
rs Yo¥') = [ AR (y,y") v, (y'5y")ay", (143)

and

o
By (7,5") -f B (y,¥y") v, (y',¥y")ay".
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Then, according to (141)

~ n 0
Gpg(t)GLg(E1)D =L{qu(y,y')[AI(,g)(y,y') + Bi.:?y,y')] (144)

s +qu(y,y')[Af.§)(y,y') + Bf,g)(y,y')]} dy'.

1 With the aid of (143), (131), and (139) it will be found that

L KL ° -Kly"- 1 " ]
Ay - ( % %ﬁ)[w et s |

2K

! L¥ K2L* y _Klyn_ I

» +l_2rs Urs f_i)[. e y y. (y',y")ay"
- v — ———————— v

. 2 2 Y S

“LapsYy (¥'s¥) = LR v, (¥'HY)

and

M ° :
-K|y"- : |
Bﬁ.;’)(y,y') = 3fs f N2 (ymyeKIY ylvv(y',y")dy' ;

Mzrs ,ﬁ y 2/ -Kly"-yl (y',y")dy"
+ =52 7] NS (yMe Y, ¥,y .
In (145) the subscript y on the last term of the expression for

Aiz)(y,Y') indicates, as usual, differentlation with respect to

to the second argument. By similar means the relation (144)
can be written

. L KL 0 _kly'-yI[, (%) o
P [} = 1 3 A 'y ' + f {
B ()8, (51D <_2m + _22L>[ e [ rs. (V53" o

(2) ' '
Bhg (¥»¥ )]dy
” 0 .
-3 [ Ky 'lez(y')[Ar(,z)(y,y')+Br(.g)(y,y';]dy'

|
k|

o

|
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2 0 Y " _
+<Lg \ Kl;u )‘[_‘[ oKy yI[AI(‘:)(y,y.)

(2) ' '
+BI"S (y,y )]dy
Mapg i R 2
_ ) '{;_Z;e- ly "y|N2(y')[Aﬁ,s)(y,y')wﬁ,g)(y,y')]dy'

L3 [Alﬁg) (y,9)+B2) (y,y)] -Lupq[AI(,g}),. (y,y)+B§,§;, (7,5)

(146)

Again, the subscript y' in the last term of (146) indicates
differentiation with respect to the second argument.

By comparing (130) with (135) and using (145) and (146) an
expression like (146) can be found for (@Pq(t) ﬁis(t')>. The
result 1is, in fact, (145) and (146) with M, and M, set equal to
zero, the quantiltles Ll and L3 replaced by ouoTl and ou°T3,
and the quantitiles L2 and Lu replaced by iouoT2 and iauoTu. In
this replacement the complex conjugates in (145), indicated by

asterisks, are obviously obtalned by simply changlng sign, since
the T1 are all real.

Since the statistical process 1s assumed to be stationary
<§pq(t)§rs(t')> if actuflly a function of T = t'-t in 1its time ‘
dependence. If <qu(t)Grs(t')> is integrated over the two dimen- |
sional § space and the temporal Fourier transform, with respect
to 1, 1s taken, the result is the temporal spectral function

*pq;rs(@s¥)-

If this process 1s applied to (1l46) in two steps then the
first step, integrating over K space, leads to a sum of terms
Iv(T,y) of the form

0 @ 00 0
I,(t5¥) "/dy"[ f“dzﬁj: dy" H (K, ¥, ¥'s yMv,(y',y")  (147) |
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The second step, taking the Fourier transform with respect to
T, proceeds as 1in Appendix E of Ref. 1.

The integration over 5 space 1s done 1n polar coordinates
after the temporal Fourier transform is taken. That is, the
integral 1is taken over the magnitude K and the direction angle
w of 5- The integral over K 1s carried out explicitly and the
angular integral is over the interval (0, %) after the change
of variable

w=oa+B-"
from w to B.

When this procedure is applied to (147) and the derivation
of equation (259) in Ref. 1 is imitated, an expression for the
magnetic field gradient spectrum analogous to (259) in Ref. 1
will result. In carrying out the necessary steps the large
tow speed approximation introduced in Ref. 1 is essentilal.

First, it is useful to consider the integrals Ev(w,K,y),
defined by

~ (e}
3 nK,y) = f [ B Er D R ey, (148)
= n

in more detail.

It is clear from (146) that the possible values of v in
(148) are 0, 2 and 4. Identities (F-9), (F-5), and (¥F-6) of
Appendix F iIn Ref. 1 can be used to evaluate the seriles

S,(y',y") =) a6, (v )e, (y") (149)
n

for these values of v.

For the case v = 0 the expression 1s simplified somewhat
because

So(y'sy™) =% e(yre (v = S

- NZ(y*)
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J (w,K,y) = ( Ho(g.y,y',y')dy'- (150)
-0 N y

For the other values of v the calculation is more compli-
cated; (148) becomes for v = 2,4:

~ 0,0
J\)(W’K’y) =./;-[ Hv(§,y,y’,y")Sv(y',y")dy'dy", (151)

where, according to (F-5), (F-6), and (F-8) of Ref. 1,

2

S,(y',y") = - K°g(y',y")

277 ’ (152)
and

yf0 2

Sy(y',y") = K[ N (x)g(x,y")e(y',x)dx,

for g(u,v) defined by
Ku<

glu,v) = &—Siph Ku > (153)

Inspection of (143) and (144) shows that
Hy(K>¥,¥"5¥") = By (y,5")BR (¥,y"), (154)

Hy (K, ¥,¥'53") = Ao (V,¥ " )BAS (YY" )4Bp (7,5 AR (¥,¥")s

HU(E’yby',y") = qu(y,y')A;S(y,y").
According to (131) and (139),

Aly,y') = %{ (Ly#6°La) + R(Ly#PL ) Iny '-y)=n(y—y" )]} e Kly-y'|

Ly §(y-y') L, &' (y=y") (155)
and ‘

B(y,y') = No(y') %M + KM, [n(y'=y)=n(y-y" )]}é “K|y-y'|
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where subscripts p, @ and r, s are not shown but are understood

to be determined by the constants Li and Mi’

It follows from (150), (151), and the derivation given for
the relation (259) of Ref. 1 that the temporal spectrum of the
magnetic fleld gradient 1s given by

m
o ® (w,y) = £ Z):
| pa;rs ¥2Y Wb ¥ pq;rs(@B-T>K)[I(K,a+B-m)+I(K,a+8)] (156)
:
s + Jpq;rs(a-B-ﬂ,K)[I(K,G-B-ﬂ)+I(K,a-B)J ds,
' where
J(w,K) = J_(w,K) + To(W,K) + T, (W,K). (157)
The magnetic field gradient temporal spectrum in the absence i ]
of the bubble can be obtained from (156) by setting the M, ' 1

equal to zero and replacing L1 by ou, Tl’ L2 by iouoTz, L3 by
ou°T3, and Lu by iouoTu in (155). The result is

)
°§q;m(w,y) = % ./o 2 % igq;rs(me-n,x,y)[I(x,a+e-n)+1(x,a+s)] (158)

+ 3;;m(a-8-n,x,y)[I(K,a-B-fr)+I(K,a-B)] dg,
where ;
TP o fo P . vyaP® " T 1 3t ]
Ioq;rs ,/ f Ao sy VAL (y,y")S,(y',y")dy'dy :
=00 Y 0D
and where

ou .
APry,y) = 'EKO'{ T, + K2T3 + 11(('r2+1<2'r,4)[n(y'-y)-n(y-y')J}e“‘h"y ‘

! - auo{ T8(y=y') + iTué'(Y-y')} .
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Each of the terms in (156) can be reduced, so that the

magnetic field gradient ¢pq_rs(w,Y) can be expressed as an
s

integral over B of a quantity that involves just one more
quadrature. For thils purpose 1t 1is convenient to define func-
tions fv(K,y) by means of this quadrature:

0
fV(K,y) =/ x"erN2(x)dx- (159)
y

The first term in (157) is the quantity EO(W,K,y) given by
(150). The relations (154) and (155) are needed in evaluating
that term, as well as the others. It is found that

0 0 - -y!
/ —l—Ho(If,y,y',y')dy' = Colf N2 (y1)e 2KIV-¥" lay

0 - -

- 1 4
= (CC:I_+CQ2)e2Ky[o e 2Ky N2(y')dy'
~y (A=2)

v 6 - =2Ky /'Y 2Ky 'yw2 oy gyt
+ (C,,-C,ole J/- e N (y")ay

- 2Ky (_ _ -2Ky —o)=
(Co1tConle™ W (=2K,y)+(C 1-C_,)e [f (2K,-=)-f _(2K,y)],

(160)
where

C = 1 1 M M¥ + M M# 161
ol E (Kﬁ lpq 1rs 2pq 21‘8) ( )
and

1
= #* #
Co2 = I% (Mlqu2r3+M2qu1rs)‘
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For evaluating the second term in (157) it is convenient
to define a f..ction F(y',y) by

‘ o
¥ F(y',y) =/ S,(y',y") A(y,y")ay". (162)

The quantities appearing in (162) are given by (152), (153),
and (155). !

Then, because of (154), it is found that

0 (0 0
[m _[w Hy Koy 53" )Sp(y sy dy'ay" = (B, (¥ DFR (3" sy BR (353 )F (3 53) Ty
(163)

The symmetry of the function Sz(y',y") is used in deriving (162).

Further evaluation of the second term in (157) proceeds
from (162) by means of the equation

0 - v '
I TSNS R e SR - N2(y")F(y' ,y)dy"
2 "X

-00

0 !
+ %(%"— - %)emé ey Nz(y')F(Y',Y)dY'- (164)

The subscripts p, q, r, s and the complex conjugates in (163)

can be added to the general relation (164) by using the appro-
priate subscripts and complex conjugates for the quantities Ll’
L2, L3, Lu, Ml’ and M2, which are all independent of the inte- }
gration variables in (162) and (163). ‘ ']

The evaluation is continued by proceeding from (162).
Thus, using notation the meaning of which should be obvious,

t
P(y'y) = —K[~(L, sinh Ky + L, cosh Ky)exy'+(021-022)e-msi.nm{yf 2K gy

K(y'-y) _ yeKy"smh Ky" ay"
y'

+(021-C22)e
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AR T TR

Ly TSR TER Ty TR TR R Ay,

+(C,y+C 22)eK(y'+y)f K sinh ky" qy"] ‘

= K ;-(L3 sinh Ky + KL, cosh Ky)e'V ' + L (0, -C,)e e gimn gy

2172
+ 5 CoCpl g (V=P + 31y 1K) 4 e, a0, 0
x [~y + -21—K- (1-e.2Ky)]$ i
=F WY + By, (165)
where %

Cay
F (y) = K[(Ly - - ) stnh Ky + KLy cosh Ky + 3 (C,4C,,)ve™Y

+ 5 (Cy-Cplve™, (166)
P)(¥) = - FK(Cp—Cpple™
= % (1 + KLy (167)
and
1
Similarly,

y "
F(y' >y) = -K; ~(Ly#0y)eVsinh Ky + ston Ky [4021-022)e“WL 2" gyn

v’ 0 "
¥ (021+022)eKYf ay"] + (021+022)ex(y'+yy " sarn Ky @..(
y '

= -xz -(L +m,u)exy sinh Ky' + &V sinh Ky' [ g (Co1=Cop)+(Coy#Co,) (y'-y)]

+ He, 40 22)e"(y Wy + A Qe )Ji (168)

= l"'2(y)eKy'-F'Z(y)e-Ky +F3(Y)Y'9-Kv':
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! where

F,(y)

=

[Ly + KL, - % Coq + (Chy + Cpp)ylely (169)

and

= K Ky
F3(y) 5 (C.y + Cyyle .

Inserting (165) and (168) into (164)

Sl

0
/ B(y,y")F(y'sy)dy' = % (% + l\'12)e'Ky { F (MIf, (2K,—==)-f_(2K,y) ]

+ Fl(y)[fl(ZK,-w)-fl(ZK,y)]§ (170)

1 M

+3 (- M) 3 F2<y)tfo<o,y>-ro<-2x,y>J+F3<y>rl<-2x,y>}.

The desired expression (163) is obtained from two applications
of (170).

The subscripts on B in (163), as well as the complex con-
Jugation, are obtained by applying the same subscripts, and
complex conjugation, to the quantities M1 and M2 appearing
explicitly in (170). The same rule applies to A with subscripts
and complex conjugation applied to L3, Lh’ 021, and C22 appear-
ing explicitly in (166) and (169).

In the last term of (157) the expression to be evazluated
is, because of (151), (152), and (154),

0 0 [ 1} [ ] 1" u 0N2 #
f . / Hy K,y,5'55")S, (y',y")dy" = K /_; (X)8, (v,x)07 (¥, x)x, (171)
where E
0
G(y,x) -f A(y,y")e(y',x)dy’'. (172)

% !
In (171) the subscripts on G(y,x) and the complex conjugation
actually occur through A(y,y') in (172).
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With the aid of (155) the expression (172) can be written

G(y,x) = -Lag(y,x) - Lyg (y,x) (173)

=K Ky! K o) ~Ky!
+(Cp1-Cpp)e yye Y g(y',x)dy +(Cyy+C,,)e y/ e™ gy, x)ay’.

- 00

From (153) it follows that

L X '
G(y > x) = - (ié-sinh Ky + L, cosh Ky)er + %-(Czl-czz)e-xy[sinh Kx;Z: e2Ky dy!

Vo (174)
+eb3/.exy sinh Ky' dy']
X
o '
+ %(Al + Ay) K(+x) [ e X s1rm Ky'ay
= 6 (e + 6, (xe',
where
1 sinh 1 sinh Ky
B9 = & (Ca#0pp) SR - ye'¥) + ¢ (01-Cp) (MR - ye™)
sinh Ky
Ly =% -~ ILycosh Ky (175)
and

=1 (.= -Ky
G (¥) = 3 (Cy=Cpple
It also follows that

L "y '
G(y<x) = -(T} + Lu)eK" sirh Kx + %{- (cel—czz)e'Ky sinh Kx L 2K gy

X o]
* % <°21+°22)3Ky[sinh Kx_[ dy'+er/ e snh Ky'ay'] (176)
X

= a,(y)e - oy (y)e™ + G3(y)xe'Kx, (177)
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where

L

C
_1 213 1 Ky
W) =3 bF =% -y g Oyl

and
S Ky
; G3(¥) = - 5g (Cp¥Crp)e™.

It follows from (171), (174), and (176) that

"0
¥ jfoHu(g,y,y',y")su(y',y")dy'dy"
2 - 00 =00

y
'S f N (1) [0 (940, (1)xe" 008 (y)e™ et (y)%e™ 1ax

Q
+ K ,4 NP (0) (G () (€% e 10, (e 1008 () (er-e-Kx)*"Ggrs(Y)xer]dx
- K”{ H, () (£, (2K,~)~T (2K,y) B () (£ (2K,~=)~, (2K,¥)]

HL (1) [£(2K, ~)=1, (2K,y) BH__; (9)F, (~2K,y)4H__ (7)F,(0,¥)

+Hol(y)fo(2K,y)+H1°(y)fl(o,y)+H11(y)f‘1(2K,y)+H21(y)f2(2K,y)}, (17€)

where
B (9)=C g (1188, (9) 5, (9) = Gy (9)GR . ()46, ()G}, (V)
Hy ()26 o ()8 g (9D 5By (¥)=G (¥)08, (9D, H (y)= =26, (v)G8,. (3),

Ho1 (V)=Gonq (V)08 (9D, Hy ((9) = =Gy (7)0  (¥)-G (v)G8 . (¥),

Hy ) (900 ()04, (9463 ()C8 (5),Hyy (9) = O3 (1)GE (3).  (179)

When there 1s no sphere, the magnetic field gradient is
that due to internal waves for the case in Ref. 1 where the
field 1s observed below the sea surface. When the gradient
contains a vertical (y) derivative it will have a discontinuity
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at the sea surface, but 1f the derivative is in the horizontal
(x or z) direction it should be continuous at the surface.
Thus, the quantity ¢13;13 given here for the case of no sphere
should agree with (259) in Ref. 1 when both are evaluated at

y = 0 if the assumptions that were made 1n Ref. 1 in deriving
(259) are also made here. These assumptions include the Milder
hypothesis and a large tow speed, both of which have already
been adopted here. In addition the assumption of an 1sotropilc
internal wave excitation function with power law deper.dence on
wave number was also used in Ref. 1. That is, it was assumed
that

I(K) = cKP

For the case of no sphere, as already observed in con-
nection with (157), J reduces to JM’ and at y = 0, according
to (175), Ju reduces to

~P u . _

K2 c )£, (2K, =)

= *
= F(Ca1pq=C22pq’ (CB1rs C32rs

22
=20 H,y Tl 1rs o
— -Kmq- K'I‘3pq- 1T2pq =+ x'r3rs+1'r2rs £, (2K, ).
(180)

For the last expression in (180) the rules for substituting
T1 in the case of no bubble were used 1n (167).

According to the definition of the Ti in connection with
(130) and the dependence, given by (113) in Ref. 1, of B, on
¢p» and by (120) in Ref. 1 for the }p vectors on a, it is a
stralghtforward matter to verify that

Ty33 = 0 Tpyq = B Kcos(w-a)sin(w-a)cos w cos ¢p, (181)

T313 = —Bo coé (w=a) sin (w-a) sin ¢p-

6U
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If (181) is substituted into (180) it is found that

e 202u§B‘2K" ,
JS5.15(W,K,0) = & 0.5 (W), (2K, =»), (182)
13;13 (l+3cose¢D)2 13;13 2

where g13;l3(w,a) is defined by equation (182f) in Ref. 1.

Finally, if (182) is used in (158) along with (179) it
will be found that the result agrees with (259) of Ref. 1. 1In

fa order to complete the verification it is necessary to use (159)
» to identify f2(2K,-w).
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APPENDIX A

PROOF OF THE DIRICHLET GREEN'S FUNCTION APPROXIMATION

The notation to be used in the following is consistent
with that of the preceding text. Namely, Gs(f’f') is the exte-
rior Green's function for S (Gs vanishes on S) and GP (f,g') is
the Green's function for VP (GP vanishes on P). 1In fact, with
Go(g,g') the free space Green's function given by

¢ =1 1
o I T-E

Gpp(r,r') = Go(r,z') - Go(r,r')

and

a
Gnao(r,r') = G (r,r')- (A-1)
DS*="~ ° b ;H;Zazrr'cosy+r2r'2
In addition, operators DS and DP are deflned by
1
DSfo 3G§(£',£' ) Gi(g",f')ds" (A=2)
r"
S
and
Lo n
DPGii}r aGS(E’E ) Gi(g",g')ds". (A-3)
or"
S

According to Green's theorem (A-2) implies that DSG1 is equal
to Gi on S and satisfies Laplace's equation outside of S.
According to (A-3) DPGi is equal to DSGi on P and satisfles
Laplace's equation 1in VPS'

A-3

o

el s s e




Let

1 Gy (r,r') = Gpg(r,r') - Gpg(T,r'). (A-4)

Then Gl vanishes on P but not on S. However, Gl—DSGl vanishes

on S but not on P. Further, Gl—DSG1 + DPG1 vanishes on P but

not on S, and Gl-DSGl + DPGl-DSDPGl vanishes on S but not on P.
Continuing the iteration ad infinltum leads to a Green's func-
tion GD(g,g') defined by

Gp(r,r') = (1-Dg) Z Dp" Gp = (1-DS)(1-DP)-1GO’ (A-5) 3
n=o :

if the series converges. The limiting function vanishes on
both S and P, as required for the Dirichlet Green's function
approprlate to the region VPS bounded by P and S.

Convergence of the series in (A-5) occurs in the sense of R
any norm for which

||DP||-<1- (A-6)

For any function f(r") !

- "
Dpf = a2f 26(xs") p(rm)a @
s =t Of(x

3r r'"=g
f
E 2 A a2 A
, . a -a+r cos y 4 Do-ar cos y £]dg
1 LEd Q FC+a®_2ap cos y)37é a(a2-2a§ cos Y+§2)3/2 r'=a
-
-?_/ (COSY-%)E' 1--?‘,;-cosy r
~ r/r r
T a® 2 372 2a 2p/2ff I rraad: 3
I+ - £8 cos vy l-T"cosy + 35 !
r r r r




so that

a a
lIpp £1] = 5{1 + 5 ] (A-T)

if the norm of a function is the maximum value of the function
on S. Convergence 1is then guaranteed as long as

a 1
ﬁ_ < -3-. (A'B)

In forming the series that converges to G(g,g') each step
adds a term one order higher in %. In fact, the serles beglns
with Go’ the free space Green's function and G1 = (l-DS)Go.
Thus, the lowest order approximation to GD(g,g') is Gl(g,g')

which is also given by (A-4).
By definition,
AG = G.-G

Hence,

AG ~ Gl-GDP,

so that, according to (A-1) and (A-4), AG is given approximately
by (60), as asserted earlier.
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APPENDIX B

CONTRIBUTION OF THE PARTIAL ELECTRIC FIELD
CURRENT TO THE MAGNETIC FIELD
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APPENDIX B

.ﬁ CONTRIBUTION OF THE PARTIAL ELECTRIC FIELD
3 CURRENT TO THE MAGNETIC FIELD

In the following it will be shown that the partial electric
i field contribution gE to the current given by (47) results in a
! contribution of higher order than a to the magnetic field in-
] side the sphere. Then it will follow, once again, that only
the term Jy in (47) need be considered.

The potential ¢' whose gradient determines EE satisfies
Laplace's equation inslide VS and the boundary condition

]
%% lp=g = 1p * (B ° 12177 P (B-1)

on S. From (B-1), (53), and (64) it follows that, to terms of
order less than a,

3 (L, » u) (4_ ¢+ B))
f1 5% |p=a ™ - a - >+ 5 (B-2)
| where

g = <§0 * V)wplr=ao (B_3)

In obtaining (B-2) terms of order % have been dropped as usual.

Now, for any two constant vectors 51 and 52 the quantity

E given by

1
DR NI A | U

is a surface spherical harmonic of the second degree (3]. Also,
for any constant vector k the quantity z: given by




1s a surface spherical harmonic of degree one, and, of course,

.| A

4 any constant is a surface spherical harmonic of degree zero.
H

It follows from (B-2), (B-4), and (B-5), for

(4 + B

Zo(fb,e) e P

Z,(6,0)

Z,(6,0)

: i a*2
o' ~ = - m Zn(¢,9). (B=-7)
n=

In (B-7) the quantities Zn (¢,6) are surface spherical harmonics
of degree n.

From (B-7) it follows that

2 +2 V.2 (4,6)
3\ i E

n=o

X vﬂzn(¢,e)
n+l




CEN

where

- 1‘_ .
Iy =-31, x% (1, P)
and
I =i x ¥ (1, - W, + B)]
2 ~r §l 3a ¢

From

V(r - B) =P = VrL B)= (L, 0 BML#TV(L, - B)

-~ ~

" (& B+ 7 (1, - D)

~

1t follows that

Er x Vn (1r . g) = ir x P. (B=-10)

. Since (B-10) is an identity thesc holds for an arbitrary con-

stant vector g it can be applied to ;2, with the result that
1 * * .
2773 e 2 [ - BV, e, - (L, ¢ B

"= Sl x [, Bw+ (4, - wB I (B-11)

It is useful to define

Y B xum Yy mvxy, A mvxB . (B-12)
Then
51 X v A2 X v
E-—-T_",gosz-—f. (B—13)
v v

" . v\ . . v
g (e m)( YT (b 2 )Y




From the form (B-4) it can be seen that each cartesian
component of ;2 is a sum of a spherical harmonic of degree two
and a spherical harmonic of degree zero (constant). A simple
calculation shows that the spherical harmonic of degree zero,
in fact, vanishes. Thus, }2 is a vector whose cartesian com-
ponents are each spherical harmonics of degree two. Because
of (B-10) it is apparent that ;1 is a vector whose cartesian
components are each spherical harmonics of degree one.

Then, as indicated by (52), (51) becomes

2
= ~ a
Bglpeg = Ig~ou, WE f P (cos v) I (¢',0')dQ
n=1"9Q

I,(6,8) I,(4,0)
ou, a 3 + —=|’ (B-15)

by virtue of an identity gliven in Ref. 3, p. 137. It follows
from the definition of I, in (B-9), from (B-10), and from (B-11)
that

-

. a 1 . .
1 °“o{‘6 X E + 15 1'1- x [(}r Bo)E + (..j.'r }.“)1..30} *
(B-16)

In accordance with (38) and the earlier remark, in connec-
tion with (48), concerning the meaning of Iz, the only contri-
bution of Jp to the magnetic field in VS 1s proportional to the
radial component of EE' It follows from (B-16) that this con-
tribution 1is zero up to terms of order less than a2; thus, as
promised, the contribution of gE to the magnetic fleld can be
ignored in calculating the field to the first order in a.
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APPENDIX C

SUMMARY OF FORMULAS FOR COMPUTING THE SPECTRA
OF MAGNETIC FIELD GRADIENTS

Formulas needed for calculating the magnetic field gradi-
ent spectrum appear in the main text. In fact, it 1is only
necessary to apply the following equations, considered in the
following order rather than the order in which they were orig-
inally introduced, to establish the necessary computational
logiec: (156), (157), (151), (160), (161), (159), (163), (170),
(166), (169), (167), (178), (179), (175), (177), (135), (124).

The key parameters in the calculation are given by equa-
tions (136), reproduced here for convenience:

-

ou,
L, = = (X - ?o)(KxA1y+K Azy)
1ou, Y% [(x a. +x A )B
Ly = =Ky - 0¥y - DI - B - 7 [ty ates) oy
+(§ . go)A3y]’
au
Ly = - EZ% (A, * K)(By+ K)+[K (A;° K)+K, (A,c K)IB,, ’?’ A3yPoy?
10'u° B (136)
Ly = = oz 37 BBy
M) = EEK COR Ty KTy ) K (K Ty Ky Pag)Kz1s

MZ = im(-x T +Kx 32)-




S a3 B o g e O JR AR S BT RS

ks

For purposes of comparison and interpretation the various quan-
tities, (136) can be expressed in terms of geometrical and phys-
ical parameters that were introduced in [1]. Each of those
4 quantities 1s a function of two indices that are determined by‘ ;
X the subscripts on the symbol for the magnetic field gradient
: spectrum. The Indices of interest are the pairs 12, 13, 23;
- for these 1ndex pairs the following quantities appearing in
. (136) are defined: a

(A-K)3p =0, (A;-K)j5= K sin(w-2a), (A;-K)y3= 0,

(Rp°K)3p =05 (By- K)y3= K cos(w-2a), (4, K)p3= 0,

(é -5)12 = K cos(w=~-a), (53'§)l3= 0, (é -§)23 = K sin(w-a),

A

1y12 cos a, Alyl3 = 0, A1y23 = - sin a,
A2y12 = sin a, A2y13 =0, A2y23 = cos a, (C-1) ?
Ayr2 = 0> A3yi3 = 05 A3pp3 = 0, Ry

Ti1g12 = 0s P1x13 = -B, sin ¢, cos 2a, r1x23 = 0, |
I‘1212 = -2B°cos¢Dcosa, rlzl3= -Bosin¢Dsin2a, P1223= 2Bocos¢Dsina,
r2x12 = Bocos¢Dcosa, P2x13 = -Bosin¢Dsin2a, F2x23= -Bocos¢Dsina,
r2212 = -Bocos¢Dsina, P2213- Bosin¢Dcos2a, r2223- -Bocos¢Dcosa,
r3x12 = -2Bosin¢Dsina, P3x13 = -Bocos¢Dc032a, P3x23- -2Bosin¢Dcosa,

r3212 = 2Bosin¢Dcosa, P3zl3'--B°cos¢Dsin2a, r3223 = -2Bosin¢Dsina,

where

2B
B -—L—

l1+3 cosz«pD

o




1

Equations (C-i) used in (136) define all of the L, and M

i
corresponding to the subscript pairs 12, 13, 23. These are the

parameters to be used when the sphere exists. In the absence

of the sphere the M1 are set equal to zero, L1 and L3 are re-

placed by ouoTl and ou°T3, and L2 and LH are replaced by 1cuoT

and icuoTu, where

= - = =—2 -
Tiv1 = T1v3 T12u 0, T112 K Bocos(w a)cos W cos ¢ps

2-2 = =
T132 K Bosin (w=a) cos W cos ¢D’ T221 T223 = 0,

2

= 2 -
T211 KBocos (w~a)cos w cos ¢D’ T212 = -KBocos (w=a)sin ¢D’

1 =
T213 5KB, sin 2(w-a)cos w cos ¢p> Tppp = -KB cos w cos ¢p,

T231 = %-KBo sin 2(w-a)cos w cos ¢D’ T232
T233 = KBo sinz(w-a)cos W cos ¢p, T312 = T332 = 0,
T311 = -Bo cosz(w-a)sin ¢D’ T313 = -Bo sin 2(w-a)sin ¢D’
T321 = =B, cos(w-a)cos w cos ¢ps T322 = B, sin ¢,
T323 = -Bo sin(w-a)cos w cos ¢ps

1

-KBosin (w=-a)sin ¢p>

Ty3; = - 3B, sin 2 (v-a) sin ¢p, Tgpq = =By sin®(w-a)sin ¢ (C-2)

331 270

The quantities Liuv’ Miuv

the Tiuv
by (161), the quantities C,, and C,, given by (167), the

or, in the case of no sphere,
are used to define the quantities Col and C°2, glven

functions Fo(y) and Fl(y) given by (166), the functions Fa(y) and
F3(y) given by (169), the functions Gy(y) and Gl(y) glven by
(175), and the functions G2(y) and G3(y) given by (177). For

convenlence these equations are all repeated, as follows:

-1 1 #*
Co1 = T (EE Mlpqmlrs + M2qu5rs)

= 1 #
Co2 ™ 1% (Mlqu2r3+M2qu{rs)°
Cc=-5

(161)
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b

Fo(y) = K[(L3 ) sinh Ky + KLy cosh Ky + 5 (02l 22)ye

1
+ 3 (Cy-C 22)ye ,

L F(9) = - HK(Cy-Chp)e

Foly) = % (L + KLy - % Cap * (Cpp # sz)yjéKy
= X Ky
1 sinh inh
Go(¥) = g (Copp#C,,) (KT _  Kyy 4 <c2l C ) (SR
Ly §1§§—5¥ - L, cosh Ky
= L _ -Ky
G (y) = g (Cx=Cpple
C.. L
=1 221 _
Gy(y) = 3 > -1, - % (€1 #0312
= .1 Ky
G3(y) 2% (Co1*Co,)e

In addition, 1t 1is convenient to define
My

£+ M

2)'

For the case in which

I(K) = cKP

IO oia i i =S RO s e PSR B SRSV A szt N e

(167)

(166)

(169)

(177)

(C-3)

o

L -




equation (156) for the magnetic field gradient spectrum can be
written

m
= 2C [ 2 g~(p+1l);(0) - (o) —a- 'I
®usrs (@sY) K )[I  pg (OFB=T,K)+I 0 1 (o-B-m,K)| dB

! w VU; S

3 J

| 3 ) (1) :
. 2C | 2 -(p+1l)] (1 1 -B- #
: + T‘[ K [ VU3 rs(d"'B""ﬂ',K)"’J\)u;rs(a ] “9K)]d83 :

E ¢ where (c-4) %

4 # #*
= K [szuGerf (-2K,y)-2G,, G2 f _(0,y)

# -
+(G2qu2rs Govu ors)f (2K,y)

* —®) -
+ Goquors fo(2K, ©) (G )f (o,y)

e 3
2vu 3rs 3vu 2rs

+(G G¥ -G G* -G

#
2qu3rs+G3vu 2rs lvy ors

lvu ors + Govu lrs)f (2K,==)

ovu lrs)f (2K,y)

+(G

* - #* -
+(G3qu3rs le lrs)f (2K,y) + Gl uGlrs f2(2K, oo)]

and

(1) = 2Ky * P =Ky -
Iy TR s ps (WsK) '[(Col + C°2)e - (Dvu ors T Drs F2vu)e fo( 2K,y)

+(D*

-Ky
Vi 2rs + Drs FZvu)e fo(o,y)

-

- -’2 :y - » * "Ky
+_(002 Col)e (Dvu Fors + Drs Fovu)e fo(ZK’y)

- -2Ky " " -Ky -
H (Co1 = Coade + (Dvu Fors * Dng Fovu)e Jfo(zx’ =) f
=

- -Ky |
y +| (DY, Firg + Dpg Fyyp)e ]r (~2K,y) |

C-7



-1(D
L

_Ky
* *
v Flrs + Drs Flvu)e l]fl(2K,y)

-

=

expanded in terms of the moments defined by (159), i.e., the
functions

: £, (K,¥) =fuxx eX*n2 (x)dx.

To save space, in (C-5) the y dependence of the functions i
Fi(y) and Gi(y) is not indicated. In (C-4) the integrand is i ‘
separated into the two functlons J(o) and J(l) because in the R
absence of the sphere J(l) vanlshes leaving only J(°) sultably %
modified by the rule requiring the replacement of the quantities ;

L1 with T1 and the omission of the Mi’
i
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