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I.  INTRODUCTION 

In the technique of laser-excited fluorescence (LEF), a laser is 
tuned such that its wavelength matches that of an absorption line of some 
molecule of interest. Absorption of the laser light results in the pro- 
duction of a fluorescent photon which is then detected. Tuning of the 
laser across a series of absorption lines of the molecule, a so-called 
"excitation scan", provides what is in essence an absorption spectrum. 
The advantages over conventional absorption spectroscopy are several. 
First, because one measures a positive fluorescence signal on a null back- 
ground, in contrast to the removal of photons from a continuum, LEF is of 
considerably higher sensitivity. Concentrations of molecules at ppb levels 
can easily be detected. Second, laser linewidths of 0.1-0.3 cm-1 can be 
readily achieved using intracavity etalons; this yields resolution com- 
parable to that of a large spectrometer, providing separation of closely 
spaced rotational lines and molecular selectivity in cases of overlapping 
absorption spectra. Third, LEF provides a high degree of spatial resolu- 
tion through focussing of the beam and of the fluorescence, in contrast 
to the line-of-sight nature of absorption spectroscopy. Temporal resolu- 
tion can also be achieved using a pulsed laser; and LEF, like absorption 
spectroscopy, is non-intrusive, that is, no probe is introduced into the 
system. 

Consequently, LEF holds great promise as a tool for the measurement 
of species concentrations and internal temperatures in combustion systems. 
In particular, it is especially well suited as a probe for the transient, 
radical species which are reactive intermediates and present at low con- 
centration. LEF has been used in flames to detect OH, CH, CN and C2, as 
well as some sulfur-containing molecules. 

Prominent among other species for which LEF would be desirable is 
the NH, or imidogen or imine, radical.  It is present in a number of 
flames involving nitrogen either in air or bound in the fuel, according 
to detection using conventional absorption and emission spectra^.  It is 
particularly prominent in flames of ammonia and oxygen^ and of hydrocar- 
bons burning in N02-^. NH emission is seen weakly in flames of formalde- 
hyde, methane or methanol and nitric oxide, and is strong in flames of 
methyl nitrite and ethyl nitrate with oxygen^. An understanding of the 

A.   G.  GaydoUj The Spectrosoopy of Flames^  2nd Ed.^  Chapman and Hall, 
Londonj   1974. 

O 

H.  G.  Wolfhard and W.  G.  Parker^  "A New Technique for the Spectrosoopia 
Examination of Flames at Normal Pressures", Proc.  Phys.  Soc. A82j 
722-730  (1949);  H.   G.   Wolfhard and W.   G.  Parker^   "A Spectrosoopia 
Investigation into the Structure of Diffusion Flames",  Proc.  Phys.  Soc. 
A65j   2-19  (1952);  C.  J.  Fisher^   "A Study of Rich Ammonia/Oxygen/Nitrogen 
Flames",  Comb.  Fl.   30j   142-149  (1977) 

^A.  R.  Hallj,  J.   C.  McCoubrey and E.  G.  Wolfhard,   "Some Properties of 
Formaldehyde Flames",  Comb.  Fl.  i,   53-59  (1957). 
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chemistry of nitramine propellants may thus well benefit from a tech- 
nique capable of measuring NH at low concentrations. In addition, LEF 
can be of use for monitoring reactant or product concentrations for tran- 
sients in flow systems, in order to measure reaction rates on a bulk^ or 
state-specific5 basis. Such rate constants are needed in the establish- 
ment of reaction network models of combustion involving NH. Furthermore, 
these data are of considerable fundamental interest due to the small size 
of NH, in that it offers the promise of participation in theoretically 
tractable collisions. The pumping of specific levels of the excited state 
via LEF would permit the performance of energy transfer studies such as 
those carried out on the OH radical". 

NH has only recently yielded to probing using LEF. In 1977, McDonald, 
Miller and Baronavski7 reported excitation of the clll-alA transition in 
the ultraviolet. The metastable a-state NH was produced by photolysis 
of HN3 using the 266 nm frequency quadrupled output of a Nd:YAG laser; 
and the fluorescence-exciting frequency doubled flashlamp pumped laser 
was synchronized to the Nd:YAG pulse. McDonald and coworkers were unable 
to find LEF originating from the ground X^z" state in their system. 
Gelemt and SmithS formed ND from a pulsed discharge in mixtures of ND3 
in argon. They excited the blz* metastable into the c^n state using 
visible laser light, and detected the resulting ultraviolet fluorescence 
in the c-»-a transition. The use of a short pulsed laser (N2-laser-pumped 
dye) permitted the measurement of radiative lifetimes in cln. 

The electronic states of NH involved are shown in Figure 1. The 
A^Hi-X^E" transition should be an ideal candidate for LEF, on the basis 
of previous absorption and emission studies. Excitation of LEF in the 

I. Hansen^ K.  Hoinghaus^ C.  Zetsah and F. Stuhl,   "Deteation of NH^ 
(X^I.~) by Resonance Fluovesaenoe in the Pulsed Vacuum uv Photolysis 
of NH2 and its Application to Reactions of NH Radicals":,  Chem.  Phys. 
Letters £2, 370-272 C1976);_C.  Zetsah and I.  Hansen,   "Rate Constant 
for the Reaction of NH (X^l ) Determined by Pulsed Vacuum uv Photolysis 
of NH3 and Resonance Fluorescence Detection of NH", Ber. Bunsen. Phys. 
Chem.   82,   830-832  (1978). 

^J.  L.  Kinsey,   "Laser-Induced Fluorescence", Ann.  Rev.  Phys.  Chem.   28, 
249-272  (1977). 

^R.  K.  Lengel and D. R.  Crosley,   "Energy Transfer in A 1    OH.  I.    Rota- 
tional", J.  Chem. Phys.  67,  2085-2101   (1977); R.  K.  Lengel and D. R. 
Crosley,   "Energy Transfer in AH    OH.  II.    Vibrational", J.  Chem.  Phys. 
68,   5309-5324   (1978). 

"^J. R. McDonald, R.   G. Miller and A.  P.  Baronavski,   "Photofragment Energy 
Distribution and Reaction Rates of NH from Photodissociation of HN3 at 
266 nm",   Chem.   Phys.  Letters 51,   57-60  (1977). 

^B.  Gelemt and A.  L.  Smith,   "Tunable Laser Fluorescence Studies of 
the Metastable b^Y.+ State of the ND Radical",  Chem.  Phys. Letters 
60,   261-264  (1979). 
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Figure 1. Electronic state diagram for NH. The metastable states 
excited by previous workers are indicated in addition 
to the A-X system. 
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A-X system was first observed in this laboratory^ and is the subject of 
this report. We have since learned that LEF in flames has now also been 
observed by C. Morely at Shell Thorton Research Center in Chester, England, 
and by M. Steinberg and K. Schofield at the University of California at 
Santa Barbara. 

LEF in the A-X system probes the ground state of the molecule, which 
is presumably of the most interest for following its chemical participa- 
tion. The ability to also excite NH from the two lowest-lying metastables, 
a^A and blz+, makes it an attractive molecule for comprehensive inquiry 
concerning the relative participation of electronically excited states 
in reaction networks, combustion or otherwise. 

II.  EXPERIMENTAL DETAILS 

'  The experimental apparatus is illustrated in Figure 2. Ammonia, 
usually diluted in nitrogen or argon, was rapidly flowed through a 
stainless steel fluorescence cell with diameter 5 cm; the pressure was 
typically 18 torr total with 1.5 per cent NH3. A 2.45 GHz discharge was 
applied approximately 10 cm (100 nsec) upstream of the excitation region, 
using an Evenson cavity surrounding a quartz inlet tube. The pressures 
used were chosen for maximization of signal levels in our particular 
system, and were measured using an Alphatron gauge located on a sidearm 
downstream from the excitation region. 

The LEF apparatus was quite standard. The dye laser is a frequency- 
doubled, flashlamp-pumped type CCMX-4), narrowed to a laser linewidth of 
-v 0.34 cm-1 in the ultraviolet by means of an intracavity etalon. Rho- 
damine 640 was used for excitation of the (0,0) band near 3360A, and rho- 
damine 6G for the (1,0) band near 305oA. Automatic scanning of the mam 
birefringent tuning element, the frequency doubling crystal, and the 
etalon are accomplished using a scanner accessory. 

The unfocussed laser beam was incident upon a plane cell window. 
After exiting the cell, it was detected by a filtered 1P28 photomulti- 
plier in order to monitor its intensity (in particular, to check that the 
frequency doubling crystal maintained its proper synchronized alignment 
during scanning). The fluorescence, viewed at right angles to the ex- 
citing beam, was focussed onto the slit of a 0.35 m Heath monochromator 
operated with a bandpass between 4 and 45A, depending on the experiment. 
The detector was an EMI 9558 QA photomultiplier. 

^W.  R. Anderson and D. R.  Crosley,   "Laser-Exaited Fluovesoenoe in the 
A-X System of M",  Chem. Rhys. Letters,  in press,  1979; W. R. Anderson, 
D.  R.  Crosley, J.  E.  Jones and J.  E. Allen,  Jr.,   "Observation of Laser- 
Exaited Fluoresaenae in the A-X System of NH", Eastern Sectional Meeting 
of the Combustion Institute, Miami Beaah,  Florida, November 1978. 
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After preamplification (and subsequent attenuation, when necessary) 
the output of each photomultiplier was fed into one side of a dual-channel 
boxcar integrator (PAR model 162 with 164 plug-ins and digital integration), 
In some cases, ratioing of the fluorescence and laser intensity signals 
was done within the boxcar, as indicated in Figure 2, in order to provide 
a first-order correction for laser intensity drift.  In other cases, the 
direct output of channel A was used. This was then fed to a strip-chart 
recorder. 

Laser repetition rates of 10 Hz were used in conjunction with a 
typical final time constant of 1 sec. The laser pulse is '\'l ysec long, 
somewhat greater than the collision-free radiative lifetime of A-^IIi of 
M50 nseclO, so that the fluorescence signal time dependence is largely 
dictated by the temporal shape of the laser pulse. The boxcar was typi- 
cally operated in a sample-and-hold manner using a gate width of 100 to 
200 nsec. The boxcar was triggered by the output of a photodiode viewing 
the initial rise of the flashlamp output, which was much preferable to 
the use of the manufacturer-supplied trigger-out pulses from the laser. 
A considerable component of the noise for the low intensity signals was 
caused by photomultiplier shot noise, and for high intensity signals by 
jitter in the laser pulse time vs. the trigger time. Stretching out the 
photomultiplier pulses via an integrating amplifier, and using a larger 
gate width on the boxcar would thus presumably improve the signal to noise, 
but the problems were not severe for the quantitative work reported here 
and such an arrangement was not seriously explored.  For the lower inten- 
sity energy transfer signal mentioned briefly below, it is probably a 
must. 

In some of the low intensity runs, where larger slits were used, 
scattered laser light from the cell windows and walls proved to be a 
nuisance. This could be greatly improved with the use of some relatively 
simple baffles. Again, this was not so severe a problem as to demand 
attention during the present work. 

III.  RESULTS AND DISCUSSION 

The experiments undertaken were of three types. The first are the 
excitation scans, made by scanning the laser while operating the spec- 
trometer at fixed wavelength. Since fluorescence is observed only when 
the laser is tuned to an absorption line, this provides in essence an 
absorption spectrum of the molecule. The others were runs made using the 
laser at fixed wavelength and scanning the spectrometer used to observe 
the fluorescence. This mode was used to measure the ratio of Franck- 
Condon factors for the (0,0) and (0,1) bands of the A-X system, and for 
some preliminary indications concerning collision-induced energy transfer 
within the A-state. 

■^^f/. H.  Smithy  "Lifetimes and Total Transition Probabilities for NH^  SiH 
and SiD",  J.   Chem.  Phys.   51,   520-524  (1969). 

12 



A.  Excitation Scans '  ' 

Excitation scans were made for the Q-branch region of the (0,0) and 
(1,0) bands and for the R-branch region of the (0,0) band. 

Different observation regions were used in each case.  For excitation 
of the Q-branch of the (0,0) band, Jhe emission detected was either that 
in the (0,1) band using a large (45A) bandpass, or by emission in the 
region near 3369X where the ^Qi22, the Pj^Z, the PR]^32, the ^2^i  ^^^ ^^'^ 
Q233 lines all fall quite close together, using a narrower (7A) bandpass. 

Due to the small Franck-Condon factor ratio (section IIIB), the narrower 
bandpass offsets the higher transition probabilities and similar signal- 
to-noise ratios are obtained with either arrangement. 

For excitation in the R-branch region of the (0,0) band, observation 
was made near the Q-head of the (0,0) band at 3360A.  For the excitation 
scans of the Q-region of the (1,0) band, observation was made at 3372A 
with wide slits (45A bandpass).  Here the detected emission was that of 
the (1,1) band emitted by the v'=l level directly excited, and that of 
the (0,0) band emitted by the v'=0 level which is presumably populated to 
some degree by vibrational transfer due to collisions with the N or Ar 
bath gas. 

Using a 21-foot grating spectrograph, Dixon  carried out measure- 
ments of well resolved absorption spectra of the (0,0) and (1,0) bands 
of the A-X system, following flash photolysis of HNCO. His tables for 
these bands, and his photographic reproduction of the (0,0) spectrum, 
have provided an excellent guide for the assignment of our excitation 
scans.  In the few cases in which we observed lines of higher rotational 
quantum number than those found by Dixon, extrapolation of his sequences 
have provided unambiquous matches to our line positions. 

3     3- The A Ili - X Z system has a total of 27 rotational branches connect- 
ing the three triplet levels of the upper state with the three triplet 
components of the lower, in accord with the rigorous selection rule 
AJ=0, ±1.  Of these 27, the nine main branches having AN=AJ are the 
strongest. We have identified at least one excitation for each of the 
main branches, and for half the satellite (AN^J) transitions. The re- 
maining satellites, save the '^'^2>l  branch which neither we nor Dixon found, 
are located in the P-branch region which we have not extensively examined. 

Figures 3,4 and 5 show the excitation scans for the (0,0) Q-region,, 
the (0,0) R-region, and the (1,0) Q-region respectively, using '^-0.34 cm 
laser linewidth. The assignments of individual lines are included in the 
figures. The sections marked "reset" are places where the scanning mech- 
anism (though not the recorder) were stopped to automatically reset the 

"^■^i?. iV. Bixon^   "The 0-0 and 1-0 Bands of the A Yi.-X^YT System of m". 
Can.   J.   Phys.   Z7^   1171-1186   (1959). ^ 
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etalon to the beginning of its free spectral range. While the intensities 
of nearby lines in a sequence decrease with increasing value of N, they 
are not quantitatively correct due to drift in the laser intensity through- 
out each scan. Control of or correction for such drift would permit the 
intensities of the individual lines to be used to determine populations 
of each of the ground state rotational levels. 

As noted, the assignments were made by comparing the pattern and 
splittings between adjacent lines with those reported by Dixonll.  The 
results of our measurements of the line positions are given in Tables I, 
II and III corresponding to Figures 3, 4 and 5, respectively. To obtain 
these, the splitting between each adjacent pair of lines was measured on 
the chart recorder and converted to cm~^ using the nominal scan speed of 
both the laser and the chart recorder. The splittings between the cor- 
responding pairs of lines were then computed from Dixon's tables. Since 
our laser scan is uncalibrated, one does not necessarily expect them to 
be exactly equivalent. Scaling our laser scan rate by a single factor 
1.034 of indicated, for all the splittings observed, provides better agree- 
ment with Dixon's values. After making this scaling, our splittings dif- 
fer from Dixon's in a random pattern.  The least squares standard devia- 
tion (excluding four splittings with exceptionally large deviations, due 
to problems in the scan and reset mechanism) of our splittings from Dixon's 
is ±0.17 cm-1. This is about half the laser linewidth; Dixon estimates 
his measurements to be good to within ±0.03 cm"-*-. 

Using the measured splittings, and the 1.034 conversion factor, we 
have computed the wavenumber of each observed line in each sequence by 
choosing a single normalization line to Dixon.  For the Q-region of (0,0), 
this is Q32; for the Q-branches in (1,1), it is P32; and for the R-region 
in (0,0) it is R22.  The frequencies of the lines, determined by us in 
this way, and as listed by Dixon, are included in the tables along with 
the splittings. 

These excitation maps and corresponding numerical values given in 
the tables should be of utility in assigning excitation spectra of the 
A-X system. We ^ave found that, given an approximate location of the 
laser line (±1-2A) using our 0.35 m monochromator, we could pick 
out the region of excitation after scanning three lines, due to unambig- 
uity in the pattern for a 0.34 cm"-*^ laser bandwidth. 

B. The Ratio of Transition Probabilities for (0,0) and (0,1) 

The A and X states of NH have very similar potential energy curves, 
so that those vibrational bands having Av=0 dominate the system. This 
also means that calculated values of Franck-Condon factors qyty" ^°^ 
AVT^O will be very sensitive to details of the wavefunctions used, since 
the integrals contain large positive and negative contributions which 
nearly cancel. Two computations of Franck-Condon factors for the A-X 
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TABLE I.  Q-BRANCH EXCITATIONS IN (0,0) BAND 

ROTATIONAL BRANCH  MEASURED DIXON 
AND N" V       Av V Av 

Q32* 

Qp  2 
^32^ 

29783.92* 
. 1.14 

82.78 
5.51 

^3^ 

^^23^ 

77.27 
1.04 

76.23 
1.32 

74.91 
1.25 

Qp 1 73.66 
0.62 

Q2I 

Qp 4 
^32^ 

73.04 
0.72 

72.32 
1.82 

Q3^ 
70.50 

t 

Qp   5 ^32^ 
-- 1.98 

•1- 
Q36. Qp 21^ ^ \z^ 68.52 

\2^ 
— 0.95 

+ 

Q22 67.54 
0.87 

Q3^ 

Q38 + 

66.67 

Qp n' ' %3^ 65.26 
1.41 

0.99 

Q23 64.27 
0.92 

QR 4 
^23 

+ Qp   4 63.35 
1.05 

Q24 + n' 62.30 
t 

QR 5 
^23^ 

— 1.52 
4- 

Q25 + \^' 
60.78 

A, 

29783.92* 

82.82 

77.37 

76.44 

75.02 

74.07 

73.37 

72.59 

70.61 

67. ,41 

66, ,62 

65, .07 

64, .15 

63, .20 

62 .12 

61 .55 

60 .82 

1.10 

5.45 

0,93 

1.42 

0.95 

0.70 

0.78 

1.98 

69.92 2.16 

68.45 

67.70 1.04 
4- 

0.79 

1.55 

0.92 

0.95 

1.08 

1.30 
4- 

The observed frequenay was set equal to Dixon's measio'ed value at this 
point. 
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TABLE I. Q-BRANCH EXCITATIONS IN (0,0) BAND (Cont'd) 

ROTATIONAL BRANCH MEASURED DIXON 
AND N" V Av 

1.02 
4- 

V Av 

"^23^ 
-- 60.42 1.12 

Q26 59.76 59.70 
1.24 1.03 

%7 , 58.52 58.67 
1.23 1.03 

Q28 57.29 57.64 
4.27 4.90 

Ql(6-9) 53.02 52.74 
0.81 0.84 

Qi5 52.18 51.84 
+ + 

\,6 __ 1.35 51.47 1.33 
12 4- 4- 

Q,4 . \^S 50.83 
1.13 

50.51 
1.16 

%    4 49.70 49.35 
1.11 1.12 

Ql3 48.57 48.23 
1.03 1.07 

QR    3 
^12^ 

47.54 47.16 
2.85 2.67 

%2 44.69 44.49 
0.85 0.95 

QR    2 
^12^ 

43.84 43.54 
5.39 5.45 

Qi^ 
38.45 38.09 

0.81 0.85 

\ii 37.64 37.24 
21 
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TABLE II.  R-BRANCH EXCITATIONS IN (0,0) BAND 

AND N" 

R^2 + Q32I 

R22* 

Q212 

R2,0 

R 
Q322 

R^3 

R^S 

Q2i3 

Q32^ 

R33 

R^4 

R24 

Q2i4 

^21^ 

^32^ 

MEASURED DIXON 
V Av V Av 

29846.63 29846.22 
+ + 

__ 1.67 47.08 1.80 
't- 4- 

48.30 48.02 
is.03 15.31 

63.33* 63.33* 
0.89 .97 

64.22 64.30 
1.59 1.78 

65.81 66.08 
6.68 6.83 

72.49 72.91 
1.34 1.10 

73.83 74.01 
6.97 7.23 

80.80 81.24 
12.74 12.85 

93.54 94.09 
0.96 1.06 

94.50 
6.45 

95.15 
6.74 

29900.95 29901.89 
0.91 0.95 

01.86 02.84 
12.19 12.32 

14.05 15.16 
10.35 10.17 

24.40 25.33 
1.05 1.11 

25.45 26.44 
+ i 

M — 6.12 28.17 6.42 
4- + 

31.57 31.86 
0.83 0.86 

32.40 32.71 
7.15 6.89 

The observed frequency was set equal to Dixon 's measured value at this 
point. 
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0.86 0.87 

TABLE II, R-BRANCH EXCITATIONS IN (0,0) BAND (Cont'd) 

ROTATIONAL BRANCH  MEASURED DIXON 
AND N"  \) Av V Av 

'^^^2^ 39.55 ' 39.60 

Rj^S 

RjS 

R,6 

146 

V 

"3^ 

40.41 40.47 
7.46 7.94 

47.87 48.41 
8.51 8.26 

56.38 56.67 
+ + 

— 5.91 57.84 6.31 

— 4- 62.23 ■1' 

62.10 62.98 
17.83 18.09 

79.93 81.07 
7.07 6.83 

87.00 87.90 
1.24 1.23 

88.24 89.13 
2.07 2.15 

90.31 91.28 
f + 

__ 1.90 92.69 2.07 

92.21 
+ 

93.35 
+ 
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TABLE III.  Q-BRANCH EXCITATIONS IN (1,0) BAND 

ROTATIONAL BRANCH 
AND N" 

MEASURED 
Av 

1.15 

DIXON 
Av 

^2^* 
32741.64* 32741.64* 

1.14 

%32 42.79 
2.97 

42.78 
3.13 

V ■ 

45.76 
5.46 

45.91 
5.76 

Q27 51.22 
4.63 

51.67 
4.26 

Q16 55.85 
3.77 

55.93 
3.75 

Q37 
59.62 

2.86 
59.68 

3.15 

P32 62.48 
0.41 

62.83 
0.34 

Q26 62.89 
0.79 

63.17 
0.86 

Qi5 63.68 
6.20 

64.03 
6.14 

Q^4 + \2^ 69.88 
0.99 

70.17 
0.94 

Ql^ 
70.87 

1.01 
71.11 

0.86 

^3^ 
71.88 

0.81 
71.97 

0.82 

QR,,3 72.69 
0.49 

72.79 
0.64 

Q^s 73.18 
0.51 

73.43 
0.26 

Q^3 + \,2 73.69 
0.75 

73.69 
0.83 

Ql2 74.44 
7.02 

74.52 
7.52 

Q24 81.46 
1.11 

82.04 
1.09 

The observed frequenoy was set equal to Dixon's measured value at this 
■point. 
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TABLE  III.     Q-BRANCH EXCITATIONS  IN   (1,0)   BAND   (Cont'd) 

ROTATIONAL BRANCH 
AND N" 

MEASURED 
V 

DI 
Av 

:xoN 
V Av 

^3^ 
82.57 

7.24 
83.13 

6.86 

Q23 89.81 
3.29 

89.99 
3.43 

V    , 93.10 
3.94 

93.42 
4.19 

Q22 94.04 
1.03 

97.61 
1.14 

^3^ ^ 
Qp 2 ^2r 98.07 

4.05 
98.75 

3.72 

^^32^ 32802.12 32802.47 
1.03 0.93 

%' 
03.15 

0.23 
03.40 

0.21 

R^O 03.38 
2.82 

03.61 
2.68 

Q2I 06.20 
0.81 

06.29 
0.74 

^^21^ 
07.01 

0.95 
07.03 

1.02 

^3^ 
07.96 

3.96 
08.05 

5.22 

Qp 2 11.92 
1.77 

13.27 
1.04 

Q32 13.69 
15.06 

14.31 
15.07 

%    1 
^32^ 

28.75 
10.90 

29.38 
10.45 

R^l 39.65 
0.52 

39.83 
0.47 

\,o 40.37 
18.61 

40.30 
19.99 

24 



TABLE III. Q-BRANCH EXCITATIONS IN (1,0) BAND (Cont'd) 

ROTATIONAL BRANCH MEASURED DIXON 
AND N" 1 V Av 

4.70 

V Av 

'^1° • 
58.98 60.29 

3.73 

R^l 63.68 
1.03 

64.02 
0.88 

\r^ 64.71 64.90 
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system have yielded values tor qgi- Smith a^id Lizst^^ used RKR curves to 
obtain qpi=l.98x10-4, while Hornkohl (quoted by Lents^2) found a value of 
2.97x10-5. 

From a diagnostic standpoint, it is desirable to pump at one wave- 
length with the laser and observe at another, in order to avoid back- 
ground due to scattered laser light. We have already noted that this 
formed somewhat of a nuisance in some of our runs. When probing flames, 
one may have similar difficulties if a combustion chamber is involved. 
Even when that is not the case, a particle-laden combustion system may 
present problems due to Mie-scattered radiation at the laser wavelength. 
Thus it would be desirable to be able to scan the closely-packed Q-region 
of the (0,0) band — in order to obtain population distribution and thus 
temperature information -- while observing in (0,1) to avoid scattered 
laser light. The calculated values of qoi are quite disappointing with 
regard to such an arrangement, but the difficulties attendant to calcu- 
lation of these Franck-Condon factors clearly suggested an experimental 
measurement of qQi- 

For these runs, the laser was tuned to a specific excitation line of 
the (0,0) band, assigned by reference to the excitation scans previously , 
carried out. The spectrometer was then scanned across emission in the 
regions of C0>0) and (0,1) fluorescence. Our initial searches were greatly 
hampered by looking in the wrong region. According to the wavelengths 
and spectral constants in several standard compilations 1^, we expected 
the Q-head of the (0,1) band to be located at 3636X (we are informed, by 
private communication from K. Schofield, that the fourth edition of 
Pearse and Gaydon, which we have not seen, corrects this error). However, 
as found in more recent worklS, this weak band is actually located with a 
Q-head at about 3755 X.    Movement of the spectrometer to this region pro- 
vided instant observation of fluorescence. 

The basis of this simple experiment is illustrated in Figure 6. 
The laser pumps into the level v*=0, and the intensities of emission IQO 
and IQI in each band are measured. These are related to the Einstein 

12 W.  H.  Smith and H.  S. Liszt^  "Franak-Condon Faatovs and Absolute Osarl- 
latoT Strengths for M, SiE^ S2 and SO"^ J.  Quant. Speot. Had. Tvansf. 
n,   46-54  C1971). 

13 
J. M. Lents3  "An Evaluation of Molecular Constants and Transition 
Probabilities for the NH Free Radiaal''^ J.  Quant,  Speot. Had.  Transf. 
12j   297-310  (1973). 

B.  Rosenj Donnees Speatrosaopiques Relatives Aux Molecules Diatomiques^ 
Pergamon^ Oxford,, 19701 R.  W.  B. Pearse and A.  G.  Gay don ^  The Identifi- 
cation of Moleaula.r Spectra^   3rd ed.,  Chapman and Hall,  London,,   196S; 
G.  Eerzberg, Spectra of Diatomic Molecules^ D.  Van Nostrand^ Princeton^ 
1950. 

15 J. Maliceti J.  Brion and H.  Guenebaut^   "Contribution a I 'etude Spect- 
roscopique de la Transition ^^II^-X^z" du Radical NH"j J. de.   Chimie 
Phys.  67,  25-30 C1970). 
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X--3755A 

Figure 6. Pumping and fluorescence wavelength, and energy levels, 
for the determination of q^-,. 
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emission coefficients Ayi^n by the separately measured spectrometer 
response R(X) at each wavelength. The Ayivn are in turn related directly 
to the Franck-Condon factors under the assumption of a constant electronic 
transition moment. 

^01 _ ^^^01^ ^1 

^00  ^^^00^ ^00 
(1) 

and 

^01 ^ ^00 ^01 ^2) 

^°°  il ^00 

But (since q„_ is very small), 

%0  ^ ^01 = 1 '   • ^^^ 

permitting the determination of an absolute q„,. 

Experimental runs were made using both the Ri6 and Ri3 lines as 
the pump transitions in the (0,0) band.  In order to obtain usable signal 
to noise, it was necessary to use relatively wide slits for the (0,1) 
band emission. The slits were kept at the same width for the scans of 
the (0,0) band, in order to avoid problems of correcting for different 
slit widths. This resulted in considerable laser scatter underlying 
the actual fluorescent signals, and necessitated a separate measurement 
of this background. This was done by extinguishing the microwave 
discharge, so that no NH was produced. Figure 7 shows scans made with 
the R^S pump, of the (0,1) band, the (0,0) band, and the laser scatter 
in the (0,0) region. These scans were manually integrated using a 
planimeter in order to obtain the intensity ratio of Eq. 1. These ratios 
for each run are given in Table IV. The results were then reduced to 
absolute Franck-Condon factors using Eqs. 2 and 3. 

The results yield an Einstein coefficient ratio AQI/AQQ = 0.0067 
+_ 0.0012; under the assumption of a constant electronic transition 
moment, this corresponds to a Franck-Condon factor ratio qoi/qoo ~ 
0.0093 +_ 0.0017. This is considerably larger than the values obtained 
from the theoretical calculations, and is a big enough ratio to establish 
observation via the (0,1) band as a viable part of a diagnostic 
technique measuring NH. 
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TABLE IV. FRANCK-CONDON FACTOR INTENSITY DATA 

EXCITATION LINE RUN ^Ol/^OO 

R^3 a 0.0158 

b 0.0130 

C 0.0104 

Rj^6        ~ a 0.0150 

b 0.0114 

Average 0.0131 ± 0.0023 
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C. Qualitative Energy Transfer Information 

At the pressures of the diluent gases involved, typically 20 torr, 
the A-state NH molecule is likely to suffer rotational energy transfer 
collisions before radiating.  If the rotational transfer cross section 
is '\^50A2, as in the A2E+ state of OH^, then at this pressure the collision 
rate is '\'100 times the radiative rate.  If quenching collisions also 
occur, the average lifetime is shortened and fewer energy transfer col- 
lisions occur before the NH returns to the ground state. 

Some preliminary, qualitative information concerning rotational 
energy transfer was obtained by tuning the laser to a specific line and 
scanning the monochromator with narrow enough slits ('\'4A bandpass) to 
achieve some rotational resolution in the spread-out R and P branches. 
An example is given in Figure 8 where the excitation line is Ri5, so 
that the Fi(6) level is pumped. This level emits Pi7, Qi6 and a number 
of weaker satellite intensities. Emission from the initially excited 
level can be seen by the high intensity in the regions containing these 
lines. However, some rotational transfer is evidenced by lines for lower 
lying R and P branches. 

For scans having the signal-to-noise ratio of that of Figure 8, one 
can hardly extract quantitative information concerning the relaxation. 
However, from an examination of several such scans using different pump 
lines, we can make some distinction between signal and noise, and reach 
some conclusions. Unambiguously, rotational energy transfer in NH does 
occur at '^'20 torr N2. However, the rotational population distribution 
is far from thermal but remains sharply peaked within the pumped level. 
More tentatively, the relaxation to nearby levels (small AN) appears to 
occur more rapidly than to levels requiring a larger change in N. There 
appears to be some propensity for the transfer to occur to other Fi levels 
in preference to F2 or F3 levels, as is the case in Z states in OHo, 
NOlo and S2l7. 

Data on the energy transfer are not only of fundamental interest, 
but also are important in understanding and modeling the response of 
the molecule to laser excitation. For a molecule having as coarse a 
P- and R- branch structure as NH, it may also be of importance in choice 
of observation wavelength and bandpass, and in design of the data 
analysis to extract populations from LEF excitation scans.  (In fact, 
the lack of thermalization seen here means different fluorescent wave- 
lengths for each excitation, at least at 20 torr but probably also at 
1 atm. This renders even more attractive observation via the (0,1) band. 

■^^H.  P.  Broida and T.  Carrington^   "Rotational^  Vihrational and Eleotronio 
Energy Transfer in the Fluoresaenoe of Nitric Oxide", J.  Chem. Phys. 
S8j   136-147  (1961). 

■'■'^T. A.  Caughey and D. E.  Crosley^   "Collision-Induoed Transfer Rates 
Connecting Fine-Structure Levels in S2  (BH U,V=4)", J.  Chem.  Phys., 
submitted. 
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A better design for the flow system and detector electronics, and includ- 
ing baffles to reduce laser scatter, should greatly improve the quality 
of data such as these. 

Some of our earliest runs were carried out in pure NH3, at pressures 
of 3-4 torr. Dilution in N2 or Ar, and reduction of the NH3 partial pres- 
sure, improve the signal levels by factors of 30 or more. This may be due 
to a high quench rate for NH(A) - NH3 collisions, or to chemical removal 
of NH(X) in the presence of NH3 before reaching the excitation region. 
The present experiments do not distinguish these possibilities. A sep- 
arate measurement of the quench rate would be useful, as by measuring 
the pressure dependence of the lifetime under short pulse excitation 
(using a N2 or Nd:YAG laser pumped dye, which is then frequency doubled) 
or through the response of the fluorescence as the laser power is in- 
creased toward optical saturationl^. 

IV.  SUMMARY 

LEF in the A-X system of NH has been demonstrated in a discharge 
flow of NH3. Maps of excitations in the (1,0) and (0,0) bands show a 
wealth of rotational structure. This promises ready determination of 
rotational temperatures but demands a relatively narrow-band laser for 
quantitative measurements of concentrations especially if excitation is 
in the Q-head region. 

The ability to excite both v'=l and v'=0 immediately suggests the 
possibility of state-specific vibrational and rotational energy transfer 
studies. Scans of the fluorescence in our experiment are of low signal 
level when we use narrow enough slits to obtain rotationally resolved 
emission; they do show some relaxation occurring in the presence of N2, 
but not complete thermalization. A better designed flow system than the 
present one should greatly improve the quality of such data. 

From a diagnostic standpoint, it is desirable to pump at one wave- 
length and observe at a different one, so as to avoid background such as 
Mie scattering in a particle-laden combustor. The fact that the (0,1) 
band has transition probability nearly one per cent of that of (0,0) 
establishes this as a viable method. Alternatively, one could pump in 
(1,0) and observe the resulting (1,1) and collisionally induced (0,0) 
emission. This choice of two pump/detection combinations, each in a 
region covered by a strong laser dye, offers advantages in the event of 
interfering absorption. 

J.  W.  Dailyj  "Saturation Effects in Laser Induced Fluorescence Spectros- 
copy"j Appl.  Opt.   16j   568-571   (1977); A.  P. Baronavski and J.  R.  McDonald, 
"Measurement of C2 Concentration in an Oxygen-Acetylene Flame:    An 
Application of Saturation Spectroscopy",  J.   Chem.  Phys.   66j   3S00-S301 
(1977);  J.  E.  Allen, Jr.,  W.  R.  Anderson and D.  R.   Crosley,   "Opto- 
Acoustia Pulses in a Flame",  Opt.  Letters 1^   118-120  (1977). 
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