
AO-A091 675 MASSACHUSETTS INST OF TECH CAMBRIDGE LAB FOR COMPUTE-ETC F/6 12/1

RESEARCH IN ALGEBRAIC MANIPULATION.(U)

1980 J MOSES F49620-7?-C-0200
LASSIFIED AFOSR-TR-80-1118 NL

*nunnnuuu~
E-EhEnmhEnhEEE*nlllllllllll

a

*
AFOSR.TR. 80 - 118 ,

LEY EL
MASS. INSTITUTE OF TECHNOLOGY

LABORATORY FOR COMPUTER SCIENCE

FINAL REPORT

OTO THE US AIR FORCE

FOR RESEARCH IN ALGEBRAIC MANIPULATION
"~~-,,9L-!9 8 0 .- Y...

CONTRACT NO.

JOEL MOSES

PRINCIPAL INVESTIGATOR

t.o

Approved for pubi releases
distribution u nlmiteod

SECURITY CLASSIFICATION 32F THIj PAGL (Iflh.n f).t: Entered) _______________

ZEPOf DCOMETAT'M PGE EFORE COMIPLET1ING FORM

* 4. TITLE (and Subtitle)

, ESEARCH IN ALGEBRAIC MANIPULATION 6 PI4~~R UBR:

(I e/or ses\

9PEFRIGOFFAICEI NAME AND ADDRESS 10. PREORTM ELATE RJC.TS

545 Technology Sq., Rm. 514 Cambrid e MA .39
Air Force Office of Scientific Research //'vg97-19

m c) I I UNL SSE

14. DOITRIUIN SA TEN NMET A O ESi ifrn rTgnroln fie 5 E U IYC AS (of this report)

C T
16. DISTRIBUTION STATEMENT (of thi stctetrdi ok20ififretrm Report)

IS. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse side if necessary and identify by block number)

Algebraic manipulation, algebraic algorithms, Greatest Commnon Divisor
Algorithm, probabilistic algorithms, MACSYMA

20. ABSTRACT (Continue on reverse aide It necessary and Identify by block number)

-This report describes a new probabilistic algorithm for comnputing Greatest
Divisors in polynominal time. The algorithm solves a basic problem inhere t 2

in all prior approaches that led to exoeta space andi tk'~ 6rurefnt

DO I JAN
7

3 1473 EDITION OF I NOV 65 15 OBSOLETE UNCLASSIFIED

REPORT TO THE US AIR FORCE ON

RESEARCH ON ALGEBRAIC MANIPULATION

1979-1980

Our research this past year concentrated on probabilistic techniques

for algebraic algorithms, such as the Greatest Common Division Algorithm.

These probabilistic algorithms are developed in Richard Zippel's doctoral

thesis, a revised version of which is enclosed. These algorithms are in

some cases exponentially better than all other known algorithms and are as

close to the best algorithms one can expect for a large class of practical

problems so as to essentially cause work in this area to cease.

Research on algebraic alorithms (GCD, factorization of polynomials,

resultants, determinants, solutions of equations) have been going on for

twenty years. The first approaches were relatively straight-forward

approaches that, in the case of the GCD algorithms, were variants of

Euclid's algorithm. These are dependent on divisions of polynomials or

pseudo divisions and had the unfortunate property of increasing the size

of intermediate results by exponential orders. These unbearable effects

of the straight-forward approaches were first combated with a class of

algorithms called modular algorithms and popularized by G. Collins. The

modular algorithms are optimal when the polynomials are dense (and thus

have an exponential number of terms in multivariate problems). They,

unfortunately, turn out to assume that all problems are dense and hence are

exponentially slow in practical cases (i.e., multivariate and sparse).

• AIR FORCE e ' :'N j tESI:AECH (AFSC)

NOTICE 0"

V____ 95 7117, rev Lewed and isapprovt,: - :e iA A,'A 10-12 (7b).I~~~ D, " " ist rlbut io i: i u:!ted.

W- r. -1 echnical Informntion Officer

2.

The major attack on the modular approaches was the use of Hensel's

lemma by Moses and Yun. Hensel's lemma is the algebraic variant of

Newton's method. This approach, dubbed the EZGCD algorithm in the case

of GCD, worked fine in many cases but failed when the derivative became 0.

Whereas Newton's method only slows down at such a point, the use of Hensel's

lemma forced us to expand the problem exponentially. This problem, called

the "bad zero" problem, was the one solved by Zippel's probabilistic approach.

Zippel shows that the derivative goes to zero at an infinite number of

points, but the probability that a randomly chosen point is such a "bad" point can

be made as low as one pleases. Zippel also generalizes Hensel's lemma so

that one can start it at any point (the EZGCD algorithm always started at 0).

Zippel's thesis shows that the overhead for his probabilistic GCD algorithm

compares favorably with other approaches and that indeed it solves the

exponential problem of EZGCD. It, of course, compares very favorably with the

older approaches.

Since the completion of the thesis in September, 1979, much of the

work has gone into implementing and using the algorithms in MACSYMA. In

practical uses, the probabilistic aspect of the algorithm has not ever been

a problem. The algorithm can check when it runs into difficulty (i.e.,

when the randomly chosen point is indeed a zero of the derivative) and can

try another point, but it has not had to do so yet.

We have also used similar techniques in other algebraic problems.

th_
For example, R. Gosper had a set of three 10 -degree polynomials to solve.

Because Gosper was only interested in rational number solutions, Zippel was

able to use a Hensel method and obtained hundreds of rational solutions. In

3.

my opinion, no other known approach to the problem would have succeeded

on present day computers.

aI

Probabilistic Algorithms

for Sparse Polynomials

by

Richard Eliot Zippel

I!

Contents

Chapter I Introduction 4

1. Probabilistic Algorithms 6
2. Factoring Polynomials and Computing GODs 6
3. Determinants, Resultants and Linear Equations. 8
4. A Roadmap 9

Chapter 11 Classical GOD Algorithms II

1. Euclid's Algorithm. 12
2. Subresultant PRS 14
3. The Modular GOD algorithm.15

1. Modular Arithmetic.15
2. The Chinese Remainder Algorithm16
3. Detailed Description of the GCD Algorithm 19

Chapter II1 Sparse Modular Algorithm. 23
1. Overview of the Sparse Modular Algorithm.24
2. General Formulation of Sparse Modular Algorithm26
3. An Example.27
4. Analysis30

Chapter IV Some Applications. 34

I. A Resultant Calculation. 35
2. Recovering Ration~al Numbers and Rational Functions. 37

3. Determinants. 38

Chapter V Ileal-adic Arithmetic40

1. Newton's Iteration. 40
2. p-adic Numbers. 41

2

3. m-adic Arithmetic. 44

Chapter VI Hensel's Lemma 45

1. A New Formulation of Hensel's Lemma. 45
1. Reducing Problems to Solving Equations 45
2. Solving the Systems of Equations 48

2. Proof of Hensel's Lemma 51
3. Zassenhaus' Formulation of H-ensel's Lemma. 53

Chapter VII The Sparse Hlensel Algorithm 57

1. Introduction of Sparse Techniques. 59
2. Some Ideas for Implementations 63
3. Analysis of the Sparse lHensel Algorithm 65
4. Timings. 65

Appendix I Polynomials Used in the Timing Tests. 70

References. 74

L3

r!

Chapter I

Introduction

Scientists and engineers have used algebraic manipulation systems with significant success in
many computational problems. There are numerous symbolic computations in general relativity,
high energy physics and celestial mechanics that have been successfully completed using algebraic
manipulation systems; yet, they would have taken years to do by hand.

Unfortunately, algebraic systems do have their drawbacks. Because they deal largely with
exact quantities and not approximations like floating point numbers, the expressions that are
dealt with become larger with almost every arithmetic operation. Consider the following sum:

0i I-3W Fs.8225.
12

With the terms given, only the first two digits will give a meaningful approximations to f.
Using floating point arithmetic, we might compute with four digits. This would give .8180. But
if the sum is computed with exact rational numbers we would have 5t1) IN

This illustrates the fundamental tradeoff between precision and the size of the expressions
used in a computation. Because algebraic manipulation systems insist on exactness, they are
always faced with large expression growth, some of which may be unnecessary. The unnecessary
growth can often be fatal. For a number of problems, of which greatest common divisor
calculation is the best known, the straightforward approach leads to intermediate expressions
that are much larger than the final answer. Behavior of this sort is called intermediate expression
swell.

The intermediate expression swell problem is most prominent when the problem to be solved
involves a large number of variables. Assume a polynomial, P, involves v variables and each
appears with degree at most d. We will call /) dense if nearly all possible monomials are present;
that is, P contains almost (d + I)" terms. If only a small portion of the number of possible terms
is present then P is said to be sparse. Assume tie expressions with which a computation begins
are sparse. After a number of arithmetic operations the inLermediate expressions will become
more dense. 1his is known as fill in. As the steps of the computation proceed, the operations

4

with the intermediate expressions will become more expensive. If the final answer is relatively
small, possibly because it is sparse for some deep reason, then the intermediate computations
can require exponential time in the size of the answer.

Over the past Fifteen years, two fundamental approaches have been advanced to help contain
intermediate expression swell in certain cases. In the late sixties, Brown and Collins and his
students investigated algorithms based on modular arithmetic and modular homomorphisms
lBro7l]. The resulting algorithms did not use large amounts of storage, but for multivariate
problems with small, sparse answers the modular algorithms could require exceedingly large
amounts of time.

Zassenhaus IZas69], Wang and Rothschild lWan75, Wan781, Musser [Mus75], Moses and
Yun !Mos73, Yun74, Yun76] have investigated an alternate approach that makes use of a
computational formulation of Ilensel's lemma. This approach not only miniimizes the storage
required in the intermediate computations, but also runs in polynomial time in the size of the
answer for most problems. Unfortunately there exist problems that require both exponential
time and space when this method is used. Thus in the worst case, both tile modular and
Ilensel-based algorithms require exponential time to compute the answer.

Tile main acconplishment of this thesis is to introduce a new probabilistic idea that allows
us to modify both the modular and Hensel approaches in a manner that greatly improves the
behavior of these algorithms. These modified algorithms use an internal randomization process,
so the amount of time they require on any particular problem may vary from trial to trial.
However, their average running time for any particular problem is polynomial. We say that
these algorithms run in probabilistic polynomial time.

The two classical approaches to problems in algebraic manipulation utilize some of the
structure inherent in multivariate polynomial problems. By replacing some of the variables by
integers, the multivariate problem is reduced to a univariate problem that, is much easier to solve.
It is then observed that the univariate solution is very closely related to the original multivariate
solution. For many problems the univariate solution is tile image of the mnultivariate solution
with the variables replaced. This univariate solution is then lifted to a bivariate solution, and
then to a trivariate solution and so on. When all tile variables have been recovered we should
be left with the desired multivariate solution.

This version of the modular algorithm does not take advantage of any information about
the "shape" of the polynomials that might be determined at the stages of the lifting process. The
I lensel algorithm is generally implemented in a manner that goes from a univariate solution to
the full multivariate solution in one step. Though this is very efficient in many cases, there are
classes of problems for which the basic technique breaks down. (Basically because the Jacobian
of a system of equations closely related the problem becomes zero. This is called the bad zero
problem.) In this case tile problem can be modified to avoid the bad zero problem, but only
by making the modified answer much denser in most cases.

The fundamental idea contained in this thesis is best expressed in terms of an interpolation
algorithm. Assume that we are interpolating a sequence of values of a sparse bivariate polynomial,
P(X, Y). This is normally d]one by determining a number univariate polynomials, P(X, y,), and
interpolating their coefficients to compute P(X, Y). Our algorithm computes the first univariate
polynomial by time usual interpolation schene, but then assumes the other univariate polynomials
have the same structure. For instance, if the first univariate polynomial is X 5 + 1, then we
assume that the other univariate polynomials have only an X 5 anmd constant term and that
the -oeflicients of the X , X-1, X ' and X terms are zero. If this assumption is correct then
we will only need to lift the coeflicients of X and of tile constant term, thus decreasing tile
number of terms that need to be computed by 67%. An assumption of this sort is utilized as

5

each variable is introduced into the answer. This exponentially decreases the number of terms
that are computed and gives us an algorithm that is polynomial in the size of the answer.

1. Probabilistic Algorithms

Probabilistic techniques have been applied to difficult problems before. By difficult we mean
problems whose best known algorithm requires exponential time. The NP-hard problems [Gar79]
certainly fall into this class, as do the problems of polynomial factorization and computation
of greatest common divisors. Weide [Wei781 divided probabilistic algorithms into three classes
in his thesis. In the first class we have those algorithms that give an approximate answer to
all problems (usually in polynomial time). The graph algorithms of Grahamii (Gra66j and Karp
jKar76] fall into this class. The primality testing algorithms of Solovay and Strassen (Sol771
and Rabin 1Rab761 give an exact answer most of the time. Algorithms in this class can often
be modified to always return an exact answer, but then will occasionally require exponential
time. The final class of algorithms yields a good approximate answer most of the time.

The algorithms presented in this thesis, and those derived from the ideas given here will
fall into the second class if it is possible to verify that an answer is correct. Both the GCD
and polynomial factorization problems lie in this class. Some problems, like the computation of
determinants and resultants, have solutions that are diflicult to verify. Our algorithms for these
problems fall into a subcategory of Weide's third class. These algorithms return the correct
answer most of the time, but there is a chance the answer will be incorrect.

The algorithms presented in this thesis are probably best viewed as algorithms that produce
candidate solutions which have a probability e of being incorrect. It is possible to compute the
candidate solutions in polynomial time both in ternis and the size of the candidate. It is possible
to make c as small as desired. In practice, c can be small enough that only one candidate need
be computed.

2. Factoring Polynomials and Computing GCDs

Factoring integers has been a favorite pastime of human and electronic computers for some
time. With the advent of symbolic algebra systems in the sixties, it was not surprising that
interest would arise in factoring polymonials. The ability to factor polynomials has proven to
be an exceedingly useful tool in other problens. Of course, this ability can make solving a
polynomial equation much easier and thus lies at the heart of most packages to solve equations
and systems of equations. Factoring polynomials also is part of most algorithms for computing
integrals of rational and algebraic functions.

Algebraic number theory computations abound with factoring problems. The determination
of tile s ructure of Galois groups, the computation of tile degree of an algebraic number over a
field and the investigations of class groups are just a few of the problems that require factoring
of polynomials.

Many tsers of algebraic manipulation systems have discovered that, factoring programs
can be among their most powerful simplifiers. The factorization of a result will often yield a
imore siccinct expression and imore insight into its physical interpretalion than the expanded
representation that many algoritlms return.

The first algorithm for del ertnimming the factors ofa polynomial over tile integers was invented
by von Schubert in 1793 and rediscovered by l(ronecker in the liale nineteenth century. This
algorithm is now probably best known for its highly exponential behavior. The truly practical
algorithms that have been developed in the seventies are based on Berlekamp's algorithim [ilero9l

6

for factoring univariate polynomials over a finite field and Zassehaus' %,-rsion of Ilensel's lemma
jZas69j for lifting a factorization over a finite field to one o\cr lie integers and then to a

multivariate factorization.

As was mentioned earlier, there are certain classes of problems for Mhich the flensel approach
takes an extremely long time. These problems are generically called "bad zero" problems.
Characteristically these problems require time that is exponential in the number of variables.

Recently, Paul Wang jWan7Sl introduced some ideas on how to reduce the impact of the
bad zero problems on algorithms using Ilensel's lemma. The heuristics he uses yield a very
significant reduction of the exponential cost of some bad zero type problems, but they do
not completely eliminate the exponential beha\ ior. The precise dependence of the exponential
behavior of Wang's algorithms has not yet been (letermiied, due in part to the fact that they
are exceedingly complex algorithms.

The techniques presented in this thesis are a direct result of Wang's ideas w lien applied to our
formulation of Ilensel's lemma. A signific;int advant-age of our franework for the llensel lemma
is that Wang's ideas, when incorporated, yield a demonstrably polynornial ti me algorithm.
Actually, the work for this thesis began by trying to show that Wang's ideas could be applied
to the formulation of lensel's lemma presented here.

Though probably not as exciting a problem as factoring polynomials, computing GCD's

is certainly at least as important. GCCD's are implicitly used in computations to keep rational
functions reduced to lowest terms. Unlike the situatioi with factoring polynomials where there
is essentially only one realistic approach, there are four approaches that have been implemented
and are used in algebraic manipulation systems. Each works quite well for some class of problems.
The smbresultant GCI) algorithm 1Co]67] is rather difficult to analyze, but it seems to perform
well when the GCI) is a large factor of the original polynomials. When the two polynomials
have a GC[) of 1, the subresultant algorithm will often require iunreasonaldy large amounts
of time and space. Recently Ilearn Illea7?)] introduced a new algorithm along the same lines
as the subresultant algorithm, which seens to behave somewhat better than the subresultant
algorithm but still exhibits exponential behavior. The modular algorithm 11ro7lI does not
require a large amount of space but it still runs in exponential time in terms of the number
of variables. This is reasonable for completely dense polynomials. The ilensel version of the
GC) algorithm [Mos73], which is called the EZGCI) algorithm, has the same problem with
bad zeroes that plagues the flensel factorization algorithms.

Our improvemnent to the Ilensel factoring algorit hm also yields a polynomial time algorithm
for GC'I) computations. I lowever, we have also been able to apply our techniques to the modular
algorithm to produce a probabilistic procedure that computes ipolynomial GCI)s in time that
is polynomial in the size of the answer. This new niodular algorithm, which was discovered

in discussions with Barry Trager, is actually significantly simpler than the Iensel algorithm

and illustrates the key ideas in our approach more clearly. Thus we discuss the sparse modular
algorithm first, even though our version of the I lemisel algorit hn was discovered first.

The following table lists the times required by a nuber of algorit bins to compute the GCD
of the second set of polyniomiials listed in the appendix. It is intended to give an indication of the
possible performance of ihe algorithins presented in tIhis thesis. II section VII.4 we discuss this
example more fully. The times are listed in seconds and the asterisks indicate that MACSYMA
ran out of storage.

7

_-......duc..t 14 M d.,Ir IV kce _parsr- Nlod_
.21

2 .614 .8 .70 .108 .3 12
3 2.938 6.092 1.87612.908 1.0 707

4 1435 - 5906 1.413

5 282.33 * j9.075i 2.394-
61 I- * 60.417 4.15.3

9 8 8.699.--... --

10 . . 8.811

3. Determinants, Resultants and Linear Equations

The computation of determinants of large sparse matrices is one of the more difficult
problems in computing. I sing numerical methods, "large" mieans matrices with thousands of
rows and columns. In algebraic manipulation a inatrix with 10 to 20 rows is quite large. This
is one of the problems that qulite graphically points out tihe difference between numerical and
symlolic calcul;it.ions. The determinant of a general 20 x 20 symbolic matrix contains 20! z
2.5 X 101" terms far more than can be handled by any existing computer or even any being
designed now. On the other hand, time (let ermiinant of any numerical matrix is a single number.

One result that, points to the diliculty in computing determinants has been recently
discovered by Papadimnitrioui [l) 7 9 1, I le has shown that for certain n x n matrices involving
/n variables, the computation of the coefficient of a single monomial in the determinant is

NP-hard.
If the only problem being considered was computing the entire determinant then determinant

calculations would be quite uninterest ing. On occasion, however, something is known about the
structure of the dleterninant beforehand. It would he very useful if some use can be made of
this information to speed the computation.

Commonly, in the course of a problem, a system of equations is constructed. Of all the
variables, only one or two may actually be interesting. All the others were merely introduced
to set up the system of equations. Using numerical methods, the computation of the values of
these auxiliary variables is not really a devastating problem. Though their computation may
require additional time, the space required is only linear in their number.

In symbolic problems each of the auxiliary solutions can be very large. If there is any
way to eliminate tile computation of the an xiliary variables it will be very worthwhile. Until
now, the only teclnique available for avoiding these auxiliary computations was the modular
interpolation algorithm. But this algorithm does not take advantage of any sparsity in the
answer. In a later section of (his (hesis we will discuss the first algorithms for solving these sorts
of problems that do take advantage of the sparsity of tile answer.

The computation of polynmmial resultants and inversion of a matrix containing polynomial
entries can)oth be considered to be special cases of determinant calculations. They also seem
to have the same problems that plague uleterminants. It is very diflicult to check an answer with
all of these problems. Thus the algorithms we present can possibly give an erroneous result, but
the probability that arm answer is erroneous can be set arbitrarily low before the computation
begins.

8

4. A Roadmap

This thesis is divided into two essentially independent pieces. Part I is devoted to the
study of the modular algorithm, its derivatives and applications. Part If is concerned with the
algorithms based on Hensel's lemma. In each portion the core of the results is contained in
chapters that discuss the use of sparsity in each of these approaches.

The main example that is used to illustrate both the modular and lensel algorithms is the
computation of the GCD of two polynomials. This algorithm is used frequently in algebraic
manipulation and is implicit in virtually all computations involving rational functions. In

fact, during the sixties before Collins' and Brown's (Rro7l] work on GCD computations, the
dominant cost in rational function operations was the GCD calculations used to ensure that
rational functions were reduced to lowest terms.

Because of their importance we begin Part I with a review of the what are now the "classic"
GCD algorithms. This review, which is contained in chapter II, begins with a discussion of
the principles underlying Euclid's algorithm for polynomials and the various improvements
of it, which culminated in Collins' subresultant algorithm [Col71). The chapter concludes its
survey of the algorithms of the sixties with Collins' and Brown's version of the modular GCD
algorithm.

In chapter III we present our sparse version of the modular algorithm. This chapter presents
the fundamental idea advanced in this thesis. In chapter lII we also give a relatively detailed
analysis of the behavior of the probabilistic sparse modular algorithm.

In chapter IV we apply the ideas of the previous chapters to a number of problems. Of
particular interest is the sparse resultant algorithm. This is the first algorithm of any form that
computes the resultant of two polynomials in time that is polynomial in the size of the answer.
We also indicate how the sparse ideas may be applied to more involved and complex problems

in algebraic manipulation.
In the second portion of this thesis we illustrate how the basic idea of a sparse lifting can

be applied to Ilensel's lemma. Before this can be done we need to cast Hensel's lemma in a
framework that is somewhat different from that presented by other researchers in algebraic
manipulation. To fix the notation and make this a bit more self-contained, the basic ideas that
are taken from mathematics are presented in chapter V. Those who are familiar with the results
of valuation theory can skip this chapter.

Chapter VI gives a detailed discussion of Ilensel's lemma. We present our "new" framework
and trace its development from Newton's work through lensel's. We then present the "old"
version that was popularized by Zassenhaus [Zas691, Wang and Rothschild [Wan751, Musser
(Mus75l and Moses and Yun [Mos73, Yun75, Yun 761. This version is shown to be equivalent to
our version. The results of chapters V and VI are quite old and we make no claim to originality
here.

Chapter VII shows how the ideas on sparsity that were applied to the modular algorithm
in chapter III can be applied to Hensel's lemma. We also show how a trick due to Wang may
be used to increase the speed of the algorithm even further. The final section of this chapter
gives an analysis of the sparse ilensel algorithm. The llensel algorithm, when applied to the
computation of polynomial GCDs, can be analyzed in much the same manner as the sparse
modular algorithm.

Finally, chapter VIII presents our conclusions and some points that deserve further study.

Throughout this thesis the following conventions are observed with respect to cross refer-
ences. Any reference to a section in different chapter will be of the form V.2.3. The other

chapter's number is given as a capital Roman numeral and is followed by the section number

9

and then the subsection number. References to sections in the same chapter omit the chapter
number. Bibliographical references consist of the first three letters of the first author's last name
and the last two digits of the year of publication.

10

Chapter II

Classical GCD Algorithms

All practical algorithms for computing tile greatest common divisor of two polynomials are
based oil Euclid's algorithm (perhaps the first usage of Fermat's principle of infinite descent
[1Iar68]). Assume we are given two positive integers Pi > p2 whose greatest common divisor
(GCD) we wish to calculate. We can determine two integers, q, and p3, that satisfy

pi =qp2-+-P3 P2 > 0

by integer division. It is clear that any integer that divides p, and p, also divides p.j. Furthermore,
any integer that divides p2 and p.j must divide p, so the GCD of p2 and pi is also the GCD of
P, and p2. Assume p., - 0. We now compute a new quotient and remainder

P2 = 92PI + P4 PJ > P4 > O.

This can be continued to give a remainder sequence

P1 > P2 > P1 > ... > P. > P,+l = 0,

thus p,, must be the GCD of p, and p2.
In this chapter we will examine how this algorithm may be extended to compute the GCD

of two polynomials. The remainder sequence or Euclid's algorithm then becomes a sequence
of polynomials called a polynomial remainder sequence, or PRS. Again the GCI) will be the
last non-zero term in the sequence. For polynomials, the term before the GCD, p,,--,, may be
much larger than necessary. The main purpose of the algorithms in tile first two sections of
this chapter is to reduce the size of the elements of the PRS.

In the final section, we discuss the modular GCD algorithm due to Brown and Collins
TBro7I]. This algorithm is the first of the GCD algorithms that deviates radically from the
classical approach.

It

1. Euclid's Algorithm

We will use the following conventions and terminology throughout this thesis. Capital
letters will be used to represent symbolic literals. Lower case letters will be used to represent
unknowns, integers and, on occasion, other expressions. Let

F(X) = (X," + fxn- I +. . . + f

be a polynomial in X. The degree ofF is n. This is denoted by degF - n. If ko = 1 then F is a
monic polynomial. The greatest common divisor of k,..., f,, is the content of F. If the content
of a polynomial is 1, then it is said to be primitive. Given the polynomial F we can compute
its content by computing the GCD of kj and fl, call it 91; then computing the GCD or g, and
fz and repeating. The content will then be g,,. The primitive part of F is f(X)/g,,, which is a
primitive polynomial.

Let F1(X) and 1-72(X) be polynomials over a field. FI(X) can be divided by 1A(X) to obtain
a quotient ql (X) and a remainder F.1(X) that satisfy

Fi(X) = q,(X) 'F2 (X) +F 3 (X) deg(fj) < deg(f 2). (1)

Just as with integers, the GCD of F2 (X) and F 3 (X) must also be the GCD of F, (X) and F2(X).
This process can be repeated with F2(X) and FP(X) to obtain a quotient q2(X) and a remainder
F4(X).

F2 (X) q2 (X) . Fj(X) ± F4 (X)

F,,:(X) ---q,,_(X) F,,_2(X) + F,l (X)

F,,2(X)- q,,_-2(X) Fn,,_I(X) + F.(X)

The degrees of the Fi(X) are decreasing, hence, for some i, the degree of Fi(X) must be zero.
If Fj(X) is non-zero then the next remainder in the sequence, Fi-I j(X), is zero. Without loss
of generality we may assume that F,, I(X) = 0. The GCD of VF(X) and F.2(X) will be F,,(X).
Notice that the degree of the polynomial is being used in place of the magnitude metric used
for integers.

As an example consider calculating the greatest common divisor of

F1 (X) = X 8 + X" - 3X4 - 3X3 + 8X2 + 2X - 5 and

F.2(X) = 3X 6 + 5X ' - 4X 2 - 9X + 21.

(This is the traditional example used to illustrate polynomial GCD algorithms first used by
Knuth jKnu69].) Using the Euclidean algorithm we obtain the following sequence of polynomials.
We write only the coefficients of Fi(X).

F = 1,0,1,0,-3,-3,8,2,-5

F2 = 3,O,5,0,-4,-9,21

F, 9
1a "1 - I

12

Since the last non-zero term in the polynomial remainder sequence is a constant, the GCD of
these two polynomials is 1.

Intermediate expression swell usually becomes more severe as the number of variables
increases. In the following PRS we have used bivariate polynomials of smaller degree than the
previous example, yet the polynomials that result are still quite large.

F1 = ~X 4 +X 3 -_W

F2 = X + 2X 2 +3WX- W+ 1

F3 (-3W +2) X 2 +(4W -1)X -2W+ I
F4 27 11'3-2ll ?-lIIV+.3J +.L 9V3 i 2 +4llV+i

92- 121,V+4 X'-ftV -12 WV+ 4
p -- 729%'-738 lit Itl+725% '- 81 ll' 1621124-138W-8

Had we used three, four or more variables the elements of the PRS would have filled many
pages.

In practice it is not reasonable to use rational coefficients in the PRS. The number of
GCD's required to keep) these coefficients reduced to lowest terms is just too great, and not
reducing them leads to horrendous expression growth. If we relax (1) slightly we can obtain
a "pseudo-quotient" and "pseudo-remtainder" that will always have integral coefficients. Let
Fl(X) and F2(X) be primitive polynomials over a ring R of degrees ni and n., respectively.
(A polynomial is primitive if its coefficients are pairwise relatively prime.) Denote the leading
coefficient of F1(X) by fi. The pseudo- remainder r(X) and pseudo-quotient q(X) satisfy

fn, - n2 IF, (X) = F2(X) -q(X) + r(X). deg(r) < n2

Using r(X) as F3(X), the next term in the PRS leads to rather severe expression swell as we
see:

F, 1, 0,1, 0, -3, -3,8,2, -5

F2 3, 0,5,10,-4, -9, 21

F4 15795, 30375, -59535
F5 = 1254542875143750, -1654608338437500

Fl) 12593338795500743100931141992187500

This growth is clearly unacceptable. Most of these polynomials are not primitive. If we
remove their content at each step we get the following PRS:

F, 1, 0, 1,0, -3, -3,8,'., -5

F2 3,0, 5,0, -4, -9, 21

F3z -5,0,1,0,-3

F4 =13,25,-49

Fs 4663, -6150
FoI

This is known as the primitive PRS and the algorithm that uses it is called the primitive GOD
algorithm. It is as good as can be done with respect to the growth of the terms in the PRS;

13

unfortunately the amount of time required to ensure that each term in the PRS is primitive is
exceedingly great.

The terms of a PRS always satisfy the following relationship

f",-",+,+'r(X) = F,I(X) q(X) + Fi,+2(X).

For the Euclidean PRS, /i = 1. We will denote the pseudo-remainder of Fi(x) and F+i(x)
by prem(Fi,Fi+i) and the content of F by cont(Fi). Then the primitive PRS uses /, --
cont(prem(F, F1+i)).

To avoid the GCD's needed by the primitive PRS, Collins introduced the reduced PRS
[Col67, Bro7l]. This algorithm uses I for /1 and for 3. For the same problem, the
coefficients of the reduced PRS are

F1 = 1,0,1,0,-3,--3,8,2,-5

F-2 = 3,0,5,0,-4,-9,21

F3 = -15,0,3,0, -9

F4 = 585,1125,-2205

F.5 = -1885150,24907500

Fo = 527933700

Through better than the Euclidean PRS, the coefficients of the reduced PR.S can still grow
exponentially. In particular, if the two polynomials are relatively prime, the cost involved in
the PIRS can be prohibitive. This is probably the most common case for the GCl)'s involved
in rational function computations.

2. Subresultant PRS

The best of the GCD algorithms that use a full polynomial remainder sequence is Collins'
subresultant algorithm. For sufficiently sparse polynomials, Brown's analysis [13ro78] indicates
that even the subresultant algorithm will require exponential time to compute the GCD. Again
the way of decreasing the growth of the terms in the PRS is to pick a better value for fli. The
proof that the /3i chosen actually leads to a valid PRS is not easy. The interested reader should
examine jBro78, which is the definitive reference for the subresultant algorithm.

Let bi = ni - n, -1 . For the subresultant PRS, fli can be chosen as follows

.36,_ (-J) . , + i-21 i = 4,... ,k + 1;
where

hi = f 6,-,h 6-62,- i = 3, ... ,k.

The subresultant PRS for our standard example is
F1 = 1,0,1,0, -3, -- 3,8,2, -5

P:,2 -- 3, 0, 5,0, -4, -9, 21

15, 0, -3, 0,9
F4 = 65,125, -245

F5 .= 9326,-12300

Fo - 260708

14

If b, is I then the PRS step that divides F, and ri-1 to produce Fi-2 is called normal.
Otherwise, the step is said to be abnormal. At each normal step of a PRS the size of the
coefficients tends to grow linearly. Abnormal steps lead to faster growth.

The subresultant PRS algorithm does an admirable job of minimizing intermediate expres-
sion swell in the computation of the polynomial remainder sequence. If we are interested in the
GCD of the two polynomials, only the last term of the PI{S will be of interest. If the PRS is
relatively short then it will not have a chance to grow too much. In this case the GCD of the
two polynomials will tend to be a large factor of one of the two polynomials. However, if the
GCD of two polynomials is small the PIS involved will tend to rather long. In this case the
swell involved in the PRS can be extremely costly.

3. The Modular GCD algorithm

In this section we discuss a GCD algorithm that does not try to reduce intermediate
expression swell by controlling the content introduced in the remainders of the PRS. Instead
this algorithm maps the problem into a univariate polynomial ring over a field in which GCDs
can be computed simply, easily and without intermediate expression swell. After doing a number
of GCDs in that ring, it is possible to interpolate the results to compute the original, polynomial
answer. Thus there is no need to compute the large Lerms of the PRS.

This idea was developed by Brown and Collins [Bro71}. With some hints, the modular
algorithm was independently discovered by Knuth [Knu69j. This led to an interesting method
of controlling the intermediate expression swell for GCDs, but at a cost in the time required
by the algorithm.

Brown and Collins observed that computing univariate GCD's over a finite field led to no
swell since the coefficients could not grow beyond the size of the modulus. Thus they convert
a multivariate GCD problem to a number of univariate GCD problems modulo sonic prime.
The answers to these problems are then interpolated to produce the true, multivariate GCD
using the Chinese remainder algorithm or Newtonian or Lagrangian interpolation.

This section is divided into two parts. In the first we discuss the Chinese remainder algorithm
and some of its features. This is the key to doing the interpolation. In the second we indicate
how it is applied to produce the modular GCD algorithm.

3.1. Modular Arithmetic
In the next section we will be using modular arithmetic rather heavily. In this section we

will review sonic of the basic principles involved when performing computations with modular
arithmetic. We will write

X ==Y (mod m)

if x and y differ by a multiple of m, and say that z and y are equivalent modulo m if this
is the case. It is conventional to pick an element from each equivalence class of the rational
integers modulo m and do the arithmetic with these representatives. Two sets of representatives
are commonly used. On most current computers it is somewhat easier to perform modular
aril hmetic with representatives from the set { 0, 1, 2,..., m -- I }. We call this the non-negative
representation of the integers nodulo m (Knu69J. The balanced representation of the integers
modulo m uses the set

H -m - 1)/21,..., - 1,0, f,... - 1)/21

(The ceiling operations are needed because m mIay be even.)

15

Regardless of the representation chosen, any integer k will be equivalent to only one element
of the set of representatives. Thus representative r is called the residue of k modulo m. We will
also say that k is congruent to r modulo m.

Arithmetic with these equivalence classes modulo m is called modular arithmetic; m is called
the modulus. Modular addition, subtraction and multiplication are all performed by combining
the two operands using integer arithmetic and then reducing the result to the appropriate range,
usually by a remainder computation. Raising a number to a power can be performed by repeated
squaring using modular multiplication. This is especially effective since the numbers used are
all about the same size as the modulus.

If p is an integer modulo m we can sometimes compute I/p modulo m. Denote I/p modulo
m by u. Then

pu =- I (mod m),

and pu and I differ by a multiple of m. That is

pu-I =mv or pu-mv =.

If p and m have a common divisor d > 1, then d would divide pu - my and would thus have to
divide 1. Since this is impossible there cannot be solutions to pu - rv = I and thus p cannot
possess an inverse modulo m.

If p and m are relatively prime then it is not too hard to demonstrate that pu - my = I
must have solutions. To see this, compute the GCD of p and n using the Euclidean algorithm.
For uniformity we will let ho and f, denote m and p respectively. We will also assume that p
is in the non-negative representation. Then

fio-qfi +/h
f- q- f2 + f l

A-2 qeA-f- + A

The final remainder must be I since fo and f, (p and m) are relatively prime. It is not hard to
show that if

aifo = bijf + Ai
then

ai'4" I qi-Ilai "4-ai- I

bi+, qi-lbi +t-bi-,

Since fp+ I = I we have u = b(+i. Thus, if p and n are relatively prime, p has an inverse
modulo m, and in which case p is said to be a unit. More generally a unit is some element of a
ring that has a multiplicative inverse. Furthermore, we have developed a technique for solving
the equation

af -bg = I

for integers a and 6 when f and g are relatively prime. This equation figures prominently in the
flensel algorithms discussed later.

3.2. The Chinese Remainder Algorithm
We now begin outlining the Chinese remainder algorithm for integers. Let Pl,...,Pl, be

relatively prime rational integers. Denote the product of the p, by P. Assume we know that

16

some integer w satisfies the system of equations

w =_ mi (mod pi) i 1,...,k. (2)

We do not assume that the pi are primes. However, if they are not pairwise relatively prime then
the system of equations may not have a solution. Note that this is when P is not square-free,
i.e. when there is no integer Q such that Q2 divides P. Regardless of whether P is square-free,
if there is a solution it will not be unique. If a multiple of P is added to any solution of (2) then
the result will also be a solution. If P is square-free, then there all the solutions of (2) will lie
in exactly one equivalence class of the integers modulo P.

The Chinese remainder algorithm provides a means of determining an integer 0) which
satisfies these modular equations, provided P is square-free. If there are only two equations
then the appropriate value for tf is apparent, t == Mi + p1 (M2 - mm)p, -, where the inverse
of p, is computed modulo p2. Thus we can replace (2) by the slightly smaller system

W Mi + pm(M2 - m)p ' (mod Pm),

w m3 (mod p3),
• (3)

t mk (mod pk).

We can now repeat this process with the first two equations of (3) since PiP, and p.1 are relatively
prime. The following specification, which follows the model of JKnu69, makes this algorithm
precise. We will use this format throughout this thesis.

Algorithm C takes as input a set of pairwise relatively prime rational integers Pi,... ,Pk and
a set of integers M, ... M, r. It returns an integer m < PIP2 ... p. such that m _ mi (mod pi)
for I <i <k.

CI. 1itialize] Set q .- Pi, m +- mi.

C2. (Loop] For i - 2, . .. , k do step C3.

C3. IDetermine new m] Set q' 4-- q-1 (mod pi), m -- m -- (- in.) q q' (mod qpi) and

q *- qpi.
C4. [End) Return m.

We are now going to extend this algorithm to an interpolation algorithm for polynomials.
In order to do this we will rephrase this version of the Chinese remainder algorithm in terms
of modern algebra. In general, the problem we are to solve is: Given that w satisfies

w mi (mod p)

w m 2 (mod q)

where p and q are relatively prime, we are to find m such that

W *-'m (mod pq).

To generalize this algorithm we will say that p, q, mi m2 and w are now all polynomials.
The expression w =_ mi (mod p),.just as in the integral case, means that w - mi is divisible
by p. If p is a linear polynomial, (X - a,), then the representation of the residue classes are

17

1

rational numbers. We can compute the residue of f(X) modulo (X- a,) by division:

f(X) = (X - aI)q(X) + b.

b must be of degree less than 1, so it must be a constant. Replacing X by a, we see that
b = I(a,). So the residue of f(X) modulo (X - a,) is f(a,).

More generally, let F be a field and p(X) a polynomial over P of degree d. We write this as
p(X) E FIX]. The canonical representatives of the residue classes modulo p(X) are the elements
of FIX] of degree less than d. Arithmetic modulo p(X) is very similar to arithmetic modulo an
integer. Addition is a bit simpler since the sum of the two polynomials of degree less than d will
have degree less than d. Thus no normalization step is necessary. The product of the residue
classes represented by f(X) and g(X) is the remainder of f(X)g(X) when divided by p(X). The
same repeated squaring algorithm used for modular arithmetic can be applied here.

The elements that are zero are multiples of p(X). Denote this set by I. These elements
form an additive group. Furthermore, if a is in FIX] and b G I then ab G !. These two facts
mean that I is an ideal. This particular ideal is denoted by (p(X)). This notation indicates that
all the elements of I are multiples of p(X). The residue class ring is denoted by FIXI/(p(X)).
Similarly, the integers modulo p are denoted by Z/(p). (The ideal (p) is sometimes also written
as pZ for clarity.)

Thus far we have placed Po restriction on p(X). If F is a ring instead of a polynomial then
tile multiplication algorithm will be valid if and only if p(X) is monic.

If p(X) is reducible then not all elements of F(XI/(p(x)) will be invertible, even if F is a
field. To see this recall the algorithm used in section 3.1 for computing the inverse of an integer
nodulo m. That algorithm was based on the fact that we could solve

ap-bm= 1.

Thus a (mod m) was the inverse of p. In the polynomial case the same algorithm holds. Assume
we wish to compute the inverse of f(X) w.2dulo p(X). We can again try to solve the equation

a(X)f(X) - b(X)p(X) = 1.

As before, this equation can have solutions if and only if f(X) and p(X) are relatively prime.
Assume for now that they are not relatively prime. If p(X) is irreducible then f(X) is a multiple
of p(X) and thus f(X) = 0 (mod p(X)). Conversely, if every f(X) which is not coprime to p(X)
is a multiple of p(X) then p(X) is irreducible.

Thus if each residue class modulo p(X) is to have an inverse p(.Y) must be irreducible.
Furthermore, it is not hard to carry through the algorithm of section 3.1 fc~r polynomials. In
order for the final remainder to be 1, it will be necessary to use the Euclidean PRS. This means
that P must be a field. If these two conditions are met then FIXI/(p(X)) will be a field. This
equivalent to saying that (p(X)) is a maximal ideal.

We can now finally return to the Chinese remainder algorithm. It is clear that just changing
the words "relatively prime integers" to "relatively prime polynomials" in algorithm C will make
this algorithm valid for the polynomial case. Let f(X) be the polynomial that is to be computed.
In its most common usage, the Chinese remainder algorithm uses linear polynomials (X - pl)
for the generators of the ideal and thus the residues ;re just the values of f(X) at K = pi.
I'urthermore, the comiputation q ' (rod p,) used in step (C3 is now equivalent to q(p,) I since
V is a field. With these observations we are lead to the following algorithm.

18

Algorithm D. Given two sets of rational integers {pT,...,ph,} and {m,..., mk}, returns a
polynomial f(x) such that f(p) = mi for I < i < k.

DI. 1lnitialize] Set f(x) - mi, q(x) - (x - Pi).

D2. [Loop) For i = 2, ... ,k do step D3.

D3. [Determine new f] Set f(x) - f(x) + q(pi)-'q(x)(mi - f(pi)) and q(x) +- (x - pi)q(x).

D4. [End] Return f(x).

It is important to note that even if the goal polynomial for algorithm D is very sparse the
intermediate results can be completely dense. The following example should demonstrate both
this and the use of the algorithm. All computations are performed in the field Z/163Z.

-12 70 70

14 -75 -62x-- 22

24 75 61x2 - 21x- I

33 72 -28x:) - 26x2 + 79x + 62

51 55 53x' + 2z :' - 20 X2 - 23x - 2

-1 0 z 5 +1

Since q(x) is a product of linear polynomials, it is almost certain to always be dense.

3.3. Detailed Description of the GCD Algorithm

As before we wish to compute (lie (,Cl), G(X), of the primitive polynomials F, (X) and F-4(X).
Let B be a number which bounds the maximum of the absolute value of the coefficients of G.
(This bound may be computed from a theorem of Gelfond (Gel60], but in many implementations
[Bro7J] the maximinmn of the absolute values of the coefficients of F, (X) and F.2(X) is used instead.)
Let d = deg(G). Pick k random prime rational integers pl,... ,P ., such that P *.Pk > 2B.
Usually p, are chosen to be less than a machine word in size for efficiency. By using the balanced
representation we can get negative coefficients also. Now the coefficients of F1(X) and F2 (X) are
reduced modulo each of the pi successively and the GCD is computed over Z/piZ. Denote these
GCDs by G,(X). When computing polynomial remainder sequences over a field, the elements
will always be monic. Therefore, the GCD which we compute modulo pi will be monic. For
simplicity let us assume that both F (X) and P2 (X) are monic. This restriction is removed later.

Since both F,(X) and F2 (X) are assumed to be monic, their GCD must also be monic.
Therefore when reduced modulo pi, the GCD's degree will not be decreased. But the degree of
G,(X) can be larger than the degree of the GCD. If d is differs from deg(G,) then we say that pi
was an unlucky prime. If a pi turns out to be unlucky it is discarded and a new one is chosen.
(In practice a prime is considered to he unlucky if deg(Gi) > deg(Gi-m).)

We now have k polynomials, each of degree d which are images of G modulo pi. We can
now apl)Iy algorithm (' to the veclor of constant terms of G,, and then to the linear terms, and
so on. The interpolamed values are the coefficients of (; A slightly more efficient arrangement
of this ;=lgorithim is expressed in Algorithmn M, which does not require that I', (x) and 1-12(x) be
11on1ic.

Algorithm M takes two primitive univariate polynomials V" and 1,71 over the integers and a
bound 1) on the size the coefficients of their GCI) as inputs and returns their GCD.

19

7

MI. [Initialize] Set c to the GCD of the leading coefficients of FI(X) and F2(X). Pick a prime
m which does not divide c and set G(X) to the GCD of F, (X) and 1-72 (X) computed modulo
m. Set d + deg(G) If d is zero, immediately return I as the GCD.

M2. [New prime] Pick a prime p which does not divide c. Set 11(X) to the GCD of FI(X) and
F.2(X) computed modulo p.

M3. [Impose leading coefficient] Set H(X) 4-- cX'" + (11(X) - X' t) • c' where all the
coefficient arithmetic is done modulo p.

M4. [Unlucky prime?] If dg(H1) > d then p was an unlucky prime. Go to M2. If deg(Il) < d
then m was an unlucky prime, start all over again. Go to Mi.

M5. [Loop over coefficients] Set " +-- 0 For 0 < i < k do step M6.

M6. [Interpolate] Use algorithm C on the coefficients of X' in G and H with moduli
m and p. Let the interpolated result be w. Set C *- G + wX i.

M7. [Reset the world] Set G - C, m ,-- pm. If m > 2B then return G else go to M2.

This algorithm can easily be extended recursively to handle multivariate polynomials. A
detailed description is contained in [llro7I]. Ilere we will present a rather cursory overview of
the algorithm. The main purpose of this overview is to point out the source of the modular
algorithm's exponential behavior. After this presentation we will demonstrate another, more
inefficient version of this algorithm that exhibits the source of this behavior quite clearly.

Assume that we are again trying to compute the GCD of the two primitive, monic
polynomials FI(X, X,',..., X,,) and F2(X, X.2,..., X,.). We will assume that the coefficients of F,
and F2 lie in a field. (if the coefficients are rational integers, then they can be reduced modulo
some large prime and the integer coefficients restored by a slight variation of algorithm M.) The
GCD of F, and F.2 is the polynomial G(X, X 2,..., X,.). Assume we know that none of the Xi
appears in G with degree greater than d. The multivariate algorithm begins by picking values
for X2 =-- a2(,..., X,. = a,.(), and substitutes these values into F, and 1. 2. The GCD of the
resulting polynomials is readily computed. The value of the constant term of the GCD must
be the constant term of G evaluated at X 2 = a2. 1, .. , X,, = a,,() and similarly for the other
coefficients. The algorithm now picks d new values for X2, a2 l ,..., a2, and computes the GCD
ofl 1 and F2 with X = a2h,... a,2,1 and X3 = a. 1 ,...,X,, = a,,(. That is X2 is the only variable
whose value changes. The coefficients of the d + I univariate polynomials may be interpolated
using algorithm D to compute the bivariate GCD of F, and F.2 at XA - a30 ,..., X, = at.,
G(X, X2, a30 , . .. , a,).

Now a new value is chosen for XK, a.',; d + I values are chosen for X2 , and the interpolation
procedure of the previous paragraph is repeated. This yields G(X, X-2, a,, ... , a,,(). Using d - t
bivariate polynomials, G(X, X2, .,...., a,,o), Now the coefficients of these polynomials can be
interpolated using algorithm 1) to compute G(X, X2 , ,,.... ,a,,). The computation of this
polynomial required d + I bivariate polynomials be computed. Each bivariate polynomials
required d + I univariate GCDs so thus far we have used (d + 1)2 univariate GCDs. To
compute the four variable GCI) we will need d + I trivariate GCDs and will thus require
(d A 1)-) univariate GCDs, and the whole problem will require (d + 1)"' GCDs. This is
illustrated by figure I for v = 4.

Each level of the tree has a branching factor of d+ I so one can't help but have exponential
behavior. In chapter IM! we will show how to slash the whole structure of the tree so that it
does not have an exponential number of leaves.

Now we will present another way of looking at the GCI) problem that yields some insight
into the necessity for the exponential growth. Basically we will demonstrate how the modular

20

Figure 1.

algorithm can be shown to be determining a numnber of coefficients. Since there are an expor'ential
number of these unknown coefficients this algorithm must be exponential. This version also
leads more naturally to our new "sparse" modular algorithm.

Again F1(Z, Z,..., Z,,) and Fl(Z, Z2,..., Z,,) are primitive, rnonic polynomials and we want
to compute their GCD, G(Z, Z, ..., Z,,). In place of the bound B that we had for the size of the
coefficients in the univariate case, we need a bound on the degree of Z,..., Z,. in ((Z, Z2. , 2,,).
Assume that no Z, appears with degree greater than d in G. Given this we can write

d dG(Z, Z-,...,Z,) = F ... ,, , Z ' ... zi ,
il =O z,,=o

and we wish determine the ci,...i,.
A very simple way to determine the coefficients of G is to set up a system of linear equations

for which the unknown coefficients will be a solution. There are (d + 1)' of these unknown
coefficients, cil..,,. Pick integers for a,2,.. ., a,, and compute

G, = gcd(FI (Z, a12 , alt), F2(Z, a12,...)).

If we write
G,(Z) = 9,()Zd + gi,,Zd- I + - gi,,

then equating the coefficients of Z produces the following d d- 1 relations among the ci, .. :

d d
. ., '2, .-a', j 0,...,d (4)

i2=0 i,,=0

Repeating this process by computing (d+ I)"- -1 more univariate GCD's, G2, .., G(d+).-I
enough linear equations are produced to determine the unknown coellicients of G(Z, Z2 , ... , Z,,).

This algorithm will use O(c") steps to compute the cCI) of two polynomials involving
v variables. if the GC) is dense then this is the amount of time you would expect a GCD
algorithm to take since there will be (d + 1)" terms in the GC), and thus (d -- I)" coefficients

21

that need to be determined. In the case of sparse polynomials most of the coefficients will be
zero. The modular algorithm will still set up the large system of equations (4) and will still take
exponential time to solve the system.

The major advantage of the modular algorithm is that it never introduces intermediate
results that are larger than the answer. But its running time is also independent of the structure
of the answer. This can prove to be very unfortunate in the many common uses of the algorithm
where the expressions involved are very sparse.

22

Chapter III

Sparse Modular Algorithm

All modular algorithms have basically the same form. The value of a polynomial is computed
at a number of points and these values are interpolated to produce the original polynomial. We

ill call this polynomial the goal polynomial of the algorithm. The goal polynomial is assumed
to involve v variables. Each variable appears to no higher degree than d in the goal polynomial.
The goal polynomial will be denoted by P(X,..., X).

There are (d 4- 1)" independent coefficients in P. If "many" of them are zero then P is said
to be sparse, otherwise it is dense. We will denote the number of non-zero coefficients by t. If
1) is completely dense it will have t,j (d + 1)" non-zero coefficients. For sparse polynomials
t < (d + I).

Any interpolation algorithm that computes P must determine (d + 1)" coefficients. If less
than tl points are examined there will be an infinite number of possible polynomials that satisfy
the appropriate degree bounds and that take on the correct values at the test points. To see
this notice that each point that is examined yields a single linear constraint on the coefficients
of P

d d

il=O it=O

If there are fewer linear equations than coefficients to be determined, the system of equations
will be underdetermined.

Just. looking at (d -I- 1)" points requires time exponential in the number of variables. Thus
any modular interpolation algorithm that can guarantee that its results are correct must require
an exponential amount of time to compute P.

This chapter presents a probabilistic algorithm that computes P in polynomial time. Since
this algorithm is probabilistic, there is some chance that the polynomial it returns as 1) is not the
desired one. lowever, the chance of being in error can be made arbitrarily small by increasing
the size of the set from which the test points are chosen.

23

rd

X2

I'igure 2.

1. Overview of the Sparse Modular Algorithm

The fundamental idea behind the sparse modular algorithm can be seen by comparing
figure I of section 11.3.3 with the figure of this section. As before, a sequence of points is chosen,
X2 = a,2 , ., X, a,,, and the uiivariate G((1) is copnitted. This is done for d -- I dilTerent
values of X-. The resulting univariate ((.l)s are interpolated using algorithm 1) of chapter I[to
give a bivariate polynomial. As before, a new value of X., is chosen and a new bivariate GCD is
computed, but this tirme, instead of using d + I univariate CC(Ds we use some of the structure
determined by the first bivariate GCC). We assume that the coefficients of X' that were non-zero
in the first GCD will be the only non-zero coefficients. (In the figure we have assumed that
there are only two lion-zero coefficients in the answer.) Now a difTerent, slightly less efficient
interpolation algorithm is used, but fewer GCI)s were necessary to coml)te the base points for
the interpolation. As this proceeds, the recursive nature of the algorithm disappears along with
the exponential behavior.

The modular algorithm presented in section 11.4 solved one large system of equations to
determine the coellicients of the goal polynomial. The sparse algorithm begins by choosing a
starting point for the interpolation, (xl, . . , x,,). It then produces the sequence of polynomials,

P1 = P(XI,X20, -.... , X),

P2 = P(Xi, X 2, X:30,.... PZo),

Pv = P(X1, X2,.. .X).

The process of computing Pi from P,_ 1 is called a stage of the lifting process.
/)I is a univariate polynomial in Xi. The coefficient of X4" in P is a polynomial k.(X.2, . . ,

If P is sufficiently sparse there will be certain powers of Xi that do not apptar in Pl . ([fI < d + I
then X, cannot appear in P1 to all d + I powers.) Ass,:ne that the Xk term is one of those
terms that is not present. There are two possible reasons wly X4 does not appear in ',. Either
A. is identically zero or k(aN, .. . , x,) is e(lual to zero. The probability that fk(z. ... , ;,)
is zero when Ai. is not identically zero is extremely small if the starting point (x.20 , .. . , X01) is
chosen at random. Thus the probability that A. is identically zero is quite large. The key idea
in this algorithm is to assume that X4, does not appear in I; i.e., ./, is identically zero. Thus it
is assumed that the coefficient of every monomial involving X'- is known, and that it is zero.

24

P-
This information is used to construct 1P2 . Now tile same reasoning call be app!ied to each

monomial in X, and X2 that does not appear in P,. Since there are at most t terms in any of
the P,, almost all of the terms will be zero, and the number of coeilicients that will need to be
computed is small.

A few comments on the chances offi, not being identically zero are in order. This probability
depends only on the range from which xr ... , x,.o is chosen. For example, assume v = 2. Then

fk involves only one variable and fk. has only a finite number of zeroes, r. If we pick x() randomly
from a set with 3 elements the probability that we have picked a zero of ft is, at most, r/B.
This argument is generalized in chapter IV.

For simplicity we will walk through the algorithm when 1) is a polynomial in 3 variables,
P(X, Y, Z). As usual, we assume that P is a sparse polynomial with t terms (t << (d + 1)",
v = 3). (Whenever we say "pick z, randomly" we will mean pick an integer x, r;, domly from
a set f that has at least 1 distinct elements.I) Pick IA) and z randomly. These t'wo numbers
must be chosen randomly and are the only numbers that need to be chosen at random for this
example.

We now pick x1,. .. , 1 and examine the values of P at the points (z, !, ,A). These may
be interpolated by the Lagrange interpolation formula to give a univariale polynomial in X,
namely P(X, !o, zi). (Actually, the Lagrange interpolation formula is probably more rightly
attributed to Waring [War79].) So far nothing probabilistic has entered the algorithm.

We now assume that if KAV (for sonic k) has a coefficient of zero in 11(X, j, 7) then it will
have a zero coefficient in P(X, Y, Z). Pick a Yl, not necessarily at random. From P(X, !A), A) we
know that a number of the coefficients of P(X, Yl, zj) are zero. In particular, since the coefficient
of Xk" is zero in 1'(X, IA,za)), we will assume that the coefficient of Xk in P(X, Y Z,)) is also
zero. Thus the only coefficients of P(X, Yr ,z) that. need to be determined are the those that
are suspected to he non-zero, i.e. the coefficients of monomials that appeared in P(X, Wj, zn).
There can be no more than t of these unknown coefficients, since there are only t terms in the
answer. These coefficients can be determined by solving a system of linear equations. Only the
values of P(xir, yr , n),. .. , P(z,, yl, 2,) will be needed to set uip this system of equations.

This procedure may be repeated until we have determined d+I polynomials P(X, Io, 2,), ... , P(X, y ,, z).
Pick a monomial in X that appears in each of these polynomials. For simplicity we will assume
that it is the linear term. The coefficient of X in P(X, Y, 4r) is a polynomial in Y of degree at most
d. Call this polynomial f(Y). From the d-I- I polynomials we have computed we cart determine the
values of '(Y) at 4, . . ., y,,. Again using the usual interpolation methods we can determine f(Y)
from this information. Repeating this for the quadratic and higher terms of P(X, yi, 7()) we can
determine P(X, Y, zo).

Now that we have P(X, Y, 41), it is only natural to to compute P(X, Y,zr) for a new zi,
which does not need to be chosen at random. This can be done in a manner almost identical with
that used earlier. We know that the monomials that appear in P(X, Y,z) will have non-zero
coefficients in P(X, Y, Z). Just as in the stage where we introduced the polynomials in Y, we
assume that none of the X' YJ monomials that appear in P(X, Y, Z) are absent frotm P(X, Y, an).
There are at most i of these monomnials. Picking a z1 , we see that there are at most t unknown
coefficients to be determined in]'(X, Y, zi). All the others are believed to be zero. Picking t new
pairs of values (xi, Yl),. .. , (xz, y,) and computing P(xi, yj, zr), we can set up a system of linear
equations in the unknown coefficients. Solving this system, we have [-(X, Y, zn); repeating this
procedure we will finally determine 1'(X, Y,zj). Now we can determine the polynomials in Z

I'lhr set J is i * V chosen o e I rle et of intie,',rs in the in e rval 0, U - I, it ani be ann set of integers with
IR elenl1upluls. Tl'hrouighout rhis surlion lower case s5 rbols %ill delle inieyers (hoseii ;r rauuudom hil l u)erase
symbols will he reserveul ror variables.

25

that arc coefficients of' each V' P riioiil b) h* NOWItlid~; interpolat ion schemes.

There are two essentially different types of interpolait ion sc h liles going on in tb is algorithm.
The first time we try to generate a polynomnial in X, it is not. knoNwn what its structure is and
thus the interpolation is performed as if the polyaiia. were dense. That is wc used d +J- I points
to determine a polynomial or degrec d. T[his we call a oense inrterpolat[ion. Now that we have this
skeleton from which to work, we can produce adlditional polynomnials in X by solving systems
of equations. These steps are called sparse interpolations. These roefficients aire then combjined
via a dense interpolation to give polynomitials in Y'. The algorit in) proceeds in this manner.
The first polynomial produced involving at particular variable is (lone via a dense interpolation.
The structure determined b~y the dense interpolation is then uised to produce a skeleton for the
polynomnial. This skeleton is used1 as Ilie basis for at series of sparse interpolations that are done
to set up thle points for a new variable.

2. General Formulation of Sparse Modular Algorithm

In this section we will present the precise formn of' thle sparse modular algorithin so it inay be
applied to a number of examples. We will present these algorithms using the samne syntax that
we used in presenting the Chinese reinaiiider algorithrn in chapter 11. Making these algorithms
precise in this mianner will also aid ii thw analysis of' thle algorithm.

The first algorithmn we consider is used] when a denise liftinig is required; it is an extension
of the Chinese remainder algorithmn to polynomial rings. We have a polynomial f(x) and two
sets of rational integers { pi , p& I and (ml, . k . } n such that f&J, - in,. We want to
determnine f(x). Let p '= (x -p,) dfenote the p~rincipal ideal of (&Il generalted by x - pi. Since
f(x) is an element of the ring Q(1, the ?n, are lie imiages of f(x) uinder the map

V:Q[H -- QIXl(X -- pJ = Q.

So one way of expressing thle relationship between the f, pi arid m, is

f(x) in, (miod pI) i =1, . .. ,k.

Thus using Precisely thle same, arguments as were presented in section 11.3.1 we call justify thle
following algorithm.

The sparse modlular algorithm needs a data structure to indicate which terms are known to
be zero. Since t.here are fewer terms that are likely to have nonzero coefficients than terms with
zero coefficients, we will keep) track of' the nonzero terms. A nionomiial of the form X".. ')
will he represented by the v-tuple -c ,.,c) A skeletal polyniomnial, S, is understood to be a
set v-tuples such that each elemnent, of S rep~resenits nonzero termi in the goal polynomial.

Whenever a skeletal polynomial is produicedl, we will want (o determine the coefficients that
are determined. This will be (lon(- 1)by solvinig a systemi of linear equnations. To simplify the
notation a bit we will adopt. the following, conventioii. Assumne a skeletal polynomial S contains
tterms. We will assu inc that each skeletal poly nomiial has associated with it t symbols 4hat

will represent. the coefficients of the moiiomiahs given by S. Demiote these symbols by sm, .. ,s
where thle subscript, i, is associaited wit li the exponmeiit vector (c,, , c,). Thlen we define

S(a , . . . , a,,) ==sia'i'' ... La,', -4- &a,' .a',-" +.1 sta"~'

Thle sparse modular algorithm call be specified as follows.

26

Algorithm S takes a set of variables { X,, X,, }, a oegree bound d, a Function F(X,. ,X)
and a starting point (a, a,,) as argumtents. It is assumed that 1.e values 1 returns are the
values of some polynomial of at most v variables and of degree at most d in each variable.
The starting point is assumed to be a good starting point. The algorithm returns a polynomial
P(XI, X,,), where each variable occurs with degree no more than d and P(b, ...,b,) =

F(bi,..., b,,) for all integers bi.

SI. [Initialize] Set S - { (0) } and p, i ao.

S2. [Loop over variables] For i I- through v do S3 through S8.

S3. [Iterate d times] For j I I through d do S4 through S7.

S4. [Initial linear equations] Pick rj, set L to the empty list, set t to the length of S.

S5. [Iterate t times] For k = I through t do S6.

S6. [Set up linear equations] Pick an (i - 1)-tuple Ak, and add the the linear equation
S(A k) = F(Ak, rj, aj F I,..., at,) to L.

S7. [Solve] Solve the system of equations L and merge the solution with S to produce
a polynomial pj(Xi,..., Xi -n).

S8. [Introduce X,] For each monomial in S pass the corresponding coefficients from
po, A• and aj, r,.., rj to algorithm D. This will produce t polynomials in X, that
can be merged with S. Set pt to this new polynomial and S to its skeletal polynomial.

S9. [Done] Return po.

There is one point at which caution should be exercised in implementing this procedure.
The first time through the i loop the linear equations that are set up will be trivial since there
is only one unknown. There is a chance that the linear equations that are developed will not
be independent. If this happens then it. is necessary to execute step S6 until sufficiently many
independent equations are produced.

Since we must solve a system of linear equations in this algorithm, it is usually best to
perform the entire computation over some finite field as we mentioned in the remarks about
algorithm D.

3. An Example

To illustrate the sparse modular algorithm we will compute the linear term of the GCD,
over the integers, of the two polynomials

Fn(X, Y,Z) = X5 +(Y 2 + YZ -+ I)X' + (2Y' - 7YZ 2 - 2)X3

+(2y' -4- 2Y 1Z -- 7yAZ 2 + 2y_ 7y 2Z3 - 7yZ 2 + 3)X 2

+(-4Y:'+ 3Y" + 14YZ 2 + 3YZ + 3)X--6,

F2(X, Y, Z) - X"-4+(2Y : - 7YZ '2 + Y - 6Z)X + 6X3

+-(2Y'- 12Ym Z' --7 Y2Z2 + 42ZVY)X 2

-t(6Y1i - 21 YZ2 -4- 3Y - IZ:')X + 9.

The basic technique will be use the sparse modular algorithm to coml)ute the GCI) over
several finite fields. These (,CI)s are then interpolated to determine the correct GCI) over
the integers. The first problem is to compute a bound for the size of the coeflicients of the GCD.
Following Brown [H1ro7l] we will assume that the magnitude of the coefficients of the GCI)

27

of two polynomials is bounded by the product of the absolute values of the Jargest coefficient
in each. Thus, in our example we assume that no coefficient in the GCD will be larger than
14 X 21. Since we do not know the sign of the coefficients, they must be determined modulo
some number larger than 2 x 14 X 21 - 588.

Since the maximum degree of Y in F and G is 5 and 3 respectively, it can appear to degree
no higher than 3 in the GCD. Similarly Z cannot appear to any degree higher than 4 in the
GCD). Since both F and G are monic polynomials II must be monic also. We need not worry
about adjusting the leading coefficient.

In a real implementation the primes would probably be chosen to just fit in a word. For
most computers we would then need only one prime. To demonstrate how these algorithms
work in general we will use two smaller primes, 19 and 31.

We will only try to compute the coefficient of the linear term in X of the GCD; the
other coefficients are computed similarly and should be computed in parallel. Thus the goal
polynomial will involve two variables, Y and Z. We will denote the GCI) by G(X, Y, Z) and
the goal polynomial by P(Y, Z). The starting point is chosen at random. The integers involved
might as well be less than the modulus chosen. Starting with 19 as the modulus we chose Y = 12
and Z = 15 as the starting point.

In the notation of algorithm S, the goal polynomial is P(X, X-1), X, = Y, X 2 = Z and the
starting point is a, - 12 and a2 15. With Z fixed at 15 we compute the GCD ofF and G
with Y varying over several values. Actually, only four are necessary.

Y Z(X

12 15 X + 3X + 3

0 15 : + 3

11 15 X + 5X +3

13 15 X :. -- +7X+3

2 15 X '1 + 5:1 + X2 +8X- 4

5 15 X 3 -6X+3

From the first polynomial it is clear that the degree of the GCD is not more than 3. So the
next-to-last polynomial can be thrown out since (2, 15) must be an "unlucky evaluation point"
[Bro7l].

From this evidence it seems likely that the quadratic term in I is zero. If the modulus were
somewhat larger, so that the interpolation points could be chosen from a larger set, we would
have significantly more confidence in this result. As we shall see, this problem was chosen so
that none of these guesses which might go awry actually do. It also seems that the constant
term is independent of Y. At any rate, it is easy to interpolate: it must be 3.

The only interesting term is the linear one. It is determined by interpolating the linear
coefficients of II using algorithm D.

28

0 0 0

11 5 0+ .Y.5
13 -7 -Y + Y

_ .2Y' + 2Y

Algorithm D results in G(X, Y, 15) = X' + (2Y 3 + 2Y)X + 3. Nothing terribly exciting or
new has happened yet. So far we have not had a chance to use the sparse modular algorithm.
We now need to compute G(X, Y, -) for several other values of Z. This is done using the sparse
algorithm. We first pick a new value of Z, Z = 7. We need only to pick 2 values for Y at this
stage since there are just 2 coefficients of the linear term to be determiled. We have assumed
that the coefficients of the Y2X and Y'X terms are zero. Picking a couple of values for Y and
computing the univariate GCDs,

Y z G(x, .,

4 7 VX - 9X+ 3

13 7 X - 8X + 3

We know that the goal polynomial (coefficient of the linear term in X) is of the form
c1 Y:1 + c2 Y, so we get the linear equations

7 c 4- 4c2 = -9

-7cl + 13c2 = -8

These equations can be easily solved, giving c, = 2 and c2 = -1. Note that this time only two
univariate GCl's were necessary, while four were needed for the previous interpolation. This
procedure must be repeated for three more values of Z. Each time a pair of linear equations
must be solved. The results are

GCDs Z G(X, Y,.)
4 15 X + (2Y :' + 2)X + 3

2 7 V: + (2Y :' - Y)X + 3

2 13 X + (2Y 5Y)X + 3

2 3 X m+(2Y- 6 Y)X+3

2 13 X + (2YA- + 8Y)X + 3

In the first column we have given the total number of additional univariate GCDs required to
solve determine the particular polynomial. Interpolating these coefficients, we see that

G(X, Y,Z) - X:' - (2Y' - 7YZ'2)X + 3.

Now we change the modulus. Picking'two values of Y and Z, with the modulus set at 31
we get the following univariate GCDs.

G(X, 22, 19) X 3 - 12X + 3

G(X, 17, 21) X + 3X + 3

29

Since the linear term of HI is believed to be of the form c3Y "3 + cYZ 2 we can use these two
results to set up the following two linear equations:

I5c:j + 6c., -12

15c:j - 5c., 3

These two equations can be solved to give C3 = 2 and c., = -7. Thus

G(X, Y,Z) = x + (2Y13 - 7YZ 2)X + 3.

Clearly this must be the GCD. The total number of univariate GCl)s which was needed was
only 14. Had we used the old modular algorithm we would have required 40 univariate GCDs.

4. Analysis

The purpose of this section is to show that the time to compute one candidate solution to

a problem using the sparse modular algorithm is polynomial in the size of the candidate and c,

where f is a bound on the probability that the candidate is erroneous.
Denote the goal polynomial by P(X 1,. . . , X,) and the starting point by a (aj,..., a,,). The

ai are chosen at random from a set of B possible values. When c is chosen to be very small, B will

be quite large. Thus the a, may be quite large and we must be somewhat careful when including
the cost due to integer arithmetic. When using classical algorithms, the cost of multiplication
and division is quadratic in the length of the integers while the cost for addition and subtraction
is linear. To crudely take this into account we will count the number of arithmetic operations
with integers and multiply that by log 2 B.

Recall that it is the dense interpolation (using the Chinese remainder algorithm) that
introduces new variables as the goal polynomial is built up. The sequence of polynomials that
is produced is

P {X , a 2,. . ., a,,), P (X ,,I X2, a , .. , a,,),. . ., P (X , X2,. . ., X,,). (1)

Next there is a series of sparse interpolations that form the basis for the next dense interpolation.
These sparse interpolations use a skeletal polynomial as a guide to the structure of the

system of linear equations must be solved. If the true goal polynomial does not conform to

the structure indicated by the skeletal polynomial then the next dense iteration, in addition to
being wrong, will almost certainly be dense and the world will come crashing down afterwards.

Thus the entire algorithm depends upon the accuracy of the skeletal polynomials. Since the

skeletal polynomials are extracted from the structure of the polynomials in the sequence (1),
it is important to know if P(Xj, a2, ... , a,.) has the wrong number of terms. Clearly it cannot
have too many terms. If it has too few terms then the coefficient of some X' in P(X, . . . , X")

is zero at a. Let F, be the product of the nonzero coefficients of Xk in P for k = 1 through d.
If ai is not a zero of P, then the first skeletal polynomial will be computed correctly.

Similarly if the coefficient of some monomial in X, and X2 is zero at a the second skeletal

polynomial will be erroneous. Define F. to be the product of the coefficients of nonzero monomials

in X, and K,2 in the goal polynomial and define F F,... ,F,-. similarly. If the starting point is

not a zero of any of the F,, then none of the skeletal polynomials will be erroneous.
The auxiliary polynomial for P is defined to be F = FI/F .'. F,--i. F is a polynomial

in X1, .. . , X,.. The key assuml)tion used in the sparse modular algorithm is that the initial

evaluation point is not a zero of this polynomial. As we shall see, in the sparse version of the

I lensel algorithm tie determinant of the ,lacobian will play the part of the auxiliary polynomial.

A point that is not a zero of P is called a good point. Since all bad points satisfy F = 0 they
form a variety of codimension 1. Qualitatively, almost all points in afline (v - 1)-space are

good. The following lemma makes this precise.

30

Lernma 1. Let f E Z[Xi,..., X,,] and the degree of f in XA be bounded by D. Let N,(B) be
the number of zeroes off, (xi,..., x,,) such that x, Ej I (a set with B elements B > D), Then
N,(B) B" - (B - D) v .

Proof: There are at most D values of X,. at which f is identically zero. So for any of the D
values of X,, and any value for 4he other X,, f is zero. This comes to DB"-'. For all other
B - D values of X,, we have a polynomial in v - I variables. The polynomial can have no more
than N,. -I (B) zeroes. Therefore,

N,,(B) < DB'' -I- (B - D)N,, (B).

Let N, = (B - D)"-1 n then

n,, - nv -I DB"__

-(B-D)v-I

For v 1 I, N, D, so we have ni D. Summing the previous equation

n, <ni+ DBi -1

i=2

I:< D E B-b~ < D(...

(B D) D(Bv ID)

By the definition of n,, we have

N, = (B - D)"-' n,, < (13 - D)"((B Dv

The lemma follows immediately. I

This bound is actually attained by the dense polynomial

f1i. ,~) D
xi,,...,) = (XI - i)... 1 (X" - i).

jii i=l

One would expect a much tighter bound to hold for sparse polynomials. To get an idea of
how much better than this bound a typical polynomial can be consider the following. Let

f(X) = f(X 1,... , X,,) = cl M +-. + + ct

be a polynomial as in the lemma. We have used mi to represent a monomial in the Xj, so f has
t terms. Assume the nionoinials mi are fixed for now. If f(I 1) is zero then we have a constraint
on the ci

CIl) C-22(+.. + clml(ii,) = 0.

Without being clever in our choice of points, we can only force t -- 1 points to be zeroes of/.
In fact it is known ILan62] that a curve of genus greater than 0 has only a finite number of
integral points. Thus for v = 2, in general, if D > 2 there is a constant which bounds N,,(B).
The proof of this statement is extremely difficult, For higher numbers of variailes much less
is known.

3'

Assume now that tile goal polynomial has v variables and that no variable appears to
degree higher than d. Each of the F, is the product of at most t terms and each term is of
degree at most d. There are v - I of these polynomials, so the maximum possible dLgree of F
is (v - I)td. There are only v - I variables in F. There are B" ' points in the set I X ... X Y.
Applying the lemma to F, the probability that a point chosen at random will be a zero of F is

N,,-I (B) B"-- - (B -- D)t- 1
Be,- I By-

vD v(v - l)D + (v -)(v - 2)D 3
+

B 2B 2 + 6B 3 "
dv(v - 1)t dv 2t

B - B'

ignoring the higher order terms. So a worst case bound for the probability that a point will be
a zero of F, and thus a bad point and will lead to an erroneous candidate solution, is

dv 2 t

Taking logarithms we have

log R jOgdV)

The following theorem is the fundamental result of this thesis. It shows that the time
required to compute a candidate goal polynomial is polynomial in the d, v, the size of the
candidate and the size of e.

Theorem 1. Assume d bounds the degree to which each variable in the goal polynomial,
P(X,,..., X,,), appears. Also assume O(T) bounds the number of integer arithmetic operations
required to compute P(a,,..., a,) given a,,..., a,,. Let e be some number close to zero. Then
it is possible to compute a candidate polynomial in time

O((T + t:)dvt log2 (dv 2tf-'))

where the probability that the candidate polynomial is different from P is f and t is the number
of terms in the candidate.

Proof: To prove this we will analyze the time required by the sparse modular algorithm. This will
give a constructive proof of the theorem. The analysis is divided into two portions. First we will
determine ,he number of points at which the value of the goal polynomial must be determined.
Then the time required to determine the goal polynomial from its values is determined.

P(XI, aq,..., a,,) is computed by doing a dense interpolation of d - I points. To compute
P(X,, X2 , a.,..., a,,) requires d more univariate polynomials, each of which is computed by a
sparse interpolation. So we need (d + 1) + dt values of P to compute PX,, X2 , a3,... , av). In
general we will need

(d + 1) + dt +.. + dt = (d -+t 1) + dt(v - 1) Ft dvt

32

interpolation points. Each of these cost T integer operations. This gives the first term of the
cost.

We now look at algorithm D, which performs the dense interpolation using the Chinese
remainder algorithm, it was pointed out in the discussion of this algorithm that f and q will
almost always be dense except possibly at the final step. We will assume a dense representation
for these polynomials here. At the beginning of step D3, f(x) is a polynomial of i - I terms
and q(x) is a polynomial of i terms. Using Horner's rule, computing f(p,) requires i - I
additions and i - 1 multiplications, or 2i - 2 total operations. Computing q(pi) will take 2i
operations. The addition of the two polynomials will take i operations. Adding these up we
have 2i - 2 + 2i + i + 3 = 5i + I operations to compute f(x). Updating of q(x) requires 2i
operations. All in all this comes to 7i + I operations. Summing this for i = 2,..., k, we get
74- 2 +Ok- I tm

2 operations.
Algorithm S, which solves linear equations to obtain the sparse interpolation, is somewhat

more complex and we will make a few crude assumptions in analyzing it. We will assume that
P(X, a2 ,..., a,) and all the intermediate polynomials up through P(X,.. . , X,.) have t terms.

That is, the number of terms does not decrease when some of the variables are replaced by
integers.

There are t linear equations that must be solved. This will take about t: operations, so
we will ignore all costs that are dominated by P . Each monomial contained in S is a product
of i - I terms, and each term is raised to degree, at most, d. Evaluation of a monomial will
thus cost (i - 1)logd operations. There are no more than t terms in S, so step S6 will take
about (i - 1)t logd operations. Step S6 will be iterated t times to produce the each set of linear
equations. Thus it will cost (i - 1)t 2 log d integer operations to produce the system of linear
equations.

There will be t independent linear equations to be solved. Using straight forward algorithms
this will take about clt : operations. Steps S5 through S7 will be executed d times for each
variable so it will cost

(i - I)dt 2 logd + cl dt s cldt3

operations to produce the polynomials Pl, ..., pt.
There will be t terms in each of these polynomials, so algorithm D will be run t times. Since

the time required by algorithm D is independent of t this cost of this step will be dominated
by the 0 term above. Since these steps are repeated for each variable we have about O(dvt3)
integer operations for the lifting stage and

O(dvtT -+ dVt)

integer operations all in all.
The lemma indicates that the random integers must be chosen from a set of about dv 2 tE- 1

elements. Arithmetic operations with integers this large require at most log(dv 2't - ') actual
operations. Thus the total time required by the sparse modular algorithm must be increased
by this factor. This proves the theorem. I

33

I

Chapter IV

Some Applications

This chapter considers some of the more general applications of the sparse modular algorithm
to multivariate computations in algebraic manipulation. One of the major problems that arises
is intermediate expression swell. Intermediate expression swell can occur in several manners. In
the course of a computation the determination of the answer may require the computations of
extraneous variables, terms or factors. The fiinal step of the computation is usually to remove
the extraneous information. This is what happens in the computation of polynomial GCDs.
The final term in a PitS generally has a large content that must be removed. Alternatively,
computations may have a more subtle, yet still explosive behavior. For instance, the perturbation
series expansions in quantum electrodynamics generally involve sums of very complex integrals.
The integrals yield combinations of rational numbers, powers of 7r and values of the Rieman
zeta function at odd positive integral values. Yet in certain computations [Ben77] these huge
expressions simplify to simple rational integers.

For multivariate computations it is usually not difficult to carry through the computation
with a single variable, replacing the other variables by randomly chosen numbers. After
performing a number of these simple computations, their results can be interpolated to give
the desired answer. The dense interpolation procedure could be used, but there is a problem.
Usually, we do not have a very good bound on the degree of the various variables. Using
the old interpolation scheme, the simplified problem must be solved about (d + 1)" times.
As we commented before, for large or moderate d and moderate v, this can be horrendously
expensive. Since the basic computation may be quite complex and even dominate the cost of
the interpolation it is especially important to minimize tile number of points that need to be
examined by the interpolation algorithm.

If the answer is not dense, our interpolation method can be used to great advantage since
it needs only v(d + I)t points from which to interpolate tle result. Since our algorithm is
probabilistic it is generally a good idea to verify the answer. For certain particular applications,
like C(I) of polynomials, verification is not difficult. For others, like the evaluation of
(feterlinilants, there appears to he no good techni(uie. Though this introduces some uncertainty
into the computation, the uncertainty can be controlled by increasing the range from which

34

the random points are chosen.
This chapter will show how these ideas may be applied to a few somewhat contrived

examples. In section 1, an example using resultants is given. Section 2 presents a few simple
ideas that show how rational numbers and rational functions may be interpolated. These ideas
would be extremely useful when solving systems of equations. Section 3 uses this idea in
computing a term in the inverse of a matrix.

1. A Resultant Calculation

The application of the sparse modular algorithm to many computations in algebraic
manipulation, as outlined above, is a fairly straightforward application of algorithm S of the
section 111.2. In particular the comfutation of determinants, the solution of linear equations
and the computation of polynomial resultants fall into this class. lere we will present a detailed
example involving the computation of a piece of a resultant.

If a and b are relatively prime then one primitive element of the field Q[i/-, 0/b] is Yr

V/a + , /b. The minimal polynomial for -r is known to be the resultant of (y - -- a and y- b
with respect to y. We will denote this polynomial by fr(x). For the first few r this polynomial
is

fA(x) = X" - (2a + 2b)x 2 + a' - 2ab + b2,

fx) = xI) - (-3a + 3b)?" + (3a2 + 2Iab + 3b2)X3 + (a - b)1 ,
f1(X) - x'(' - (4a + 4b)x12 + (6a2 - 12lab I- 6b2)z + " + (a - b)4,

f5(x) = z
2 5 - (-5a + 5b)x 20 + (I Oa - 05ab+ IOb')z' 5 +. 4 (a -b).

Apparently the first few terms of .fr(x) are of the form

fr(X) = r2 - r ((-I)a + b)Xr(r -i)

2 -a- rqrab + 2

It would be very interesting if we could produce an explicit formula for f(x) but that seems
to be difficult. [he first step in trying to deterinine an explicit formula is to determine the
structure of a few of the terms of the minimal polynomial. The first two terms are pretty easy to
guess and the structure of the third one is not too bad. !ei this secl i- we will demonstrate how the
coefficient of the X,(,- '2) term can be (,.termined fairly easily. If we have a table of these terms,
it should not be difficult to determine the explicit form of the coeflicient by empirical induction.
Table I illustrates how costly this computation can he if f,(x) were computed using resultants.
All times listed are in seconds. This computation was done with the aid of MACSYMA [MAC78].

It is clear that it would not be practical to continue to compute qr in this manner. q-o
will be determined to demonstrate how the sparse modular algorithm is used. We will comptite
12u(y) for several values of a and b and modulo several different primes. Then the coefficients
of the ?' " terms will be interpolated to compute q, modulo the primes. These are combined
via the Chinese remainder theorem to compute q,.

First we need to estimate how big qno will be. At each level in the table it appears that
q, < 22, ' So we would expect q(2 to be less thall 2 . Two primes near 21' will more than
s|iffice. We will use p, : 34359738337 and 12 = 1,1359738319. The particular term of the
resultant in w-.1i we are interested appears lto have only :1 termis so we will need only three
)oints for (amd b For simplicity we will choose (a,b)-- (I,2), (2,3),(3, 4)

35

r time gctime q___

2 .090 0. 1

3 .167 0. 7

4 .287 0. 31

5 .665 0. 121

6 2.446 .919 456

7 5.397 1.876 1709

8 11.219 3.972 6427

9 23.816 9.709 24301

10 45.620 20.179 92368

11 182.768 113.993 352705

Table 1.

The resultant of (y -) 20 -I and y20 - 2 modulo p1 is

X400 - 60x 380 - 8151507690x : (' ° - 1440118365x:"" + 11816121225x3 20

+ 15871655180x :") - 7583210257x ' + 11111546973 260 + 6825130515X240

+ 83015756522 '2 0 + 11964418384X211 + 1965613129x,' J - 909489473xz"

- 16580105186x"'(' + 1649584594IX'12 + 139373068 64x5
° °

- 5608 i4753Ix 8 -4- 4122651953() + 10757822857x 1)

+ 12644080612x 20 + 1.

Though this is large it is much smaller and can be computed significantly faster than the general
resultant. Computing this resultant for (a, b) = (2, 3) and (3, 4) we determine that the x ..) term
has 9905214887 and -14549308753 as its coefficient in each case. This leads to the following
system of linear equations

-8151507690 12w, + I . 2w2 - 22wj

9905214887 = 22w, + 2 .3w + 32"

-14549308753 32w, + 3. 4w2 + 42U3

The solution to this system is (wi, w2, w:,) = (190, -4075754320, 190). Proceeding similarly
with p2 as the modulus we get the following system of equations

-8151509130 - 12w, + I - 2w 2 + 22w"

9905210549 - 22w, + 2 .3w2 + 32w3

-14549317411 -=32 w(+ 3-4w 2 + 42w 3

which has (190, -4075755040, 190) as its solution.
The 190's are expected; they correspond precisely with (I). To compute the middle coefficient

we apply algorithm C to the system

w -4075754320 (mod 34359738337)

w -4075755040 (mod 34359738319)

36

;Elmo

This gives -1378465287800 for the middle coefficient, and 68923264390 for q,.
Each of the resultant computations required about 1 1.5 seconds. Extrapolating from smaller

computations, had the resultants been computed over the integers, they would have required
about 142 seconds each. Furthermore, when the systems of linear equations were solved, the
coefficients involved (lid not grow, as they would have had they been rational integers.

In general this seems to be the best practice when in applying the sparse modular techniques.
The problem is solved using the algorithm several times over finite fields and the Chinese
remainder theorem is used to reconstruct the answer.

The computation of q2) required about 70 seconds of computation. Extrapolating from the
preceding table it appears that the computation of the full resultant would take about 10 hours,
ain(d would probably not fit in most machines. Though the resultant gives more information, for
this problem we were only interested in a small portion of the answer and the extra information
is not useful at this stage.

Furthermore, by repeating this process all the terms could have been determined if desired,
either one at a time or in parallel (in all senses of the word) without requiring significant quantities
of storage.

2. Recovering Rational Numbers and Rational Functions

Thus far we have only been concerned with using the interpolation techniques to determine
polynomials from their values. In this section we will consider some ideas that allow the sparse
interpolation scheme to be used to determine rational numbers and rational functions from their
values.

Let m be the ratio of two small integers x and y modulo p and assume the product 2xy is
less than p. Then there is an integer q such that

my - pq = x.

Rewriting this we get
m _ q x

P y Py
Since x is assumed to be small q/y must be a convergent of the continued fraction expansion of
tr/p. Front this it is easy to determine x. This all all depends on the following theorem which
is proved in 11Har681 (theorem 184).

Theorem 2. If p/q is rational number approximation to which satisfies

the p/q is a convergent of the continued fraction of f.

Algorithm T is given two numbers m and p and computes a pair of integers X and y such
that x = my (rod p). This done by computing the continued fraction of m/p whose partial
quotients are denoted by a, and convergents by qj/p,.
TI. 1Initializej Set q- -- I, qj *- 0, y-i -- 0 and 14) - 1. Set r -- m and . -- p. Finally set

i *--1.

T2. [Partial quotient] Set ai to the integer quotient of r and s. Then set r to a and a to
the remainder of r divided by a.

37

T3. [Next term of CF] Set qi *-- aiqi- I +qi- 2 and ys 4- a,yi-I + li-2.

T4. [Enough?] If y2 < 2p then set i - i + I and go to step T2.

T5. [End] Return the fraction (my,- -pqi,)/qi-.i

This algorithm allows us to determine a rational number from its residue modulo a prime.
A similar algorithm can be used to determine a rational function from its value modulo a ideal
(p(x)). If p(x) = x' , then its value is a truncated power series. In this case the rational function
that this algorithm returns is known as a Pad6 approximation. A recent study of this idea is
contained in [McE78].

If there are several variables in the rational function that we are trying to determine, then
we can replace all but one of the variables by an integer, compute the power series expansion of
the answer in terms of the other variable, and then interpolate the coefficients. This technique is
quite satisfactory and is particularly appropriate to problems like solving differential equations
where it is impossible to replace all the variables by constants.

There is another interesting idea that can be used if even computing with power series in
one variable is impractical. The basic idea is to compute the rational function //g by taking
its values, rl,... , r-, modulo Pl,-.., pA. and converting them to fractions, f /gl,-.. ., f/. (It is
assumed that 2fig, < pi.) The numerator and denominator can then be separately interpolated.
There is a slight complication. Though the rational numbers that are computed are the values
of f/g at the point in question, fA will not be the value of f unless the values of f and g are
relatively prime. As far as 1 can see there is no good way to ensure this, and there also does not
seem to be an easy way to analyze the probabilities involved. Empirically, however this seems
to be a quite reasonable way to determine f and g. It is perhaps best used as a heuristic. If
the polynomials that are produced turn out to be too dense, they are discarded and new points
are chosen on the assumption that there was a GCD between the values of the numerator and
denominator.

There is another problem, though it is easily overcome. Generally, the pi are chosen to be
just smaller than a machine word for efficiency considerations. The values of f and g can be
quite large, especially in view of the possibility of the values of f and g having a nontrivial
GCD, so 2figi < pi may be false. This problem can be avoided by combining the several of the
r, via the Chinese remainder theorem before applying algorithm T. This will yield the value of
f/g modulo pipj.

3. Determinants

In this example we will demonstrate how the sparse algorithm could be used to compute
an element in the inverse of a matrix. These techniques may also be applied to compute the
solution of a system of linear equations. The matrix we will consider is actually quite small,
but will serve to illustrate our methods. This example is from [Wan76].

Xr 1Y"l 0 0 00

1 1 1 1 1 (7)X,, -. 0 0 0 00

,X y 0 tU v

We will be trying to determine the (3, 1) component of inverse of this matrix.

38

Almost certainly, the elements of the inverse of .A, will be, non-polynomial, rational
functions. We will use the techniques of the previous section solve this problem.

The degree bounds for the determinant of At, are easy to compute. Since each of the
variables appears in precisely one column in the determinant, no variable appears to higher
degree than it appears in the matrix. If we compute the inverse of A inodulo 34359738337,
with random integers substituted for x, y, z, u and v, we discover that the (3, 1) coefficient is
independent of x, y and z. The following table gives the values of this coefficient for various
values of u and v and what algorithm T yields for f/g.

u v .AlI A __i

1 1 -2 -2 1

2 3 14316557640 -5 12

3 4 6681060232 -7 36

-2 3 2863311528 -1 12

4 7 3374617158 -11 112

-2 -5 -15461882252 7 -20

The fi/gi can be easily combined by the results already presented to compute the exact value

/t3I_-ui - I

U2 V

Again each element of the inverse could be computed independently (and in parallel) if the
value of the entire matrix were desired.

39

fI

Chapter V

Ideal-adic Arithmetic

As we shall see, Hlensel's lemma and the algorithms based on it are clever applications of
Newton's iteration to problems over particular domains. In this chapter we present Newton's
method in its familiar form for equations over the reals. We will show how this may be extended
to coupled systems of equations and analyze its convergence properties.

Although it is possible to apply Newton's method directly to polynomial problems it has
proven to be easier to apply when the coefficients of the polynomials lie in some p-adic domain.
In section 2 we present a synopsis of the basic results about p-adic numbers and present some
examples.

In section 3 we generalize this slightly, and consider m-adic domains, where m is some ideal
contained in a commutative noetherian ring. The initial presentation is kept quite abstract
so that the results can be carried over to algebraic number rings and other rather complex
structures. However, a number of examples are presented which should help to clarify the ideas
involved.

Virtually nothing in this chapter is new and the mathematically sophisticated reader can
safely skip it, referring back to it for notation as needed in the reading of later sections. Hopefully
we have presented enough of the basic concepts to allow those with other backgrounds to follow
the bulk of these results.

1. Newton's Iteration

Assume we are trying to find the zeroes of the function f(z). If we have some idea were a
solution of this equation is, then it is possible to use the Newton-1aphson iteration to refine
our guess to a zero of f(z). Often the guess need not be very close at all for this iteration to
converge.

Assume zA, is a real number close to a zero of f(x) which we call 1. We next try to find a
better approximation xA,+,. Expanding f(x,+) as a power series in (xk±I -1 xk) by Taylor's
formula we have

I(Xk + I 1Xk) + (z± - +XA)f.(Zk) +

40

Ii

We assume that I(xk-+l) is close to zero so that we may replace the left hand side of this equation
by zero. We will also ignore the higher order terms on the right hand side. All these assumptions
leave us with a simple linear equation which can be solved for xk+I.

Xk = Xk - f(Xk)
f(xk)

This is the familiar form of the Newton-R.aphson iteration. If the starting point zi, is sufficiently
well chosen then the sequence { x. } will converge to a root of f(z). This iteration converges
quadratically to the roots of f(x).

2. p-adic Numbers

The key problem in using Newton's method to solve a system of equations is determining
a "good point" at which to begin the iteration. Once such a point has been found, the iteration
will quickly converge to a solution of the system. The "goodness" of a point is directly related to
its closeness to a zero of the system of equations. In the last section all arithmetic was performed
with real numbers. Consequently, the closeness of two numbers was measured by determining
the absolute value of their difference. To get a good initial approximation to a solution we must
have some idea of the magnitude of the solutions. In physical problems this information can
often be determined from the physical constraints on the problem.

For problems in algebraic manipulation it is often easy to solve the system of equations
exactly modulo some prime. At worst we can exhaustively search the (finite) set of all possible
solutions. For many problems it is possible to do much better than this. Thus we would like
to modify the concept of distance somehow so that a solution to the system modulo a prime
yields a "good" starting point.

This modification leads to the p-adic numbers, which we examine in this section. The
basic ideas behind p-adic numbers were originally developed by lHensel fIIenI8 and applied to
problems in number theory. Over the years the p-adic outlook has permeated large portions of
algebraic geometry and number theory and is now considered to be one of the cornerstones of
modern mathematics.

What we are looking for is a new measure of distance that can be applied to integers. Since
it is possible to compute solutions to problems modulo some prime, we would like to say that
two numbers that have the same residue for a given modulus are close. Titus this new distance
measure must indicate that I and 4 and 163 are close for a modulus of 3. The first test for
proximity of two numbers is that their residue modulo 3 is the same.

It will be easier to continue if we restrict ourselves to proximity to zero. This is not much
of a restriction since the distance between two integers p and q, should also be the distance
between 0 and p - q.

So we now ask how to measure the distance between an integer p and 0. Assume that p
is congruent to 0 modulo 3. Then p is divisible by 3 and we can ask how close p/3 is to zero.
Clearly if p/ 3 were also congruent to zero then p would be "closer" to zero than if p/3 0 0
(mod 3). After all 0/3 - 0 (mod 3).

If we write the number 163 in the base 3 system we have

I +0.3-+0.32 +0-3 : +2-34.

Clearly this number is quite close to 1, since the difference of 163 and 1 is divisible by a large
power of 3.

41

We can now define the distance measure as follows. Let a be an integer, and assume 3"
divides a but 3' + i does not. We can write a as 3 'p. The the 3-adic valuation of a is

11aJ13 = 113pllb = 3'.

When p = 0 we will say that r - oo.
We can extend this definition to rational numbers also. All rational numbers can be written

in the form 3"p/q where 3 does not divide p or q, and r can be positive, negative or zero. Then

113"p/ql13 = 3 - .

This definition can be extended in the obvious manner to other primes. In general these distance
measures are called p-adic valuations.

In elementary analysis and topology, absolute values are used to define convergent sequences
and the convergent sequences are used to "complete" the rational numbers to yield the reals.
We will now use the p-adic valuation to complete the integers to give the p-adic integers, Zp.

The basic idea is quite simple. Let

A = {a0,a,a2,..., ak,...}

be a sequence of rational integers such that

11ai - ajjlj --p ,,,i,

Thus ai -a- I = alp'. The we can view { ao, at,. . , ak } to be a sequence of increasingly better
approximations of ak. The whole set is thus a sequence of increasingly good approximations to

liM ak.
k-oo

This limit is often represented by the infinite series

ao + a, -p + a p 2 _.. (8)

The a, are chosen from the range 0 < ai < p. This is called the power series representation for
a p-adic integer.

It is clear that the positive integers have a unique representation of this form. The p-adic
integers also include quantities for which (8) is an infinite series. Assume that a (0 0 no, a,... }
and 0 are two p-adic integers such that ak =/3. (mod pk), for all k; that is, 11ak -Pklip -= Pk+.
Then we say that a and # are equal. If this is the case then they must have the same power
series representations. From now on we will only work with the power series representations of
p-adic integers.

Negative integers also have p-adic representations. Consider the number -1. One sequence
of good approximations by positive integers is p" - 1. But this can be written in the following
manner pk_ I = (p- _)(pk- I + p1-2 +.. +p+

(p +- 1 { (p -- 1 .p + (p P 2 +) +' { • • • q (p -- 1 .p k - -l

Taking the limit as k --4 oo we have

-- I (p - 1)-!- (P - I' P+ (P - I).p 2 +....

42

It is easy to see that this is one less than zero:

-1 1 = I +(p- l)+(p-)p+(p- .p +...
= p+' (p - l + . -

= p + (p-) p +

=-0.

Arithmetic with p-adir. integers is performed in much the same manner as power series
arithmetic. The only difference is that a normalization step must be performed to ensure the
coefficients of p4- lie in the range 0 < ak < p. For instance, to compute

q = (1 + 3 + 32 + + . ..)2

in the 3-adic integers we begin by performing the power series multiplication.

q'2 _ I - 2.33-3 .32 2-33 + 5.3"+ +...

=1 + 2 -3 + (I + 2) 3- -5. 34- .-.

= I + 2. 3 + (I + 5). 34 +...

The p-adic integers clearly include all of Z since the positive integers and -1 are p-adic
integers. There are other elements also. For instance,

I I
- - 1+3+32+33+....2 _-- 3

So, -1/2 is an element of Z3 .
Certain algebraic numbers also lie in Z,. We will now show that X2 - 7 has a solution

that lies in Z.,. Let the symbol / represent a solution of X2 - 7. If V/7 does lie in Z3 then
we must have

= ao + a 3 + a2 32 + . ..

Therefore, we must have ao - 7 - 0 (mod 3), so ao is either I or -1. We pick 1; using the
other solution of X 2 - 7 using identical steps.

As with the computation of ao, the computation of the other ai proceeds by considering
the equation

(ao + a, • 3 +...)2 - 7 - 0 (mod 3'+l)

and solving the resulting equation for a,. Thus to determine a1 ,

(I +at - 3-+...)2- 7 - I + 2a, .3-- 7 = 0 (mod 32)

So a, = I and v/7- =1 + 3 +.... Continuing

7 - (1 + 3 + a . 32)2 = 16 + 8a2 32 (mod 33)

so &2 = 1. This may continued arbitrarily far:

V7-= I + 3 + 32 + 2.34+

Notice that the equations for a, and m2 were both linear. This is generally the case.

43

3. m-adic Arithmetic

This section requires a bit more mathematical sophistication then the earlier chapters and a
bit deeper understanding of the concepts of abstract algebra. However, we use this sophistication
only to obtain more general algorithms, the reader could merely interpret most everything we
say using p-adic integers and would lose little in terms of content.

Let R be a commutative ring, m an ideal of R. Then there is a sequence of rings and
canonical homomorphism as follows.

02 203 0,h/m _ RIm2 +-- Rimt
.+... (3)

Consider the set 96 = /RI X/ RIm2 X ... and an element of (ai) C % where ai E RIm'. An
element of 11 is said to be coherent if Oit 1a,+ = ai for all i. The set of all coherent elements
of rl is a ring. This ring is called the inverse limit of of the sequence and we write

R... =z lim R/m'.

R,,, is said to be the m-adic completion of R. The last section dealt with the case R = Z. The
only ideals are the principal ones generated by a rational integer, m. The sequence of rings in
this case is Z/(m) i = Z/(mi).

For example, v/7 is represented in Q:i the coherent sequence

V/7 = (t, 4, 13, 13, 175, ... a.

If we write this sequence as a sequence of differences we have the familiar form, (t, 3,9, 162,...).
Unfortunately, the subtractions we just performed have to be made precise. We subtracted an
element of R/(m') from an element of R/(mi+[). Thus we need an embedding of R/(m') into
R/(mr'+), i.e. the inverse of i+,. There is no unique inverse. Before resolving this problem,
we want to examine one additional example to bolster our intuition.

Let F be a field and consider the ring R = Fix, y,z]. The ideal m = (x, y,z) is maximal,
so R/m is a field. Intuitively, the m-adic completion of R should be the ring of power series
in x, y and z, Fflx, y,z]. This is in fact what happens. The first ring of (3) is F. The next
ring is R/M which is the ring of power series in x, y and z truncated after first order. Since
(x, y,z) 2 = (x 2 , y2 ,z 2 , xy, xz, yz), the next ring is the truncated power series ring of order 2.
Clearly the inverse limit is the general power series ring. The map 0, merely truncates the power
series to order i - 1.

Again the inverse map is not unique, but since there is an natural embedding of the ring
of power series of order i into the ring of order i + 1, O+ has a "natural inverse." Notice that
we can extend 0, to a map from R,,, onto R/m - .

We would like to write

a = to +a ,m +a2" '

So, in some sense, ai • mi a the projection of a to the "subspace spanned by mi'. There are only
two conditions which need to be satisfied by a•

(1) ai - m c miRm
(2) a - m' m'+I

The first property ensures that, under the n-adic topology, the aj • Mi get smaller and
smaller, i.e. their sum will converge. By the second condition their sum will converge to a. This
is all we need. The natural mappings, if they can be determined, are suitable.

44

I

Chapter V

Hensel's Lemma

In its most common form, Ilensel's lemma indicates when a factorization of a polynomial
over a ring R/m can be lifted to a factorization over the ring R,,,. Lately, it has been
used to lift factorizations modulo a prime to factorizations over the integers and then to
multivariate factorizations. It is also used to lift GCD and other computations useful in algebraic
manipulation.

In this chapter we will present a "new" framework for discussing computational formulations
of lensel's lemma. Actually, the formulation we use is fairly well known in mathematical circles.
In the first section we present the new framework and show how to solve simple problems with
it without making any particular appeal to lensel's lemma. In the second section we prove
lensel's lemma, in its more familiar form, using the techniques of the first section. The final
section presents the formulation that been used in algebraic manipulation circles and discusses
its similarities and differences with our formulation.

1. A New Formulation of Hensel's Lemma

Our version of Hensel's lemma uses an m-adic version of Newton's iteration to obtain the
zeroes of a system of equations in an Lp-adic field. The first part of this section converts a
number of well known problems, and a few problems not so often considered, into systems of
equations which must be solved. In the second part we show how to apply Newton's iteration
to systems of equations over m-adic fields. We concentrate on a linearly convergent algorithm
since it is rather simple, but in the final section we also discuss the quadratic algorithm and
point out its draw-backs.

1.1. Reducing Problems to Solving Equations

Both factoring polynomials and computing their GCD's are included among the problems
which can be recast as systems of coupled, non-linear equations. By reducing these and other
problems to systems of equationis we will obviate the individual analyses which were previously

45

required. The algorithms produced using this method benefit from all the advantages ascribed
to the "Ilensel lemma technique" and our improvements to it.

The first problem we consider does not appear to have been studied much but is interesting
nonetheless. As we shall see it leads to a useful heuristic for solving quintic equations.

Assume f(z) is a monic polynomial over Z. We want to know if f(z) has a polynomial divisor

of a given degree over Z. In its most common form this problem asks whether f(z) has any linear

factors and thus possesses integral zeroes. By determining if f(z) has any quadratic factors we
will be able to determine if f(z) has any zeroes in a quadratic number field.

To illustrate this technique assume

f(z) = z, + cz 1 -+ c,2z 3 + c:Iz 2 + C.1z + C5

and that we are looking for a quadratic factor. (Notice that if we can find a quadratic factor

then what will be left is a cubic polynomial. Thus this could form the basic of a simple algorithm

for computing the roots of certain types of quintic polynomials.) Any such quadratic factor

will be monic and thus of the form: g(z) = z"2 + az -+ b. Since g(z) divides f(z), the remainder
must be zero. Dividing f(z) by 9(z) we get a remainder of

la' - cla 3 + c2a
2 - c3a + b2 - c2b - 3a'b + 2cab + c4]z

+ a3b - 2ab2 - c a2b + cjb2 + c2ab - c3b + C5.

For this to be zero the coefficients of both the linear and constant terms must be zero. We thus

get the following two equations in the unknowns a and b.

a4 - cla 3 + c2a2 - c3a + b2 - c.b - 3a 2b + 2clab + c4 = 0

a'b - 2ab ' - cla 2b + c1b2 + c2ab - c:b + c5 = 0 (1)

Any solution of this system of equations will yield a quadratic polynomial which divides f(z).

From the classical theory of equations, we know that all quintic equation, over the rationals,
can be transformed into the Bring-Jerrard form z- + cz+c5 = 0. Assuming c = c2 = c3 = 0

equations (1) simplify considerably. By elimination theory we find that a and b are zeroes of
the following polynomials

a'm - 3c.4 1 6 + IIcaa5 - 4ca2 - 4clcsa + c,
b -_ c.1b G c~b0 - 2b 5 + c~b4 + c4c2b3 + c4"

Consider now the general case, f(z) is a polynomial of arbitrary degree and we are looking
for a polynomial, g(z), which divides f(z) and is of degree n. The remainder of f(z) when divided
by g(z) is of degree n - 1. Equating each to zero, we get n equations. There were n unknown
coefficients in g(z) since we know g(z) is monic.

If f(z) is not monic we can still use this procedure. Using an additional indeterminate for

the leading coefficient will not work since there doesn't seem to be an additional equation lying
around. Instead we monicize the polynomial. Let

(z) = coz" + cz"- +.'. + Cn

We could monicize f(z) by dividing it by q) but this would introduce fractions that would be
difficult to handle. Then

'f(z)= (coz)" + Cu + +... ±,c("f(q)z).

SitCe A(z) is monic we can Ise tlie above procedure with) and Ihen adIjust th e leading coefficient.

On the other hand if we knew the leading coellicienL of g(z), or for that miatter any coellicient

of g(z), then we would have enough equations to solve the system.

48

Assume we have a monic polynomial

() = X7" +fix " + +I.

which we are trying to factor into two polynomials g and h of degrees r and a respectively. Then
we have

f(x) = (x" + 91 x'-' +" + 9,)(x' + h, x ,- - + h.)

Multiplying out the polynomials and equating the coefficients of x gives the following system
of equations.

g, h1 = ,

92 + g1h + h2 = h

g,h,_ I + g,-1h,, =/,I_

grh = I,
The fi are known so we have n equations in r + s = n unknowns. Since there are the same
number of unknowns as equations we have reason to believe that there is are at most a finite
number of solutions to the system of equations.

Notice that had we not assumed that f was monic then there would have been an additional
equation

ahio = fo.

Unfortunately, there are two additional unknowns. The system would not have had a finite
number of solutions. However, if one of the gi or hi is known then the solution set would be
finite. (This is a slight generalization of Hensel's Lemma.)

If it was known that f() could be expressed as the product of more than two factors then
one could use the technique sketched above recursively. However it is possible to set up the
systems of equations for more than two factors without much difficulty. For instance, assume
f(i) is known to be the product of three factors A(x)B(x)C(x) of degrees ri, r,2 and rJ respectively.
We then know that

f(x) A(x)B(()C(x)
x" +.- + f,, =(x, +...- + a,,)(xl + +. +b,,)(x"I + .. +c,,)

_x
r
l

+
r

2 +
r + nixr2 +

r + bZtIrr+ o-3 + c lx rb +i2± + " a,. b..c,

Again we equate the coefficients x1 on the right hand side of the equation with those on the left
hand side. There are n = r, + r2 + r., equations and an equal number of unknowns, a,, bj and
c. so we seem to have won again.

Recall that the square-free decomposition of a polynomial f(z) is a factorization into the
form

(z) = P1(z)P2(Z)
2e3P(z)3 ...P,#)"

where each of the P, is square-free and every pair, P and Pj, is relatively prime. The classical
way to compute the square-free decomposition of a polynomial is to first compute the GCD ofi(z) and f'(z):

gcd(f(z), f(z)) = P.2(z)PF'(z). . (z)' -- .

This allows us to determine P1 (z) and we can repeat the process with the GC to compute P2

and so on.

47

IL

For multivariate polynomials, the first GCD is extremely costly. Trager and Wang fTra79]
have suggested using an evaluation homomorphisn to reduce to a univariate polynomial,
computing the square free decomposition using univariate GCDs and then using Ilensel's lemma
to get the square-free factorization. Using our formulation, all that is necessary to lift the
univariate factorization is to set up a system of equations that must be solved. For n = 2, this
is quite easy.

f(x) = A(z)B(X)
2

x- +.. + f,, = (x" +... + a,)(r +... + b,)2

= XrI+ 2 r2 + (a, J- 2b,) zr +2. - I + + a,,b 2

For larger n, similar results are easily obtained.

The GCD problem can be handled in a very similar manner. Assume we want to compute
H which is the GCD of F and G. Again we will treat all polynomials as polynomials in x with
coefficients which are to he determined. Letting F = Al and G = 1i! we get a system of
equations which is similar to the system which was derived for a factorization (1). To obtain a
solution to this system we will also have to obtain values for A and B.

It would be interesting to see if it is possible to compute H without computing the cofactors.
It is possible to set up a system of equations which does this but in practice it will probably
prove too expensive. Since H divides F, the remainder of F when divided by 11 must be zero.
This gives one set of equations which the coefficients of II must satisfy. In fact it is possible to
do the same with G and produce 2 systems of equations which II must satisfy. For instance
with F and G monic, of degree 4 and II quadratic, we get the following system.

2hih.2 - f1 h'2 - hM + fAh2 - f 2h, + f3 = 0

h2 -hh 2 + f1 h1h2 - f 2h 2 + 4 = 0

2h,h 2 - gh2 - h3 + gh2 - 92 h, + .9. = 0

h2 - hh 2 + gihih. - 2hz2 + 9 = 0

Remember that only h, and h2 are variables here. Everything else is determined a priori. At
most two of these equations will be independent.

I have been unable to produce a similar set of equations for resultants. All the systems
I have managed to produce have had fewer equations than unknowns. It seems unlikely that
a system of equations which has only a finite number of solutions exists, but a proof seems
difficult. From a practical point of view this does not really matter since the sparse modular
lifting algorithm can be used to compute resultants. Nonetheless it is still curious that no such
system seems to exist.

1.2. Solving the Systems of Equations

Now that we know how to set up systems of equations, we need to show that there actually
is an easy way to solve the resulting systems of equations. We will use the m-adic language
developed in section VI.3 throughout this section.

We assume that It is a commutative ring with unit and that m is an ideal of R. For simplicity,
we begin with the single variable version of Newton's iteration. Let f(X) be a polynomial in X
over IH. Let x, be a coherent sequence of values in R such that f(k) = 0 (mod nk +). Clearly

48 j

Xk converges to an element of R,,, r. If we atre lucky, the limit %ill also lie in R?. There is a
canonical embedding of R in R, so we might as well consider f(X) to be a polynomial over Rill

r can be written as a series

r = ro + r, + r 2 M+ ,

where rk • m_k (zk - x4,:i). Following Newton's example, we expand f(zXk) as a power series
in (x. - xk_):

f(Ax.) = Ak-i) + f'(z._ I)(Xk - X._-) +

Since (Zk _ Xk--) rk .Mk G M1 , (X. - Xk- 1)2 will be zero modulo m 4-". So we have

O. = f(x.) = f(xk --,) + f(zk- I)(Xk -- xA-) (rood mk--) (2)

This equation can be solved for the correction term (x. - x I 1). Unfortunately, using this
iteration involves computing the inverse of f'(x4- i) at each stage in the iteration. There are
two choices, if we compute the the inverse at each step, and make use of all the information
available, the iteration converges quadratically. On the other hand, if we iieed an iteration
which is only linearly convergent it is possible set the iteration up so that only one inversion
is performed.

Since (X. - Xk- i) is an element of mr'R, we need only compute f'(xA._ _) modulo m. Again
using Taylor's theorem, this time to expand f(xk-i) at xk, we get

f'(Xk-) = f'(Xo) + /"(O)(Xk - X,) + f(rO) (3)

all modulo m. Combining (2) and (3) we have

0 --= f(xk-,) +I'()(zk -- Zk) (mod m k+ 1)

Ak - -k- -'(,)-f(xk-- I) (mod _i+n1) (4)

Since k steps are required to compute an approximation to r whose first k terms agree
with r we say that this iteration is linearly convergent. It is possible to produce a quadratically
convergent iteration by a very similar method. We do this in section 1.3.

We give a simple example to illustrate the linear iteration. Assume we wish to compute
the square root of an integer. The most common method used is to use Newton's iteration with
integers and round everything off to integers. The algorithm we present computes the square
root of n using a linearly convergent iteration. For the starting point we use the square root of
n computed modulo 3. We begin by dividing out all powers of 3. If an odd number of powers
of 3 divided n then n has no square root. Now n is congruent to either I or 2 modulo 3. If 2
then n does not have an integral square root otherwise the initial "guess" is 1.

For / we use f(r)' - n = 0. Equation (4) now reads

f(-72 (mod m +±)
2xo0

= (3) and A) is always I. Both the left and right hand sides are divisible by 3k so this really
is a congruence modulo 3. Since 22 =: I (mod 3) the correction term is

49

6'i L

We now derive the iteration for solving systems of equations. The procedure is very similar,
but it is easy to become mired in indices if some sort of vector notations is not used. On the
other hand, vector notations can easily lead to wrong answers if the basis behind them is not
thoroughly understood.

First, Taylor's theorem in several variables: Let f(z 1 ,., z,,) be a function in the variables
z,.. ,z,,. Taylor's theorem gives the power series expansion at (z, ..

AZ (s)AI ..1 +(I O(i-X
(5)

SAa 2f
+ 2= 2__ oj (.X ,,)(z, - x,)(- Z) +...

The first summation in equation (5) can be viewed as the dot product of two vectors

(-- -i) =oZ(- X, Z, - 2, . -, X4

Of9 f Of ~ f

where we have used 1 as an abbreviation for (XI, X2, ... , x,). If we treat the first of these
vectors as a column vector and the second as a row vector the dot product is merely matrix
multiplication.

Using this notation, the first two terms of Taylor's formula can be expressed as

fM) = Ai) +- :0- Of (. () +

(It is a good thing we do not need more terms.)
If we have several f's then each may be expanded as a power series like (5). If (fi,... ,f,,)

is treated as a column vector we see that ff -.. 2
_ f C .. Of1

This matrix is known as the Jacobian of f, which we write as J. We then have
M() = M() + J(m). (i - i) +..

Now assume that IA. is a sequence of column vectors which converge to a solution of f(*).
Further assume that f() - 0 (mod rMA. + I). So the sequence of iA. is a coherent sequence which
converges m-adically to a zero of the system of equations. Then using (12) we have

0 =- AM~k =- Ai k-- 1) +t Jek-- 1) " (Pk -- k -- 1) (rood mA'+l .

Again we are only interested in a linearly convergent iteration at this point. By the reasoning
used in the univariate case we may replace J(ik-I) by J(14)) so

This iteration is called the Ilensel lifting algorithm. Notice that it is only applicable when the
Jacobian is invertible. We state this as a theorem.

50

Theorem 3. Let { f1 (zi,.... ,z,,) } I be a system of a system of equations over R_,m, where m is
an ideal of R. Let J be the Jacobian of {f, }. If f,(i)) 0 (mod in) and if the determinant of
J()) is invertible over R,./m their there exist elements of R,,,, 1 such that fi(i) = 0, and they
may be determined effectively.

The initial solution of the system of equations, k is called the starting point of the iteration.
If J(A)) is invertible then A) is said to be a good starting point. If the Jacobian matrix is not
invertible, either because the ij) was a bad starting point or because the Jacobian itself was not
square, then the system of linear equations which is to be solved at each step will not have a
unique solution. There are cases where this can be useful, for instance as a sieve for possible
solutions to diophantine equations over the integers. This idea has also been advanced by Lewis
ILew691 and Lauer jLau78].

The quadratic form of the iteration uses J(xj. -) in place of J(x)). Thus

Z2 1 - = -J(1 -1)

Unfortunately, this iteration requires that the inverse of a new Jacobian be computed at each
stage of the iteration. Since 11/m is field this is easy for the first step. Afterwards, rational
expressions may appear and complicate the situation. Also note that J(z,) is invertible in
RL,/rn 2 if and only if J(z 1) is invertible.

2. Proof of Hensel's Lemma.

Iensel's lemma is usually formulated by investigators in algebraic manipulation in terms of
the factoring problem. Last section has shown that when the .Iacobian of a system of equations
is invertible, it is possible to lift a solution of a system of equations modulo in to a solution
in the in-adic completion. The version of Ilensel's lemma which is most commonly seen these
days deals specifically with the problem of factoring polynomials. This version inaicates that
factorizations modulo m can be lifted to factorizations over the completion if the factors are
relatively prime. More precisely,

Theorem 4. (llensel's Lemima) Let f(X) be a monic polynomial over R, m an ideal of R. If
there exist elements of R/mT]IX], g(X) and h(X), such that f(X) - g(X) h(X) is an element of
nifnX] and g(X) and h(X) are relatively prime, then (X) and h(X) G I,,,IXI exist such that
f(X) = (X)h(X) and (X) - g(X) and h(X) - h(X) are in mRIX].

To understand this denote the coefficients of f(X), (X) and /(X) by f,, gj and hk respectively.
The f, are known and the g. and h. are to be determined. Writing out the system of equations
derived in section 1.1 we have

g, ±h =+'l

g2 +-g-h, + h 2 h

g,h, .+ : g,- h, ,-

g,h. =J

For the starting point we can use the coefficients of g(X) and h(X). So by theorem 2, it is
possible to determine O(X) and h(X) if the Jacobian of this system of equations is invertible.

51

The Jacobian happens to be
(1000..0

100 0 .. 1 0I ...
h 1 0 0...91 1 0 ...
h, h, 1 0 9

.h 0 0...,

The determinant of this matrix is also called the resultant of g(X) and h(X). It is known to
be zero if and only if 9 and h have a nontrivial common factor. If the determinant is non-zero
then we will be free to use the linear llensel iteration as far as we please.

To see how this formulation actually works, consider factoring the polynomial

f(Z) = Z" + 67Z" + 41Z' + 2781Z3 + 737Z 2 + 943Z + 253

over the rational integers. For this sort of problem, we choose in to be an ideal generated by
some rational prime. The initial point is determined by using the Berlekamp's algorithm [Ber70]
for factoring polynomials over finite fields.

To get an idea what its factorization will be over the integers, f(Z) is factored modulo
the primes between 2 and 199. We discover that modulo 2, 3, 5, 17, 67, 71, 127 and 179, f is
the product of two factors of degree 3. With other moduli f splits into more pieces. Careful
examination of the 2 cubic factors shows that each has one term whose coefficient is zero. In
fact this is true for all irreducible cubic factors for any modulus. Thus we conjecture that

f(Z) = (Z 3 + aZ' + b)(Z :' + cZ + d).

While we would not expect an implementation of a general purpose factoring algorithm to apply
this trick, we will use it for two reasons. First, it simplifies the equations which are developed
somewhat, and second, this example will also indicate how appropriate additional knowledge
about the problem to be solved can be utilized. Multiplying the candidate factorization of f(Z)
out we are led to the following system of equations

a 67

c 41

b + + d 2781 (6)

ad - 737

k - 943

bd 253

Since we knew (or at least hoped) that two of the terms iii the factorization were zero,
there ar,. two more equations than unknowns. In fact, the equations are now trivial to solve,
To make things a bit more interesting we will ignore the first two equations. We use 5 as the
modulus, i.e., m = (5). Berlekamp's algorithm gives f(Z) = (Z ' + 2Z - 2)(Z 2 + Z + 1), so
for initial approximations we have a(, = 2, b) -2, c4 = I and do = I. The inverse of the
Jacobian of the system of equations is

0 -1

j ~ do 0 aoI 1 1 2(O) 0-2 2 150du 0 4,) -2 2 -2 -I

52

To compute the next stage, we first determine the correction terms which were denoted by
-) in the previous section. To do this, the equations in (6) are evaluated at the starting

point modulo 25. We then get a column vector which is multiplied by -J-1())b al . __ - 10 -0
c a C-10

di do-5 10

Adding this to the term starting point, we have al = -8, b, = -7, c = -9 and d, Lt.
Repeating this process,

,) ai / 0-50)
C2 c1 -50 50

d2 d, -25

So a2 = -58, b12 23, c2 = 41 and d2 1I. Repeating this iteration one last time we are led
to the final factorization

f(X) = (X3 + 67X 2 + 23)(X + 41X + 11).

3. Zassenhaus' Formulation of Hensel's Lemma

The "old" version of Ilensel's lemma was first proposed by Zassenhaus [Zas69. Wang and
Rothschild IWan75] and Musser IMus75] utilized Zassenhaus' ideas in their factoring algorithm.
Using the ideas of Moses and Yun [Mos75], Yun IYun73, Yun76] investigated the general
applicability of lensel's lemma to problems in algebraic manipulation.

As formulated by Yun [Yun76], Zassenhaus' version of llensel's lemma differs from ours in
that the number of equations produced is smaller than the number of variables. For instance,
in the factoring problem, the Zassenhaus approach determines G and H by solving the equation

f(X) - GH = 0 (7)

It is only when the solution of this equation is restricted to the ring Z,[X that (7) has a unique
solution. By using a p-adic technique the non-linear diophantine equation (7) can be reduced
to a series of easy to solve, linear equations. Then by piecing together the solutions of these
linear equations, G and 1 can be determined. The procedure used is not very complex. Here
we will outline the main points and demonstrate the connection with our formalism.

Let f(K) be a univariate polynomial over the integers, and assume that it has two irreducible
factors, G and It. We know that Go and I/) are factors modulo p and we want to lift them to
C and H. Writing G and H1 p-adically

f(X) (Go -Gp +..)(+ flip +..)

- Gol0 + (I Go + GiiH) +

We know that f(X) - (;.fn is a multiple of p, so dividing by p we have

ftG - Gill, = (1(X) - G0,)][,)Ip (mod p) (8)

53

This is a linear diophantine equation in G, and H1 . Its solution is obtained by first solving
AGo + iHo = X' (mod p) for various i by the Euclidean algorithm. Since the left hand side
of (8) is a polynomial in X, G, and I1, can be determined by adding up the appropriate Bi and
Ai respectively.

Having computed Gi and H1 , the other terms may be computed similarly. For a linear
iteration, the process continues as follows:

f(X) = (q + Gip + G2p2 + ..)(10 + flip + I2p' + ..

Considering this equation modulo p3

H.2 G, +- G211() =- (f(Z) - (Go + Gp)(H11, lip))/p2 (mod p)

The right hand side of this equation is again a polyonomial and the left hand side is essentially
the same as (8). So using the Ai and Bi obtained in the previous step we can compute G2 and
H2.

As an illustration consider the polynomial which we factored in the last section

f(Z) = Z6 + 67Z 5 -- 41Z 4 + 2781Z + 737Z 2 + 943Z + 253

As before we know that its factorization modulo 5 is

= (Z + 2Z 2 - 2)(Z3 + Z + 1).

So we now want to solve

H, Go + G, Ho) = f(Z) - (Z + 2Z 2 - 2)(Z 3 + Z ± 1)

= -10Z - 10Z m + 5Z 3 + 10Z2 - 5Z + 5 (9)

modulo 52.
Since Go = Z ± 2Z 2 - 2 and Ho = Z 3 + Z + 1 the diophantine equations we need to

solve are
AG) + BiHo Aj(Z:' + 2Z 2 - 2) + Bj(Z 3 - Z + 1) Z (10)

where we require degBi < degG -= degG and degAi < degH = degH. This condition on
the degrees of Aj and 13,. we call the degree constraint. As we shall see, there is only one solution
to (10) which also satisfies the degree constraint.

A0 and A) can be determined by the usual application of the Euclidean algorithm to linear
diophantine equations [Knu69]. We begin by computing the continued fraction of Ht,/Go. Then
the convergents of the continued fraction are comlputed; the next to last one being the one
which we want. Following the usual schema for continued fraction computations, we have:

I 2Z 2Z -2Z+1I

0 1 1 2Z + I -Z' 2 2Z + I 2Z 3 + 2Z + 2

1 2Z • -Z + 1 2Z: Z 2 + I

The first line consists of the "partial quotients" of the continued fraction (tile quotients in
the PRS) and the next two lines are the convergents of the continued fraction. So we have
AO = 2Z - Z - 2 and /l, - -2Z' -- 2Z after removing a unit and multiplying 1A) by -1.

54

I

The other A, and 3, can be computed from A0 and B hy a simple device. Notice that while
Z'A(1 and Z'1J1 probably do not satisfy the degree constraints they do satisfy equation (10).
Pick Q and Ai such that Z'A0 = 11jQ+Aj and degAi < deglt. Now define Bi = Z'1.3i +±QGb.
A, and B, will also satisfy (10) and now A, also satisfies the degree constraint. It is not hard to
see that B, also satisfies the degree constraint. Let A, and 3i be solutions of (10) which are of
the appropriate degrees. Then

(Ai - A,)Go + (Bi - Bi)Ho = 0 (mod 5)

Remember that G, and t/f are relatively prime. The degree of Ai and Ai is less than degl'oj;
thus the degree of Bi -, must be less than deg Go. Since i's degree is small, so is Bi. Since
G0 and H(, relatively prime A, = Ai and B, = 3,. Thus not only do Ai and Bi have the correct
degrees they form the unique solution of (10) for a given i.

Repeating this procedure we easily get the following table for the basis of the solutions of
linear diophantine equations of the form AG + BHo = C.

Ao = 2Z 2 + Z- 2 Bo= -2Z 2 +2

A, -Z 2 +Z-2 B, =-Z 2 +2Z+1

A2 = Z 2 + 2Z- 1 B2 =-Z 2 +Z-2

A3 = 2Z2 - 2Z- -1 B3 =-2Z2 -22 - 2

A4 = -2Z 2 + 2Z-2 B4 = 2Z 2 - 2Z + 1

A5 = 2Z 2 + 2 & = -Z 2 +Z- 1

Dividing equation (9) by p gives

HGo + GIHo = -2Z - 2Z + Z + 2Z 2 _ Z + I (mod 5)

To compute H, we use the linear basis for the solutions which were just determined.

H, = -2A 5 + -2A., + A + 2A 2 - AI + Ao

= -2Z + 2

One factor of f(Z), computed to second order, is Ho + 5Hi - Z 3 - 9Z + 11 as we determined
earlier using our formulation in the previous section.

Thus far, the liftings considered have been at a principal ideal. This restriction can be lifted
without much difliculty, but then this old formulation becomes more complex. The complications
involved also obscure some of the relationships with our formulation. These modifications are
contained in a paper of Yun [Yun76] and the references contained therein. Since we feel that our
formulation is easier to understand, more powerful and easier to implement than this version
of Ilensel's lemma we will not discuss these improvements.

The Zassenhaus version of Ilensel's lemma, though somewhat more complex, than our
version still produces the same answer--the correct factorization though each of the lifting
stages. In the following paragraphs we will demonstrate that this is not a fortuitous accident
but is due to the fact that both formulations are performing the same computation but in a
slightly different manner.

The key to tising Ilensel's lemma to lift a factorization F = GWA0t (mod m) to the m-adic
completion is solving the diophantine equations

Ai(G, + 1l110i = Z' (mod m) (It)

55

Once we have obtained the Ai and Bi, it is merely a matter of computing the error introduced
when a factorization (mod mA± I). This error is then used to produce the appropriate linear
combination of the A, and B, which is Gk+l and Hk+I.

Our formulation is quite similar. We begin by inverting the Jacobian matrix. Through the
Newton-Raphson formula we combine the error terms to compute GA.+I and Hk+g. Structurally,
these two algorithms are quite similar. Actually they are identical. We shall see that the solutions
of (11) form the inverse of the Jacobian matrix.

To see this let, Go = Z, + gZ - l + 92Z - 2 +.. +4 g,
"uo =1 +"-hiZs- I -+-h2 Z- 2 + . . . +h8

so the Jacobian matrix is

1 0 0... 0 1 0 0 0
h, 1 0 ... 0 g, 1 0 • .. 0

h2 hi I ... 0 92 91 1 ... 0

S.. 0 h, h._ 0 ... 0 g,. g.-I
0 ... 0 0 h. 0 ... 0 0 gr

Consider what happens when this matrix is multiplied by a column vector

b • ok) + bo
aog, +a, + b + bhl

(a.-Ig,- i + a,_2gr + b,-2h + b.-th,,_t
a,-Ig, -+' ba1h,

The (r + s - 1) - i row of this column vector is clearly the coefficient of Z' in AGo + BHlo
where

A = aoZ - + aZ,- 2 ±... + a._,

B = 4)Zr - ' + b, Z - 2 + b--.

Thus the computation of the inverse of the Jacobian of the system of equations is a clever way
of obtaining all the solution of (11). Or, as we'd prefer to view it, solving (11) is a clever way
of inverting a very special type of Jacobian matrix.

56

Chapter VII

The Sparse Hensel Algorithm

The last chapter presented oujr formulation of lensel's lemma as well another formulation
popularized by Zassenhaus. The univariate polynomial factorization example that was used to
illustrate the algorithms did not point out their major railing since this inadequacy only appears
in multivariate problems. The purpose of this chapter is to demonstrate that the same techniques
that were used in our version of the moduilar algorithm can be applied to our formulation of
the Hlensel. Significantly, we are led to a class of probabilistic p-adic ifting algorithms that run
in polynomial time.

To illustrate the difficulties inherent in multivariate problems we will again consider the
polynomial factorization problem. Recall that the key idea is to convert a problem of factoring a
polynomial in tlhe p~olynomhial ring IX, x2, . . , K,, to one of finding a solution (in RfX 2 ,. . ., XJ)
of a system~ of eqluations. To apply Newton's miethod we attempt to ind solutions which lie in a
completion of I?IX 2, ... , X,,]. Usually, the particumlar completion considered is m =(X 2 ,..., Xj)

Consider the problem of factoring the square free polynomial

F(X, X-2, K3) =X4 + (X2X] + X-2Xj + X:' + 2)X'
4- (X2X-5 + 2X2X" - 3X'X-j ± X'X 3 + 3X')X 2

± ~~: (-XX +XX - 3X"Xj + XIXI - X.2X 3 + 3X' - 2)X
+(-3X",K3- + 3X'X 3 + X' -- 1).

fly picking a few values for X-2 and X1, we can quickly convince ourselves that unless F is
irreducible, it factors into 2 quadratic polynomials.

E(X, 0, 0) (X _ 1)(X ± 1)3

F(X, _1, 1) ==(X
2 - 2X - 2)(X' ± X + 4)

F(X, 3, 5) (XV + 17X - 3644)(X" + 1902X + 26)
F(X, -5, 7) (X" - 1213OX - 126)(X

2 - 33X + 65626)

Notice that even though 1'(X, 0, 0) s4plits into limearti, there is only one way to combine the
linrcirs into a factorization~ into two quadraticti. Letting the fic Lori zatioii be P(X) = (X 2 +

57

AX + B)(X 2 + CX + D) we get the following system of equations

A+C -- (X, X + X2X3 + X3 + 2)
AC+B±D= (X2X5 +2X2X" -3X'X 3 +X'Xj + 3X3)

AD + BC = (-3X"X' + X,2X - 3X8X 3 + XX 3 - X2 X + 3X3 -2)
BD = (-3X 3X + 3X)X + X - 1)

We are looking for elements A, B, C and D of R[X-2 , Xi] that satisfy this system of equations.
Using Newton's method, the solution to (I) will be generated as a multivariate power series

in X-2 and X 1. This solution is developed one term at a time, first the constant term, then the
linear terms, and so oil. To get the initial approximation, we would like to set X and Xj to
zero and solve the resulting simpler system. This system would usually be solved by factoring
F(X, 0, 0). In this case (1) reduces to the simple system

A + C =2,
AC+B+D=O

AD + BC = -2

BD = -1

From the univariate factorization we see that this system has two solutions, either (A, B, C, D) -
(0, -1, 2, 1) or (2, 1, 0, -1). This corresponds to the commutativ ity of the factors. We will choose
the A = 0 solution. The other solution will give a similar result, but with A and C, and B and D in-
terchanged. Newton's iteration for systems of equations takes the form

4 =4- - J-'(O) Al-)

where J is the Jacobian matrix of the system. Let the column vector

(2k)

denote the initial approximation, and the column vector

A+C - f

7(A,B,C,D)= AC +B+D-f 2AD) + BC - f

BD-f 4

represent the system of equations which is to be solved. We have used f as an abbreviation
for the coefficient of X '--i in F(X, X 2, X3).

For the system of equations in (1) the Jacobian matrix is

1 0 1 0
j= C I A I

D C BA
(0 1) 0 B)

58

When evaluated at X2 0 and X3 = 0, the Jacobian is(0 1 O
2 1 0 1~
1 2 - 1 0 "
0 1 0 -1

The next step is to invert this matrix. Unfortunately, it is singular. Thus we will not be able
to lift the factorization at the ideal (X2 - 0, X3 - 0) and must try some other ideal.

If we try (X2 + I, X3 - 1) then we get

F(X, -1., 1) = X' - X3 - 1OX - 8

= (X2 - 2X - 2)(X 2 + X 4)"

The corresponding Jacobian matrix is

1 1 -2 1 ,
4 1 -2 -2)'
0 4 0 -2

which is invertible. The problem with using this ideal is the factorization will be developed in
a multivariate power series in X2 + I and X:3 - 1. Since the actual factorization is

F(X, X2 , X) =(X 2 + (X,2X3 + 2)X - 3X'X 3 + 1)
(x 2 +(X 2X4 + X3)X + X3- 1,

these factors will have 16 and 17 terms respectively, when written in terms of X2 + 1 and
)(- 1. If there are more variables, the number of terms produced will increase exponentially.

The solution for the lensel algorithm, just as for the modular algorithm, is to perform the
lifting one variable at a time. We replace the Xi by Y + aj. After performing the lifting for
Yj, the answer will be dense. But after converting it back to a polynomial in X the answer
can be no more dense than the final answer. Section I presents the details of the sparse Hensel
algorithm using the formalism developed in the last two chapters. Section 2 points out a number
of "tricks" which can be used to great advantage in an implementation of the sparse Hensel
algorithm.

1. Introduction of Sparse Techniques

Following this procedure, we will solve (1) for a power series in X2. Since X3 will be I
throughout this portion of the computation, we can simplify (1) to

A + C (2X 2 +3)
AC +B + =(-3X' + X" + 3X, + X2 + 2X2)

Al) -- 1iC (-3X" - 3X6 + X. + 3X: - 2)

HD) (-3X8 + 3x + X- - 1)

59

Since we will be working with power series in X2 + 1 it will simplify some things to write these
equations in terms of Y2 = X2 + I

A+C = - 3Y' + 5Y2 - 1

AC+B+D = -3Y' + 16YI- 31Y + 28Y' - OY2

AD + BC = -3Y" + 24Y' - 87Y6 + 186Y' - 254y4

+ 227Y - 132Y' + 47Y 2 - 0
BD = -3Y" + 24Y' - 84Y + 171Y5 - 225y4

- 199Y' - 117Y2 + 42Y2 - 8

To simplify the computations, we will again work with a rather small modulus, this time
163. The inverse of the Jacobian is then

(72 18 18 -9).
- 36 36 -18 36

-73 -18 -18 9
72 72 -36 -9

Subtracting the left hand side of (2) from the right, and using the initial approximations A =

-2, B = -2, C = I and D 4, we see the first term of the error is

- 5 Y
2

10 Y2

-47 Y
-42Y 2

Notice that in selecting the error terms we ignored all but the lowest order ones since only they
will affect the correction. When multiplied by -J-1, we have the first correction term

(72 18 18 -9' I -Y 2) (4Y2
36 36 -83 . o4=Y2) 3Y2

-73 -18 -18 9 -47Y 2 Y2
72 72 -36 -9 -42Y 2 -15Y 2

To compute the next correction term, we replace A, B, C and D by -2 + 4Y2, -2 + 3Y2 ,
I + Y2 and 4- 15Y 2 respectively in (2). The only nonzero terms should be of degree 2 or greater
in Y2. Continuing this iteration we discover that

A = -2 + 4Y2 - 3y2 + y3

B = -2 + 3Y - 3Y1 + Y2

C = I + Y2
= 14Y- Y+ 30Y - 3oY + 15Y - 3Y'

Reexpressing these solutions in terms of X2 we have

A =X3+X 2
B=X -I
c=x 2 +2

o=-3X + I

60

11

So our factorization thus far is

F(X, x2, 1) = (x' + (x + X.)x + x -)((X 2 + (K. + 2)x - 3x2 + t)

Now we need to construct a system of equations for the coefficients of X2 so A, B3, C and D
can be lifted to polynomials in Xj. We now know that A(X 3 = 1) = X3 + X2.We now make
our standard probabilistic assumption, that A = aX' +3X 2 where a and 3 are polynomials
in X,. Continuing we have

A -aX' + 3X 2

B=yX3 ±6bB = (X +

D = 7X5 +0

Consider the first equation of (1) after having made these replacements.

a+c=aX' +lX2 + cX + (X2X + X 2X3 + X + 2)

Since the Greek letter variables do not involve X2 we are free to equate the coefficients of the
powers of X2.This gives the following equations

a=la+ =x +I

=2.

Doing this with the other equations, we have

t7 --3X3 ae = X3
ce= X5

a -= 3 fie =X
a7 = -3X 3 0 = -3x 53

7=X~J a# -+t-IC = 3

00+6f X4 _X =-(3)
-177 =-3X. / -to Il

60=-1 a= 1

These equations can be solved by the same technique that we used before, or, as we point
out in section 3, they can be solved by inspection. In the rest of this section we will try to make
more precise the technique that was just used in factoring F.

As this example shows, the Hensel algorithm is somewhat more complex thart the modular
algorithm. Unfortunately, this algorithm also has a reputation among system implementors as
being one of the more difficult algorithms to implement. Though this may be true of the old
formalism, our new formalism is quite simple and to a very large degree reduces the duplication
of code which seems to have been necessary in the older implementations we have examined.
The programn that solves systems of algebraic equations using p-adic techniques is just a page
or two of code. Interfacing this code to any particular problem, such as computing GCI)'s,
fartoring polynomials and computing square free decompositions is merely a matter of setting
up the appropriate system of equations.

The first algorithm we present is the univariate version of Newton's iteration for systems
of equations. It is fairly straightforward and should present no problems.

61

- r

Algorithm U implements the univariate version of the sparse lensel algorithm. It assumes
that gi,.., ,, are unknowns, X is a variable and fi,... = f is a system of polynomials
in X, g,. .. ,g,, m > n. It is also given a point X =a and an initial solution p1,..., such
that f,(, p,) = 0 (mod X - a). Finally it is given an integer k. This algorithm returns
polynomials G,...,G,, such that fi(G,...,G,) = 0 (mod (X-a)k--I).

UI. [Jacobian- Compute the Jacobian of the system " at the point X = a.

U2. [Make it square] Select n linearly independent rows of the Jacobian and call the resulting
matrix J. Renumber the Ai so fi corresponds to the ith row of J.

U3. [Invert] Invert the Jacobian to produce J-1.

U4. [Shift system to origin] Replace X by Y ± a in the fA. (Now A(,..., p,) 0 (mod Y).)
Set G, - ,...,G,, 4-

U5. [Iterate over number of desired terms] For j = I through k do steps U6 and U7.

U6. [Iterate over number of equations] For i = I through k set F2i to the Y'-term of
fA(G 1 . . .,G,

UT. (Newton's iteration!] For i = I through n set + G J ± - J . .

U8. [Shift back to old variables] Replace Y by X - a in Gl,..., Gn.

U9. [Done] Return G1 ,...,Gn.

The nmultivariate portion of this algorithm is the part that takes advantage of the sparsity
in the system. It uses algorithm U to compute the the solution in one variable of the system
of equations. It then uses this solution to create a new system of equations where the new
unknowns are the coefficients of the polynomials which were just determined by algorithm
U. The variables S1 , ... , S,, are the solutions to the original system of equations, as they are
improved with the introduction of each new variable.

Algorithm M does a multivariate Hensel lifting. It takes as input the unknowns gj,.-.,
variables XI,..., X,, and a system of polynomials fi,... ,f,,, in the gi and Xj, m> n. It is also
given a list of evaluation points a1 ,..., a,, and initial values for the variables g,..-, 9, such
that f,(g ,..., u,,) 0 (mod (Xi - at,..., X,, - a,,)).

Mi. flnitiali., 1 Initialize the variables SI,..., Sn to the symbols gl,..., g" respectively.

M2. [Loop through variables] For i -1 through v do M3 up to M6.

M3. [Remove most of the variables Replace Xi+,..., X, in the fA by ai+i,..., a,, to get
polynomials F1, . . Fm

M4. [Solve univariate problem] Use algorithm U on 0,, 1 ,fj, a and g i to get solutions to
G,.

M5. [Update the original solution] Replace the symbols gi in Sl,..., S,, by the values of
the G1 .

M6. (New equations] For each f, replace the gi by ?7j. The result is a polynomial in Xi.
The coefficienmts are the new .

M7. (Done] Return the S, as the solution.

62

2. Some Ideas for Implementations

In this section we will consider a couple of useful heuristics that can often dramatically
speed up the running time of the sparse lensel algorithm. However there are problems for
which these heuristics do not help, so they do not affect tile analysis of tile running time of the
algorithm. These heuristics were first used by Paul Wang [Wan781.

Recall the system of equations (2) that was encountered in the example at the beginning
of this chapter. Ignoring several of the equations, and reordering them somewhat we have

r/= -3X, at-- -3X y?7= -3X 3
77 = -3X5 af = X3 -1O = I

60 = -1

Reading these equations horizontally, the values for the other variables just drop out.
In general this heuristic proceeds as follows: (1) Isolate all linear equations with one unknown.

(2) In the system of equations to be solved, replace all occurrences of the unknowns just
determined by their values. (3) Repeat until there are no linear equations with one unknown.

This procedure is very cheap; the only point that could be expensive is the substitutions in
step (2). Since this procedure can be performed before the variable being lifted is shifted away
from zero, step (2) can be no more expensive than verifying the sparse form of the answer.

In section 3 we will analyze tile sparse Ilensel algorithm. llere we only discuss the probability
that this heuristic will actually be beneficial. It is rather difficult to determine precisely what
the probability that this procedure will be successful is, but we can make some rough estimates
in the factorization problem with the following observation. Assume that we wish to factor F,
a polynomial in v variables. Assume F has 2 monic irreducible factors

F = (Mo +- mi +" - + m,){Ml -m,+ +ll- - -. +m !1)

where Mi are both monic monomials and m, are monomials whose coefficients are to be
determined. If the exponent vectors of all of the mi are distinct we will be able to determine
their coefficients by tile procedure just outlined.

Assume that the degree of each variable in the monomials, mi, is bounded by D. Then
there are N = (D + I)" possible exponent vectors. There are N ways t monomials could be
chosen (we are ignoring the fact that some are permutations of the others) and N!/(N - t)!
ways t different monomials could be chosen (again disregarding the permutations). Therefore
the the probability that the system of equations is "presolved" is P(t, v,D)

Pt vD)(N-q. N!
N' (N-t)!N

N -t (N)'

by Stirling's approximation. Simplifying this somewhat

t N-t (4)

Notice that as N - t goes to infinity, holding t fixed, the quantity in square brackets tends
towards et . So for large N, P(1, v, D) is quite close to I. Computing the Taylor series expansion

63

1' V

of (4) at N oo we find

P(t, v, D) I l + ..

So the chances that this technique will not be useful is somewhat greater than

I t 2 -t
2(D+1) "

As the number of variables increases this becomes very small. In fact for
jogt - t 9-log t

S>log(D +- 1) -log(D +- 1)

we would expect the equations to always be presolved.
Wang uses a technique that is essentially equivalent to this in his implementation of the EEZ

algorithm. To illustrate how dramatically it can affect the running time of the Ilensel algorithm
have timed four different algorithms on the first set of examples given in the appendix. These
examples were run on the MACSYMA IMAC77I algebraic manipulation system at Massachusetts
Institute of Technology which runs on a Digital Equipment Corporation KL-10 processor. The
first column is the EZ GCD algorithm given by Moses and Yun [Mos73]. The second column,
labeled EEZ2 gives timings using Wang's new EEZ GCD algorithm lWan791, but without using
the heuristic described in this section. The second column, labeled EEZ, is Wang's algorithm
using the heuristic. The final column is the sparse modular algorithm described in this thesis.
All the times given are in seconds.

The appendix lists three sets of polynomials, f,, gi and di.The four algorithms were used
to compute the GCD of fidi and gidi after these two products were multiplied out.

v EZ EEZ2 EEZ Sparse Mod

1 .036 .040 .058 .040

2 .277 .389 .416 .160

3 .431 .785 .537 .381

4 1.288 1.224 .704 .842

5 3.128 7.331 1.410 1.825

6 * 7.428 1.966 3.364

7 * 10.282 1.628 4.190

8 * • 2.446 4.534

9 * 2.346 4.006

10 * , 2.832 8.202

The GCD computed here had 4 terms and the degree of each variable was 3 or less. The
cofactors had the same parameters. Considered as a factoring problem, we would have t = 10,
D = 3. So we would expect the timings to level off at about

2 log L 2 log 10v= - ---- =3.32
log(D k- 1) log 4

In fact the timings level off between 5 and 6. That's not too far off.
In the final section we give some timings for problems for which all algorithms but the ones

described in this thesis fail.

64

3. Analysis of the Sparse Hensel Algorithm
We will assume we are using the sparse lensel algorithm to lift a solution ib - .

0.
of the system of equations f,(il) = 0 modulo m = (XI - a,...X,, -a,,) to a solution id
modulo m"±l. We will let t denote the maximum of the number of terms in any x(') for i = I
through n. In keeping with our concern for sparse polynomials we assume that t < (d + 1)v.

The solutions modulo m +-) are determined by lifting the solutions we have modulo M
to solutions modulo ail = (XI - at)"'-I±m, which are then lifted to solutions modulo M2 =
(X2 - a.')+'t1 and so on. Since we pass from a solution modulo mi to one modulo mn- we
will introduce a new system of equations and unknowns, j(i.,). The number of unknowns will
never exceed n. t although the number of equations may. Though these additional equations
may be used to significant advantage in practice, as was pointed out in section VII.2, we will
ignore them in the following analysis.

Pollowing the same principles used in the analysis of the modular algorithm, we assume that
the number of terms in the solution of f(ki) = 0 modulo n*i is t. We will also only count integer
arithmetic operations now and multiply by the appropriate factor at, the end to account for C.
f,.(.,) will involve no mnore thani n unknowns zO .. ,). This is important as it gives the size
of the Jacobian which needs to be inverted at each stage. As we are only considering classical
algorithms, we can assume that inverting the Jacobian will require about (n . t)3 operations.
Performing an update of the unknowns involves multiplying a matrix by a vector, this requires
about 2(n. t)' operations, but it must be performed d times. We get the following formula for
the time required, excluding the computation of the error terms.

0(.v((n. -01 + 2d(n. -)2))

which is dominated by v(nt)" .
The error terms must be computed d times for each variable or dv times in all. The

computation of an error term is merely a special case of verifying the answer. Without knowing
the particular problem under consideration we can't say much more. Denote by T the time
required to verify the answer. We can use dvT as an upper bound on the amount of time
required to compute the error terms.

Thus the total number of integer operations required is

dvT + v(n. t)3 .

The total size of the answer tlot is n.- t, so we can write this as dvT + vt~O. Including the factor
due c computed in section 4.2 we have

O((dvT + vO,)) log'2(dv 2t-').

4. Timings

In this section we will preseul. the .iniint, for a two of prolblemm using the Sparse Modular,
IIrown's and (Colli, s' Moddar, I.he l(1) algorithms awl Wang's iew E'/"Z ((1) algorithm.

The first examle was c 'hosv IA' show the sparse Imodular (;(1) algorithin at its best. The
polynomials for this test are the secoml set of polynoinials listed iii the appendix. Again, there

65

are three polynomials listed for each row, fi, g, and di. This time notice that the structure of
each of the polynomials is identical, they only differ by coefficients. The heuristic mentioned
in section 2 does not help in this case. The following table gives the computation times, in
seconds, for the EZGCD algorithm, the Modular algorithm, the Reduced algorithm, Wang's
new EEZ algorithm and finally the Sparse Modular algorithm.

v EZ Modular Reduced EEZ Sparse Mod

2 .614 .481 .710 .108 .312

3 2.938 6.092 1.876 2.908 1.074

4 14.935 64.963 • 5.906 1.413

5 * 282.373 * 9.075 2.394

6 * * • 60.417 4.153

7 * * • * 5.145

8 * * * * 4.953

9 * * , * 8.699

10 * * * * 8.811

The asterisks indicate that MACSYMA ran out of storage. As expected the modular
algorithm ran in exponential time. Both the EZ and the Reduced algorithms ran out of storage.
This was to be expected. In the case of the reduced algorithm the size of the PRS finally caught
tip with it. This example was carefully designed so that all the GCD's were bad zero problems
for the EZ algorithm. Thus when the polynomials were shifted the lifting process exploded.
Since the heuristic discussed in section 2 was not applicable in this case, the EEZ algorithm
also exhibited exponential behavior.

The second example is from [Mos73]. This one was specially designed to be optimal for the
EZ GCD algorithm. It is about as bad as possible for the sparse modular algorithm. The two
polynomials whose gcd is taken are

E X, + I, V V2

±i1 x + 2) and z ±) + XE -2

Since the EZ algorithm produces all the terms of the answer of the same total degree at once,
very little computation is done until the final step, at which time the entire answer is determined.
Here we only compare the EZ, the EEZ and the sparse modular algorithms. The others take
too long or exceed storage capacity very quickly. Since the sparse modular and EEZ algorithms
determine the answer one variable at a time, you would expect at least linear growth as the
number of variables increases. Since the degree and number of terms also increases we see
significantly more than linear growth for the sparse modlar algorithm. It is not at all clear
why the E.Z algorithm ran in time so close to that required by the sparse modular algorithm,
especially since they are so radically different.

68

v EZ EEZ Sparse Mod

2 .116 .705 .496

3 .175 1.554 1.375
4 .236 3.368 2.791

5 .341 6.075 5.037
6 .460 9.803 8.299

7 .602 14.903 13.112

8 .760 21.165 19.704

9 .944 28.835 28.709

10 1.142 38.307 40.511

67

Chapter VIII

Conclusions

The basic idea advanced in this thesis is quite simple. By breaking a problem up into
layers, it is possible to make use of the structure of the solution on one layer as a guide to the
construction of the solution on the next layer. For the polynomial problems we have considered,
and for multivariate polynomial problems in general, this is rather easy because we have a
natural layering with which to work. The introduction of a new variable constitutes passing
to a higher level. The evaluation homomorphism (replacing Xi by ai) is a means of going to
a lower layer. Throughout this thesis we have used the observation, due to Paul Wang, that
the structure of polynomials does not change significantly for sparse polynomials under the
evaluation homomorphism.

In the first portion of this thesis the familiar modular algorithm was modified to take
advantage of the possible sparseness in the answer. This was accomplished by assuming that
if the image of a group of monomials under the evaluation homomorphism is zero then the
coefficients of these monomials are exactly zero. This modification has the significant advantage
that it turns an algorithm that formerly required exponential time in the number of variables
into one that required only probabilistic polynomial time in the size of the answer.

In the second section, we resurrected an old formulation of Hensel's lemma, namely Newton's
iteration, and showed how it could be adapted to utilize the sparseness of the intermediate
results. This version of Hensel's algorithm also only requires probabilistic polynomial time in
the size of the answer. In addition to the increase in efficiency, we feel our formulation of
Ilensel's lemma is much easier to justify, pedagogically clearer and more widely applicable than
other formulations.

There are a number of problems left open by this thesis that are well worth investigating
in the future. First, it would be very interesting to see a conventional expected time analysis
of the algorithms presented here. Towards that end much tighter bounds than those developed
in Theorem I of chapter IV must be computed. in particular good bounds for very sparse goal
polynomials would be exceedingly interesting.

Second, there are still a vast number of applitations of the two basic algorithms presented
here that we have not yet investigated. Particularly intriguing are problems of computing

68

1

resultants and partial fractions expansions. Interfacing the Hensel algorithm to a system for
solving systems of algebraic equations to obtain polynomial or rational function solutions would
be very useful for a number of problems. This sort of system could also be profitably extended
to compute the solution of algebraic equations in a prespecified algebraic field.

Finally, the basic principal of solving problems in layers and making use of the structure
of the answer at one level to aid in "lifting" the solution to the next higher level seems to
be applicable to many other problems besides those in algebraic manipulation. Algorithms for
certain restricted sorts of graphs come to mind, as well as applications in information storage
and retrieval.

59

Appendix I

Polynomials Used in the Timing Tests

This appendix lists the polynomials that were used to test the various GCD algorithms in
sections VI1.2 and VII.4. The di polynomials are the GCDs which are computed, the f. and gi
the cofactors. The polynomials that were fed to the various GCD routines were dif, and dgi.

d, = x + zI +3

= 2x2 + 2z, + I
g]= =X2 +2

d2= 2 + xlx2 + 2z,

12 , + 22+ + +,
92 = XZX2 + X 2 + Z,+ + ,

ZZ 2 - X +. 2= + 2z~z2X3 + I jZ3

f 2 2 2

= X + X2. 3 + ,..2X3 + ZI:, + ZZ

d4 Z =x 4 + 2z,-3+ -3 + x,

Z,2 + ,Z3 +4 , 2 + ,=Z, + ZgS
/4 = XZ.~Z~~ + Z2__+ 4Z + X2__ + X2 3

d4 =l~~+Z~~+Z zIXX3Z + ZIX

d5 Z~X~ZZ + IX2 X 2 +3 XZ + X2 + 2 222

94+ ZX 23Z: + 1 - , 2+_Z4 + IX2
2 2 2 2 XX2' X2

ds = Z3Z ZZ X4 + XJZ. X + ,X + X2X.,4 + J2ZZ3T22s

d X, _ ,2 .,2.+ -"- 1 + "-X"2 +ZZ 2XX + Z 1 ZTZ,25g= gZX2X4X2 + Z;ZX2X + ZI.T+~2X 4 X + Z.I23ZZ

X,=ZaZ~ZZ i XIX2ZZ,+1 + XIZ2Z + XXZ,.Z7 + 2 2

go = ZiX2~ X .2 '2Z0 I
2 r'Zrri + 2 2XIzozII +.I 2;Z~Zu2 + z 2Z

70

.... ..+ ;' '+--+ -;--': =:-" == ====== === 2= :1 =' ... l 4+'.. ... 3 2... .. -- 4' l i'' - . . ' I I II I

x22 2 222 2 2~3~ZX + 2 22 2 2 2
dS= 2 ZXXX$XX +Z X2~xxx8 + IXxx7 + 1 Z 2Zx:34x 5 xOZ7 + X2X4X8

f8 = X
2

X
2
X3X

2
X5X

2
x2 -FX52X + X 1 2 X 4 9 Zt x X X2X2EX 1 ZI x - xx2x

9= x 2 2 2 2 2 L 2X 2X,2Z2XX8 + X2X2X2X42 + j 2X
XZb7X8 xi2x450 X, 146 1 2 3 5 4X 5X~-

d=T2 X 1 3Z 4 6 2l + ZIX2 X3X2XZXXg + Xz
2

a BX + 32 2 2 2 + X2342 2
I 34X6RX94 5 + XX3X 5 Xi~x~~x67XB x34 5 xsxTxe

f9 = T 2 2 X~X + 3X + X'3 + Za + X3XZZ

1 xxx~2 + 2 + 2 2 7 + X4

g= X22TXZBiz x 2x + 22X.35X2IA2 + X2:XXXXX + X22 + X2
1 ho 1 6 ± 9 + 7 Ixrxxxz 2ox4zrsxixo

2 4 t 2 5 t~~Xo + Z3Z 2 X7X XI 3479

gio~~~HX 2= ZI 23 ~~ 4 + 2 0 + XIXX42ZJI

+ I 3 x 2 2 2 2 22 2

7t

The following set of polynomials was used for the examples of section VI.4. Notice that
the structure of each of the polynomials in each triple is the same.

12 = 18zX23+ 2x'x 2 + 18x2 + 1O2 +18z
92 = 16x 2 X + IIX3Z + 14x2 + 4X3 + l2XI

24 3 2 + 22 qXd2 ==15XIX2 14x~x2 I 12+1z + 7x,
=16x, x 3 X + 14zxx + 3X3X2 + 18X3X3 + X~2

g]= 1I~X 3 X + 2zx X + I2z + Z 3 + 10ZX2

d.3 = 7zx 3 X 4 + 13 T4.T + 3X3X2 + 4X3X3 ± 14x T 2

14 = 5X3, 2zXIX + 3zx:,X. + 16 ,X2X2X + 19X2 + 4X , + 19X3

= 39z2x2xx1 + 2 4 + 18x 4 2 1 x3 + 3 4 + 2
gi= 19zX 1X2X X' + 18zX.zIX3X + 18X2zX'I + 1IX2zX2 zxz

1 . 2 1" + 2 22
95 3 17.zxz +3x + 18X24.,~ X2X4x + jOX2XzX

d = 1 2 + 1 + 3x + 2
1 3 +2 .1 2. 4 14 2 4 1 4 2X

f = r-2xz'~ x t: + o:) :23:x 4X2z + -t- 9X2X4X- + x21 + 42

3 1+1 zxx2x + + X2 X+

g= 7z l~zxer~x~x + 3x: + 8 X + xz+54zzz
72 3 5 3 1

13xx~x.x~xz -+ 12i~3sx o -t X4~xx -X + ~x 12 + 8 x2xx
3. 5 1 4 3 3 4 5 :3 423

X3423
4 X X4XZX

13
3 x X2X 3 ,

l7X2XIX2X4X2X27 + Z12 }4;
, X "- + 9X424ZSX3

1/ = 2 3" 4 5 -6' 1 2 3 F 4 X X 12 41 455 2 4X

= 9X X3X2X4 2X2 .z3 4 2 lgX5 X2 X4XC 8xx X3
15xj4XOZ X-X- + 4]) + X4X24XZ -1

12x ' T4 2X'XX 34B+ XXX XXX

"k.-- ._. 2 . _I I 2I Hi ili 2ll + 1 4 1 7. " . . , -

k 4~xxxx + 1S2ll2XXXZ + IO2IX + 12Xxxzz + Sxl~
11ZkX2X ~X5X 4 + 2x~~~'z + 2 1 2 3~zx + 27: IXXB + Z2X2X3Xe

fg X z Xz 2z xz zXXzx + 1x~ x x 4x 72~ + ,r,.

+Z2Z + X.2I3T xX
49 - 1 + 4 + 14j'XX45, + I zx

2 2 4 3
3 2 __9 ZX345

gg = 13z-3xl~~~ 9 172z3 5 9Z 1 + 3xxxx 4 2xBT a 3 5V RX

+ 10: BXZX4

3 3 2 23 3 2 2 2 2 3 4 244 54 3

t

References

1. C. M. Bender, R. W. Keener and R. E. Zippel, "New Approach to the Calculation of F(a)
in Massless Quantum Electrodynamics," Physical Review D 15, 6 (1977), 1572-1579.

2. E. R. Berlekamp, "Factoring Polynomials over Large Finite Fields," Math. of Comp. 24,
111 (1970), 713-735.

3. W. S. Brown, "On Euclid's Algorithm and the Computation of Polynomial Greatest
Common Divisors," J. ACM 18, 4 (1971), 478-504.

4. W. S. Brown, "The Subresultant PRS Algorithm," ACM Trans. on Math. Software 4, 3
(1978), 237-249.

5. G. E. Collins, "Subresultants and Reduced Polynomial Remainder Sequences," J. ACM
14, 1 (1967), 128-142.

6. G. E. Collins, "The Calculation of Multivariate Polynomial Resultants," J. ACM 18, 4
(1971), 515-532.

7. M. R. Garey and D. S. Johnson, Computers and Intractability, A Guide to the Theory
of NP-Completeness, W. II. Freeman and Co., San Francisco, (1979).

8. A. 0. Gelfond, Transcendental and Algebraic Numbers, Dover Pub., Inc., New York, N.
Y., (1960).

9. R. L. Graham, "Bounds for certain Multiprocessing Anomalies," Bell Syst. Tech. J. 45,
(1966), 1563-1581.

10. G. II. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, Oxford
University Press, London, England, (1968).

I1. A. C. Hearn, "Non-Modular Computation of Polynomial GCDs Using Trial Division,"
Symbolic & Algebraic Computation (E. W. Ng, Ed.), Springer-Verlag, Heidelberg, (1979),
227-239.

12. K. Hensel, "Eine neue Theorie der algebraischen Zahlen," Math. Zeitschr. 2, (1918),
433-452.

13. R. M. Karp, "The Probabilistic Analysis of some Combinatorial Search Algorithms,"
Algorithm and Complexity-New Directions and Recent Results, (J. F. Traub, Ed.), Acad.
Press, New York, (1976), 1-19.

14. D. E. Knuth, The Art of Computer Programming, Vol. 11, Addison-Wesley Publishing
Company, Reading, Mass., (1969).

15. S. Lang, Diophantine Geometry, Interscience Publishers, New York, N. Y., (1965).
16. M. Lauer, Generalized p-adic Constructions, Ph. D.thesis, Univ. Karlsruhe, (1978).

74

17. D. J. Lewis, "Diophantine Equations: p-adic Methods," Studies in Number Theory, (W.
S. Leveque, Ed.), Math. Assoc. of Amer., (1969).

18. MATIILAB Group, MACSYMA Reference Manual-version 9, Laboratory for Computer
Science, Massachusetts Institute of Technology, (1977).

19. R. J. McEliece and J. B. Shearer, "A Property of Euclid's Algorithm and an Application
to Pad6 Approximation," SIAM J. Appl. Math. 34, 4 (1978), 611-615.

20. J. Moses and D. Y. Y. Yun, "The EZGCD algorithm," Proceedings of ACM Nat. Conf.
(1973), 159-166.

21. D. R. Musser, "Multivariate Polynomial Factoring," J. ACM 22, 2 (1975), 291-308.
22. C. 11. Papadimitriou, "On the Symbolic Evaluation of Determinants," (in preparation).
23. M. 0. Rabin, "Probabilistic Algorithms," Algorithm and Complexity--New Directions

and Recent Results, (J. F. Traub, Ed.), Acad. Press, New York, (1976), 1-19.
24. J. T. Schwartz, "Probabilistic Algorithms for Verification of Polynomial Identities,"

Symbolic & Algebraic Computation (E. W. Ng, Ed.), Springer-Verlag, Heidelberg, (1979),
200-215.

25. A. Shamir and R. E. Zippel, "On the Security of the Merkle-lieliman Cryptographic
Scheme," IEEE Trans. on Information , to appear.

26. R. Solovay and V. Strassen, "A fast Monte Carlo Test for Primality," SIAM J. of Comp.
6, 1 (1977), 84-85.

27. B. M. Trager and P. S.-H. Wang, "On Square-free Decomposition," SIAM Rev. of Comp.
to appear.

28. P. S.-I. Wang and T. Minamikawa, "Taking Advantage of Zero Entries in the Exact
Inverse of Sparse Matrices," Proc. of SYMSAC'76, ACM (1976), 346-350.

29. P. S.-lI. Wang and L. P. Rothschild, "Factoring Multivariate Polynomials over the Integers,"
Math. Comp. 29, (1975), 935-950.

30. P. S.-H. Wang, "An Improved Multivariate Polynomial Factoring Algorithm," Math. Comp.
32, (1978), 1215-1231.

31. P. S.-I1. Wang, "An Improved Multivariate GCD Algorithm," , in preparation.
32. E. Waring, "Problems Concerning Interpolations," Phil. Trans. of the Royal Society of

London 69, (1779), 59-67.
33. B. W. Weide, Statistical Methods in Algorithm Design and Analysis, Ph. D. thesis, Dept.

of Computer Science, Carnegie-Mellon University, (1978).
34. D. Y. Y. Yun, The Hensel Lemma in Algebraic Manipulation, Ph. D. thesis, Dept. of

Mathematics, Massachusetts Institute of Technology, (1974).
35. D. Y. Y. Yun, "Algebraic Algorithms using p-adic Constructions," Proc. of SYMSAC'76,

ACM (1976), 248--259.
36. H. Zassenhaus, "On Hensel Factorization I," J. Number Theory 1, (1969), 291-311.

75

DAT'j

ILME

