AD=A091 675 MASSACHUSETTS INST OF TECH CAMBRIDGE LAB FOR COMPUTE--ETC F/6 12/1
RESEARCH IN ALGEBRAIC MANIPULATION.(U)
1980 J MOSES

F49620~79=C-0200
UNCLASSIFIED AFOSR=TR-80-1118 NL




- g - bt e T PR O
AN cme mm e ek
~-

<
AFOSR-TR- 80 -1711g, })

LEVEL~

MASS. INSTITUTE OF TECHNOLOGY

H
b.
Ne
,-* LABORATORY FOR COMPUTER SCIENCE
N
)
X
o
=T

vt 3o

T

gire

< i
B N o cabibvs kR Y 2

FINAL REPORT
__ TO THE US AIR FORCE
FOR (RESEARCH IN ALGEBRAIC MANIPULATION
~1979-1980 _

CONTRACT NO. QEEERGGG— 5
S YGbA0- 79-C- AROO

JOEL MOSES
PRINCIPAL INVESTIGATOR

- -

DDC FILE_COPL.

Approved for public release g
distributionunlimited,




INCLASSLELED
SECURITY CLASSIFICATION JF 3F THIS PAGL (When Data Entered)

EPORT DOCUMENTAT oM PAGE

READ INSTRUCTIONS
BEFORE COMPLETING FORM

2. GOVT ACCESSION NO.

REPORT NU

L ron
g AFQCR xR-BJﬁ ~1118 7

A0-409 7S]

3. RECIPIENTY'S CATALOG NUMBER

[a. T|TLE (and Submte)

5. TYPE OF REPORT & PERIOO COVERED

St .
Final X/ “/ 7"

\}1§ESEARCH IN‘QLGEBRAIC MANIPULATION \ /

b,
bl

P ERFORMING g!‘& AEEORTINUMBER

7. AUTHOR(S)

" oet/boses | ST

8. CONTRACY OR GRANT NUMBER(s)
S

N‘._“.h
< /:4/%/0 7?— c- mw

Tyt s L
2R

raty

3. PERFORMING ORGANIZATION NAME AND ADDRESS

Massachusetts Institute of Technology

Laboratory for Computer Science

545 Technology Sq., Rm. 514 Cambridge, MA 02139

10. PROGRAM ELEMENT. PROJECT, TASK
AREA & WORK UNIT NUMBERS

611025, T23a4yas _ya . A
+t } i

t
-

11, CONTROLULING OFFICE NAME AND ADDRESS
Air Force Office of Scientific Research /QV/V
Bolling AFB,
Washington, DC 20332

12. REPQORT DATE

19791980

13. NUMBER OF PAGES

79

T4, MONITORING AGENCY NAME & ADDRESS(If different from Controliing Office)
N

7o /

1S. SECURITY CLASS. (of this report)

UNCLASSIFIED

15a. DECL ASSIFICATION/ DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

57 DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)

18. SUPPLEMENTARY NOTES

Algorithm, probabilistic algorithms, MACSYMA

19. KEY WORDS (Continue on reverse side If necessary and identity by block number)

Algebraic manipulation, algebraic algorithms, Greatest Common Divisor

20. ABSTRACT (Continue on reverse side If necessary and Identity by block number)

|~ This report describes a new probabilistic algorithm for computing Greatest
Divisors in polynominal time. The algorithm solves a basic problem inherg
in all prior approaches that led to exponential space and t]ﬁ 6qu1r i 2

!0 11

1473

FORM
0D 1 JAN 73 EDITION OF ) NOV 6515 OBSOLETE

UNCLASSIFIED

LS

R IR

AEFIC I mAvimy AE Tule NEE U wa Naia Entarad

I

LR L e A,




~

exponentially slow in practical cases (i.e., multivariate and sparse).
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Our research this past year concentrated on probabilistic techniques
for algebraic algorithms, such as the Greatest Common Division Algorithm.
These probabilistic algorithms are developed in Richard Zippel's doctoral
thesis, a revised version of which is enclosed. These algorithms are in
some cases exponentially better than all other known algorithms and are as
close to the best algorithms one can expect for a large class of practical

problems so as to essentially cause work in this area to cease.

Research on algebraic alorithms (GCD, factorization of polynomials,
resultants, determinants, solutions of equations) have been going on for
twenty years. The first approaches were relatively straight-forward
approaches that, in the case of the GCD algorithms, were variants of
Euclid's algorithm. These are dependent on divisions of polynomials or }
pseudo divisions and had the unfortunate property of increasing the size
of intermediate results by exponential orders. These unbearable effects
of the straight-forward approaches were first combated with a class of
algorithms called modular algorithms and popularized by G. Collins. The
modular algorithms are optimal when the polynomials are dense (and thus j
have an exponential number of terms in multivariate problems). They,

unfortunately, turn out to assume that all problems are dense and hence are
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The major attack on the modular approaches was the use of Hensel's
lemma by Moses and Yun. Hensel's lemma is the algebraic variant of
Newton's method. This approach, dubbed the EZGCD algorithm in the case
of GCD, worked fine in many cases but failed when the derivative became 0.
Whereas Newton's method only slows down at such a point, the use of Hensel's
lemma forced us to expand the problem exponentially. This problem, called
the "bad zero" problem, was the one solved by Zippel's probabilistic approach.

Zippel shows that the derivative goes to zero at an infinite number of
points, but the probability that a randomly chosen point is such a '"bad" point can
be made as low as one pleases. Zippel also generalizes Hensel's lemma so
that one can start it at any point (the EZGCD algorithm always started at 0).
Zippel's thesis shows that the overhead for his probabilistic GCD algorithm
compares favorably with other approaches and that indeed it solves the
exponential problem of EZGCD. 1t, of course, compares very favorably with the
older approaches.

Since the completion of the thesis in September, 1979, much of the
work has gone into implementing and using the algorithms in MACSYMA. 1In
practical uses, the probabilistic aspect of the algorithm has not ever been
a problem. The algorithm can check when it runs into difficulty (i.e.,
when the randomly chosen point is indeed a zero of the derivative) and can
try another point, but it has not had to do so yet.

We have also used similar techniques in other algebraic problems.
For example, R. Gosper had a set of three loth-degree polynomials to solve.

Because Gosper was only interested in rational number solutions, Zippel was

able to use a Hensel method and obtained hundreds of rational solutions. In
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my opinion, no other known approach to the problem would have succeeded

on present day computers.
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Chapter |

Introduction

Scientists and engineers have used algebraic manipulation systems with significant success in
many computational probletns. There are numerous symbolic computations in general relativity,
high energy physics and celestial mechanics that have been successfully completed using algebraic
manipulation systems; yet, they would have taken years to do by hand.

Unfortunately, algebraic systems do have their drawbacks. Because they deal largely with
exact quantities and nol approximations like floating point numbers, the expressions that are
dealt with become larger with almost every arithmetic operation. Consider the following sum:

(__l)i "2
2 e s D) s . 8225.

With the terms given, only the first two digits will give a meaningful approximations to f;

Using floating point arithmetic, we might compute with four digits. This would give .8180. But
if the sum is computed with exact rational numbers we would have FHMEL.

This illustrates the fundamental tradeoff between precision and the size of the expressions
used in a computation. Because algebraic manipulation systems insist on exactness, they are
always faced with large expression growth, some of which may be unnecessary. The unnecessary
growth can often be fatal. For a number of problems, of which greatest common divisor
calculation is the best known, the straightforward approach leads to intermediate expressions
that are much larger than the final answer. Behavior of this sort is called intermediate expression
swell.

The intermediate expression swell problem is most prominent when the problem to be solved
involves a large number of variables. Assume a polynomial, P, involves v variables and each
appears wilh degree at most d. We will call 7’ dense if nearly all possible monomials are present;
that is, P contains almost (€ -} 1)” terms. Il only a small portion of the number of possible terms
is present then P is said o be sparse. Assume the expressions with which a computation begins
are sparse. After a number of arithmetic operations the intermediate expressions will become
more dense. This is known as fill in. As the steps of the computation proceed, the operations




with the intermediate expressions will become more expensive. If the final answer is relatively
small, possibly because it is sparse for some deep reason, then the intermediate computations
can require exponential time in the size of the answer.

Over the past fiftcen years, two fundamental approaches have been advanced to help contain
intermediate expression swell in certain cases. In the late sixties, Brown and Collins and his
students investigated algorithms based on modular arithmetic and modular homomorphisms
{Bro71]. The resulting algorithms did not use large amounts of storage, but for multivariate
problems with small, sparse answers the modular algorithms could require exceedingly large
amounts of time.

Zassenhaus [Zas69], Wang and Rothschild [Wan75, Wan78], Musser {Mus75], Moses and
Yun [Mos73, Yun74, Yun76] have investigated an alternate approach that makes use of a
computational formulation of Hensel’s lemma. This approach not only minimizes the storage
required in the interinediate computations, but also runs in polynomial time in the size of the
answer for most problems. Unfortunately there exist problemns that require both exponential
time and space when this method is used. Thus in the worst case, both the modular and
Hensel-based algorithins require exponential time to compute the answer.

The main accomplishment of this Lhesis is to introduce a new probabilistic idea that allows
us to modify both the modular and Hensel approaches in a manner that greatly iinproves the
behavior of these algorithms. These modified algorithins use an internal randomization process,
so the amounl of time they require on any particular problem may vary from trial to trial.
However, their average running time for any particular problem is polynomial. We say that
these algorithms run in probabilistic polynomial time.

The two classical approaches to problems in algebraic manipulation utilize some of the
structure inherent in multivariate polynomial problems. By replacing some of the variables by
integers, the multivariate problem is reduced to a univariate problem that is much easier to solve.
It is then observed that the univariate solution is very closely related to the original multivariate
solution, For many problems the univariate solution is the image of the multivariate solution
with the variables replaced. This univariate solution is then lifted to a bivariate solution, and
then to a trivariate solution and so on. When all the variables have been recovered we should
be left with the desired multivariate solution.

This version of the modular algorithm does not take advantage of any information about
the “shape” of the polynomials that might be determined at the stages of the lifting process. The
Hensel algorithmn is generally implemented in a manner that goes from a univariate solution to
the full multivariale solution in one step. Though this is very efficient in many cases, there are
classes of problems for which the basic technique breaks down. (Basically because the Jacobian
of a system of equations closely related the problem becomes zero. This is called the bad zero
problem.) In this case the problem can be modified to avoid the bad zero problem, but only
by making the modified answer much denser in most cases.

The fundamental ideca contained in Lhis thesis is best expressed in terms of an interpolation
algorithm. Assume that we are interpolating a sequence of values of a sparse bivariate polynomial,
P(X,Y). This is norinally done by determining a number univariate polynomials, P(X, y,), and
interpolating their coelficients to compute P(X, ¥). Our algorithm computes the first univariate
polynoiial by the usual interpolation scheme, but then assumes the other univariate polynomials
have the same structure. For instance, if the first univariate polynomial is X* 4 1, then we
assume that the other univariate polynomials have only an X" and constant term and that
the cocflicients of the X' X* X? and X terms are zero. If this assumption is correct then
we will only need to lift the coefficients of X" and of the constant term, thus decreasing the
number of terms that need to be computed by 67%. An assumption of this sort is utilized as




each variable is introduced into the answer. This exponentially decrcases the number of terms
that are computed and gives us an algorithm that is polynomial in the size of the answer.

1. Probabilistic Algorithms

Probabilistic techniques have been applicd to difficult problems before. By difficult we mean
probleins whose best known algorithm requires exponential time. The NI>-hard problems [Gar79]
certainly fall into this class, as do the problems of polynomial factorization and computation
of greatest common divisors. Weide [Wei78] divided probabilistic algorithms into three classes
in his thesis. In the first class we have those algorithins that give an approximate answer to
all problems (usually in polynomial time). The graph algorithms of Grahamn [Gra66] and Karp
[Kar76] fall into this class. The primality testing algorithms of Solovay and Strassen [Sol77]
and Rabin [Rab76] give an exact answer most of the time. Algorithms in this class can often
be modified to always return an exact answer, but then will occasionally require exponential
time. The final class of algorithins yields a good approximate answer most of the time.

The algorithms presented in this thesis, and those derived from the ideas given here will
fall into the second class if it is possible to verify that an answer is correct. Both the GCD
and polynomial factorization problems lic in this class. Some problems, like the computation of
determinants and resultants, have solutions that are diflicult to verify. Our algorithms for these
problems fall into a subcategory of Weide's third class. These algorithms return the correct
answer most of the time, but there is a chance the answer will be incorrect.

The algorithms presented in Lhis thesis are probably best viewed as algorithms that produce
candidate solutions which have a probability € of being incorrect. It is possible to compute the
candidate solutions in polynomial tirme both in terms ¢ and the size of the candidate. It is possible
to make ¢ as small as desired. In practice, ¢ can be small enough that only one candidate need
be computed.

2. Factoring Polynomials and Computing GCDs

Factoring integers has been a favorite pastime of human and electronic computers for some
time. With the advent of symbolic algebra systems in the sixties, it was notl surprising that
interest would arise in factoring polyromials. The ability to factor polynomials has proven to
be an exceedingly useful tool in other problems. Of course, this ability can make solving a
polynomial equation much easier and thus lies at the heart of most packages to solve equations
and systems of cquations. Factoring polynomials also is part of most algorithms for computing
integrals of rational and algebraic functions.

Algebraic number theory computations abound with factoring problems. The determination
of the structure of Galois groups, the computation of the degree of an algebraic number over a
ficld and the invesligations of class groups are just a few of the problems that require factoring
ol polynomials.

Many users of algebraic manipulation systems have discovered that factoring programs
can be among their most powerful simpliliers. The factorization of a result will often yield a
more succinct expression and more insighl inlo its physical interpretation than the expanded
representation that many algorithms return.

The first algorithm for deteriining the factors of a polynoinial ever the integers was invented
by von Schubert in 1793 and rediscovered by Kronecker in the late nineteenth century. This
algorithm is now probably best known for its highly exponential behavior. The truly practical
algorithms that have been developed in the seventics are based on Berlekamp's algorithm [Ber69}




for factoring univariate polynomials over a finite field and Zassenhaus’ vrrsion of Hensel’s lemma
[Zast9] for lifting a factorization over a finite ficld to vne over the integers and then to a
multivariate factorization.

As was mentioned earlier, there are certain classes of problems for which the Hensel approach
takes an extremely long time. These problems are generically called "bad zero” problems.
Characteristically these problems require time that is exponential in the number of variables.

Recently, Paul Wang {Wan78] introduced some ideas on how to reduce the impact of the
bad zero problems on algorithms using lensel’s lemma. The heuristics he uses yield a very
sighificant reduction of the exponential cost of some bad zero type problems, but they do
not completely eliminate the exponential behavior. The precise dependence of the exponential
behavior of Wang's algorithms has not. yet been determined, due in part to the fact that they
are exceedingly complex algorithms.

The techniques presented in this thesis are a direct result of Wang's ideas when applied to our
formulation of Hensel’s lemma. A significant advantage of our framework for the Hensel lemma
is that Wang’s ideas, when incorporated, yield a demonstrably polynomial time algorithm.
Actually, the work for this thesis began by trying to show that Wang's ideas could be applied
to the formulation of llensel’s lemma presented here.

Though probably not as exciting a problem as factoring polynomials, computing GCD's
is certainly at least as important. GCD'’s are implicitly used in computations to keep rational
functions reduced to lowest terins. Unlike the situation with factoring polynomials where there
is essentially only one realistic approach, there are four approaches that have been iinplemented
and are used in algebraic manipulation systems. Each works quite well for some class of problems.
The subresultant GCD algorithm [ColB7] is rather difficult to analyze, but it seems to perform
well when the GCD is a large factor of the original polynomials. When the two polynomials
have a GCD of 1, the subresultant algorithm will often require unreasonably large amounts
of time and space. Recently fearn [llea7y] introduced a new algorithm along the same lines
as the subresultant algorithm, which scems to behave somewhat better than the subresultant
algorithm but still exhibits exponential behavior. The modular algorithm {Bro71} does not
require a large amount of space but it still runs in exponential time in terms of the number
of variables. This is reasonable for completely dense polynomials. The Ilensel version of the
GCD algorithin [Mos73], which is called the EZGCD algorithm, has the same problem with
bad zeroes that plagues the tensel factorization algorithms.

Our improvement to the Hensel factoring algorithm also yields a polynomial time algorithm
for GCI) computations. lowever, we have also been able to apply our techniques to the modular
algorithin to produce a probabilistic procedure that computes polynomial GCDs in time that
is polynomial in the size of the answer. This new modular algorithm, which was discovered
in discussions with Barry Trager, is actually significantly simpler than the Iensel algorithm
and illustrates the key ideas in our approach more clearly. Thus we discuss the sparse modular
algorithim first, even though our version of the Hensel algorithm was discovered first.

The following table lists the times required by a number of algorithms to compute the GCD
of the second set of polynomials listed in the appendix. It is intended to give an indication of the
possible performance of the algorithins presented in this thesis. [n section VIL.4 we discuss this
example more fully. The times are listed in seconds and the asterisks indicate that MACSYMA
ran out of storage.
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3. Determinants, Resultants and Linear Equations

The computation of determinants of large sparse matrices is one of the more difficult
problems in computing. Using numerical methods, “large” means matrices with thousands of
rows and columns. In algebraic manipulation a matrix with 10 to 20 rows is quite large. This
is one of the problems that quite graphically points out the difference between nurnerical and
symbolic calculations. The determinant of a general 20 < 20 symbolic matrix contains 20! =
2.5 x 10"™ terms. far more than can be handled by any existing computer or even any being
designed now. On the other hand, the determinant of any numerical matrix is a single number.

One result that points to the difliculty in computing determinants has been recently
discovered by Papadimitriou [Pap79]. He his shown that for certain n X n matrices involving
V/n variables, the computation of the coefficient of a single monomial in the determinant is
NP-hard.

if the only problem being considered was computing the entire determinant then determinant
calculations would be quite uninteresting. On occasion, however, something is known about the
structure of the determinant beforehand. 1t would be very useful il some use can be made of
this information to speed the computation.

Commonly, in the course of a problem, a system of equations is constructed. Of all the
variables, only one or two may actually be interesting. All the others were merely introduced
to set up the system of equations. Using numerical methods, the computation of the values of
these auxiliary variables is not really a devastating problem. Though their computation may
require additional time, the space required is only linear in their number.

In symbolic problems each of the auxiliary solutions can be very large. If there is any
way to eliminale the computation of the auxiliary variables it will be very worthwhile. Until
now, the only technique available for avoiding these auxiliary computlations was the modular
interpolation algorithin. But this algorithin does nol take advantage of any sparsity in the
answer. In a later section of this thesis we will discuss the first algorithims for solving these sorts
of problems thal do take advantage of the sparsity of the answer.

The compulation of polynomial resultants and inversion of a matrix containing polynomial
entries can both be considered to be special cases of determinant calculations. They also seem
to have the same problems that plague determinants. It is very dilficult to check an answer with
all of these problems. Thus the algorithims we present can possibly give an erroncous result, but
the probability that an answer is erroneous can be set arbitrarily low before the computation
begins.




4. A BRoadmap

This thesis is divided into two essentially independent pieces. Part I is devoted to the
study of the modular algorithm, its derivatives and applications. Part I is concerned with the
algorithms based on Hensel’s lemma. In cach portion the core of the results is contained in
chapters that discuss the use of sparsity in each of these approaches.

The main example that is used to illustrate both the modular and Hensel algorithms is the
computation of the GCD of two polynomials. This algorithm is used frequently in algebraic
manipulation and is implicit in virtually all computations involving rational functions. In
fact, during the sixties before Collins’ and Brown's [Bro71] work on GCD computations, the
dominant cost in rational function operations was the GCD calculations used to ensure that
rational functions were reduced Lo lowest terms.

Because of their importance we begin Part [ with a review of the what are now the “classic”
GCD algorithms. This review, which is contained in chapter I, begins with a discussion of
the principles underiying Euclid’s algorithin for polynomials and the various improvements
of it, which culminated in Collins’ subresultant algorithm [Col71]. The chapter concludes its
survey of the algorithms of the sixties with Collins’ and Brown’s version of the modular GCD
algorithm.

In chapter Il we present our sparse version of the modular algorithm. This chapter presents
the fundamental idea advanced in this thesis. In chapter I we also give a relatively detailed
analysis of the behavior of the probabilistic sparse modular algorithm.

In chapter IV we apply the ideas of the previous chapters to a number of problems. Of
particular interest is the sparse resultant algorithm. This is the first algorithm of any form that
computes the resultant of two polynomials in time that is polynomial in the size of the answer.
We also indicate how the sparse ideas may be applied to more involved and complex problems
in algebraic manipulation.

In the second portion of this thesis we illustrate how the basic idea of a sparse lifting can
be applied to Hensel’s lenma. Before this can be done we need to cast Hensel’s lemma in a
framework that is somewhat different from that presented by other researchers in algebraic
manipuiation. To fix the notation and nake this a bit more self-contained, the basic ideas that
are taken from mathematics are presented in chapter V. Those who are familiar with the results
of valuation theory can skip this chapter.

Chapter VI gives a detailed discussion of Ilensel’s lemma. We present our “new” framework
and trace its development from Newton's work through Hensel’s. We then present the “old”
version that was popularized by Zassenhaus [Zas69], Wang and Rothschild [Wan75)], Musser
[Mus75] and Moses and Yun {Mos73, Yun75, Yun 76). This version is shown to be equivalent to
our version. The results of chapters V and VI are quite old and we make no claim to originality
here.

Chapter VII shows how the ideas on sparsity that were applied to the modular algorithm
in chapter 11l can be applied to IHensel’s lemma. We also show how a trick due to Wang may
be used to increase the speed of the algorithm even further. The final section of this chapter
gives an analysis of the sparse Ilensel algorithm. The Hensel algorithm, when applied to the
computation of polynomial GCDs, can be analyzed in much the same manner as the sparse
modular algorithm.

Finally, chapter VIl presents our conclusions and some points that deserve further study.

Throughout this thesis the following conventions are observed with respect to cross refer- ‘
ences. Any reference to a section in different chapter will be of the form V.2.3. The other :
chapter’s number is given as a capital Roman numeral and is followed by the section number




and then the subsection number. References to sections in the same chapter omit the chapter
number. Bibliographical references consist of the first three letters of the first author’s last name
and the last two digits of the year of publication.
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Chapter |

Classical GCD Algorithms

All practical algorithms for computing the greatest common divisor of two polynomials are
based on Euclid’s algorithm (perhaps the first usage of Fermat’s principle of infinite descent
|Har68]). Assume we are given two positive integers p; > p, whose greatest common divisor
{GCD) we wish to calculate. We can determine two integers, q; and p3, that satisfy

n=aqp+p p>p>0

by integer division. It is clear that any integer that divides p; and p; also divides p;. F'urthermore,
any integer that divides p, and p; must divide p; so the GCD of p, and p; is also the GCD of
p1 and pp. Assume p; 7%~ 0. We now compute a new quotient and remainder

P2 = @p3 + Py p3 >pg > 0.

This can be continued to give a remainder sequence

P> >p > > P> Prt =0,

thus p,, must be the GCD of p; and p,.

In this chapter we will examine how this algorithm may be extended to compute the GCD ;
of two polynomials. The remainder sequence of Euclid’s algorithm then becomes a sequence
of polynomials called a polynomial remainder sequence, or PRS. Again the GCI) will be the
last non-zero term in the sequence. For polynomials, the term before the GCD, p,.._,, may be
much larger than necessary. The main purpose of the algorithms in the first two sections of
this chapter is to reduce Lhe size of Lhe elements of the PRS.

In the final section, we discuss the modular GCD algorithm due to Brown and Collins
[Bro71). This algorithm is the first of the GCD algorithms that deviates radically from the
classical approach.

11




1. Euclid’s Algorithm

We will use the following conventions and terminology throughout this thesis. Capital
letters will be used to represent symbolic literals. Lower case letters will be used to represent
unknowns, integers and, on occasion, other expressions. Let

FX)=pX"+AX"" 4+ + 1o

be a polynomial in X. The degree of F is n. This is denoted by degF =n.If , =1 then Fisa
monic polynomial. The greatest common divisor of f, ..., f, is the content of F. If the content
of a polynomial is [, then it is said to be primitive. Given the polynomial ' we can compute
its content by computing the GCD of f, and f;, call it g;; then computing the GCD of g, and
/2 and repeating. The content will then be g,. The primitive part of F is f(X)/g., which is a
primitive polynomial.

Let Fi(X) and F5(X) be polynomials over a field. Fy(X) can be divided by I,(X) to obtain
a quolient q(X) and a remainder I;(X) that satisfy

Fi(X) = q(X) - FX) + F3(X)  deg(fy) < deg(fr). (1

Just as with integers, the GCD of F(X) and F3(X) must also be the GCD of Fi(X) and Fy(X).
This process can be repeated with F,(X) and F;(X) to obtain a quotient ¢,(X) and a remainder
F4(X).

Fy(X) = @ X) - F5(X) + Fy(X)

Fn—~3(X) = Qn—'J(X) ' Fn—-‘l(x) + F‘n~l(x)
Fu——')(x) = Qn—‘l(x) : Fn——l(x) + Fn(x)

The degrees of the F;(X) are decreasing, hence, for some ¢, the degree of F;(X) must be zero.

If Fi(X) is non-zero then the next remainder in the sequence, Fiy 1(X), is zero. Without loss -

of generality we may assume that F,.; ((X) = 0. The GCD of (X} and F,(X) will be F,,(X).
Notice that the degree of the polynomial is being used in place of the magnitude metric used

for integers.
As an example consider calculating the greatest common divisor of

F(X)=X8+Xx%—3Xx"—3X>48X> 42X —5 and
Fy(X) =3X% 4-5X1 — 4X? — 9X 4-21.
(This is the traditional example used to illusirate polynomial GCD algorithms first used by

Knuth [Knu69].) Using the Euclidean algorithm we obtain the following sequence of polynomials.
We write only the cocflicients of F;(X).

F = 1,010 —3 —38,2 —5
R = 3,0,5,0, —4,—9, 21

Fy = _3»0'$v0'—3§
Fy = - '2"173 -9, "42%[
Fs= AR, — 1age

i

Ly
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Since the last non-zero term in the polynomial remainder sequence is a constant, the GCD of
these two polynomials is 1.

Intermediate expression swell usually becomes more severe as the number of variables
increases. In the following PRS we have used bivariate polynomials of smaller degree than the
previous example, yet the polynomials that result are still quite large.

Fy = X4+ X—-Ww
= X3 42X243WX —W+1
= (—3W + 2)X2 4+ (4W — 1)X — 2W 41
— 2TWI_2W2 W43 !)W:’—Hz—l-'lwﬂ
Fi= O Z_12W 41 X+ IR P e
F = —=T29W T 7816 47 |\\'5~t725\\"-}~xl\\'”—I(i‘l\\%HiSW—S
2 729N T 10815 5900 T 2064 34H-109W2—G6W 49

Had we used three, four or more variables the clements of the PRS would have filled many
pages.

In practice it is not reasonable to use rational coeflicients in the PRS. The number of
GCD'’s required to keep these coefficients reduced to lowest terins is just too great, and not
reducing them leads to horrendous expression growth. If we relax (1) slightly we can obtain
a “pseudo-quotient” and “pseudo-remainder” that will always have integral coeflicients. Let
F\(X) and F3(X) be primitive polynomials over a ring R of degrees n; and n; respectively.
(A polynomial is primitive if its coefficients are pairwise relatively prime.) Denote the leading
coefficient of F;(X) by f;. The pseudo-remainder (X} and pseudo-quotient ¢(X) satisfy

BT R(X) = R(X) - g(X) +r(X). deg(r) <m

Using r(X) as F5(X), the next term in the PRS leads to rather severe expression swell as we =

see: . i
F = 1,0,1,0,—3,—3,8,2, —5 ;
R= 3,0,5,0, —4, —9, 21 ‘
F= —15,0,3,0,—9
Fy = 15795, 30375, —59535

Fs = 1254542875143750, — 1654608338437500
Fs = 12593338795500743100931141992187500

This growth is clearly unacceptable. Most of these polynomials are not primitive. If we
remove their content at each step we get the following PRS:

= 10,1,0,-3,—-3,8,2,—5

Fy= 3,0,5,0,—4,—9,21
Fy= —5,0,1,0,—3
Fy= 13,25, —49
Fs = 4663, —6150
Fg = 1

This is known as the primitive PRS and the algorithm that uses it is called the primitive GCD
algorithm. It is as good as can be donc with respect to the growth of the terms in the PRS;
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unfortunately the amount of time required to ensure that each term in the PRS is primitive is
exceedingly great.
The terms of a PRS always satisfly the following relationship

o3P ER(X) = Fi(X) - a(X) 4 BiFiga(X).

For the Euclidean PRS, 8; = 1. We will denote the pseudo-remainder of Fi(z) and Fy 4 ,(z)
by prem(F;,F;+1) and the content of F; by coni(F;). Then the primitive PRS uses §, =
cont(prcm(ﬂ1Fi+l))'

To avoid the GCD’s needed by the primitive PRS, Collins introduced the reduced PRS
[Col67, Bro71]. This algorithm uses 1 for §; and f:’g"‘*'“u for §;. For the same problemn, the
coeflicients of the reduced PRS are

Fi= 1,010, —3 ~3,82 —5

F, = 3,0,5,0, —4, —9, 21
Fy = —15,0,3,0, —9
Fy = 585, 1125, —2205
Fs = — 1885150, 24907500
Fg = 527933700

Through better than the Euclidean PRS, the coefficients of the reduced PRS can still grow
exponentially. In particular, if the two polynomials are relatively prime, the cost involved in
the IS can be prohibitive. This is probably the most common case for the GCD’s involved
in rational function computations.

2. Subresultant PRS

The best of the GCD algorithms that use a full polynomial remainder sequence is Collins’
subresultant algorithm. For sufficiently sparse polynomials, Brown’s analysis [Bro78] indicates
that even the subresultant algorithm will require exponential time to compute the GCD. Again
the way of decreasing the growth of the terms in the PRS is to pick a better value for 3;. The
proof that the §; chosen actually leads to a valid PRS is not easy. The interested reader should
examine [Bro78], which is the definitive reference for the subresultant algorithm.

Let §; = n; — n, . For the subresultant PRS, §; can be chosen as follows

B = (__1)61+l
Bi = (—1)o—2tlf b2 i=4,.. k4]
where
hy = f5
hi = fr=thiZp=',  i=3,.. .,k
The subresultant PRS for our standard example is
F,= 10103, 3,82 —5

Fy = 3,0,5,0,—4, —9, 21
Fy = 15,0, —3,0,9
Fy= 65, 125, —245
Fy= 9326, —12300

Fg = 260708




If &, is 1 then the PRS step that divides F, and I, to produce F;,., is called normal.
Otherwise, the step is said to be abnormal. At each normal step of a PRS the size of the
cocflicients tends to grow linearly. Abnormal steps lead to faster growth.

The subresultant PRS algorithm does an admirable job of minimizing intermediate expres-
sion swell in the computation of the polynomial remainder scquence. If we are interested in the
GCD of the two polynomials, only the last term of the PRRS will be of interest. If the PRS is
relatively short then it will not have a chance to grow too much. In this case the GCD of the
two polynomials will tend Lo be a large factor of one of the two polynomials. However, if the
GCD of two polynomials is small the PRRS involved will tend to rather long. In this case the
swell involved in the PRRS can be extremely costly.

3. The Modular GCD algorithm

In this section we discuss a GCD algorithm that does not try to reduce intermediate
expression swell by controlling the content introduced in the remainders of the PRS. Instead
this algorithm maps the problem into a univariate polynomial ring over a field in which GCDs
can be computed siinply, easily and without interinediate expression swell. After doing a number
of GCDs in that ring, it is possible Lo interpolate the results to compute the original, polynomial
answer. Thus there is no need to compute the large terms of the PRS.

This idea was developed by Brown and Collins [Bro71]. With some hints, the modular
algorithm was independently discovered by Knuth [Knu69]. This led to an interesting method
of controlling the intermediate expression swell for GCDs, but at a cost in the time required
by the algorithm.

Brown and Collins observed that computing univariate GCD’s over a finite field led to no
swell since the cocfficients could nol grow beyond the size of the modutus. Thus they convert
a multivariate GCI problemn to a number of univariate GCD problems modulo some prime.
The answers to these problems are then interpolated to produce the true, multivariate GCD
using the Chinese remainder algorithm or Newtonian or Lagrangian interpolation.

This section is divided into iwo parts. In the first we discuss the Chinese remainder algorithm
and some of its features. This is the key to doing the interpolation. In the second we indicate
how it is applied to produce the modular GCD algorithm.

3.1. Modular Arithmetic

In the next section we will be using modular arithmetic rather heavily. In this section we
will review some of the basic principles involved when performing computations with modular
arithmetic. We will write

z = y (mod m)

if z and y differ by a mulliple of m, and say that z and y are equivalent modulo m if this
is the case. It is conventional to pick an element from each equivalence class of the rational
integers modulo m and do the arithmetic with these representatives. Two sets of representatives
arc commonly used. On most current compuiers it is somewhat easier to perform modular
arithmetic with representatives from theset {0,1,2,...,m~1}. We call this the non-negative
representation of the integers modulo m [Knu69]. The balanced representation of the integers
modulo m uscs the set

(The cciling operations are needed because m may be even.)




Regardiess of the representation chosen, any integer k will be equivalent to only one element
of the set of representatives. Thus representative r is called the residue of k modulo m. We will
also say that & is congruent to » modulo m,

Arithmetic with these equivalence classes modulo m is called modular arithmetic; m is called
the modulus. Modular addition, subtraction and multiplication are all performed by combining
the two operands using integer arithmetic and then reducing the result to the appropriate range,
usually by a remainder computation. Raising a number to a power can be performed by repeated
squaring using modular multiplication. This is especially effective since the numbers used are
all about the same size as the modulus.

If p is an integer modulo m we can sometimes compute 1/p modulo m. Denote |/p modulo
m by u. Then

pu = 1 (mod m),

and pu and 1 differ by a multiple of m. That is
pu—1=mv or pu —muv = L,

If p and m have a common divisor d > 1, then d would divide pu — mv and would thus have to
divide 1. Since this is impossible there cannot be solutions to pu — mv = 1 and thus p cannot
possess an inverse modulo m.

If p and m are relatively prime then it is not too hard to demonstrate that pu —mv =1
must have solutions. To sce this, computle the GCD of p and m using the Euclidean algorithm.
For uniformity we will let £, and /) denote m and p respectively. We will also assume that p
is in the non-negative representation. Then

h=af+ 1A
h=aqh+ 5

fo—2=q 2fi_1 + 1
fir =q e +1
The final remainder must be 1 since fy and f; (p and m) are relatively prime. It is not hard to
show that if
aifo =bifi + £
then
Git1 = ¢i—16i + ai—)
biy1 = gi_1b; 4 bi—y
Since f,.yy = 1 we have u = be.|. Thus, if p and m are relatively prime, p has an inverse
modulo m, and in which case p is said Lo be a unit. More generally a unit is some element of a
ring that has a iultiplicative inverse. I'urthermore, we have developed a technique for solving
the equation
of —bg =1
for integers a and b when f and g are relatively prime. This equation figures prominently in the
Hensel algorithms discussed later.

3.2. The Chinese Remainder A'gorithm.

We now begin outlining the Chinese remainder algorithm for integers. Let py,..., pe be
relatively prime rational integers. Denote the product of the p; by P. Assume we know that
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some integer w satisfies the system of equations
w=m;(modp;) i=1,... & 2)

We do not assume that the p; are primes. However, if they are not pairwise relatively prime then
the system of equations may not have a solution. Note that this is when P is not square-free,
i.e. when there is no integer @ such that @* divides P. Regardless of whether P is square-free,
if there is a solution it will not be unique. Il a multiple of P is added to any solution of (2) then
the result will also be a solution. If P is square-free, then there all the solutions of (2) will lie
in exactly one equivalence class of the integers modulo P.

The Chinese remainder algorithm provides a means of determining an integer @ which
satisfies these modular equations, provided P is square-free. If there are only two equations
then the appropriate value for @ is apparent, @ == m; + p((m; — my)p;”!, where the inverse
of p1 is computed modulo p,. Thus we can replace (2) by the slightly smaller system

w = my + p(my — m)p;"" (mod pypy),
w = mg (mod p3),

(3)
w = my, (mod py).
We can now repeat this process with the first two equations of (3) since p;p, and p; are relatively

prime. The following specification, which follows the model of [Knu69), makes this algorithm
precise. We will use this format throughout this thesis.

Algorithm C takes as input a set of pairwise relatively prime rational integers py,...,pr and
a set of integers my, ..., my. It returns an integer m < pyp; - - - py. such that m = m, (mod p;)
forl<i<k.

C1. [Initialize] Set q «— p;, m — m,.
C2. {Loop] Fori=2,...,k do step C3.
C3. [Determine new m] Set ¢ — ¢! (inod p;), m «— m+ (m —m,) - q-¢' (mod gp;) and
q ~— qp;.
C4. (End] Return m.
We are now going to extend this algorithm to an interpolation algorithm for polynomials.

In order to do this we will rephrase this version of the Chinese remainder algorithm in terms
of modern algebra. In general, the problem we are to solve is: Given that w satisfies

= m, (mod p)
w = m; (mod q)

where p and ¢ are rclatively prime, we are to find m; such that
='m3 (mod pg).
To generalize this algorithm we will say that p, ¢, m; m, and w are now all polynomials.

The expression w = m, (mod p), just as in the integral case, means that w — m is divisible
by p. If pis a linear polynomial, (X — a;), then the representation of the residue classes are
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rational numbers. We can compute the residue of f(X) modulo (X — a;) by division:

f(X) = (X —a))g(X) +0.

b must be of degree less than 1, so it must be a constant. Replacing X by a; we see that
b = f(a;). So the residue of f(X) modulo (X — a,) is f(a1).

More generally, let F' be a field and p(X) a polynomial over F' of degree d. We write this as
p(X) € F|X]. The canonical representatives of the residue classes modulo p{X) are the clements
of F'[X] of degree less than d. Arithmetic modulo p(X) is very similar to arithmetic module an
integer. Addition is a bit simpler since the sum of the two polynoinials of degree less than d will
have degree less than d. Thus no normalization step is necessary. The product of the residue
classes represented by f(X) and g(X) is the remainder of f(X)g(X) when divided by p(X). The
same repeated squaring algorithm used for modular arithmetic can be applied here.

The clements that are zero are multiples of p(X). Denote this set by I. These clements
form an additive group. Furthermore, if a is in F|X] and b € I then ab € I. These two facts
mean that I is an ideal. This particular ideal is denoted by (p(X)). This notation indicates that
all the elements of I are multiples of p{X). The residue class ring is denoted by F[X]/(p(X)).
Similarly, the integers modulo p are denoted by Z/(p). (The ideal (p) is sometimes also written
as pZ for clarity.)

Thus far we have placed po restriction on p(X). f F is a ring instead of a polynomial then
the multiplication algorithm will be valid if and only if p{X}) is monic.

If p(X) is reducible then not all elements of F[X]/(p(z)) will be invertible, even if F is a
field. To see this recall the algorithm used in section 3.1 for computing the inverse of an integer
modulo m. That algorithin was based on the fact that we could solve

ap—bm=1.

Thus a {(mod m) was the inverse of p. In the polynomial case the same algorithm holds. Assume
we wish to compute the inverse of f(X) mudulo p(X). We can again try to solve the equation

a(X)/(X) — b(X)p(X) = L.

As before, this equation can have solutions if and only if f(X) and p(X) are relatively prime.
Assume for now that they are not relatively prime. If p(X) is irreducible then f(X) is a multiple
of p(X) and thus f(X) = 0 (mod p(X)). Conversely, if every f(X) wkich is not coprime to p(X)
is a multiple of p(X) then p(X) is irreducible.

Thus if each residue class modulo p(X) is to have an inverse p(X) must be irreducible.
Furthermore, it is not hard to carry through the algorithm of section 3.1 for polynomials. In
order for the final remainder to be 1, it will be necessary to use the Euclidean PRS. This means
that F must be a ficld. If these two conditions are met then F|X]/(p(X)) will be a field. This
cquivalent to saying that (p(X)) is a maximal ideal.

We can now finally return to the Chinese remainder algorithm. It is clear that just changing
the words “relatively prime integers” to “relalively prime polynomials” in algorithim C will make
this algorithm valid for the polynomial case. Let f{X) be the polynomial that is to be computed.
In its mnost common usage, the Chinese remainder algorithm uses linear polynomials (X — py)
for the generators of the ideal and thus the residues are just the values of f(X) at X = p;.
Furthermore, the computation ¢ ' (inod p,) used in step C3 is now equivalent Lo ¢(p;) ' since
I is a field. With these observations we are lead to the following algorithm.
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Algorithm D. Given two sets of rational integers {py,...,p.} and {m,...,mi}, returns a
polynomial f(z) such that f(p;) =m; for 1 <i <k,

DI. [Initialize] Set f(z) — m,, ¢(z) — (z — p).
D2. [Loop] Fori=2,...,k do step D3.
D3. [Determine new f] Set f(z) — f(z) + q(p:)~"q(z)(m: — f(p:)) and ¢(z) « (z — p;)q(2)-
D4. [End] Return f(z).
It is important to note that even if the goal polynomial for algorithm D is very sparse the

intermediate results can be completely dense. The following example should demonstrate both
this and the use of the algorithm. All computations are performed in the field Z/163Z.

pi |my f(z)

—12( 70 70
14]-75 —62z — 22
241 75 61z2 — 21z — 1
33| 72 —28z3 — 2622 + 79z + 62
51| 55| —53z" + 229 — 2022 — 23z — 2

—1| 0 41

Since g(z) is a product of linear polynomials, it is almost certain to always be dense.

3.3. Detailed Description of the GCD Algorithm

As belore we wish to compute the GCD, G(X), of the primitive polynomials I ( X) and F,( X).
Let B be a number which bounds the maximum of the absolute value of the coeflicients of G.
(This bound may be computed from a theorem of Gelfond [Gel60], but in many implementations
[Bro71] the maximuin of the absolute values of the cocllicients of /7 {X) and (X} is used instead.)
Let d = deg(G). Pick k random prime rational integers p,...,ps, such that p;---p. > 2B.
Usually p; are chosen to be less than a machine word in size for efliciency. By using the balanced
representation we can get negative coefficients also. Now the coeflicients of F{X) and F(X) are
reduced modulo each of the p; successively and the GCD is computed over Z/p,Z. Denote these
GCDs by G,(X). When computing polynomial remainder sequences over a field, the elements
will always be monic. Therefore, the GCD which we compute modulo p; will be monic. For
simplicity let us assume that both F1(X) and /,(X) are monic. This restriction is removed later.

Since both Fy(X) and F(X) are assumed to be monic, their GCID must also be monic.
Therefore when reduced modulo p;, the GCD’s degree will not be decreased. But the degree of
G,(X) can be larger than the degree of the GCD. If d is differs from deg(G,) then we say that p;
was an unlucky prime. If a p; turns out to be unlucky it is discarded and a new one is chosen.
(In practice a prime is considered to be unlucky if deg(G;) > deg(Gi—1).)

We now have k polynomials, each of degree d which are images of G modulo p;. We can
now apply algorithm C to the vector of constant terms of (7,, and then Lo the lincar terms, and
so on. The interpolated values are the coeflicients of (7 A slightly more ellicient arrangement
of this algorithm is expressed in Algorithim M, which does not require that /7(z) and Fy(z) be
monic.

Algorithin M takes Lwo primitive univariate polynomials Iy and I, over the integers and a
bound I3 on the size the coelficients of their GCD) as inputs and returns their GCD.
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M1. [Initialize] Set ¢ to the GCD of the leading coeflicients of Fy(X) and F,(X). Pick a prime
m which does not divide c and set G(X) to the GCD of (X)) and F,(X) computed modulo
m. Set d «— deg(G) If d is zero, immediately return 1 as the GCD.

M2. [New prime] Pick a prime p which does not divide c. Set H(X) to the GCD of Fy(X) and
Fy(X) computed modulo p.

M3. [Impose leading coefficient] Set H(X) «— c¢X* + (H(X) — X%) - ¢! where all the
coeflicient arithmetic is done modulo p.

M4. [Unlucky prime?] If deg(H) > d then p was an unlucky prime. Go to M2. If deg(I) < d
then m was an unlucky prime, start all over again. Go to M1.

M5. [Loop over coefficients] Set G — 0 For 0 < ¢ < k do step MS.

MS6. [Interpolate] Use algorithm C on the coefficients of X' in G and /{ with moduli
m and p. Let the interpolated result be w. Set G — G 4 wX?.

MT7. [Reset the world] Set G — G,me— pm. If m > 2B then return G else go to M2.

This algorithm can easily be exiended recursively to handle multivariate polynomials. A
detailed description is contained in [Bro71]. Ilere we will present a rather cursory overview of
the algorithm. The main purpose of this overview is to point out the source of the modular
algorithm’s exponential behavior. After this presentation we will demonstrate another, more
ineflicient version of this algorithm that exhibits the source of this behavior quite clearly.

Assume that we are again trying to compute the GCD of the two primitive, monic
polynomials Fi (X, Xs,..., X,)and F3(X, X,,..., X,.). We will assume that the coeflicients of Fy
and F) lie in a field. (Il the coefficients are rational integers, then they can be reduced modulo
some large prime and the integer coeflicients restored by a slight variation of algorithmm M.) The
GCD of Fy and F, is the polynomial G(X, X»,..., X,). Assume we know that none of the X;
appears in G with degree greater than d. The multivariate algorithm begins by picking values
for X, = ay,..., X. = a.g, and substitutes Lhese values into Fy and 5. The GCD of the
resulting polynomials is readily computed. The value of the constant term of the GCD must

be the constant term of G evaluated at X, = ayy,..., X, == a,9 and similarly for the other
coefficients. The algorithm now picks d new values for X), ay;,...,a,y and computes the GCD
of Iy and F3 with X, = ay),...,a2q and X3 = ay, ..., X, = a,¢9. That is X, is the only variable

whose value changes. The coeflicients of the d + I univariate polynomials may be interpolated
using algorithin D to compute the bivariate GCD of F| and F, at X3 = ayg, ..., Xv = @0,
G(/Y, Xz, azo, ... ,a,,(,).

Now a new value is chosen for X, ai;; d + 1 values are chosen for X3, and the interpolation
procedure of the previous paragraph is repeated. This yields G(X, Xy, a31,...,a.0) Usingd — 1
bivariate polynomials, G(X, Xy, -,...,aw). Now the coeflicients of these polynomials can be
interpolated using algorithm D to compule G(X, X, Xu,...,a.0). The computation of this
polynomial required d + 1 bivariate polynomials be computed. Each bivariate polynomials
required d + | univariate GCDs so thus far we have used (d + 1) univariate GCDs. To
compute the four variable GCD we will need d 4 [ trivariate GCDs and will thus require
(d 4 1)* univariate GCDs, and the whole problem will require (d + 1)"~' GCDs. This is
illustrated by figure 1 for v = 4.

Each level of the tree has a branching factor of d 4+ 1 so one can’t help but have exponential
behavior. In chapter IIl we will show how to slash the whole structure of the tree so that it
does not have an exponential number of leaves.

Now we will present another way of looking al the GCD problein that yiclds some insight
into the necessity for the exponential growth. Basically we will demonstrale how the modular
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Figure 1.

algorithm can be shown to be determining a number of coeflicients. Since there are an exporential
number of these unknown coeflicients this algorithm must be exponential. This version also
leads more naturally to our new “sparsc” modular algorithm.

Again Fi(Z,2,,...,2,)and I)(Z,Z,, ..., Z,.) are primitive, monic polynomials and we want
to compute their GCD, G(Z,Z,,...,Z,). In place of the bound I3 that we had for the size of the
coeflicients in the univariate case, we need a bound on the degree of Z,, ..., Z, in G(Z,2,, ..., 2,).
Assume that no Z; appcars with degree greater than d in G. Given this we can write

d d
G(Z,2,...,Z)= D - I i, 2028 2k

H=0  i,=0

and we wish determine the ¢;,...;,.

A very simple way to determine the coeflicients of G is to set up a system of lincar equations
for which the unknown coefficients will be a solution. There are (d + 1)* of these unknown
coeflicients, c;,. ;. Pick integers for a;3,...,01, and compute

G| = ng(F‘l(Z, a g, ... ,ah,), Fz(Z,alg, .. -;alu))-
If we write
Gi(Z) = gi0Z® + 912"+ + gia

then equating the coefficients of Z produces Lthe following d +- 1 relations among the ¢, ..,

d d
9= 3 3 GipeiOy ey,  §=0,...,d (4)

i==0 3,=0

Repeating this process by computing (d-+1)" ~' — 1 more univariate GCD's, Gy, .. » Gld 41y
enough linear equations are produced to determine the unknown cocllicients of G(Z,Z,, .. ., Z,).

This algorithm will use O(c"}) steps to compute the GCI) of two polynomials involving
v variables. If the GCD is dense then this is the amount of time you would expect a GCD
algorithm to lake since there will be (d + )" terms in the GCD, and thus (d + 1)" coefficients
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that need to be determined. In the case of sparse polynomials most of the coefficients will be

zero. The modular algorithm will still set up the large system of equations (4) and will still take ]
exponential time to solve the system.
The major advantage of the modular algorithm is that it never introduces intermediate !

results that are larger than the answer. But its running time is also independent of the structure
of the answer. This can prove to be very unfortunate in the many common uses of the algorithm
where the expressions involved are very sparse.
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Chapter 1l

Sparse Modular Algorithm

All modular algorithms have basically the same form. The value of a polynomial is computed
at a number of points and these values are interpolated to produce the original polynomial. We
will call this polynomial the goal polynomial of the algorithin. The goal polynomial is assumed
to involve v variables. Each variable appears Lo no higher degree than d in the goal polynomial.
The goal polynomial will be denoted by P(X,..., X,).

There are (d 4- 1)" independent coeflicients in P. If “many” of them are zero then P is said
to be sparse, otherwise it is dense. We will denote the number of non-zero coeflicients by ¢. If
P is completely dense it will have t; = (d 4 1)" non-zero coeflicients. For sparse polynomials
t&{d+1)".

Any interpolation algorithm that computes P must determine (d 4 1)" coeflicients. If less
than t, points are examined there will be an infinite number of possible polynomials that satisfy
the appropriate degree bounds and that take on the correct values at the test points. To see
this notice that each point that is examined yields a single linear constraint on the coefficients
of P

d d
— i i
Q = E E Ciy..5,0)' @y
1) =0

1,==0

If there are fewer lincar equations than coeflicients to be determined, the system of equations
will be underdetermined.

Just looking al (d -} 1)" points requires time exponential in the number of variables. Thus
any modular interpolation algorithm that can guarantee Lhat its results are correcl must require
an exponential amount of time to compute P.

This chapter presents a probabilistic algorithm that computes P in polynomial time. Since
this algorithm is probabilistic, there is some chance that the polynomial it returns as I? is not the
desired one. However, the chance of being in error can be made arbitrarily small by increasing
the size of the set from which the test points are chosen.

23




Pz, X3, Xq, Xs)

Xs

%3

Figure 2.

1. Overview of the Sparse Modular Algorithm

The fundamental idea bchind the sparse modular algorithm can be scen by comparing
figure 1 of section 11.3.3 with Lhe figure of this seclion. As before, a sequence of points is chosen,
Xy, = ay, ..., X, = a,0 and the univariate GCI) 1s computed. This is done for d 4- 1 different
values of X;. The resulting univariate GCDs are interpolated using algorithim D of chapter Il to
give a bivariale polynomial. As before, a new value of X is chosen and a new bivariate GCD is
computed, but this time, instead of using d -+ I univariate GCDs we use some of Lhe structure
determined by the first bivariale GCD. We assume that the coefficients of Xé that were non-zero
in the first GCD will be the only non-zero cocflicients. (In the figure we have assumed that
there are only two non-zero coeflicients in the answer.) Now a different, slightly less efflicient
interpolation algorithm is used, butl fewer GCDs were necessary Lo compute the base points for
the interpolation. As this proceeds, the recursive nature of Lthe algorithm disappears along with
the exponential behavior.

The modular algorithm presented in section 1.4 solved one large system of equalions to
delermine the coellicients of the goal polynomial. The sparse algorithm begins by choosing a
starling point for the interpolation, (zyy, ..., z,0). IL then produces the sequence of polynomials,

Py = P(Xi, %0, . .., Tw),
Py = P(Xi, X2, %30, - - ., Zo0),

Pv =P(X|)X'2!'~'yxu)'

The process of computing P; from P;__| is called a stage of the lifting process.

Py is a univariate polynomial in Xj. The coeflicient of X% in P is a polynomial f(Xy, ..., X,).
I £ is sufficiently sparse there will be certain powers of X that do not appearin /). (If t < d 41
then X, cannot appear in P’ Lo all d 4 1 powers.) Assame that the X% term is one of those
terms thal. is not present. There are two possible reasons why X4 docs not appear in 1. Either
Ji is identically zero or fi(Za, ..., Zw) is cqual to zero. The probability that fi(zy, ..., 2w)
is zero when fi is not identically zero is extremely small if the starting point (2., ..., 20) i8
chosen at random. Thus the probability ithat f is identically zero is quite large. The key idea
in this algorithim is to assutne that X‘,' does not appear in P; i.e., fi is identically zero. Thus it
is assumed that the coefficient of every monomial involving X'," is known, and that it is zero.
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This information is used to construct P,. Now the same reasoning can be applied to each
monomial in X; and X, that does not appear in . Since there are at most ¢ terms in any of
the P,, almost all of the terms will be zero, and the number of coefficients that will need to be
computed is small.

A few comments on the chances of f;, not being identically zero are in order. This probability
depends only on the range from which ..., 7.4 is chosen. For example, assume » = 2. Then
/i involves only one variable and £, has only a finite number of zeroes, r. If we pick z,4 randomly
from a set with B elements the probability that we have picked a zero of f is, at most, r/B.
This argument is generalized in chapter IV.

For simplicity we will walk through the algorithin when P is a polynomial in 3 variables,
P(X,Y,Z). As usual, we assumne that P is a sparse polynomial with ¢ terms (¢ < (d 4 1),
v = 3). (Whenever we say “pick z, randomly” we will mean pick an integer z, ro domly from
a set ¥ that has at least I distinct elements.') Pick y, and z randomly. These «wvo numbers
must be chosen randomly and are the only numbers that need to be chosen at random for this
example.

We now pick zy, ...,z and examine the values of P at the points (z,, yy, 20). These may
be interpolated by the Lagrange interpolation formula to give a univariate polynomial in X,
namely P(X,w,2). (Actually, the Lagrange inlerpolation formula is probably more rightly
attributed to Waring [War79].) So far nothing probabilistic has entered the algorithm.

We now assume that il X* (for some k) has a coefficient of zero in P(X, 4, ) then it will
have a zero coeflicient in P(X,Y,Z). Pick a y;, not necessarily at random. From P(X, w, z) we
know that a number of the coefficients of P(X, y;,2) are zero. In particular, since the coefficient
of X* is zero in P(X, 4, 2), we will assume that the cocflicient of X* in P(X,y,,2) is also
zero. Thus the only coeflicients of P(X,y;, %) that need to be deterinined are the those that
are suspected to be non-zero, i.e. the coeflicients of monomials that appeared in P(X, w, 2)-
There can be no more than t of these unknown coeflicients, since there are only ¢ terms in the
answer. These coefficients can be determined by solving a system of linear cquations. Only the
values of P(zy, y1,2), ..., P(zi, y1,2) will be needed (o set up this system of equations.

This procedure may be repeated until we have determined d +1 polynomials P(X, w, @), . . ., P(X, yu, ).

Pick a monomial in X that appears in each of these polynomials. For simplicily we will assume
that it is the linear term. The cocfficient of X in P(X, Y, %) is a polynomialin Y of degree at most
d. Call this polynomial f(Y). From the d4-{ polynomials we have computed we can determine the
values of f(Y) at w, ..., ys. Again using the usual interpolation methods we can determine f(Y)
from this information. Repeating this for the quadratic and higher terms of P(X, y;,2y) we can
determine P(X, Y, %).

Now that we have P(X,Y,z), it is only natural to to compute P(X,Y,z) for a new z,
which does not need to be chosen at random. This can be done in a manner almost identical with
that used carlier. We know that the monomials that appear in P(X,Y,z) will have non-zero
coefficients in P(X,Y,Z). Just as in the stage where we introduced the polynomials in Y, we
assume that none of the X'Y7 monomials that appear in (X, Y, Z) are absent from (X, Y, ).
There are al most ¢ of these monomials. Picking a z;, we sec that there are at most £ unknown
coeflicients to be determined in (X, Y, z). Al the others are believed to be zero. Picking ¢ new
pairs of values (zi, 1), ..., (z, w) and computing P(z;,y;,21), we can set up a system of linear
equations in the unknown coefficients. Solving this system, we have /(X Y, 2/); repeating this
procedure we will finally determine P(X,Y,2;). Now we can determine the polynomials in Z

PPhe set S is useally chosen (o be the set of integers in the interval {0, 11— 1], but can be any set of integers with
I3 elements. Throughout this seetion lower case sy mbols will denote integers chosen at random while uppercase
symbols will be reseeved for variables,




that are coeflicients of each X'Y/ menomial by the usual interpolation schemes.

There are two essentially dilferent ty pes of interpolation schemes going on in this algorithm.
The first time we try to generate a polynomial in X, it is not known what its structure is and
thus the interpolation is performed as if the polynomial were dense. That is we used d -+ 1 points
to determine a polynomial of degree d. This we call & dense interpolation. Now that we have this
skeleton from which to work, we can produce addilional polynomials in X by solving systems
of equations. These steps are called sparse interpolations. These coefficients are then combined
via a dense interpolation to give polynomials in Y. The algorithm proceeds in this manner.
The first polynomial produced involving a particular variable is done via a dense interpolation.
The structure determined by the dense interpolation is then used to produce a skeleton for the
polynomial. This skeleton is used as the basis for a series of sparse interpolations that are done
to set up the points for a new variable.

2. General Formulation of Sparse Modular Algorithm

In this section we will present the precise form of the sparse modular algorithin so it may be
applied to a number of examples. We will present these algorithms using the same syntax that
we used in presenting the Chinese remainder algorithm in chapter 1. Making these algorithms
precise in Lthis manner will also aid in the analysis of the algorithm.

The first algorithm we consider is used when a dense lifting is required; it is an extension
of the Chinese remainder algorithm to polynomial rings. We have a polynomial f(z) and two
sets of rational integers {py,...,pc } and {my,...,my } such that f(p,) = m,. We want to
determine f(z). Let p. = (z — p,} denote the principat ideal of Q[r} generated by z — p;. Since
f(z) is an element of the ring Q[z], the m, are the images of f{r) under the map

pi: Qlr] = Qlz}/(z — p) = Q.
So one way of expressing the relationship between the f, p; and m, is
f(z) = m, (mod p,) t=1,...,k

Thus using precisely the same arguments as were presented in section H.3.1 we can justify the
following algorithm.

The sparse modular algorithm needs a data structure to indicate which terms are known to
be zero. Since there are fewer terms that are likely to have nonzero coeflicients than terms with
zero cocflicients, we will keep track of the nonzero terms. A monomial of the form X§'.--X¢r
will be represented by the v-tuple (ey, ..., ¢,.). A skeletal polynomial, S, is understood to be a
sel v-luples such thal cach element of S represents nonzero term in the goal polynomial.

Whenever a skeletal polynomial is produced, we will want to determine the coefficients that
are determined. This will be done by solving a system of lincar equations. To simplify the
notation a bit we will adopt the following convention. Assume a skeletal polynomial S contains
L terms. We will assume that each skeletal polynomial has associated with it { symbofs ¢hat
will represent the coefficients of the monomials given by S. Denote these symbols by 8,...,8
where the subscript, ¢, is associated with the exponent vector (e, ..., ¢;). Then we define

= ‘ L ‘n o gty
Slay,...,a) = sa)'' -a)} 4-sa) - a4 + saft- -t

The sparse modular algorithm can be specified as follows.
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Algorithm S takes a set of variables { X, ..., X, }, a degree bound d, a function F(X, ..., X,)
and a starting point {(ay,...,a,} as arguments. It is assuned that the values I returns are the
values of some polynomial of at most » variables and of degree at most d in each variable.
The starting point is assumed to be a good starting point. The algorithm returns a polynomial
P(Xi,...,X.), where each variable occurs with degree no more than d and P(by,...,b,) =
F(by,...,b,) for all integers b;.
S1. [Initialize] Set S « {(0)} and py — ap.
S2. [Loop over variables] For i =1 through v do S3 through S8.
§3. [Iterate d times] TFor j == 1 through d do S4 through S7.
S4. [Initial linear equations]| Pick 7, set L to the empty list, set ¢ to the length of S.
S5. [lterate ¢ times] For k = 1 through { do S6.
$6. [Set up linear equations] Pick an (i — 1)-tuple Ay, and add the the lincar equation
S(Ay) = F(Ag, T, - ,a,) to L.
S7. [Solve] Solve the system of equations L and merge the solution with S to produce
a polynomial p;(Xy,..., Xi—-1).
S8. [Introduce X,|] For each monomial in S pass the corresponding coefficients from
po, ..., peand a;, 7y, ..., 7 to algorithm D. This will produce ¢ polynomials in X; that
can be merged with S. Set py to this new polynomial and S to its skeletal polynomial.

S9. [Done] Return py.

There is one poinl at which caution should be exercised in implementing this procedure.
The first time through the 7 loop the linear equations that are set up will be trivial since there
is only one unknown. There is a chance that the linear cquations that are developed will not
be independent. Il this happens then it is necessary Lo execute step $6 until sufficiently many
independent cquations are produced.

Since we must solve a system of linear equations in this algorithm, it is usually best to
perform the entire computation over some finite field as we mentioned in the remarks about
algorithm D.

3. An Example

To illustrate the sparse modular algorithm we will compute the linecar term of the GCD,
over the integers, of the two polynomials

(X, Y,2)=X"H(Y> 4+ YZ + )X 4+ (2Y? —7YZ2 — 2)X3
+2Y° 4-2Y'Z 7732 4 2Y3 —TY2Z23 —TYZ? 4 3)X?
(=AY} 4 3Y2 L 14YZ2 4 3YZ + 3)X -6,
Fy(X,Y,Z) = X®4+(2Y? —7YZ* 4 ¥ —62%)X" 4-6X3

2V — 12Y3Z0 .- 7Y?Z? 4 422°Y)X?

+(6Y? — 21YZ?2 4-3Y — I18Z7)X 4 9.
The basic technique will be use the sparse modular algorithin to compule the GCD over
several finite fields. These GCDs are then interpolated to determine the correct GCI) over

the integers. The first problem is to compute a bound for the size of Lhe cocflicients of the GCD.
Following Brown [Bro71] we will assume that the magnitude of the coeflicients of the GCD
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of two polynomials is bounded by the product of the absolute values of the Jargest coefficient
in each. Thus, in our example we assume that no coefficient in the GCD will be larger than
14 x 21. Since we do not know the sign of the coeflicients, they must be determined modulo
some number larger than 2 X 14 X 21 == 588.

Since the maximum degree of Y in F and G is 5 and 3 respectively, it can appear to degree
no higher than 3 in the GCD. Similarly Z cannot appear to any degree higher than 4 in the
GCD. Since both F and G are monic polynomials 7/ must be monic alse. We need not worry
about adjusting the leading coefficient.

In a real implementation the primes would probably be chosen to just fit in a word. For
most computers we would then need only one pritne. To demonstrate how these algorithms
work in general we will use two smalier primes, 19 and 31.

We will only try to compute the cocflicient of the linear term in X of the GCD; the
other coeflicients are computed similarly and should be computed in parallel. Thus the goal
polynomial will involve two variables, ¥ and Z. We will denote the GCD by G(X,Y,Z)} and
the goal polynomial by P(Y,Z). The starting point is chosen al random. The integers involved
might as well be less than the modulus chosen. Starting with 19 as the modulus we chose ¥ = 12
and Z = 15 as the starting point.

In the notation of algorithm S, the goal polynomial is P(Xj, X,), X) = Y, X, = Z and the
starting point is a; = 12 and a, = 15. Wilh Z fixed at 15 we compute the GCD of F and G
with Y varying over several values. Actually, only four are necessary.

Yy | 2 G(X,

2 | 15 | X' 43X +3
o | 15 _ X' 43 |
u | s X 45X 43 |
115 | x"1x+3

2 | 15 | X'+5 +X24+8X—4
5 15 X3 —-6X+3

From the first polynomial it is clear that the degree of the GCD is not more than 3. So the
next-to-last polynomial can be thrown out since (2, 15) must be an “unlucky evaluation point”
[BroT1].

From this evidence it seems likely that the quadratic term in /1 is zero. If the modulus were
somewhat larger, so that the interpolation points could be chosen from a larger set, we would
have significantly more confidence in this result. As we shall sce, this problem was chosen so
that nione of these guesses which might go awry actually do. It also seems that the constant
term is independent of Y. At any rate, it is easy to interpolate: it must be 3.

The only interesting term is the lincar onc. It is determined by interpolating the linear
coceflicients of /1 using algorithm D.
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P m, P()j}")
0 0 0
1 5 | 044-Y5
13 -7 92 4Y
5 | —6 l 2y -2y

Algorithm D results in G(X, Y, 15) = X* 4 (2Y? + 2Y)X + 3. Nothing terribly exciting or
new has happened yet. So far we have not had a chance to use the sparse modular algorithm.
We now need to compule G(X, Y, ) for several other values of Z. This is done using the sparse
algorithm. We first pick a new value of Z, Z == 7. We need only to pick 2 values for Y at this
stage since there are just 2 coeflicients of the lincar terin to be determined. We have assumed
that the coefficients of the Y?X and Y"X terms are zero. Picking a couple of values for Y and
computing the univariate GCDs,

Y z G(X, ")
4 7 X* —9X +3
13 7 X3 —8X 43

We know that the goal polynomial (cocfficient of the linear term in X) is of the form
a¥Y? 4 c,Y, so we get the linear equations

7C( -{— 402 = —9§
—Tcy + 13¢; = —8
These equations can be easily solved, giving ¢, = 2 and ¢ = —1. Note that this time only two

univariate GCD'’s were necessary, while four were needed for the previous interpolation. This
procedure must be repealed for three more values of Z. [Each time a pair of linear equations
must be solved. The results are

jaeos [z [ G(X,Y,)
4 15 X 40erLax+3
2 17| X 4+@r—Y)X+3
2 |13 X402V —57)X+3
2 3| X' 42V —6Y)X +3
2 B[ X 4er +8nx+3

In the first column we have given the total number of additional univariate GCDs required to
solve determine the particular polynomial. Interpolating these coeflicients, we see that

G(X,Y.Z2)= X" (2Y' —7YZH)X 4 3.

Now we change Lhe modulus. Picking two values of Y and Z, with the modulus set at 31
we get the following univariate GCDs.
G(X,22,19) = X? — 12X + 3
GX,11,21) = X 4-3X 43
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Since the linear terin of H is believed to be of the form ¢;Y? + ¢1YZ? we can use these two
results to set up the following two linear equations:

lSCJ + 664 = -—-12
1563 — 5C.1 =3
These two equations can be solved to give ¢; = 2 and ¢y = —7. Thus

G(X,Y,Z) =X 4 (2Y? —17YZH)X 4 3.

Clearly this must be the GCD. The total number of univariate GCDs which was needed was
only 14. Had we used the old modular algorithm we would have required 40 univariate GCDs.

4. Analysis

The purpose of this section is Lo show that the time to compute one candidate solution to
a problein using the sparse modular algorithm is polynomial in the size of the candidate and ¢,
where ¢ is a bound on the probability that the candidate is erroneous.

Denote the goal polynomial by P(X,, ..., X,)and the starting point by & = (a,,...,a,). The
a; are chosen at random from a set of I3 possible values. When ¢ is chosen to be very small, B will
be quite large. Thus the a; may be quite Jarge and we must be somewhat careful when including
the cost due to integer arithmetic. When using classical algorithms, the cost of multiplication
and division is quadratic in the length of the integers while the cost for addition and subtraction
is linear. To crudely take this into account we will count the number of arithmetic operations
with integers and mulitiply that by log2 B.

Recall that it is the dense interpolation (using the Chinese remainder algorithm) that
introduces new variables as the goal polynomial is built up. The sequence of polynomials that
is produced is

P(X,,ag,...,a,.),]’(X;,Xz,a,;,...,a,,),...,P(Xl,Xg,...,Xu). (l)

Next there is a series of sparse interpolations that form the basis for the next dense interpolation.

These sparse interpolations use a skeletal polynomial as a guide to the structure of the
system of linear equations must be solved. If the true goal polynomial does not conform to
the structure indicated by the skeletal polynomial then the next dense iteration, in addition to
being wrong, will almost certainly be dense and the world will come crashing down afterwards.

Thus the entire algorithm depends upon the accuracy of the skeletal polynomials. Since the
skeletal polynomials are extracted from the structure of the polynomials in the sequence (1),
it is important to know if P(X),a;,...,a,) has the wrong number of terms. Clearly it cannot
have too many terms. If it has too few terms then the cocfficient of some X% in P(X), ..., X,)
is zero at @. Let F be the product of the nonzero coefficients of X’,c in P for k = 1 through d.
Il & is not a zero of | then the first skeletal polynomial will be computed correctly.

Similarly if the coefficient of some monomial in X, and X, is zero at @ the second skeletal
polynomial will be erroneous. Define F; to be the product of the cocflicients of nonzero nonomials
in X, and X, in the goal polynomial and define Fy, ..., F._ similarly. If the starting point is
not a zero of any of the /7, then none of the skeletal polynomials will be erroneous.

The auxiliary polynomial for P is defined to be F' = F\F)---F,__;. F is a polynomial
in X,,...,X,. The key assumption used in the sparse modular algorithm is that the initial
evaluation point is not a zero of this polynomial. As we shall sec, in the sparse version of the
Hensel algorithm the determinant of the Jacobian will play the part of the auxiliary polynomial.
A point that is not a zero of /7 is called a good point. Since all bad points satisfy I” = 0 they
form a variety of codimension 1. Qualitatively, almost all points in affine (v — 1)-space are
good. The following lemina makes this precise.
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Lemma 1. Let f € Z{X,,..., X,] and the degree of f in X; be bounded by D. Let N,(B) be
the number of zeroes of f, (z,...,z,) such that z, € ¥ (a set with B clements B >> D). Then
N.(B) <B"— (B—D)".

Proof: There are at most D values of X, at which f is identically zero. So for any of the D
values of X, and any value for ¢the other X;, f is zero. This comes to DB~ . For all other
B — D values of X, we have a polynomial in v — 1 variables. The polynomial can have no more
than N,._(B) zeroes. Therefore,

Nu(B) < DB"~' + (B — D)N,_(B).
Let N, = (B — D)""'n, then

Ny — Ny <

By the definition of n, we have
v—-1 BY
N,.=(B-—-D) nvii(B—-D) (m—l)
The lemma follows immediately.

This bound is actually attained by the dense polynomial

D

D
A=z, .., z0) = H(z, — 1) H(z.,—i).

i=1 i=1

One would expect a much tighter bound to hold for sparse polynomials. To get an idea of
how much better than this bound a typical polynomial can be consider the following. Let

fX)y=f(X,..., X)=cmi + - +am
be a polynomial as in the lemma. We have used m, to represent a monomial in the X, so f has
t terms. Assume the monomials m; are fixed for now. If f(4,) is zero then we have a constraint
on the ¢;

cam(@) -+ eoma(d)) + - + amu(@) = 0.

Without being clever in our choice of points, we can only force £ — 1 points to be zeroes of f.
In fact it is known [Lan62] that a curve of genus greater than 0 has only a finite number of
integral points. Thus for v = 2, in general, if I > 2 there is a constant which bounds N,(B).
The proofl of this statement is extremely diflicult. For higher numbers of variables much less
is known.
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Assume now that the goal polynomial has v variables and that no variable appears to
degree higher than d. Each of the F, is the product of at most ¢ terms and each term is of
degree at most d. There are v — | of these polynomials, so the maximum possible dcgree of F
is (v — 1)td. There are only v — 1 variables in F. There are B* ! points in the set ¥ X --- X J.
Applying the lemma to F, the probability that a point chosen at random will be a zero of F is

N,_(B) _B*~' —(B— D)~
Bv—1 Bv—1

D v—1
—1—(1~§)

_vD v —1)D*  (v—1)v—2)D?

B 2132 6B°
dv(v—1)t _ dv?t

< B =5

ignoring the higher order terms. So a worst case bound for the probability that a point will be
a zero of F', and thus a bad point and will lead to an erroneous candidate solution, is

dv?t
€t = ———

B

2
log B = log (g%—t)

The following theorem is the fundamental result of this thesis. It shows that the time
required to compute a candidate goal polynomial is polynomial in the d, v, the size of the
candidate and the size of e.

Taking logarithms we have

Theorem 1. Assume d bounds the degree to which each variable in the goal polynomial,
P(X),..., X,), appears. Also assume O(T') bounds the number of integer arithmetic operations
required to compute P(a,,...,a,) given a,,...,a,. Let ¢ be some number close to zero. Then
it is possible to compute a candidate polynomial in time

O((T + t*)dvt log?(dvite "))

where the probability that the candidate polynomial is different from P ise and t is the number
of terms in the candidate.

Proof: To prove this we will analyze the time required by the sparse modular algorithm. This will
give a constructive proof of the theorem. The analysis is divided into two portions. First we will
determine the number of points at which the value of the goal polynomial must be determined.
Then the time required to determine Lhe goal polynomial from its values is determined.

P(Xy,ay,...,a,) is computed by doing a dense interpolation of d -} | points. To compute
P(X\, Xy,a3,...,a,) requires d more univariate polynomials, each of which is computed by a
sparse interpolation. So we need (d -+ 1) -+ d¢ values of P to compute (X}, X»,a3,...,a,). In
general we will need

A+ 1) fdt 4 +dl=(d+ 1)+ dt(v — 1) ~ dut
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interpolation points. Each of these cost T integer operations. This gives the first term of the
cost.

We now look at algorithm D, which perforins the dense interpolation using the Chinese
remainder algorithm. It was pointed out in the discussion of this algorithm that f and g will
almost always be dense except possibly at the final step. We will assume a dense representation

for these polynomials here. At the beginning of step D3, f(z) is a polynomial of 7 — ) terms.

and ¢(z) is a polynomial of ¢ terms. Using Ilorner’s rule, computing f(p,) requires ¢ — 1
additions and 1 — 1 multiplications, or 2i — 2 total operations. Computing g(p;} will take 2¢
operations. The addition of the two polynomials will take i operations. Adding these up we
have 2t — 2 4 21 -+ 1 + 3 = 5i 1 operations to compute f(z). Updating of g(z) requires 2¢
operations. All in all this comes to 7i + 1 operations. Summing this for ¢ = 2, ...k, we get
Z"—t';—kl'ﬁ operations.

Algorithm S, which solves linear equations {o obtain the sparse interpolation, is somewhat
more complex and we will make a few crude assumptions in analyzing it. We will assume that
P(Xy,a,,...,a,) and all the intermediate polynomials up through P(X,..., X,.) have ¢ terms.
That is, the number of terms does not decrease when some of the variables are replaced by
integers.

There are ¢ linear equations that must be solved. This will take about t? operations, so
we will ignore all costs that are dominated by ¢*. Each monomial contained in S is a product
of i — | terms, and each term is raised to degree, at most, d. Evaluation of a monomial will
thus cost (i — 1)logd operations. There are no more than ¢ terms in S, so step S6 will take
about (1 — 1)t log d operations. Step S6 will he iterated ¢ times to produce the each set of linear
equations. Thus it will cost (i — 1)t?log d integer operations to produce the system of linear
equations.

There will be t independent linear equations to be solved. Using straight forward algorithms
this will take about ¢;t* operations. Steps S5 through S7 will be executed d times for each
variable so it will cost

(i — 1)dt?logd + ¢1dt® = ¢ dt?

operations to produce the polynomials p,...,p.

There will be ¢ terms in each of these polynomials, so algorithm D will be run ¢ times. Since
the time required by algorithm D is independent of ¢ this cost of this step will be dominated
by the ¢ term above. Since these steps are repeated for each variable we have about O(dvt?)
integer operations for the lifting stage and

O(dvtT + dvta)

integer operations all in all.

The lemma indicates that the random integers must be chosen from a set of about dv?te—!
elements. Arithmetic operations with integers this large require at most log*(dvte—') actual
operations. Thus the total time required by the sparse modular algorithm must be increased
by this factor. This proves the theorem. i
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Chapter IV

Some Applications

This chapter considers some of the more general applications of the sparse modular algorithm
to multivariate computations in algebraic manipulation. One of the major problems that arises
is intermediate expression swell. Intermediate expression swell can occur in several manners. In
the course of a computation the determination of the answer may require the computations of
extrancous variables, terms or factors. The final step of the computation is usually to remove
the extraneous information. This is what happens in the computation of polynomial GCDs.
The final term in a PRS generally has a large content that must be removed. Alternatively,
computations may have a more subtle, yet still explosive behavior. For instance, the perturbation
series expansions in quantum electrodynamics generally involve sums of very complex integrals.
The integrals yield combinations of rational numbers, powers of 7 and values of the Rieman
zeta function at odd positive integral values. Yet in certain computations [Ben77] these huge
expressions simplify to simple rational integers.

For multivariate computations it is usually not difficult to carry through the computation
with a single variable, replacing the other variables by randomly chosen numbers. After
performing a number of these simple computations, their results can be interpolated to give
the desired answer. The dense interpolation procedure could be used, but there is a problem.
Usually, we do not have a very good bound on the degree of the various variables. Using
the old interpolation scheme, the simplified problem must be solved about (d 4 [)* times.
As we commented before, for large or moderate d and moderate v, this can be horrendously i
expensive. Since the basic computation may be quite complex and even dominate the cost of |
the interpolation it is especially important to minimize the number of points that need to be ;
examined by the interpolation algorithm.

{f the answer is not dense, our interpolation method can be used to great advantage since
it needs only v(d + 1)t points from which to interpoliate the result. Since our algorithm is
probabilistic it is generally a good idea to verify the answer. For certain particular applications,
like GCD of polynomials, verification is notl diflicult. For olhers, like the evaluation of
determinants, there appears to be no good technique. Though this introduces some uncertainty : .
into the computation, the uncertainty can be controlled by increasing the range from which
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the random points are chosen.

This chapter will show how these ideas may be applied to a few somewhat contrived
examples. In section 1, an example using resultants is given. Section 2 presents a few simple
ideas that show how rational numbers and rational functions may be interpolated. These ideas
would be extremely uscful when solving systems of equations. Section 3 uses this idea in
computing a terin in the inverse of a matrix.

1. A Resultant Calculation

The application of the sparse mcdular algorithm to many computations in algebraic
manipulation, as outlined above, 1s a fairly straightforward application of algorithm § of the
section 1.2, In particular the computation of determinants, the solution of linear equations
and the computation of polynomial resultants fall into this class. llere we will present a detailed
example involving the computation of a piece of a resultant.

If @ and b are relatively prime then one primitive clement of the field Q[+/a, v/b] is v, =
v/a+ +/b. The minimal polynomial for v, is known to be the resultant of (y — )" —a and y" —b
with respect to y. We will denote this polynomial by f(x). For the first few r this polynomial

=z' — (2a + 2b)2? + a® — 2ab - b?,

¥ — (—3a 4 3b)z% + (3a® 4 21ab + 3b%)z* 4 (a — b)?,

=z'% — (da 4 4b)z'? + (6a* — 124ab - 66%)2® + - + (a — 0)*,

) = 225 — (—5a + 56)z? + (10a* - 605ab + 106%)z"> + - 4 (a —b).

Apparently the first few terms of f,(z) are of the form

M) =z —r((—1)a+ )V

+ (f.(f _E_IA) a® — rq,ab + T('

_41) 2y, r(r—2) . (l)
2”7 7b )x + *

It would be very interesting if we could produce an explicit formuta for f.(z) but that seems
to be difficult. The first step in trying to delermine an explicit formula is to determine the
structure of a few of the terms of the minimal polynomial. The first two terms are pretty easy to
guess and the structure of the third one is not too bad. In this sectien we will demonstrate how the
coefficient of the 7"~ term can be determined fairly casily. [l we have a table of these terms,
it should not be difficult to determine the explicit form of the coeflicient by empirical induction.
Table I illustrates how costly this computation can be if f,(z) were comnputed using resultants.
ANl times listed are in seconds. This computation was done with the aid of MACSYMA [MACTS].

It is clear that it would not be practical Lo continue to compute ¢, in this manner. ¢y
will be determined to demonstrate how the sparse modular algorithm is used. We will compute
Sul(y) for several values of a and 6 and modulo several different primes. Then the coeflicients
of the '™ terms will be interpolated to compute g, modulo the primes. These are combined
via the Chinese remainder theorein to compute g,.

First we need Lo estimate how big ¢y will be. At each level! in the table it appears that
g- < 2" ' So we would expect g, to be less than 27 Two primes near 2*' will mmore than
sulfice. We will use p, == 34359738337 and py = 34359738319 The particular term of the
resullant in which we are inlerested appears Lo have only 3 terms so we will need only three
points for a and b For simplicity we will choose (a,b) - - (1,2),(2, 3),(3,4)
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time getime q,

r
2 .090 0.
3 167 0. 7
4 287 0. 31
5 .665 0. 121
- R
6 2.446 919 456
L 7 5.397 1.876 1709
8 11.219 3.972 6427
9 23.816 9.709 24301
- — __.}._— ————
| 10 45.620 20.179 92368
11 182.768 | 113.993 352705
Table 1.

The resultant of (y — z)*’ — 1 and y2® — 2 modulo p; is

10 _ 602780 — 815150769029 — 1440118365z° " + 118161212252°%°

+ 15871655180z™ — 75832102572 + 111115469732 4 6825130515220

+ 8301575652220 + 11964418384z2" -+ 1965613129z "% — 909489473260

— 16580105186z' ' 4+ 16495845941z'2" 4 1393730686 4z'®®

— 5608147531z 4- 41226519532 4 1075782285710

+ 12644080612:%° + 1.
Though this is large it is much smaller and can be computed significantly faster than the general
resultant. Computing this resultant for (a,b) = (2, 3) and (3, 4) we determine that the z3% term

has 9905214887 and — 14549308753 as its coefficient in each case. This leads to the following
system of linear equations

—8151507690 = 12wy + 1 - 2wy + 22wy
9905214887 = 22w, + 2 - 3w, + 3%wy
— 14549308753 = 32w, + 3 4w, + 4%uy

The solution to this system is (wy, w,, w3) = (190, —4075754320, 190). Procecding similarly
with p, as the modulus we get the following system of equations

—8151509130 = 1%w; + 1 - 2w, + 22wy
9905210549 = 22w + 2 - 3w, + 3wy
— 14549317411 = 3w + 3 4wy + Puy

which has (190, —4075755040, 190) as its solution.

The 190’s are expected; they correspond precisely with (1). To compute the middle coefficient
we apply algorithm C to the system

w = —4075754320 {mod 34359738337)
w = —4075755040 (mod 34359738319)
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This gives —1378465287800 for the middle coefficient, and 68923264390 for g,.

Each of the resultant computations required about 11.5 seconds. Extrapolating from smaller
computations, had the resultants been computed over the integers, they would have required
about 142 seconds each. Furthermore, when the systems of linear equations were solved, the
coefficients involved did not grow, as they would have had they been rational integers.

In general this seems to be the best practice when in applying the sparse modular techniques.
The problem is solved using the algorithimn several times over finite fields and the Chinese
remainder theorem is used to reconstruct the answer.

The computation of g,y required about 70 seconds of computation. Extrapolating from the
preceding table it appears that the computation of the full resultant would take about 10 hours,
and would probably not fit in most machines. Though the resultant gives more information, for
this problem we were only interested in a small portion of the answer and the extra information
is not useful at this stage.

Furthermore, by repeating this process all the terms could have been determined if desired,
cither one at a time or in parallel (in all senses of the word) without requiring significant quantities
of storage.

2. Recovering Rational Numbers and Rational Functions

Thus far we have only been concerned with using the interpolation techniques tc determine
polynomials from their values. In this section we will consider some ideas that allow the sparse
interpolation scheme Lo be used to determine rational numbers and rational functions from their
values.

Let m be the ratio of two small integers z and y modulo p and assume the product 2zy is
less than p. Then there is an integer ¢ such that

my — pq = .

Rewriting this we get
m q _ z

p y py

Since z is assumed to be small ¢/y must be a convergent of the continued fraction expansion of
m/p. From this it is easy to determine z. This all all depends on the following theorem which
is proved in [Har68] (thcorem 184).

Theorem 2. If p/q is rational number approximation to ¢ which satisfies

P_ 1
lq €'<2q2

the p/q is a convergent of the continued fraction of ¢.

Algorithm T is given two numbers m and p and computes a pair of integers z and y such
that £ = my (mod p). This done by computing the continued fraction of m/p whose partial
quoticnts are denoted by a; and convergents by q;/p;.

T1. [Initialize] Set q_) — 1, @ — 0, y—) — 0 and gy — 1. Set r — m and s — p. Finally set

i+~ L

T2. [Partial quoticnt] Set a; to the integer quotient of r and s. Then sct r to s and s to

the remainder of r divided by s.
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T3. [Next term of CF] Set ¢; — a;q;—1 +¢;—2 and y; — a,y;—| + Yi—2.
T4. [Enough?] If y? < 2p then set i — ¢ + 1 and go to step T2.
T5. [End] Return the fraction (my,—1 — pgi—1)/gi—1.

This algorithm allows us to determine a rational number from its residue modulo a prime.
A simifar algorithm can be used to determine a rational function from its value modulo a ideal
(p(z)). If p(z) = z”, then its value is a truncated power series. In this case the rational function
that this algorithm returns is known as a Padé approximation. A recent study of this idea is
contained in [McE78].

If there are several variables in the rational function that we are trying to determine, then
we can replace all but one of the variables by an integer, compute the power series expansion of
the answer in terms of the other variable, and then interpolate the coefficients. This technique is
quite satisfactory and is particularly appropriate to problems like solving differential equations
where it is impossible to replace all the variables by constants.

There is another interesting idea that can be used if even computing with power series in
one variable is impractical. The basic idea is to compute the rational function f/g by taking
its values, ry,..., 7., modulo py, ..., p and converting them to fractions, fi/gi,..., /o (It is
assumned that 2f;g; <C p;.) The numerator and denominator can then be scparately interpolated.
There is a slight complication. Though the rational numbers that are computed are the values
of f/g at the point in question, f; will not be the value of f unless the values of f and g are
relatively prime. As far as | can see there is no good way to ensure this, and there also does not
seem to be an easy way to analyze the probabilities involved. Empirically, however this seems
to be a quite rcasonable way to determine f and g. It is perhaps bhest used as a heuristic. If
the polynomials that are produced turn out to be too dense, they are discarded and new points
are chosen on the assumption that there was a GCD between the values of the numerator and
denominator.

There is another problem, though it is easily overcome. Generally, the p; are chosen to be
just smaller than a machine word for eflicicncy considerations. The values of f and g can be
quite large, especially in view of the possibility of the values of f and g having a nontrivial
GCD, so 2f;g9; < p; may be false. This problem can be avoided by combining the several of the
r; via the Chinese remainder theorem before applying algorithm T. This will yield the value of

//g modulo p;p;.

3. Determinants

In this example we will demonstrate how the sparse algorithm could be used to compute
an element in the inverse of a matrix. These techniques may also be applied to compute the
solution of a system of linear equations. The matrix we will consider is actually quite small,
but will serve to illustrate our methods. This example is from [Wan76)].

22 y2 0 u? 0 2?

2V gyt 0 0 0 0

R T T
A=150 0 0 0 0 M

2y 0 0 0 2

z y 0 u v =z

We will be trying to determine the (3, 1) component of inverse of this matrix.
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Almost certainly, the elements of the inverse of M will be, non-polynomial, ratienal
functions. We will use the techniques of the previous section solve this problem.

The degree bounds for the determinant of M are easy to compute. Since each of the
variables appears in precisely one column in the determinant, no variable appears to higher
degree than it appears in the matrix. If we compute the inverse of A modulo 34359738337,
with random integers substituted for z, y, z, u and v, we discover that the (3, 1) coeflicient is
independent of z, y and z. The following table gives the values of this coefficient for various
values of u and v and what algorithm T yields for f/g.

u v Moz fi g
1 1 —2 | =2 1
2 3 14316557640 | —5 12
3 4 6681060232 | —7 36
—2 3 2863311528 | —1 12
4 7 3374617158 | —11 | 112
—2 | —5 | —15461882252 71 —20

The f;/g; can be easily combined by the results already presented to compute the exact value

Again each clement of the inverse could be computed independently (and in parallel) if the
value of the entire matrix were desired.
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Chapter V

Ideal-adic Arithmetic

As we shall see, Hensel’s lemma and the algorithms based on it are clever applications of
Newton’s iteration to problems over particular domains. In this chapter we present Newton’s
method in its familiar form for equations over the reals. We will show how this may be extended
to coupled systems ol equations and analyze its convergence properties.

Although it is possible to apply Newlon’s method directly to polynomial problems it has
proven to be easier to apply when the coeflicients of the polynomials lie in some p-adic domain.
In section 2 we present a synopsis of the basic results about p-adic numbers and present some
examples.

In section 3 we generalize this slightly, and consider m-adic domains, where m is some ideal
contained in a commutative noetherian ring. The initial presentation is kept quite abstract
so that the results can be carried over to algebraic number rings and other rather complex
structures. However, a number of examples are presented which should help to clarify the ideas
involved.

Virtually nothing in this chapter is new and the mathematically sophisticated reader can
safely skip it, referring back to it for notation as needed in the reading of later sections. Hopefully
we have presented enough of the basic concepts to allow those with other backgrounds to follow
the bulk of these results.

1. Newton’s Iteration

Assume we are trying to find the zeroes of the function f(z). If we have some idea were a
solution of this equation is, then it is possible Lo use the Newton-Raphson iteration to refine
our guess to a zero of f(2). Often the guess need not be very close at all for this iteration to
converge. .

Assume gz, 18 a real number close to a zero of f(z) which we call 2. We next try to find a
better approximation z;4,. Expanding f(z;41) as a power scries in (zx4, — z:) by Taylor’s
formula we have

f(zk-{—l)l: f(@) + (Zeps —z ) () + .
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We assume that f(z,., ) is close to zero so that we may replace the left hand side of this equation
by zero. We will also ignore the higher order terms on the right hand side. All these assumptions
leave us with a simple linear equation which can be solved for z; .

f(z)

Bt = G

This is the familiar form of the Newton-Raphson iteration. If the starting point z; is sufficiently
well chosen then the sequence { z; } will converge to a root of f(z). This iteration converges
quadratically to the roots of f(z).

2. p-adic Numbers

The key problem in using Newton’s method to solve a system of equations is determining
a “good point” at which to begin the iteration. Once such a point has been found, the iteration
will quickly converge to a solution of the system. The “goodness” of a point is directly related to
its closeness to a zero of the system of equations. In the last section all arithmetic was performed
with real numbers. Consequently, the closeness of two numbers was measured by determining
the absolute value of their difference. To get a good initial approximation to a solution we must
have some idea of the magnitude of the solutions. In physical problems this information can
often be determined from the physical constraints on the problem.

For problems in algebraic manipulalion it is often easy to solve the system of equations
exactly modulo some prime. At worst we can exhaustively search the (finite} set of all possible
solutions. For many problems it is possible to do much better than this. Thus we would like
to modify the concept of distance somehow so that a solution to the system modulo a prime
yields a “good” starting point.

This modification leads to the p-adic numbers, which we examine in this section. The
basic ideas behind p-adic numbers were originally developed by Ilensel {IIen18] and applied to
problems in number theory. Over the years the p-adic oullook has permeated large portions of
algebraic geometry and number theory and is now considered to be one of the cornerstones of
modern mathematics.

What we are looking for is a new measure of distance that can be applicd to integers. Since
it is possible to computle solutions to problems modulo some prime, we would like to say that
two numbers that have the same residue for a given modulus are close. Thus this new distance
measure must indicate that 1 and 4 and 163 are close for a modulus of 3. The first test for
proximily of two numbers is that their residue modulo 3 is the same.

It will be easicer to continue if we restrict ourselves to proximity to zero. This is not much
of a restriction since the distance between two integers p and ¢, should also be the distance
between 0 and p —¢.

So we now ask how to measure the distance between an integer p and 0. Assume that p
is congruent to 0 modulo 3. Then p is divisible by 3 and we can ask how close p/3 is to zero.
Clearly if p/3 were also congruent to zero then p would be “closer” to zero than if p/3 # 0
(mod 3). After all 0/3 = 0 (mod 3).

If we write the number 163 in the base 3 system we have

140-340-3240-3"42.3%

Clearly this number is quite close to 1, since the difference of 163 and 1 is divisible by a large
power of 3.
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We can now define the distance measure as follows. Let a be an integer, and assume 3"
divides a but 3" 1! does not. We can write a as 3"p. The the 3-adic valuation of a is

llalis = 137plls = 37".

When p = 0 we will say that r = oo.
We can extend this definition to rational numbers also. All rational numbers can be written
in the form 3"p/q where 3 does not divide p or ¢, and r can be positive, negative or zero. Then

I3"p/alls = 37"

This definition can be extended in the obvious manner Lo other primes. In general these distance
measures are called p-adic valuations.

In elementary analysis and topology, absolute values are used to define convergent sequences
and the convergent sequences are used to “comnplete” the rational numbers to yield the reals.
We will now use the p-adic valuation to complete the integers to give the p-adic integers, Zp.

The basic idea is quite simple. Let

A= {a(),a|,a2,...,ak,...}
be a sequence of rational integers such that
las — ajlly = p= i),

Thus a; —a;—_| = a;p'. The we can view { ay, ay, - .., @ } to be a sequence of increasingly better
approximations of a.. The whole set is thus a sequence of increasingly good approximatisns to

lim Q.
k—o0

This limit is often represented by the infinite series
a+a-ptay-ptto (8)

The a; are chosen from the range 0 < a; < p. This is called the power series representation for
a p-adic integer.

It is clear that the positive integers have a unique representation of this form. The p-adic
integers also include quantities for which (8) is an infinite series. Assume that a = {ag, ay, ...}
and B are two p-adic integers such that a, = i (mod p*), for all k; that is, [|ax — Bkll, = p**!.
Then we say that a and § are equal. If this is the case then they must have the same power
series representations. From now on we will only work with the power serics representations of
p-adic integers.

Negative integers also have p-adic representations. Consider the number —1. One sequence
of good approximations by positive integers is p* — 1. But this can be written in the following

manner
F—1=p—0F""+p 2+ +p+1)
b=+ p+E~1-p+ - +(p—1) P

Taking the limit as k — oo we have

—tl=@p-D+@-D)p+p—1p+ -
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It is easy to see that this is one less than zero:

—1+l1=14+p—-D+p—)p+—1)p'+ -

=p+—1)-p+--
=p+(—1 P+
=0.

Arithmetic with p-adic integers is performed in much the same manner as power series
arithmetic. The only difference is that a normalization step must be performed to ensure the
coeflicients of p* lic in the range 0 < ax < p. IFor instance, to compute

@ =(14+3+342-3"4...32
in the 3-adic integers we begin by performing the power series multiplication.

1 =142-343-3242.3345.3" ...
=14234+(142)-345-3" ...
=14234+(1+45)-3 4.
=142-34---

The p-adic integers clearly include all of Z since the positive integers and —1 are p-adic
integers. There are other clements also. For instance,

L - 2439 4.
— =T = IR

So, —1/2 is an clement of Z;.

Certain algebraic numbers also lie in Z,. We will now show that X2 — 7 has a solution
that lies in Z;. Let the symbol V/7 represent a solution of X2 — 7. If /7 does lie in Z3 then
we must have

Vi=a+ae 3+a -3+
Therefore, we must have ay — 7 = 0 (mod 3), so ag is either 1 or —1. We pick 1; using the
other solution of X? — 7 using identical steps.

As with the computation of a;, the computation of the other a; proceeds by considering

the equation ‘
(a0 +ay-34---)2 —7=0(mod 3*11)

and solving the resulting equation for a,. Thus to determine a;,
(A4a -3+ —7=1+4+2a-3—7=0(mod 3%)
Soa; =1and v7T=1+434--.. Continuing
7=+ 34a2 3%)? = 16 + 8a; - 32 (mod 3?)
80 a, = 1. This may continued arbitrarily far:

VIi=14+3+3242-3"4-..

Notice that the equations for a; and a; were both lincar. This is generally the case.
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3. m-adic Arithmetic

This section requires a bit more mathematical sophistication then the earlier chapters and a
bit deeper understanding of the concepts of abstract algebra. However, we use this sophistication
only to obtain more general algorithms, the reader could merely interpret most everything we
say using p-adic integers and would lose little in terms of content.

Let R be a commutative ring, m an ideal of R. Then there is a sequence of rings and
canonical homomorphism as follows.

) 03 0;

.0
R/m? « e R/m' L (3)
Consider the set % = R/m X R/m? X --- and an element of (a;) € % where a; € R/m*. An
element of % is said to be coherent if 0;_a,,y = a; for all ¢. The sct of all coherent elements
of % is a ring. This ring is called the inverse limit of of the sequence and we write

R/m ¢

R, =limR/m".

R,, is said to be the m-adic completion of /2. The last section dealt with the case R = Z. The
only ideals are the principal ones generated by a rational integer, m. The sequence of rings in
this case is Z/(m)' = Z/(m').

For example, v/7 is represented in Q; the coherent sequence

VT =(1,41313175,...)=a.

If we write this sequence as a sequence of differences we have the familiar form, (1, 3,9, 162,...).
Unfortunately, the subtractions we just performed have to be made precise. We subtracted an
element of R/(m') from an element of R/(m'**). Thus we need an embedding of R/(m') into
R/(m'*!'), i.e. the inverse of 6, ;. There is no unique inverse. Before resolving this problem,
we want to examine one additional example to bolster our intuition.

Let F be a field and consider the ring R = Fz,y,2]. The ideal m = (z, y, 2) is maximal,
so R/m is a field. Intuitively, the m-adic complction of R should be the ring of power series
in z, y and 2, [z, y,2]]. This is in fact what happens. The first ring of (3) is F. The next
ring is R/m which is the ring of power series in z, y and z truncated after first order. Since
(z,v,2)? = (2%, 4% 2%, 2y, 22, y2), the next ring is the truncated power series ring of order 2.
Clearly the inverse limit is the general power series ring. The map 8; merely truncates the power
series to order ¢ — 1.

Again the inverse map is not unique, but since there is an natural embedding of the ring
of power series of order 7 into the ring of order ¢ 4 1, 6.1 has a “natural inverse.” Notice that
we can extend 0, to a map from R, onto R/m*~!.

We would like to write

=ap+a m+ay mlt-

So, in some sense, @, -m’ a the projection of a to the “subspace spanned by m®. There are only
two conditions which need to be satisfied by a; - m*
(1) a; - m' € m‘Ry,
2)a—3 gai-m' € mt! )
The first property cnsures that, under the m-adic topology, the a; - m' get smaller and
smaller, i.c. their sum will converge. By the second condition their sum will converge to a. Thias
is all we need. The natural mappings, il they can be determined, are suitable.
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Chapter VI

Hensel's Lemma

In its most common form, Hensel’s lemma indicates when a factorization of a polynomial
over a ring R/m can be lifted to a factorization over the ring R,,. Lately, it has been
used to lift factorizations modulo a prime to factorizations over the integers and then to
multivariate faclorizations. It is also used to lift GCD and other computations uscful in algebraic
manipulation.

In this chapter we will present a “new” framework for discussing computational formulations
of Hensel’s lemma. Actually, the lormulation we use is fairly well known in mathematical circles.
In the first section we present the new framework and show how to solve simple problems with
it without making any particular appeal to Hensel’s lemma. In the second section we prove
Hensel’s lemma, in its more familiar form, using the techniques of the first section. The final
section presents the formulation that been used in algebraic manipulation circles and discusses
its similaritiecs and differences with our formulation.

1. A New Formulation of Hensel’'s Lemma

Our version of Hensel’s lemma uses an m-adic version of Newton’s iteration to obtain the
zeroes of a system of equations in an m-adic field. The first part of this section converts a
number of well known problems, and a few problems not so often considered, into systems of
equations which must be solved. In the sccond part we show how to apply Newton’s iteration
to systems of equations over mn-adic fields. We concentrate on a lincarly convergent algorithm
since it is rather simple, butl in the final section we also discuss the quadratic algorithm and
point out its draw-backs.

1.1. Reducing Problems to Solving Equations

Both factoring polynomials and computing their GCD’s are included among the problems
which can be recast as systems of coupled, non-linear equations. By reducing these and other
problems to systems of cquations we will obviale the individual analyses which were previously
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required. The algorithms produced using this method benefit from all the advantages ascribed
to the “Hensel lemma technique” and our improvements to it.

The first problem we consider does not appear to have been studied much but is interesting
nonetheless. As we shall see it leads to a useful heuristic for solving quintic equations.

Assume f{z) is a monic polynomial over Z. We want to know if f(z) has a polynomial divisor
of a given degree over Z. In its most common form this problem asks whether f(z) has any linear
factors and thus possesses integral zeroes. By determining if f(2) has any quadratic factors we
will be able to determine if f(z) has any zeroes in a quadratic number field.

To illustrate this technique assume

flz) = 24zt 40+t ezt

and that we are looking for a quadratic factor. (Notice that if we can find a quadratic factor
then what will be left is a cubic polynomial. Thus this could form the basic of a simple algorithm
for computing the roots of certain types of quintic polynomials.) Any such quadratic factor
will be monic and thus of the form: g(z) = 2° 4- az -} b. Since g(z) divides f(z), the remainder
must be zero. Dividing f(z) by g(z) we get a remainder of

[ — a0 + c;a? — cza + b2 — b — 3a2b 4 2¢iab - ¢4)z
+ @%b — 2ab% — c1a%b + c1b? + coab — c3b + cs.

For this to be zero the coeflicients of both the linear and constant terms must be zero. We thus
get the following two equations in the unknowns a and b.
a' — ¢1a® 4+ c,a® — cza + b% — cyb — 3a®b + 2ciab+- ¢4 =0
a’b — 2ab* — cia®b +cb* +cab—c3b s =0
(1
Any solution of this system of equations will yield a quadratic polynomial which divides f(z).
From the classical theory of equations, we know that all quintic equation, over the rationals,
can be transformed into the Bring-Jerrard form 2" +ciz+c5 = 0. Assuming ¢) =¢cp =¢c3 =10
cquations (1) simplify considerably. By elimination theory we find that a and b are zeroes of
the following polynomials

a'® — 3ca® + Llesa® — 4cka? — deqcsa + €2,
b0 — 408 — 2% — 2¢26° + cjb" + cackd® + 4.

Consider now the general case, f(z) is a polynomial of arbitrary degree and we are looking
for a polynomial, g(z), which divides f(z) and is of degree n. The remainder of f(z) when divided
by g(z) is of degree n — 1. Equating each to zero, we get n equations. There were n unknown
coeflicients in g(z) since we know g(2) is monic.

If f(z) is not monic we can still use this procedure. Using an additional indeterminate for
the leading coeflicient will not work since there doesn't seem to be an additional equation lying
around. Instead we monicize the polynomial. Let

M) =co" +caz" '+ e

We could monicize f(z) by dividing it by ¢ but this would introduce fractions that would be
difficult to handle. Then

' (2) = (@) + aerlco2)” "t - A euch ! = flenz):

Since f(z) is inonic we can use the above procedure with J and then adjust the leading coeflicient.
On the other hand if we knew Lhe leading coeflicient of g(2), or for that matter any coefficient
of g{z), then we would have enough equations Lo solve Lthe system.
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Assume we have a monic polynomial

fley=2"+fiz"' 4+ fa

which we are trying to factor into two polynomials g and h of degrees r and s respectively. Then
we have

fB)= (& + gz + o)z F iz 4 )
Multiplying out the polynomials and equating the coeflicients of z gives the following system
of equations.
o t+h=Hh

@ +oah+h=5h
: (1)
ghy_y + gr—1hy = fuy

grha = fn
The f; are known so we have n equations in r 4+ s = n unknowns. Since there are the same
number of unknowns as equations we have reason to believe that there is are at most a finite
number of solutions to the system of equations.
Notice that had we not assumed that f was monic then there would have been an additional
equation

ahs = fo.

Unfortunately, there are two additional unknowns. The system would not have had a finite
number of solutions. However, if one of the g; or h; is known then the solution set would be
finite. {(This is a slight generalization of Hensel’s l.emma.)

If it was known that f(z) could be expressed as the product of more than two factors then
one could use the technique sketched above recursively. Iowever it is possible to set up the
systems of equations for more than two factors without much difficulty. For instance, assume
f(r) is known to be the product of three factors A(z)B(z)C(z) of degrees ry, v, and r; respectively.
We then know that

fz) = A(2)B(z)C(z)

z"+"'+fn=(xr'+"'+ar|)(zrz+"'+bm)(zm+"'+CT3)
=gntrtn 4 g gntn pgntn +aznt 4 + apbrcr,

Again we equate the coefficients z7 on the right hand side of the equation with those on the left
hand side. There are n = r, 4 1, + r; equations and an equal number of unknowns, a;, b; and
¢, 50 we seem to have won again.

Recall that the square-frce decomposition of a polynomial f(2) is a factorization into the
form

[(2) = Pi(2)Py(2)* Ps(2)*- - -Pu(z)"

where each of the P, is square-free and every pair, P; and P, is relatively prime. The classical
way to compute the squarc-free decomposition of a polynomial is to first compute the GCD of

/(2) and f'(2):
ged(f(2), /'(2)) = Pof2)P3(2) - -Pul2)" "

This allows us to determine P (z) and we can repeat the process with the GCD) to compute P
and so on. o
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For iuitivariate polynomials, the first GCD is extremely costly. Trager and Wang [Tra79)
have suggested using an evaluation homomorphism to reduce to a univariate polynomial,
computing the square free decomposition using univariate GCDs and then using Ilensel’s lemma
to get Lthe square-free factorization. Using our formulation, all that is necessary to lift the
umivariate factorization is to set up a system of equations that must be solved. For n = 2, this
1s quite easy.

/(z) = A(2)B(z)’
Tt = (2" 4 e ) 4 4 b,)
=z o (o) + 2o T2 4 e b,

For larger n, similar results are casily obtained.

The GCD problem can be handled in a very similar manner. Assume we want to compute
H which is the GCD of F and G. Again we will treat all polynomials as polynomials in z with
coefficients which are to be determined. Letting F' = AH and G = DIl we get a system of
cquations which is similar to the system which was derived for a factorization (1). To obtain a
solution to this systein we will also have to obtain values for A and B.

It would be interesting to see if it is possible Lo compute H without computing the cofactors.
It is possible to set up a system of equations which does this bul in praclice it will probably
prove too expensive. Since H divides F, the remainder of F' when divided by H must be zero.
This gives one set of equations which the coeflicients of I must satisfy. In fact it is possible to
do the same with G and produce 2 systems of equations which /{ must satisfy. For instance
with F' and G monic, of degree 4 and I quadratic, we get the following system.

by — fiky —hi + iR — S+ =10
h3 —hlhy + fikthy — by + f1=10
2hihy — gthy — b} + gih} — gohi + 93 =0
h% —hthy + gihihy — gohy + 91 =0

Remember that only A, and A9 are variables here. Everything else is determined a priori. At
most two of these equations will be independent.

I have been unable to produce a similar set of equations for resultants. All the systems
[ have managed to produce have had fewer equations than unknowns. It seems unlikely that
a system of equations which has only a finite number of solutions exists, but a proof seems
difficult. From a practical point of view this does not really matter since the sparse modular
lifting algorithm can be used to compute resullants. Nonetheless it is still curious that no such
system scemns to exist.

1.2. Solving the Systems of Equations

Now that we know how to set up systems of equations, we need to show that there actually
is an easy way Lo solve the resulling systems of equations. We will use Lthe m-adic language
developed in section VL3 throughout this section.

We assumne that I is a commulative ring with unit and that mis an ideal of 2. For simplicity,
we begin with the single variable version of Newton’s iteration. Let f(X'} be a polynomial in X
over 2. Let z, be a coherent sequence of values in 12 such that f(z;) = 0 (mod m**'). Clearly
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7, converges to an element of R,,, r. If we are lucky, the lunit will also lie in . There is a
canonical embedding of 12 in I, so we might as well consider f(X) to be a polynomial over R,
r can be written as a series

r=n+n-m+r-m4--.

where 7, - mF = (z — z;_). Following Newton’s example, we expand f{z;) as a power series
in (Ik b :ck_l):

fz) = fle—1)+ fm— i Mo —ze) + -

Since (zx — zx—1) = 7 - m* € m*, (z — 71— 1)? will be zero modulo m**'. So we have

0.= f(zx) = flz 1) + (2 1 )(zx — 2y ) (nod m*+!) (2}

This equation can be solved for the correction term (zx — z; ). Unfortunately, using this
iteration involves computing the inverse of f{z,_ |) at each stage in the iteration. There are
two choices, if we compute the the inverse at cach step, and make use of all the information
available, the iteration converges quadratically. On the other hand, if we need an iteration
which is only lincarly convergent it is possible set the iteration up so that only one inversion
is performed.

Since (z; — 74— ) is an element of m*R,,, we need only compute f'(z;__,) modulo m. Again
using Taylor’s theorem, this time to expand f/(zx._ ] at zy, we get

J(me—1) = f(z0) + ["(mo)@k—1 — 2} + - -~ = f'(20) (3)
all modulo m. Combining (2) and (3) we have
0= flze—) + Mooz —2z—1)  (mod m*+!)

T — Te— = —f(z0) " fze—1) (mod m*t1) 4

Since k steps are required Lo compute an approximation to r whose first £ terms agree
with r we say that this iteration is linearly convergent. It is possible to produce a quadratically
convergent iteration by a very siinjlar method. We do this in section 1.3.

We give a simple example to illustrate the linear iteration. Assume we wish to compute
the square rootl of an integer. The most common method used is to use Newton's iteration with
integers and round everything off to integers. The algorithm we present computes the square
root of n using a linearly convergent ileration. For the starting point we use the square root of
n computed modulo 3. We begin by dividing out all powers of 3. If an odd number of powers
of 3 divided n then n has no square root. Now n is congruent to either 1 or 2 modulo 3. If 2
then n does not have an integral square root otherwise the initial “guess” is 1.

For f we use f(r)? — n = 0. Equation (4) now reads

f(@e—1)

Ty — T == “m (mod m*1)

m = (3) and =z, is always 1. Both the left and right hand sides are divisible by 3* so this really
is a congruence modulo 3. Since 22 =: 1 (mod 3) the correction Lerm is

3‘.(2({(%%9)_(,“0(1 3)).
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We now derive the iteration for solving systems of equations. The procedure is very similar,
but it is easy to become mired in indices if some sort of vector notations is not used. On the
other hand, vector notations can easily lead to wrong answers if the basis behind them is not
thoroughly understood.

First, Taylor’s theorem in several variables: Let f(z,...,2,) be a function in the variables

2y,...,2,. Taylor’s theorem gives the power series expansion at (z),...,7,)
n
)
f(‘zl) . --;Zn) =f(zh‘ o ,Z") +'§6—Zf;(xh .. .,z,,)(zi - Il')
Lo (5)
1 8% f
¥ 3 20 D gargs, el = mley =)
The first summation in equation (5) can be viewed as the dot product of two vectors
(5-*- 5:) = <2| — T4, —X2,..,2n ——Zn>
Of oy _ ,Of 1oy Of . of .
62’(1) - (621 ( )’ 622 Z), cee 'Gzn(x»
where we have used % as an abbreviation for (z),2y,...,z,). If we treat the first of these
veclors as a column vector and the second as a row vector the dot product is merely matrix
multiplication.

Using this notation, the first two terms of Taylor’s formula can be expressed as
s oy Of ey s
&= +%@ a4+

(It is a good thing we do not need more terms.)
If we have several f's then each may be expanded as a power series like (5). If (f1,..., fin)
is treated as a column vector we see that
9h O )
G g gl

Oy 8 Ifn
4 g
This matrix is known as the Jacobian of ]’, which we write as J. We then have
J&) = H@)+J(@) E—2) + -
Now assume that % is a sequence of column vectors which converge to a solution of f(3).

Further assume that f(z,) = 0 (mod m**'). So the sequence of # is a coherent sequence which
converges m-adically to a zero of the system of equations. Then using (12) we have

0=fz)=JE_ )+ J(B_1) (B — )  (mod m*+').

Again we are only interested in a linearly convergent iteration at this point. By the reasoning
used in the univariate case we may replace J(Z—1) by J(%o) so

o _
8

B — g1 = —J 7 (&) - NEx1).

This iteration is called the lensel lifting algorithm. Notice that it is only applicable when the
Jacobian is inverlible. We state this as a theorem.
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Theorem 3. Let { fi(21,...,2.) };__, be a system of a system of equations over R,,,, where m is
an ideal of R. Let J be the Jacobian of { f; }. If f,(Zy) = 0 (mod m) and if the determinant of
J(%o) is invertible over I, /m then there exist elements of R, # such that fi(2) = 0, and they
may be determined effectively.

The initial solution of the system of equations, %y is called the starting point of the iteration.
If J(%o) is invertible then %, is said to be a good starting point. If the Jacobian matrix is not
invertible, cither because the 7, was a bad starting point or because the Jacobian itself was not
square, then the system of lincar equations which is to be solved at each step will not have a
unique solution. There are cases where this can be useful, for instance as a sieve for possible
solutions Lo diophantine equations over the integers. This idea has also been advanced by Lewis
[Lew69] and Lauer [Lau78].

The quadratic form of the iteration uses J(zi—,) in place of J(zy). Thus

Lok —— Tgk—1 = —J(zlk—l) : ](:Dzk—l).

Unfortunately, this iteration requires that the inverse of a new Jacobian be computed at each
stage of the ileration. Since R/m is field this is easy for the firsl step. Afterwards, rational
expressions may appear and complicate the situation. Also note that J{z,) is invertible in
R, /m*" if and only if J(z,) is invertible.

2. Proof of Hensel’'s Lemma.

Hensel’s lemna is usually formulated by investigators in algebraic manipulation in terms of
the factoring problem. Last section has shown that when the Jacobian of a systein of equations
is invertible, it is possible to lift a solution of a system of equations modulo n to a solution
in the m-adic completion. The version of ilensel’s lemma which is most commonly seen these
days deals specifically with the problein of factoring polynomials. This version indicates that
factorizations modulo m can be lifted to factorizations over the completion if the factors are
relatively prime. More precisely,

Theorem 4. (Ilensel’s Lemma) Let f(X) be a monic polynomial over R, m an ideal of R. If
there exist elements of R/m|X], g(X) and h(X), such that f(X) — g(X) h(X) is an element of
mRX] and g(X) and h(X) are relatively prime, then §(X) and h(X) € R,,[X] exist such that

f(X) = g(X)A(X) and §(X) — g(X) and h(X) — h(X) are in mR[X].

To understand this denote the coefficients of f(X), §(X)and A(X) by f;, g; and hy respectively.
The f; are known and the g, and h; are to be determined. Writing out the system of equations
derived in section 1.1 we have

a+h=h

@+agh +h=4p

9-hy )+ gr—rhy = fuy
ghy = fo

For the starting point we can use the coeflicicuts of g(X) and h(X). So by theorem 2, it is
possible to determine §(X) and A{X) il the Jacobian of this system of cquations is invertible.
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The Jacobian happens to be

1000...100
Ri100..910
h2h| 10.. (YR ] 1
0 . hy 00... g

The determinant of this matrix is also called the resultant of g(X) and h{X). It is known to
be zero if and only if g and h have a nontrivial common factor. If the determinant is non-zero
then we will be free to use the linear Ilensel iteration as far as we please.

To see how this formulation actually works, consider factoring the polynomial
f(Z2)=2Z% 46725 4 412" 4- 218127 4 737Z*% 4 9437 4 253

over the rational integers. For this sort of problem, we choose m to be an ideal gencrated by
some rational prime. The initial point is determined by using the Berlekamp's algorithm [Ber70]
for factoring polynomials over finite fields.

To get an idea whal its faclorization will be over the integers, f(Z) is factored modulo
the primes between 2 and 199. We discover that modulo 2, 3, 5, 17, 67, 71, 127 and 179, f is
the product of two factors of degree 3. With other moduli f splits into more pieces. Careful
examination of the 2 cubic factors shows that each has one term whose coeflicient is zero. In
fact this is true for all irreducible cubic factors for any modulus. Thus we conjecture that

M2y =(Z°+ aZ* +b)(Z* + cZ + d).

While we would not expect an implementation of a general purpose factoring algorithm to apply
this trick, we will use it for two reasons. First, it simplifies the equations which are developed
somewhat, and second, this example will also indicate how appropriate additional knowledge
about the problem to be solved can be utilized. Muitiplying the candidate factorization of f(Z)
out we are led to the following system of cquations

a = 67
c==41
b4 ac+d =12781 (6)
ad = 737
bc = 943
bd = 253

Since we knew (or at least hoped) that two of the terms in the factorization were zero,
there arc two more equations than unknowns. In fact, the equations are now trivial to solve,
To make things a bit more interesting we will ignore the first two cquations. We use 5 as the
modulus, i.e., m = (5). Berlekaimp’s algorithm gives f(Z) = (2" +2Z — 2)(Z* + Z + 1), 50
for initial approximations we have ag = 2, by = —2, ¢y = | and dy = 1. The inverse of the
Jacobian of the system of equations is

o ! a 1Y -1 0 -1 2
Ja]d 0 0 a v -t 1 2
0 a & 0 12 2 1 1
0 dy 0 & -2 2 =2 —1

J
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To compute the next stage, we first determine the correction terms which were denoted by

f(Z:_1) in the previous section. To do this, the equations in (6) arc evaluated at the starting
point modulo 25. We then get a column vector which is multiplied by —J !

ay ao —5 —10

by (w0 0

< o 5 —10

d do —5 10
Adding this to the term starting point, we have ¢y = —8, by = —7, ¢, = —9 and d; = [L.
Repeating this process,

a, a; 50 —50

by} b gt 50| %

€2 ¢y —50 50

dy dy —25 0
So @y = —58, b, = 23, ¢; = 41 and d, = 11. Repeating this iteration one last time we are led

to the final factorization

f(X) = (X® 4+ 67X2 4+ 23)(X* + 41X +11).

3. Zassenhaus’ Formulation of Hensel’'s Lemma

The “old” version of Hlensel’s lemma was first proposed by Zassenhaus (Zas69]). Wang and
Rothschild [Wan75] and Musser [Mus75) utilized Zassenhaus’ ideas in their factoring algorithm.
Using the ideas of Moses and Yun [Mos75], Yun [Yun73, Yun76] investigated the general
applicability of Ilensel’s lemma to problems in algebraic manipulation.

As formulated by Yun [Yun76], Zassenhaus’ version of llensel’s lemma differs from ours in
that the number of equations produced is smaller than the number of variables. For instance,
in the factoring problem, the Zassenhaus approach determines G and H by solving the equation

f(X)—GH =0 M

[t is only when the solution of this equation is restricted to the ring Z,[X] that (7) has a unique
solution. By using a p-adic technique the non-linear diophantine equation (7) can be reduced
to a scries of easy to solve, lincar equations. Then by piecing logether the solutions of these
linear equations, G and /1 can be determined. The procedure used is not very complex. Here
we will outline the main points and demonstrate the connection with our formalism.

Let f(X) be a univariate polynomial over the integers, and assume that it has two irreducible
factors, G and /{. We know Lhat Gy and [y are factors modulo p and we want Lo lift them to
GG and H. Writing G and I p-adically

(X)) =(Go-+GCip+ - YHo+Hip+-)
= Golly + (M Go + GiHg) + -+

We know that f(X) — (il is a multiple of p, so dividing by p we have

”,G() -|- G|[’(| = (/(X) _ G()l{())/p (mod p) (8)
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This is a linear diophantine equation in Gy and H,. Its solution is obtained by first solving
A;Gy + BiHy = X' (mod p) for various i by the Euclidean algorithm. Since the left hand side
of (8) is a polynomial in X, G; and H, can be determined by adding up the appropriate B; and
A; respectively.

Having computed G| and H,, the other terms may be computed similarly. For a linear
iteration, the process continues as follows:

[(X)=(Go+ Gip+ Gop’ + - - - YHo + Hip + Hop* + - --)
Considering this equation modulo p®

(H:Go + Gatly) = (f(Z) — (Go + Gip)(Ho + I p))/p? (mod p)

The right hand side of this equation is again a polyonomial and the left hand side is essentially
the same as (8). So using the A; and B; obtained in the previous step we can compute G, and
H,.

As an illustration consider the polynomial which we factored in the last section

f2)=2% 46725 + 412" 4+ 27812Z* + 737Z% 4 943Z + 253
As before we know that its factorization modulo 5 is

=(Z° 4222 - 23 + 2 + V).
So we now want to solve

H\Go +GiHy) = f(Z)— (2 +22° —(Z2° + Z + 1) o)
= —10Z°> — 102" 4 5Z% 4 1022 —5Z + 5
modulo 52.

Since Gy = Z° + 22?2 — 2 and Hy = Z% 4 Z + 1 the diophantine equations we need to
solve are

AGo+BHy =A(Z° 4+ 22 - )+ B(Z3 +Z + 1) = Z' (10)

where we require deg B; << deg G)) = deg G and deg A; << deg Hy = deg H. This condition on
the degrees of A; and B, we call the degree constraint. As we shall see, there is only one solution
to (10) which also satisfies the degree constraint.

Ap and B, can be determined by the usual application of the Euclidean algorithm to linear
diophantine equations [Knu69]. We begin by computing the continued fraction of ,/Gy. Then
the convergents of the continued fraction are computed; the next to last one being the one
which we want. Following the usual schema for continued fraction computations, we have:

1 2Z 2Z —2Z +1
0 1 1 2Z +1 —Z*4+2Z 41 223422 42
0 1 2Z . —Zt+1 27V — 2241

The first line consists of the “partial quotients” of the continued fraction (the quotients in
the PILS) and Lthe next two lines are the convergents of the continued fraction. So we have
Ay =22 +Z — 2 and I}y = —2Z* -} 2Z after removing a unit and multiplying By by —1.

54




*f

The other A, and B; can be computed from Ay and By by a simple device. Notice that while
Z'Ap and Z'B, probably do not satisfy the degree constraints they do satisfy equation (10).
Pick Q and A; such that Z'Ay = HyQ + A, and deg A; < deg Hy. Now define B; = Z'B; 4+ QGp.
A, and B, will also satisly (10) and now A; also satisfies the degree constraint. It is not hard to
see that B3, also satisfies the degree constraint. Let A; and 1'3,- be solutions of {10} which are of
the appropriate degrees. Then

(Ai —A)Go + (B; —Bi)Hy =0 (mod 5)

Remember that G, and H() are relatively prime. The degree of A; and A; is less than deg Ho;
thus the degree of B, — B, must be less than deg Gp. Since Bi's degree is small, so is B;. Since
Gy and Hy relatively prime A, = A and B, = B . Thus not only do A; and B; have the correct
degrees they form the unique solution of (10) for a given ¢.

Repeating this procedure we easily get the following table for the basis of the solutions of
linear diophantine equations of the form AG, + BHy =

Ag =222 4272 —2 By = —22* 42
Ai=2""+7-2 B =—-2*42Z 41
=27242Z—1 B=—-2"42-2
Ay =222 —-2Z — 1 By = —22%? —27 —2
Ay =—22> 422 -2 By =2Z?—-2Z+41
As =222 42 By =—-2*4+2—1

Dividing equation (9) by p gives
H\Go+ GHy = —2Z° ~22" 4+ 73 4222 —Z + | (mod 5)
To compute H, we use the linear basis for the solutions which were just determined.

Hy = —2As + —2A, + A3 + 24; — Ay + Ao
= 2742

One factor of f(Z), computed to second order, is Hy + 5Hy = Z3 — 9Z 4- 11 as we determined
earlier using our formulation in the previous section.

Thus far, the liftings considered have been at a principal ideal. This restriction can be lifted
without much difliculty, but then this old formulation becomes more complex. The complications
involved also obscure some of the relationships with our formulation. These modifications are
contained in a paper of Yun [Yun76] and the references contained therein. Since we feel that our
formulation is casier to understand, more powerful and easier to implement than this version
of Hensel's lemma we will not discuss these improvements.

The Zassenhaus version of Hensel’'s lemma, though somewhat more complex, than our
version slill produces the same answer—-the correct factorization though each of the lifting
stages. In the following paragraphs we will demonstrate that this is not a fortuitous accident
but is due to the lact that both formulations are performing the same computation but in a
slightly different manner.

The key to using Hensel’s lemma to lift a factonzatlon F = GyHy (mod m) to the m-adic
completion is solving the diophantine equations

AiGy+ Billy =2 (mod m) (11)
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Once we have obtained the A; and B;, it is merely a matter of computing the error introduced
when a factorization (mod m**t'). This error is then used to produce the appropriate linear
combination of the A, and B; which is Gy and Hg.

Our formulation is quite similar. We begin by inverting the Jacobian matrix. Through the
Newton-Raphson formula we combine the error terms to compute G; 4 and Hy4;. Structurally,
these two algorithms are quite similar. Actually they are identical. We shall see that the solutions
of (11) form the inverse of the Jacobian matrix.

To see this let,

G=Z"+9Z" ' +pZ "+ - - +g
Hy=2Z"+mhZ""" 4+ hZ* 4+ +h,

so the Jacobian matrix is

1 0 0 --. 0 1 0 0 .- 0
hy h 1 0 ¢ ¢ I -~ 0
J = . .
0 - 0 h hyy O - 0 g g
0o .- 0 0 s 0 - 0 0 g

Consider what happens when this matrix is multiplied by a column vector

_ a+ b
: a9 + a) + b + bohy
bs—l . !
J - . |
2] ’ :
. er_19r—1 + ar_29, + by—2hs + b, 1hy_ 1 |
8,19 + by—yh, j
Qr—1

The (r 4 s — 1) — i row of this column vector is clearly the coefficient of Z* in AGy 4+ BHp ]
where :
A=aZ ' +aZ7 4+ ta,y,
B=wZ '+ 5224 4 b_,. S
Thus the computation of the inverse of the Jacobian of the system of equations is a clever way % '
of obtaining all the solution of (11). Or, as we'd prefer to view it, solving (11) is a clever way |
of inverting a very special type of Jacobian matrix. 5
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Chapter Vil

The Sparse Hensel Algorithm

The last chapter presented our formulation of Hensel’s lemma as well another formulation
popularized by Zassenhaus. The univariate polynomial factorization example that was used to
iHustrate the algorithms did not point outl their major failing since this inadequacy only appears
in multivariate problems. The purpose of Lthis chapter is to demonstrate that the same techniques
that were used in our version of the modular algorithm can be applied to our formulation of
the llensel. Significantly, we are led to a class of probabilistic p-adic lifting algorithms that run
in polynomial time.

To illustrate the difficuities inherent in multivariate problemms we will again consider the
polynomial factorization problem. Recall that the key idea is to convert a problem of factoring a
polynomial in the polynomial ring R[X, X,, ..., X,] to one of finding a solution (in B[ X, ..., X,])
of a system of cquations. To apply Newlon’s method we attempt to find solutions which lie in a
completion of R| Xy, ..., X,). Usually, the particular completion considered is m = (X, ..., Xy).

Consider the problem of factoring the square free polynomial

F(X, X, X3) =X+ (X X} + X0 X5 + X3 4+ 2)X°
+ (X2X5 42X X3 —3X3 X + XiX3 +3X2)x?
+ (—3X8X5 4+ Xo X3 — 3X5 X + X3Xy — Xo X5 + 3X3 —2)X
+ (—3X8X: 43X X5 + X3 - 1).
By picking a few values for X, and X}, we can quickly convince ourselves that unless F' is
irreducible, it factors into 2 quadratic polynomials.
F(X,0,0) = (X — )X+ 1)
F(X,—1,1) = (X?—2X —2{(X2 4+ X + 4)
F(X,3,5) = (X2 4 17X — 3644)(X? 4 1902X 4 26)
F(X,—5,7) = (X? — 12130X — 126)(X? — 33X + 65626)

Notice that even though (X, 0,0) splits into lincars, there is only one way to combine the
linears into a faclorizalion into two quadratics. Letting the factorization be F(X) = (X? 4

57




AX + B)(X? 4 CX + D) we get the following system of equations

A+C — (XNX3+ XX+ X3+ 2)
AC + B+ D = (X3X] 42X, X5 — 3X3X3 + X3 X; + 3X3) ) 1
AD + BC = (—3X3X3 + Xo X1 — 3X5X3 + X1X; — Xo X3 + 3X3 — 2)
BD = (—3X$X; + 3X3X; + X3 — 1)

We are looking for elements A, B, C and D of R[X,, X;] that satisfy this system of equations.

Using Newton’'s method, the solution to (1) will be generated as a multivariate power series k|
in X, and Xj. This solution is developed one term at a lime, first the constant term, then the ’
linear terms, and so on. To get the initial approximation, we would like to set X, and Xj to
zero and solve the resulting simpler system. This system would usually be solved by factoring
F(X,0,0). In this case (1) reduces to the simple system

A+C =2,
AC+B+D=0
AD 4 BC = —2
BD = —1

From the univariate lactorization we see that this system has two solutions, cither (A, B, C, D) =
(0, —1,2,1)or (2,1,0, —1). This corresponds to the commutativily of the factors. We will choose
the A = 0solution. The other solution will give a similar result, but with Aand C, and Band D in-
terchanged. Newton’s iteration for systems of equations takes the form

3= 21 — J " (%0) - flEn_1),

where J is the Jacobian matrix of the system. Let the column vector

0
fg = ;1
1

denote the initial approximation, and the column vector

A4+C—fi
jaB.c,p)= [ AG B AP~ h
BD — fy

represent the system of equations which is to be solved. We have used f; as an abbreviation
for the coefficient of X '—' in F(X, Xy, X3).

For the system of equations in (1) the Jacobian matrix is
0
|

\

1 0
A 1
C B Af
0 B

|
C
D
0 D
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When evaluated at X3 = 0 and X3 = 0, the Jacobian is

1 0 1 0
21 0 |
12 —1 0
01 0 -—1

The next step is to invert this matrix. Unfortunately, it is singular. Thus we will not be able
to lift the factorization at the ideal (X, — 0, X; — 0) and must try some other ideal.
If we try (X3 -+ 1, X3 — 1) then we get

F(X,—1,1)=X*"—X>— 10X —8
=(X?—2X —2YX+ X +4)

The corresponding Jacobian matrix is

1 0
-2 1
-2 =2F

0 -2

[
o . O

which is invertible. The problem with using this ideal is the factorization will be developed in
a multivariate power series in Xy 4 1 and X3 — 1. Since the actual factorization is

F(X, X3, X3) =(X% + (X2 X3 + 2)X — 3X3X3 + 1)
(X2 4 (X X3+ XX + X3 —1),

these factors will have 16 and 17 terms respectively, when written in terms of X; 4+ 1 and
X3 — 1. If there are more variables, the number of terms produced will increase exponentially.

The solution for the Hensel algorithm, just as for the modular algorithm, is to perform the
lifting one variable at a time. We replace the X; by Y; 4+ a;. After performing the lifting for
Y;, the answer will be dense. But after converting it back to a polynomial in X; the answer
can be no more dense than the final answer. Section 1 presents the details of the sparse Hensel
algorithm using the formalism developed in the last two chapters. Section 2 points out a number
of “tricks” which can be used to great advantage in an implementation of the sparse Hensel
algorithm.

1. Introduction of Sparse Techniques

Following this procedure, we will solve (1) for a power series in X;. Since X3 will be 1
throughout this portion of Lthe computation, we can simplify (1) to

A+C=(2X;+3)
AC + B+ D = (=3X] + X] + 3X3 + X} +2X)
AD - BC = (—3X% — 3X8 + X1 + 3X3 —2)
COBD = (—3X3 4 3X3 4+ X3 —1)
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Since we will be working with power series in X, + 1 it will simplify some things to write these
equations in terms of ¥y, = X3 4 1

A+C=Y3-3Y 457, —1
AC+ B+ D= —3Y) + 16Y} — 31y} + 28Y] — 10Y,
AD + BC = —3Y%§ +24Y] — 87Y% 4 186Y] — 254Y3
+227Y3 — 132Y% 4 47Y, — 10
BD = —3Y§ + 24Y] — 84YY 4- 171Y] — 225Y}
+ 199Y3 — 117Y3 + 42, — 8

(2)

To simplify the computations, we will again work with a rather small modulus, this time
163. The inverse of the Jacobian is then

7 18 18 —9

36 36 —~18 36
—73 —18 —18 9

12 2 =36 —9

—J =

Subtracting the Jeft hand side of (2) from the right, and using the initial approximations A =
—2, B= —2, C =1 and D = 4, we see the first term of the error is

—5Y,
10Y,
—47Y,
—42Y,

Notice that in sclecting the error terms we ignored all but the lowest order ones since only they
will affect the correction. When multiplied by —J !, we have the first correction term

72 18 18 —9 —5Y, 4Y,
6 36 —18 36 || v, | _[| 37
—73 —18 —18 9 7l A
72 12 —36 —9/ \—41, —15Y,

To compute the next correction term, we replace A, B, C and D by —2 + 4Y;, —2 4 3Y,,
1+ Y, and 4— 15Y, respectively in (2). The only nonzero terms should be of degree 2 or greater
in Y,. Continuing this iteration we discover that

=244V, —3Y3+ Y}
B=—-243Y,—3Y;+Y}
C=14"
D = 4 — 15Y, 4 30Y2 — 30Y} 4 15Y} —3Y3

Reexpressing these solutions in terms of X, we have

A‘—=X~3+X2
B=X3-1
C=X2+2

D=-3X;+1




So our factorization thus far is

F(X, X, 1) = (X2 4+ (X3 + X)X 4 X5 — 1)((X* + (X2 + 2)X —3X3 + 1)

Now we need to construct a system of equations for the coeflicients of X, so A, B, C and D
can be lifted to polynomials in X;. We now know that A(X; = 1) = Xz’ + X,. We now make
our standard probabilistic assumption, that A = axg + BX, where a and § are polynoiials
in X;. Continuing we have

A = aX} + X,
B=+X)46
C=eXy+¢
D=nX}+0

Consider the first equation of {1) after having made these replacements.
A+ C =aX)+ Xy +eXy -+ ¢ = (X2 X} + X0 X3 + X3+ 2)

Since the Greek letter variables do not involve X, we are free to equate the coefficients of the
powers of X,. This gives the following equations

a=1]
B+e= X3+ X
¢ =2

Doing this with the other equations, we have

7]=-—3X3 06=X3
at+7=3 Be = X3
an = —3X;3 nd = —3X3
ve = X; af ¢ =3 (3)
00+ e = X1 — X3 ¢ = —2
m=—3X3 ¥ =1
60 = —1 a=1
BHe=Xi+X ¢=2

These equations can be sofved by the same technique that we used before, or, as we point
oul in section 3, they can be solved by inspection. In the rest of this section we will try to make
more precise the technique that was just used in factoring F.

As this example shows, the Hense! algorithm is somewhat more complex than the modular
algorithm. Unfortunately, this algorithm also has a reputation among system implementors as
being one of the more difficuit algorithms to implement. Though this may be true of the old
formalism, our new formalisin is quite simple and to a very large degree reduces the duplication
of code which scems to have been necessary in the older implementations we have examined.
The program that solves systems of algebraic equations using p-adic techniques is just a page
or two of code. Interfacing this code Lo any particular problem, such as computing GCD's,
factoring polynomials and computing square ree decompositions is merely a malter of sctting
up the appropriate system of equations.

The first algorithm we present is the univariate version of Newton’s iteration for systems
of equations. It is fairly straightforward and should present no problems.
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Algorithm U implements the univariate version of the sparse lensel algorithm. It assumes
that g,..., ¢, are unknowns, X is a variable and fi,..., f,, = / is a system of polynomials
in X,g,...,9,, m > n It is also given a point X = @ and an initial solution g,, ..., g, such
that fi(g,,...,9,) = 0 (mod X ——a). Finally it is given an integer k. This algorithm returns
polynomials Gy, ..., G, such that £;{G|,...,G,) = 0 (mod (X — a)Ft1).

Ul. [Jacobian]" Compute the Jacobian of the system f at the point X = a.

U2. [Make it square] Select n lincarly independent rows of the Jacobian and call the resulting
matrix J. Renumber the f; so f; corresponds to the 7th row of J.

U3. [Invert] Invert the Jacobian to produce J—!.

U4. [Shift system to origin] Replace X by Y + a in the f;. (Now fi(g,,...,5,) = 0 (mod Y).)
Set Gl — gl" .. ,G“ — gn.

U5. [Iterate over number of desired terms] For j = I through & do steps U6 and U7.

US. [Iterate over number of equations| For i = 1 through k set E; to the Y'-term of
HG, ..., Gh).
UT. [Newton’s iteration!] For i = 1 through n set G — G +J~' - E.
U8. [Shift back to old variables] Replace Y by X —ain Gy,...,Gy.

U9. [Done] Return Gy,...,G,.

The multivariate portion of this algorithim is the part that takes advantage of the sparsity
in the system. It uses algorithm U to compute the the solution in one variable of the system
of equations. It then uses this solution to create a new system of equations where the new
unknowns are the coefficients of the polynomials which were just determincd by algorithm
U. The variables S;, ..., S, are the solutions to the original system of equations, as they are
improved with the introduction of each new variable.

Algorithm M does a mullivariate Hensel lifting. It takes as input the unknowns g,...,g.,
variables X),..., X, and a system of polynomials f;,..., f,, in the g; and X;, m > n. It is also
given a list of evaluation points ay,...,a, and initial values for the variables g, ..., g, such
that £(g),...,9,) = 0(mod (X; —ay,..., X, — a,)).

M1. [Initializz, Initialize the variables Sy, ..., S, to the symbols gy, ..., g, respectively.
M2. [Loop through variables] For ¢ = 1 through v do M3 up to M8.

M3. [Remove most of the variables] Replace Xit1,..., X, in the f; by a;11,...,a, to get
polynomials Fy,...F,,

M4. [Solve univariate problem] Use algorithm U on §,, X;, f;, a; and §; to get solutions to
Gi.

MS5. [Update the original solution] Replace the symbols g; in S),...,S, by the values of
the G,'.

M6. [New equations] For each f, replace the g; by Gi. The result is a polynomial in X;.
The coeflicients are the new f£.

MT. [Done| Return the S, as the solution.
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2. Some lIdeas for Implementations

In this section we will consider a couple of uselul heuristics that can often dramatically
speed up the running time of the sparse Ilensel algorithm. However there are problems for
which these heuristics do not help, so they do not affect the analysis of the running time of the
algorithm. These heuristics were first used by Paul Wang (Wan78].

Recall the system of equations (2) that was encountered in the example at the beginning
of this chapter. Ignoring several of the equations, and reordering them somewhat we have

n= —3X; an = —3X; = -—3X;
nB = —3X3 ae = X3 v =1
60 = —1

Reading these equations horizontally, the values for the other variables just drop out.

In general this heuristic proceeds as follows: (1) Isolate all lincar equations with one unknown.
{2) In the system of equations to be solved, replace all occurrences of the unknowns just
determined by their values. (3) Repeat until there are no linear equations with one unknown.

This procedure is very cheap; the only point that could be expensive is the substitutions in
step (2). Since this procedure can be performed before the variable being lifted is shifted away
from zero, step (2) can be no more expensive than verifying the sparse form of the answer.

In section 3 we will analyze the sparse Hensel algorithm. Here we only discuss the probability
that this heuristic will actually be beneficial. It is rather difficult to determine precisely what
the probability that this procedure will be successful is, but we can make soine rough estimates
in the factorization problem with the following observation. Assume that we wish to factor F,
a polynomial in v variables. Assume F has 2 monic irreducible factors

F=M+m +- - +m)M+myy+- +my)

where M; are both monic monomials and m,; are monomials whose coefficients are to be
determined. If the exponent vectors of all of the m; are distinct we will be able to determine
their coeflicients by the procedure just outlined.

Assume that the degree of each variable in the monomials, m;, is bounded by D. Then
there are N = (D + 1)* possible exponent vectors. There are N! ways ¢ monomials could be
chosen (we are ignoring the fact that some are permutations of the others) and N!/(N — ¢)!
ways ¢ different monornials could be chosen (again disregarding the permutations). Therefore
the the probability that the system of equations is “presolved” is P(t, v, D)

[}
P(tvD)>W_N;w= Nt
0PI Z TN T (NN

[ N (&)
SVNTE (RN

by Stirling’s approximation. Simplifying this somewhat

e—'[l + N—f—_—tJN—‘ (4)

A —

Nt

Notice that as N — ¢ goes to infinity, holding ¢ fixed, the quantlity in square brackets tends
towards ef. So for large N, P(t, v, D) is quite close to 1. Computing the Taylor series expansion
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of (4) at N = oo we find

12 —¢

So the chances that this technique will not be useful is somewhat greater than
12—t
2(D+ 1)

As the number of variables increases this becomes very small. In fact for ]

Pit,v,D)< | —

logt? —t logt
- ~
log(D+ 1) log(D 4 1)

we would expect the equations to always be presolved.

Wang uses a technique that is essentially equivalent to this in his implementation of the EEZ
algorithm. To illustrate how dramatically it can afTect the running time of the Hensel algorithm
have timed four different algorithms on the first set of examples given in Lhe appendix. These
examples were run on the MACSYMA [MACT7] algebraic manipulation system al Massachusetts
Institute of Technology which runs on a Digital Equipment Corporation KL-10 processor. The
first column is the EZ GCD algorithm given by Moses and Yun [Mos73]. The second column,
labeled EEZ2 gives timings using Wang’s new EEZ GCD algorithm [Wan79], but without using
the heuristic described in this section. The second column, labeled EEZ, is Wang's algorithm
using the heuristic. The final column is the sparse modular algorithm described in this thesis.
All the times given are in seconds.

The appendix lists three sets of polynomials, f;, g; and d;. The four algorithms were used
to compute the GCD of fd; and g,d; after these two products were multiplied out.

v EZ EEZ2 EEZ Sparse Mod
1 .036 .040 058 .040
2 2717 .389 416 160
3 431 .785 537 .381
4 1.288 1.224 704 842
5 3.128 7.331 1.410 1.825
6 * 7.428 1.966 3.364
7 * 10.282 1.628 4.190
8 * * 2.446 4.534
9 * * 2.346 4.006

10 * » 2.832 8.202

The GCD computed here had 4 terms and the degree of each variable was 3 or less. The
cofactors had the same parameters. Considered as a facloring problem, we would have ¢ == 10,
D = 3. So we would expect the timings to level off at about
2logt 2log 10

" log(D+ 1) Tlogd |

[n fact the timings level off between 5 and 6. That's not too far off.

In the final section we give somme timings for problems for which all algorithms but the ones
described in this thesis fail.
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3. Analysis of the Sparse Hensel Algorithm

We will assume we are using the sparse llensel algorithm to lift a solution Zg = zg')- . -:l:g'}
of the system of equations 7,(2.) = 0 modulo m = (X; — a),..., X, — a,) to a solution %,
modulo m“*!. We will let ¢ denote the maximumn of the number of terms in any z{") for i = 1
through n. In keeping with our concern for sparse polynomials we assume that t < (d + 1)*.

The solutions modulo m“*! are determined by lifting the solutions we have modulo m
to solutions modulo m;, = (X; — a;)**'m, which are then lifted to solutions modulo m; =

(X2 ~ a,)**'m, and so on. Since we pass from a solution modulo m; to one modulo m; . ; we
will introduce a new system of equations and unknowns, f;(%,). The number of unknowns will

never exceed n -t although the number of equations may. Though these additional equations ]
may be used to significanl advantage in practice, as was poinled out in secltion VHL.2, we will
ignore them in the lollowing analysis. i

Following the same principles used in the analysis of the modular algorithm, we assume that
the number of terms in the solution of £,(3;) = 0 modulo m; is t. We will also only count integer
arithmetic operations now and multiply by the appropriate factor at the end 1o account for e.
7,-(3:,-) will involve no more than ni unknowns zf.”, e ,zg"". This is important as it gives the size
of the Jacobian which needs to be inverted at cach stage. As we are only considering classical
algorithms, we can assume that inverting the Jacobian will require about (n - t)* operations.
Performing an update of the unknowns involves multiplying a matrix by a vector, this requires
about 2(n - t)* operations, but it must be performed d times. We get the following formula for
the time required, excluding the computation of the error terms.

O(v((n ) + 2d(n- t)2))

which is dominated by v(nt)3.

The error terms must be compuled d times for each variable or dv times in all. The
computation of an error term is merely a special case of verifying the answer. Without knowing
the particular problem under consideration we can’t say much more. Denote by T the time
rcquired to verify the answer. We can use dv7' as an upper bound on the amount of time
required to compute the error terms.

Thus the total number of integer operations required is

dvT 4 v(n - t)3.

The total size of the answer ¢,; is n-t, so we can write this as dvT + vt‘,’o,. Including the factor
due ¢ computed in section 4.2 we have

O((dvT + vz-},,,)) log*(dvte—").

4. Timings

In this section we will present the Limings for a two of problems using the Sparse Modular,
Brown’s and Collins’ Modular, the EZGCD algorithins and Wang's new L7 GCD algorithm,
The first example was chosen Lo show Lhe sparse modular GC algorithm al its best. The
polynomials for this Lest are Lhe second set of polynomials listed in the appendix. Again, there
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are three polynomials listed for each row, f;, g; and d;. This time notice that the structure of
each of the polynomials is identical, they only differ by coefficiernits. The heuristic mentioned
in section 2 does not help in this case. The foilowing table gives the computation times, in
seconds, for the EZGCD algorithm, the Modular algorithm, the Reduced algorithm, Wang’s
new EEZ algorithm and finally the Sparse Modular algorithm.

EZ | Modular | Reduced | EEZ | Sparse Mod

v
2 .614 .481 710 .108 312
3] 2938 6.092 1.876 | 2.908 1.074
414935 64.963 * 5.906 1.413
5 * 282.373 * 9.075 2.394
6 * * * 60.417 4.153
1 * * * * 5.145
8 * * * * 4.953
9 * * * * 8.699

10 * * * * 8811

The asterisks indicate that MACSYMA ran out of storage. As expected the modular
algorithm ran in exponentia) time. Both the EZ and the Reduced algorithms ran out of storage.
This was to be expected. In the case of the reduced algorithm the size of the PRS finally caught
up with it. This example was carefully designed so that all the GCD’s were bad zero problems
for the EZ algorithm. Thus when the polynomials were shifted the lifting process exploded.
Since the heuristic discussed in section 2 was not applicable in this case, the EEZ algorithm
also exhibited exponential behavior.

The second example is from [Mos73]. This one was specially designed to be optimal for the
EZ GCD algorithm. It is about as bad as possible for the sparse modular algorithm. The two
polynomials whose gcd is taken are

(f: ¥ + l)(é. ! 2) and (2 ¥ + 1)(2 P — 2)

i=1 §== =1 =1

Since the EZ algorithm produces all the terms of the answer of the same total degree at once,
very little computation is done until the final step, at which time the entire answer is determined.
Here we only compare the EZ, the EEZ and the sparse modular algorithms. The others take
too long or exceed storage capacity very quickly. Since the sparse inodular and EEZ algorithms
determine the answer one variable at a Ltime, you would expect at least lincar growth as the
munber of variables increases. Since the degree and number of Lerms also increases we see
significantly more than linear growth for the sparse modular algorithm. It is notl at all clear
why the EEZ algorithm ran in time so close Lo that required by the sparse modular algorithin,
especially since they are so radically different.




EZ

v EEZ Sparse ModJ
2 116 105 .496
3 175 1.554 1.375
4 236 3.368 2.791
5 .341 6.075 5.037
6 .460 9.803 8.299
7 602 | £4.903 13.112
8 760 | 21.165 19.704
9 .944 | 28.835 28.709

10 | 1.142 { 38.307 40.511




Chapter Vil

Conclusions

The basic idea advanced in this thesis is quite simple. By breaking a problem up into
layers, il is possible to make use of the structure of the solution on one layer as a guide to the
construction of the solution on the next layer. For the polynomial problems we have considered,
and for muitivariate polynomial problemns in general, this is rather easy because we have a
natural layering with which to work. The introduction of a new variable constitutes passing
to a higher level. The evaluation homomorphism (replacing X; by a;) is a means of going to
a lower layer. Throughout this thesis we have used the observation, due to Paul Wang, that
the structure of polynomials does not change significantly for sparse polynomials under the
evaluation homomorphism.

In the first portion of this thesis the familiar modular algorithm was modified to take
advantage of the possible sparseness in the answer. This was accomplished by assuming that
if the image of a group of monomials under the evaluation homomorphism is zero then the
coefficients of these monomials are exactly zero. This modification has the significant advantage
that it turns an algorithm that formerly required exponential time in the number of variables
into one that required only probabilistic polynomial time in the size of the answer.

In the second section, we resurrecied an old formulation of Hensel's lemma, namely Newton’s
iteration, and showed how it could be adaptled to utilize the sparseness of the intermediate
results. This version of Hensel’s algorithm also only requires probabilistic polynomial time in
the size of the answer. In addition to the increase in efficiency, we [leel our formulation of
Hensel's lemma is much easier to justify, pedagogically clearer and more widely applicable than
other formulations.

There are a number of problems left open by this thesis that are well worth investigating
in the future. First, it would be very interesting to see a conventional expected time analysis
of the algorithms presented here. Towards that end much tighter bounds than those developed
in Theorem | of chapter IV must be computed. In particular good bounds for very sparse goal
polynomials would be exceedingly interesting.

Second, there are still a vast number of applications of the two basic algorithins presented
here that we have not yel invesligated. Particularly intriguing are problems of computing




resultants and partial fractions expansions. Interfacing the Hensel algorithm to a system for
solving systems of algebraic equations to obtain polynomial or rational function solutions would
be very useful for a number of problems. This sort of system could also be profitably extended
to compute the solution of algebraic equations in a prespecified algebraic field.

Finally, the basic principal of solving problems in layers and making use of the structure
of the answer at one level to aid in “lifting” the solution to the next higher level seems to
be applicable to many other problems besides those in algebraic manipulation. Algorithms for
certain restricted sorts of graphs come to mind, as well as applications in information storage
and retrieval.
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Appendix |

Polynomials Used in the Timing Tests

This appendix lists the polynomials that were used to test the various GCD algorithms in
sections VII.2 and VII.4. The d; polynomials are the GCDs which are computed, the f; and g;
the cofactors. The polynomials that were fed to the various GCD routines were d;f; and d,g;.

d| =I?+:L‘1+3
=242z +1
g =27 4 2z, + 2

d; = 22%22 + 7122 + 22,
h=2zt4 223,422 1

=2+ +oan+si+n

d:) = zgzg + 331‘3 + 25?121:3 + 23
f; = Ig + :1.‘.31‘3 + Ifz-gza + 1Ty + ::fz%

=22 +2nzt+ o3+ o

dy = 2322 + 232334 + 237234 + 2274 + 212273
fi = nizaziz? 4 512222 4 5122 + 22 - T
g4 = nizax? + 1222 - 22 + nizinszy + 713k

3 2 4 .3, 2 3, .2 2, 2.2
ds = zlz2227422 + 37302 + Tlaazias + zizazizanms + 2imsis]

fi = 212222 + T2 73Tz + Timaisl + nizizt 4+ L
& = D1222422 + 2272 + D1T27425 + 1225 + T1T2mT

2. 2 2
do = 1y 1,732222 + Tizi2inaziad + 2ined + rimalnizize + 2izavsze

2 2.2
b = 22zaizial + zyzazicl + nizizd 4 2izizimae + nizinss
. . ) 2
@ = 2323042izs + D12z + TiTiTAmsz + 212339z 70 + 2iT0T]

2,22 2, .2 2
17127 + T12:%4%6 + 23T4Ts

2, ol 2 2, 2,2 2 2
f = iz, Tiaszint - nizzimty + migiziz + 2i2izin + sinnzino

. D D D D » v) .
di = nizyzizea] + iTasiTst + 2

@1 = nizanzizl -+ Lizitieael b oot + Dnzna + 775502)




- B e L o e et e -

— 2 2 2, 2222 2, .2.2,2 2,22, .2

ds = TLTATST6T1TE + T T2T3T4T507Ds + T1T3T5T6T7 + izialz xlzer? + 127420
S S YO 3 ) 2.2 2,2,2,2,2,2 2,2, .2

h = 2322zaxi 05237 + mezszizl + 2l1ieiciadnlng + pizizisicize + mzlzinie

— 2 2.2 2 2 2.2 2.2 2. 2 !
& = nieioszemzd + nieiedzsiniey + 2imeyrizine + 202355042l 0s + T12077]

— 2,3 2 2 3,.2.2.2, 2
do = 22232,262822 + 2122337222870 + TITITATATeTo + TITITITITITITE + T22rT4TET0TIT, ;

JER T J 2 2, 2,2, .2 2,22 2
= r{z32:33778%0 + 2339 + (23T (257627 + T4T527 + T3T4TeTy

2 2 2 2 2 2
% = D2 o240526222377 + L3023 2532 23 D8TE + TITATATOTITRT0 + TiTIT6T] + TITATTGTY 1
"
2 2 2 2,222 ) .2 2 i
dio = o B2cimalsl, + Biarioetizozl, + Tinmzielsd + nizizialzl + izsmazieg 7
2 2 2222 2 2.2 2, 2
fio = mimziTizstiTezit?, + zirizialzeti, + D1T3EITTTeTITZTLTI0 .
2,222
+ Diz,2izizizizio + z35ivsTeriTOTIO
4 S T 0 3 2,2 2,2 2 2,.2,.2
3 gio = T1TITITITLDITLET + TaTTHT10 + T THTITATSTTgTT 10
2,22 2
=+ TIZ3Te TIP3 T10 + T4ZTsTeT1Tg
|

7




The following set of polynomials was used for the examples of section VI.4. Notice that
the structure of each of the polynomials in each triple is the same.

= 1823z} 4 22}z, + 18z, + 10z] + 181,
@ = 162223 + lizlz, + 142, + 423 4 122,
dy =15z%23 + 14z}z; + 1132 + 192} 4 T3,
5 = 16523z} + 142323 + 32323 + 182izy + 2im;
g = 192,23z} + 2z)23 4 122323 + ziz; + 10222,
dy = o123z} + 132323 + 37322 + 4z]23 + 1422,
fo = 5z}5,2373 + 32737t + 16272322 + 192325 + 423 + 1923
g1 = 19232,232% + 9z)2,2% + 18ziz2z) + 172322
dy = 192°2,23z + 1823z )7y} + 18222z + 11zin323 + 32izizd
£ = 11nzizzl + 1023232322 + 222425 + 2222) + 102373
g5 = 1Tnzizszd 4 3zl23232? + 18232425 + 10772

ds = 2z,73x473 + 3z}2iziT? + 12232425 + 10722} + 18222

TR

23,2 4 34,23, 2 3,4 44,3 2,32
Jo = T22zir2zisiz? + 2ziziz3zizsal 4 922576 + 19232 75 + 37173275
g = 9z2z)zizizia? 4 152)2i2i0 257} + Azizize + zizizd + 18z 2iziald 1

2,.3,2.1,2,2 42,3, 2 3.4 4,43 2,32
ds = 132%2)13ziz22] + 127)zdzdz 22 + 14ziziz0 + 1T232325 + Brizizias

f = 10zizizizeat + 2}zleiz?z} + lsizaaiodzls? + 13032] + Tzizialzdzd
— 4t 4 3,3,4.2.1 2, 20 4,2,2 3,3 3.3.3.3.2
@ = 4ziz zizez] + 17225252327 + 225202 25227 + 52,75 + 132/2,7,257, : |

dy = Tz \zizest + 11202)23222) + 1923 2,23 2i2l52 + 22323 + 5ziz)zi237s




ds = 16312,23257¢ + 1523zi2322 232373 + B2iziziz
| fo= 2isixlsimzy + 2izlzdslals
+ 16z3z3z303 78
— 323,22 3
@ = I,T;T5TeTaZy + 10z
+ 1723z323z2g
2.3

+ 122323235223

— 1R42 3,2, 4 3. 22,2, .3 4.3
o= 18zimyzsTixiTen), + 152 2202521252525, +

2.2 4 4
+ 132732l x22) 2]

-

k= WUnizzizszd + 182iziz32iziaizing + 102222232372
- 34 g2 4 p2,4,3.2,3,.2 2 2,2,3.3,2 2
& = L3232y + riziziaizizacios + 1225030izie? + 1Tz 22n30220 + 23232326

e 0,733,222, 3 3,23.2,2 44,2 4
do== 9z zixi8iTiTy + 9T iz iizind + 2ixinis

33
222 2+ 1202323242226 + 123232578

2,.2.3

2,23

2,3.3,2 2
az7 + 4z 1z zezize + 82iziaizg

3,2,3,.2,.2.3 4
s + 2izizizicizizize + 1ziziziziTimms

£, .44

3,2.3.2,2.3 4,42 4.4, 3 4
1232385230y + 1323252 35 Te 212329 |+ 1521 2223T (TS 212829

/ 5
{Timitazs + 10z]{zxizizioizing

2.4,2_4.3 3
’;23:1345;18”91?0 + uzl’%"gﬁo

2

= 1322222922 2 2,4,2.4,3 3 3,232 2,44
gu= 13zimzizyziame), + 17252z 05020ty + 627257627, + 221 2305257725

92 3,2, -4 3. 2,2, 3 4.9
dio = ST {Z3TaTT 7T} + LTT TaxsTimziTazyy +
+ 102y 25222228z

17222323223 2023, + 32322237107
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