AD=AD91 630

UNCLASSIFIED

PURDUE UNIV LAFAYETTE IN SCHOOL OF ELECTRICAL ENGINEERING F/6 15/3

A MICRO=COMPUTER COMPUTATIONAL UNIT FOR AN IR=CCD INTRUSION DET==ETC(U)

OCT 80 T W GOEODEL+» W T WILSONs S C BASS F30602-75-C~0082
RADC~TR~80+-308 NL

"ﬂ
‘L

_"_x

e e e

'
i
t
!
k
'
i
i
]

«

- —_—
s WP B s et

.- -

e Wi i ————_—

TS aueu

DISCLAIMER NOTICE

THIS DOCUMENT 1S BEST QUALITY

PRACTICABLE. THE COPY FURNISHED
TO DTIC CONTAINED A SIGNIFICANT
NUMBER OF PAGES WHICH DO NOT
REPRODUCE LEGIBLY. ‘

UNCLASSIFIED
SECURITY ClLASSIFICATION OF THIS PAGE (When Date Entered)

REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM

2. GO ACCESSION NO.| 3 RECIPIENT'S CATALOG NUMBER

- 0
Al
reocpreod 368] v YO ENA

R idiive g Final Aec ’°’i'c§f‘j£ te]

b JA @CRO—,QOMPUTER LOMPUTATIONAL wIT FOR 2 j
| AN_IR-CCD INTRUSION DETECTION SYSTEM . s

J = = [3 FEWRF-O;.M}NG OG. REPORT NUMBER
. e N/A
8. CONTRACT OR GRANT NUMBER(s)
T.W.|Goeddel

W.T./Wilson F3 623'7 5-C-fp82 | .
-

MING ORGANIZATION NAME AND ADDRESS 10. ::giﬂAM ELEMENT, PROJECT, TASK

& WORK UNIT N o -—-L-""
Purdue University /

£

L ——— e -

School of Electrical Engineering . (-\ 63;. 451,1 :
West Lafayette IN 47907 b | | |
1t. CONTROLLING OFFICE NAME AND ADDRESS -

Deputy for Electronic Technology (ESE) | Octmg Z

Hanscom AFB MA 01731 =

184
2. MONITORING AGENCY NAME & AODRESS(I(different from Controlling Otfice) | 15. SECURITY CLASS. (of this report)

: Same Eg} UNCLASSIFIED
‘ ‘ @ 1‘7 T8a. DECL ASSIFICATION/ DOWNGRADING
J N/A

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited

17. DISTRIBUTION STATEMENT (of the abstract entered in Black 20, I different from Report)

Same

18. SUPPLEMENTARY NOTES

RADC Project Engineer: Lyn H. Skolnik (ESE)

19. KEY WORDS (Continue on reverae side i neceseary and identily by block number)

IRCCD
Physical security
Schottky array

20. ABSTRACT (Continue on reverse side if necessary and identity by dlock number)

~—>> |The purpose of the BISS (Base Installation Security System) program is
the development of sensors for physical security systems. One technique
Junder investigation within this program involves the focusing of infrared
radiation, derived from a distant field of vision onto an integrated

’ linear array of 256 platinum silicide Schottky barrier detectors. Over a
period of time (called the *stare time"f: charge packets, of a size
proportional to the infrared intensity, develop within each detector. At '—"

DD , %, 1473 EOITION OF 1 NOV 85 13 OBSOLETE UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (Whon Date :m-% ‘ ‘ 2

2792000

———

¢l e i e s -

UNCLASSIFIED

CURITY CLASSIPICATION OF THIS PAGE(When Date Entered)

the end of the stare time, all 256 charge packets are broadside loaded
into a CCD shift register (of length 256) also integrated onto the
detector chip. The CCD register may then be clocked to shift out these
analog samples for processing by a small local computer. The hardware
and software development of such a signal processing computer is the
purpose of the effort discussed in this report.

UNCLASSIFIED

SECURITY CLASHIFICATION OF Tu'® PAGE(When Deta Entered)

- I i % e ar

ABSTRACT

The purpose of the BISS (Base Installation Security System) program is
the development of sensors for physical security systems. One technique
under investigation within this program involves the focusing of infared ra-
diation, derived from a distant field of vision onto an integrated linear
array of 256 platinum silicide Schottky barrier detectors. Over a period of
time (called the 'stare time"), charge packets, of a size proportional to
the infrared intensity, develop within each detector. At the end of the
stare time, all 256 charge packets are broadside loaded into a CCD shift re~
gister (of length 256) also integrated onto the detector chip. The CCD re-
gister may then be clocked to shift out these analog samples for processing
by a small local computer. The hardware and software development of such a
signal processing computer 1is the purpose of the effort discussed in this

report.

TABLE OF CONTENTS
List Of Figures. ® ® & ® ® ® & & ¢ ° & ®E @ & 5 & s & s e & " ° 8 o v
List Of Tables " ® ® ® & @ & & O ¢ & & & =& & » o =3 S 5 8 © " s .vii

1. Introduction

A. Purpose of Overall System. « ¢ ¢ o ¢ = « o ¢ o « s ¢ « » 1
B. Computational Unit « . v ¢ ¢ ¢« ¢ o o ¢ e s « « s o s s s 2
C. Start-Up Procedures for IR-CCD Intrusion

Detection System « ¢ v ¢« o ¢ ¢ ¢ o 2 ¢ o = a2 e e 6
D. Description of Parameter Display Frame . . « « = + ¢ « « 8
E. Description of "Additional Features" Frame . . . » « « « 16

F. Verification of System Operation « « « « « o« ¢« o« = « =« +» 20

I1. Hardware
A. Overview of Hardware Operation « « « ¢« « ¢« a « o ¢ o o » 25
B. Step~by-Step Discussion of IR-CCD Interface
Operatione o « o « o« « ¢ a o = a a 2 2 s 2 o 2 o s o o 27

€. Signal Pin Assignments . « « o o « o o ¢ o a o ¢« o s « » 31

111. Software
A. Overview of Software OperationS. . « « v o =« » s » o « « 37
B. Implementation of SOftWare « « o« « o o s ¢ v « o u o o o« G4

C. Memory Organization. « v v « « « « « 2 o ¢ v o = « = o « 84

1V. Maintenance
A. Preliminaries to TeSting « « o « o« « « « « « s o = o «» « 88
B. Calibration Procedures and Use of Maintenance

SOftHal‘eonnuocu--..-------..-.088

c-PROMS..o--c--.--.--o.--.-...-o-1°2

V. References
Appendix A. Parts List, Manufactures and Vendors

Appendix B. Software Listings and Symbol Table

-

-jv=

e s s e e e i et

>

g e M

Figure

1.1

1.2

1.8

2.1
2.2
2.3

2.4

2.5

3.1
3.2
' 3.3
3.4
3.5

e M—— e e

LIST OF FIGURES

Title

System level depiction of the computational unit

described in this report together with its connections

with the IR-CCD detector system . v « ¢ o« o ¢ ¢ « &
Flow diagram of the major calculations involved in

a single cycle of the computational unit software .
Initial parameter display frame . « v = « ¢ o &« = o &
frame showing typical prompt for changing a parameter
Flow diagram of parameter charging operation.

"Additional features” frame « « « o « o o s o o« o & @

Flow diagram illustrating additional feature selection

DPOCQSS-.---.---.-.-.....----

Setup used to verify system operation « « « « « « « «

Functional level drawing of IR-CCD interface board. .
Timing diagram of IR-CCD interface operation.
Pin assignment of 40~pin "berg" connector on IR=-CCD

interface board « « ¢« ¢ ¢ ¢ « ¢ s ¢ e e 0 s 0 o o
Pin assignments of 40-pin "berg" connectors on

o"Aboaf'd---....-..--.---..---

Pin assignment of 16-pin dip connector to IR-CCD device

Flow diagram of main executive routine. « « « « « « «
Flow diagram of DMA "interrupt service"” routine . . .
Timing of stare time changing sequence. . « « « « « «
Structure of output QUEUES. <« + ¢ « « ¢ ¢ o o = « o

Layout Of “x" VeCtOre o« o o « o o o« s 2 o s o = s o @

-y=

Page

n
14
17

21
23

26
28

33

34
35

38
39
42
48
65

3.6 Layout of “m" VeCtOre = 2 =« = s o o s « o« o ¢« s o s o o &« 06
3.7 Layout Of 3" VECtOre v o = o o o » o o o o s o o o o« « » 68 i
3.8 Computation of background spatial average and stare ¥

time changing operation « « « ¢ ¢ o« 2 o o « o s ¢« o« a 10

ISP

- -

.~ - N

3.9 Uses of stare time information. . =« =« & ¢ ¢ o o ¢ = ¢ = . 73
3.10 Distribution of calculations over P packets. « « « « o o« o 77
3.1 Computation of background time average and corresponding

decision thresholds = ¢« ¢ ¢« ¢ ¢ ¢ ¢ ¢ ¢ o a c e e« « « 80
3.12 Target/No target deciSion ProcesSS. « « « o o = « =« « » « « 82
3.13 Partitioning of memory between RAM and PROM. 85
3.14 Locations of several important arrays in RAM . . « « . . . 86
4.1 Board locations in card €age = « o« « = « o« o s o o « o« » « 89
4.2 Wiring diagram of IR-CCD custom interface. « « « « « « « « 90
4.3 Typical view of terminal screen during either monitor

or workspace portions of terminal/serial interface test.101
4.4 Location of PROMs on boardss « « v « 2 « = s = o s « =« « o103

S

Table

1.1
1.2

3.1

‘-1
4.2
4.3

4.4

LIST OF TABLES

Title

Page

Possible parameter values and their defaults . « « « « « . 13

Brief descriptions of software maintenance routines. . . . 19

Special ascii characters and their corresponding messages. 50

Example of output from PDS logic test. . . « « . &
Possible messages displayed by DMA test.
Machine language code for performing checksums on

individual PROMS . . o © ¢ ¢ ¢ o o o o s o & = =

Correct results for checksum test of Table 4.3 . .

.« 95
- 97

104
.105

EVALUATTON

The ability of the RADC/ESE IRCCD fence system to discriminate between

: targets and false alarm sources is dependent on the performance of its
signal processor. Under this effort Purdue University has produced the
hardware and software models for an advanced signal processor. 1In the

laboratory this processor has met or exceeded all its design goals.

LYN H. SKOLNIK
Project Engineer

e

- e e
L N e Wk e . * S v P W« o i e
.
s

R

viii

A,

B s

<«
et o e

- o -

- — -
e N B = A —— ¥ S e T Tt

— - (.-.r-«

I. INTRODUCTION

A. Purpose of Overall System

The purpose of the BISS (Base Installation Security System) program is
the development of sensors for physical security systems. One technique
under investigation within this program involves the focusing of infrared
radiation, derived from a distant field of view, onto an integrated linear
array of 256 platinum silicide Schottky barrier detectors. Over a period of
time (called the ‘"stare time"), charge packets, of a size proportional to
the infared intensity, develop within each detector. At the end of the
stare time, all 256 charge packets are broadside loaded into a CCD shift re-~
gister (of length 256) also integrated onto the detector chip. The CCD re-
gister may then be clocked to shift out these analog samples for processing
by a small local computer. The hardware and software development of such a
signal processing computer is the purpose of the effort discussed in this

report.

ki d

-

— ‘.‘-‘--(.u—-— -

B. The Computational Unit

Physically, the unit developed under this contract is a POP-11/03 com~
puter with certain optional boards tied to the bus. See Figure 1.1. These
jnclude 8k words (16 bits) of PROM (programmable read-only memory) for pro-~
gram storage, a DMA (direct memory access) board for highspeed inputting of
CCD samples into RAM, and a custom~built interface board for scaling, digi~
tal conversion, and simple pre-processing of these samples.

With the exception of the latter "custom" board, all these components
are standard items manufactured by Digital Equipment Corporation (DEC).
These are documented in [1] together with Appendix Section A.1.

The custom interface board, detailed in Section I1I.B., receives the
serially-shifted contents of the detector's CCD array, together with two di-
gital pulse timing signals: START PACKET and START CONVERT. The former is
required to appear immediately prior to the CCD's outputting of the first
analog sample in the array of 256. The latter timing signal executes a
positive-going transition to accompany each incoming CCD sample. This tran-
sition immediately initiates an A/D conversion of its corresponding analog
(CCD) sample. Hence this pulse should not be transmitted until the analog
data is certain to have settled at the custom ‘nterface input.

Two digital control signals, Leaving the custom interface, inform the
detector electronics of which one of four stare times are to be used by the
detector array. As the overall dynamic range of the detector charge packets
shrink or increase (with changing ambient temperature conditions), the mi-
croprocessor will instruct the detector electronics to change its operating
stare time by a factor of two.

A computational algorithm for the automatic signaling of "intruder tar-

gets,” given the IR-CCD data, was developed in [2]. A flow chart of the

*WIISAS J03ID9I9Pp (II-U1 Y yIm
SUO|3IJIUUOY SII YIIm a9ylebol Ji0des s yd U} paqiadsaIp
J1un [euojieIndwod Y3 O UOIIDIAIP [A9] WIISAS |*| d4nb)y

LINN TYNOILVLNAWOD

sjeub)s
joi3uo) te3ibig

“I. = -T ===
i woud “
| a34g @08 493U
| ATE | | wo3sn)
“ t

|
| l
| woag {
| 914g a wWa I
| 18 | |
| - |
{ 3 !
| |
| wolg |
| 914g - |
| A8 ade433uy i
_ (e149s

|
| |
| |
| |
| ndd |
| fe/ti-is !
| |
e o= o e or oo - —— ——— — l-ul-:l.L‘.u

1

mo_nEnm\\\\\\A

6o{euy

© e A T ————r - e, P e

1043u0)

1314
ad3

$493s 163y |

{

$2039919(
‘¥l 992

ety
[—

uojjeipey
po.s-eajuy

jabue)
woJ 4

>
. F— -

calculations called for in (2] appears in Figure 1.2. The software
developed under this effort carries out these calculations using the parame-
ters D, c1, cZ’ P, N, d, n, and t. These parameters are adjustable by the
user through terminal interaction. See Section I.E.

The software also includes a number of maintenance routines for testing
and fault isolation on the custom, DMA, PROM, RAM, and serial interface cir-
cuit boards. See Section IV.

The software was written in POP-11 assembly language and "C”, and com-

piled under the UNIX operating system running on a POP-11/70.

-

e e

liran o e e

-
L .-

- -

et Mo

o

-

\

DMA ENTRY OF x(1), THE HMOST
RECENT DETECTOR SAMPLE ARRAY
NOTE: x(1) = [x(1,1)];

i = 1,2,...256

D
e =5 1 w3

i=]

YES

NO

INITIATE STARE
TIME CHANGE

]

HAVE P
SAMPLES PAST SINCE

LAST UPDATE
OF m?

YES

STORE COPY OF x(1).
DELETE COPY OF x(1-NP)

y N
o= [x(1-iP)
- Nieo -
b=d mN;‘

w(l) = l{(‘)'T'

A

CONSTRUCT v(1) BY TESTING
IF w(1,1) > b(i) FOR ANY 1.

s 2 ALARM DECISION USING
E'_*___J‘—— n AND t PARAMETERS

Fig. 1.2 Flow diagram of the major calculations involved in a single cycle

of the computational unit software,

5

C. Start-Up Procedures for IR-CCD Intrusion Detection System

The basic start-up procedures for the IR-CCD Intrusion Detector - System
will be described here. It is assumed that all connections to the IR-CCD
interface have been properly made as discussed in the hardware section, and
that the serial interface is connected to a Tektronix 4024 terminal set at
9600 baud.

The power switch for the PDP-11/03 minicomputer is located on the right
hand side (when viewing the 11/03 from the front) of the back face. When
this switch is moved to the on position (up), the 11/03 receives A.C. power
and begins executing a built=-in terminal handling routine known as "ODT."
The ODT mode is described in some detail in (1], but briefly, it allows the
user to control the Load Address, Deposit, Examine, Continue, and Start/Halt
functions of the microprocessor. When in ODT, the user is prompted for a
command with the "@" symbol. Whenever it is desired to begin execution of
the IR-CCD Intrusion Detection progrém, the command "20000G" must be sent to
ODT. This may be accomplished by one of two methods. If starting the
routine from a "cold" status (both the microprocessor and the Tektronix 4024
have just been brought up from a powered down condition), it is necessary to
type the '"200006” command after receiving the "a" ODT prompt. The second
method is effective only when the Tektronix 4024 terminal has not been
powered down since the program was last executed. In this case, the "PT"
key on the far right hand side of the 4024 keyboard will have been pro-
grammed to execute the "200006" sequence automatically. MHence, it is only
necessary to depress the "PT" key to begin program execution.

To halt the routine, it is necessary to send a break command to the
11/03. On the Tektronixs 4024 terminal, this is accomplished by hitting the

"BREAK" key rapidly twice in succession. The processor should return to ODT

R

ke - ——

- e ——

et~ Y

oy B

mode with the "3" prompt appearing on the screen.

The start-~up procedure for the IR-CCD Intrusion Detection System may be

summed up as follows:

")

(2)

3
4)

Connect Tektronixs 4024 terminal, set at 9600 baud, to serial in-
terface on POP-11/03 processor.

Connect IR~CCD analog data and timing signal lines to IR-CCD in-
terface board.

Power up terminal and PDP-11/03.

When ODT prompt (@) is received, issue "20000G" sequence by ei-
ther:

(a) typing 20000G.

(b) depressing terminal “PT" key (if 4024 has not been turned off

since last execution).

D

et M

D. Description of Parameter Display Frame

When the start-up procedure outlined in the previous section 1is per-~
formed, the poutine begins execution and places on the screen a table list-
ing the initial default parameter values and a brief description of the -
meaning of each parameter. Immediately below this parameter display table
is a box containing information about the status of the alarm. More will be
said about this box later. At the bottom of the screen, two lines should
appear informing the user of how to change a parameter value and how to
switch the display to the "additional features" list frame. This initial
frame is shown in Figure 1.3.

To change a parameter, the user should type the mnemonic for that
parameter (which 1is Llisted in the first column of the parameter display
table on the terminal screen) followed by a carriage return. For parameters
wherein no ambiguity will result if upper or lower case symbols are typed,
either case may be used, i.e., the "P" parameter. If ambiguity will result, W
then the exact mnemonic must be typed, i.e., the “n” or "“N" parameters. If
errors are made in typing, there are three keys which are programmed to be
"delete character"” keys and three keys which are programmed to be "delete
Line" keys. The delete character keys are:

(i) DEL CHAR (top row of 4024 keyboard)

(ii) CTRL=-H (type H key while depressing "CTRL" key)

(iii) # (upper case 3)
while the delete Line keys are: ﬂ
(i) DEL LINE (top row of 4024 keyboard)
(ii) CTRL-X (type X key while depressing "CTRL" key) ﬂ
(§ii) @ (upper case 2).

The delete character keys backspace one character while the delete line keys

———

IRCCDO INTRUSION DETECTOR ALARM

| symBOL VALUE | MEANING
|) 16 | Number of cells monitored for stare time update.
. N 32 Number of samples used in background time average.
N P 12 Separation of samples used in background time average.
d 6.17 Detection threshold scale factor.
n 12 3 * memory interval length used in alarm decision.
t 8 Number of space-time threshold violations to cause alarm
ce 480 Upper threshold used to initiate stare time decrease.
| ¢1 | 230 | Lower threshold used to initiate stare time increase.

Ahkkkhkhkkkhkkhkihhkkihii

* *
* ALARM DISABLED
* *

KRRk khdkdkkhkikikkihihl

To see a List of other features, type 'L".

To change a parameter, type symbol shown above.

Figure 1.3 Initial parameter display frame.

e

-

s i

S

erase the entire Line that has been typed.

when the mnemonic for a parameter is typed, one of two things will hap-
pen. If the mnemonic is not a valid one, an error message will be displayed
and the prompt for changing a parameter will be repeated. If the mnemonic
is a valid one, the prompt for changing a parameter will be replaced by a
line indicating the possible values that that parameter may be set to. An
example of this is shown in Figure 1.4.

At this point, the user has three options. He may (i) type 1in the
desired new value of the parameter followed by a carriage return, or (ii)
type in the mnemonic for a different parameter followed by a carriage re-
turn, or (iii) depressed a carriage return. If a new mnemonic is typed in,
the list of possible values of the original parameter will be replaced by a
list of possible values of this new parameter. If a carriage return is
depressed, the display will return to the original frame, and no parameter
change will take place. Thus, if the user decides after examining the list
of possible parameter values that he no longer desires to change that param-
eter, he may pass over the actual changing operation.

When a new parameter value is typed, one of several things may occur.
If the new value is not one of those allowed, an error message is displayed
and the list of possible parameter values is repeated. If the new value is
an allowed one for that parameter, the old value listed in the second column
of the parameter display table is replaced by the new value. When a parame-
ter that may take on only integer values is changed (any one except the “d“
parameter), the value typed is rounded off to the nearest integer. If the
"d" parameter 1is changed, the value typed is rounded off to two decimal
places. These rounding operations are carried out before determining if the

new parameter value is valid. After a parameter change has taken place, the

o a——— i —

- - e

— o a

IRCCD INTRUSION DETECTOR ALARM

| SYymeoL | VALUE MEANING
D 16 Number of cells monitored for stare time update.
! N I 32 ! Number of samples used in background time average. I
| P] 12 | Separation of samples used in background time average.
d 6.17 Detection threshold scale factor.
n 12 3 *» memory interval length used in alarm decision.
| t 8 | Number of space-time threshold violations to cause alarm]|
c2 480 Upper threshold used to initiate stare time decrease.
| c1 | 230 I Lower threshold used to initiate stare time increase.

Kdekdkkkhkhkhkkkkhkikihkk

* *
* ALARM DISABLED =*
* *

hkkkhkkdkhhkhkhhkkhhik

To see a List of other features, type 'L".

Possible values for N are 2<=N<=40. N=?

Figure 1.4 Frame showing typical prompt for changing a parameter.

- 11 -

~.
e N ot i s e AT e

— -

- - -

atd M

messages at the bottom of the screen are restored to their originat state,
informing the user of how to change a parameter value. ALl allowed parame-
ter values and their default values are listed in Table 1.1. Figure 1.5
shows a flow chart illustrating the entire parameter changing operation.

The last section of the parameter display frame which has not been dis-
cussed in any detail yet is the alarm status box located in the lower center
section of the screen. The information in this box tells the user which one
of three possible conditions exists. These conditions are (i) that the
alarm is disabled, (ii) that no target is currently being detected, or (iii)
that a target is currently being detected. The alarm is disabled any time
there is an insufficient amount of data based on the current parameter
.alues to ensure a valid target decision. This condition will occur in
several different situations. When the routine 1is first started, it is
necessary to compute a background time average which extends N*P packets
into the past. Thus the alarm is disabled for NxP packets while this ini-
tial background time average is computed. With a time between packets of
about 100 msec, the time the alarm is di;abled (assuming default parameter
values) is approximately 38 seconds. A similar situation occurs whenever
the values of the N or P parameters are changed. When the parameter n is
changed, it 1is necessary that threshold violation information be known for
the n/3 most recent packets. Therefore the alarm must be disabled for n/3
packets before a valid target decision can be made.

When the alarm is enabled, either the no target detected or target
detected message is displayed in the alarm status box. The message is up-
dated any time the computations determine a change is in order or when the

alarm is disabled or enabled as explained previously.

-12 -

—_— - — <
- N e g * A GUIE L+ .+ il e L W

-

Cn ke e

g T ————————— w
Parameter Default Value Possible Values

D 16 16 or 32

N 32 2<N<4

P 12 10 < P < 256

d 6.17 0<d<10

n 12 6, 9,12, or 15, n > t

t 8 3<t<n

c2 480 2% C1<c2<5M

c1 230 0<c1 <2

Table 1.1 Possible parameter values and their defaults.

- 13 -

Display
g parameter list
frame
hange

parameter
value?

. ‘ Yes Display Ny
error message.

Valid No ”
mnemonic?

—————

Yes

List valid
parameter
i values

{ User types in
next command

Yes

— - —_—
R i ————— V3l T .. en
=
(o]

“CR, = carriage return

-~

Figure 1.5 Flow diagram of parameter changing operation.

- 14 -

i - s oo

«
> o WD s - s oo + 4 o ot et RSO

Display error
message.

Change parameter
value in

memory .

Yy

Change parameter
value on
screen.

\

Prompt user
for next
command .

Figure 1.5 continued.

In addition to this visual indication of target detection information,

there is an audible alarm signal which sounds every time a target is detect-

ed by the computational routine provided the following conditions are met:

(i) The alarm is not disabled.
(ii) The audible alarm feature is enabled.
The audible alarm is in the enabled state when the routine is first started.

The status of the audible alarm may be changed, as will be described in the

next section.

This completes the discussion of the parameter display frame and the
procedure for changing parameter values. For a more detailed discussion of

the meanings of the various parameters, the reader is referred to [2].

|
E. Description of "Additional Features’ Frame
' In addition to performing the basic intrusion detection function, the
IR-CCD Intrusion Detection System has several self-diagnostic and testing
features which are accessed via an "additional features" frame displayed on
the terminal. This frame may be displayed by one of two methods. When the ﬁ

terminal is displaying the normal parameter display frame, and the routine

[

,; is waiting for a parameter mnemonic to be typed, the additional features

‘ list will be displayed if (i) an "L" (upper or lower case) is typed followed
by a carriage return, or (ii) a carriage return by itself is typed. Simi-
larly, when the additional features frame is being displayed and the routine
, is waiting for a feature to be selected, the display will switch to the
f parameter display frame if (i) an "8" is typed or, (ii) if a carriage return

is typed. Thus, the user may toggle between the two frames by repeatedly -

- .
L T

hitting the carriage return key. The additional features frame is shown in

Figure 1.6. 3

AR 3.

IRCCD INTRUSION DETECTOR ALARM

Additional Features:

1) Disable audible alarm.

2) Display output of interface A/D converter.
3) Programable digital shift circuitry test.
4) DMA channel test.

5) RAM integrity test.

6) PROM checksum test.

7) Serial interface/terminal test.

8) Do nothing - return to parameter display. H

P

Kk dedededdek ki ok kdedkkhhk

* *
* ALARM DISABLED * ;
l * *

RERRRAACAREAAAR A A AR R

1 Please type number of desired feature.

Figure 1.6 '"Additional features'' frame.

et

o

s B s . et o e s

- 17 -

-

o -

A particular "additional” feature is selected by typing the number
shown on the display corresponding to that feature, followed by a carriage
return. The delete character and delete lLine keys are the same as for the
parameter display frame. If an error is made in typing a feature selection
number, an appropriate error message is displayed at the bottom of the
screen. If a valid feature is selected, one of two possibilities will oc-
cur. If the audible alarm enable/disable feature is selected, the audible
alarm status will be changed and the routine will switch back to the origi-
nal parameter display frame. However, when one of the self-diagnostic tests
is selected, the screen is blanked and a brief description of the selected
test along with any special instructions are displayed. At this point, ex-~
cept for the DMA channel test, the user is prompted to hit a carriage return
to go ahead and execute the test or any other ascii character to skip the
test and return to the additional features frame. Since it is necessary for
the user to halt the 11/03, power down, and insert the DMA maintenance cable
in order to perform the DMA test, when this feature is selected the user is
prompted to hit a carriage return to halt the routine, or any other ascii
key to skip the test and return to the additional features frame.

The actual operation of the self-diagnostic test routines will be
covered in the section on maintenance, and is not dealt with here. The
various test routines are listed in Table 1.2 along with a brief description
of each test. Once a test is completed and the appropriate exit command
given, the routine reinitializes itself to the default parameter values and
begins computations, as was done at start-up time. To enter another test
routine, the user must first toggle over to the additional features frame
(since restarting returned the screen to the parameter display frame) and go

through the feature selection procedure discussed previously.

- 18 -

Test

A to D converter

Programmable Digital

Shift Logic

DMA

RAM Integrity

PROM

Terminal/Serial

Interface

Description

Displays 12 bit output of A to D converter

on screen in both binary and decimal.

Cycles through all possible function 1 and
function 2 line values and displays output

of programmable digital shift logic on screen

in both binary and decimal.

Tests various functions of the DMA board through
use of DMA maintenance cable.

Each word of RAM is tested for its Read/Write
integrity.

Checksums are computed for both the lower and upper
4k words of PROM,

The terminal is tested via the standard
Tektronixs 4024 'test’ command and then

the serial interface is tested by sending unique

ascii character patterns to the terminal.

Table 1.2 Brief descriptions of software maintenance routines.

-

e ———— e

-

it - M

The alarm status box, which contains the visual target detection infor-

mation, 1is serviced throughout the additional feature selection process

until one of the self-diagnostic tests is actually begun. Target detection

computations cease once the user decides to execute the test (after viewing
the test description frame).

A flow chart illustrating the additional feature selection process is
shown in Figure 1.7. This completes the discussion of the additional

features frame and the additional feature selection process.

fF. Verification of System Operation

The setup shown in Figure 1.8 was used to test the operation of the
IR-CCD Intrusion Detection System during its development. A software
routine written for the PDP-11/70 was used to generate files containing up
to 256 packets of data samples. These files were then down-loaded to a
floppy disk attached to a PDP-11/10. The 11/10 was then instructed to send
these samples to a 12 bit DAC in real time under the control of external
timing circuitry. After conversion, this analog signal was sent to the PDP
11/03 custom 1interface board. The external timing circuitry also supplied
the '"start packet" and "start convert" signals for the 11/03.

The procedure for testing involved generating known packets of data,
sending them to the IR~CCD system as described above, and then observing the
target/no target decisiqﬁ responses. This was done for several different
patterns of packets and a large number of possible parameter combinations.
ALl test results agreed with those expected.

The speed of computations was also tested by applying only the clock
signals (analog 1input grounded). The nominal time between packets was
specified to be 100msec. Experimental results indicate that the unit will

actually run at up to twice that speed for worst case parameter combinations

- 20 -

! | S E———
! Display

parameter
list frame.

Display
additional
features frame.

‘ a
| o user
{ selected a
feature

! Display error Yes
message

[N ls
° feature
valid?

Yes

Y
feature = C.R.?7 =2

No

Change status

feature = 1?7 Yes of audible -
alarm

No

*C.R. = carriage return 3

Figure 1.7 Flow diagram illustrating additional feature selection
process,

2‘

e+ e o 1 e+ e e

Yes

Display DMA
test
instructions.

Yes

No

Display proper
test
description

C.R. typed?

Execute selected
test routine.

Figure 1.7 continued,

- 22 -

o
E

4

e R —

walsAsg
uot3933aQ
uoiualuj
a23-41

‘uoilesado walsAs Aj1usa 03 pasn dnias g°t aanbiy

Ad3inoal)
Butwy g
|BuJ3IX]

Asiq
Addoj 4

2Uod jie3s
-3qd jaels

ut fojeue

wa C——]

o1-11 dad K

0l-11 d0d

- 23 -

and at about 40msec (2 1/2 times faster) for the default parameter values.

1I. Hardware

A. Overview of Hardware Operation

Physically, the unit developed under this contract is a PDP-11/03 com~
puter with certain optional boards tied to the bus. See Figure 1.1 for a
system level depiction of the computational unit. These boards include 8K
words (16 bit) of PROM for program storage, a 16K word RAM, a serial inter-
face for terminal communications, a DMA board for high-speed reception of
CCD samples into RAM, and a custom-built interface board for scaling, digi-
tal conversion, and simple pre-processing of these samples. Figure 4.1 in-
dicates board location in the PDP-11/03.

With the exception of the latter "custom” board, all these components
are standard items manufactured by Digital Equipment Corporation (DEC).
These are documented in [1] together with Appendix Section A.

Figure 2.1 depicts a functional level drawing of the IR-CCD interface
board. The Lleft side of the drawing represents connections to the IR-CCD
device, while the right side represents connections to the LSI~11 computa-
tional unit.

The positive analog input voltage from the IR-CCD device is sampled and
held constant by a Burr-Brown SHM60 high-speed sample—and-hold unit. This
device has a 1 usec acquisition time, 12 nsec aperature time, and a variable
gain. The gain can be varied between +1 and +1000 by use of a 10K ohm "trim
pot" located near the device. The held voltage is converted to a 12-bit
complementary 2's complement number using a Burr-Brown ADCB5C-12 analog-to-
digital converter. In complementary 2's complement (00....00) represents
positive full scate while (11....11) represents zero. Since both the SHM6D
and ADC85C-12 devices require * 15 volts, as well as +5 volts, a Burr-Brown

DC/DC 546 voltage converter is required. Positive 5 wvolts from the

VWG wos;

*pieoq adeyualul @I3-yj 40 Buimeap jana) |euo}3duny

1°Z 94nb 4
€ 1oNd « ¥yI11
gzinl .
‘epsp engis wlind
5 I
i) T oLMd
LTALYS
s u:.n.hﬂﬂllllhﬂﬂ o\
. u ST uu 2l |
1 ZON3

VHQ woJ4

1sanbay 3}5A) wWQ -o—————q A’|Bp S|

ubig paiedsday

Z 10N4 H I

fzind

L

snid s3!8¢l-

(Y7) 11IN) —of
(V9) TLINS —=

SdIH) 01S5¢CCWY ¢
3514S
1e1161Q @2|qewwesbo.y

{ = 37A)
-—

3719HI1S

e
0 = Nllv

{=
P

gaN3 Ml V8
.IlthllIl
N3 ON! oA

VWO 0L

~A_

Jisiiiiinisd

_ 1no °uig _ 303

Z1-3443Qv

e
Bl
~ohe

o=

OYMHS

NAOYE-Yung
$319 T1-0/v

—>zou.»m

1 =00V

P

I =12

A ——————

0 =0

Ipls
=187

HMOYE-wuNg

s3snlpe uieb yiim H/S

jeusau IA’

|eula1Ixad

g
T

1aoey
es

“i
6o euy

343AU0)
14818

26

o —Cr —a—

B —————— e P S o _im @ e e

- -

LSI-11/03 bus is converted to *15 volts by this device. Specifications for

these three devices are given in Appendix Section A.

The remaining IR-CCD interface board components are resistors, capaci-
tors, and TTL logic devices. The +5 volt supply pin of each TTL chip is
bypassed to its ground pin using a .01 uf ceramic capacitor Located on the
underside of the interface board. The TTL chips include three SN 74123
(one-shot multivibrators), one SN 74174 (hex D-type flip-flop), two SN 7404
(hex 1inverters), one SN 7414 (hex Schmidt-Trigger inverter), and three AMD
25510. Except for the latter, all are standard TTL devices with specifica-
tions given in any TTL data book. The AMD 25510 js a 4~bit shifter. This
device has the ability to shift four bits of parallel data 0, 1, 2, or 3
places. The AMD 25510 has two select lines that are decoded internally to
determine the number of places the data is shifted. Specifications for this

device are also given in Appendix Section A,
B. Step-by-Step Discussion of IR-CCD Interface Board Operation

Figure 2.2 is a timing diagram that will aid one's understanding of the
following step-by-step explanation of the IRRCD Interface operation.

We start this discussion with the arrival of a start packet pulse from
the IR-CCD device heralding the arrival of a pa.ket of 256 CCD voltages.
The start packet pulse is sent through two successive Schmidt-Trigger in-
verters to reduce any noise on the start packet line which might be misin-
terpreted as another start packet. The positive-going threshold is 1.7
volts and the negative-going threshold is .9 volts. Therefore, only
glitches larger than 1.7 volts will cause an erroneous start packet to oc-

cur. From this point on, "start packet” will refer to this conditioned sig-

nal.

‘U0 13BSIdO dDejIR3U) (I)-Y) 3O weubeyp bujw)y

Z'Z a4nb)y

Jeild, 1dNL¥IdY = 205U T = Y

3305 rul @z L obLISI0UIY H/S = 9987w = Yo
P s
T d
l\l)l(\I(l\\\ll\Il|ll|l\|\(\l\\\\IllllJlI\\\)l\\l\lllll\\\l\lL\l(\\llJ A
{

|
1 {
56 v v
I :
395 —slbe— |
|
I I i N I o I B = S
T e / 1 _ s
P N L R
} “ H/S “/5
!
| |
1
L .
[]
)
3G JUY 225 vt po— INELYINNGE

TR

- ———

3

— 5Tt g

ll.f 56T \—||||I— ,..mml_v T _ t _

N ———

$3STING L3IV

SIS LINIVY-HIINLIE

PR TATMEE L FON

Txtegatil

Tt A S T ———
~ R we et
- . - ~ -

-y

The rising edge of start packet clocks the input '"D" through to the
output "Q" of the tandem connections of D-type flip~flops of the SN 74174.
The inputs to these flip-flips are "function 1" and "function 2" supplied by
the DMA board. Functions 1 and 2 are used to represent the appropriate
stare time as determined by the CPU. The IR-CCD device receives a once-
delayed version of functions 1 and 2 denoted as function 1(A) and function
2(a). The three AMD 25S10 TTL 4-bit shifter chips receive a twice-delayed
version denoted function 1(AA) and function 2(AA). The purpose of the de-
Llays can be understood by looking at Figure 3.3 in Section 1II1. The three
AMD shifter chips are now properly aligned to shift the converted CCD vol-
tages to the appropriate places. See table on wiring diagram, Figure 4.2.

The rising edge of the positive-going start packet pulse also triggers
a SN 74123 one-shot producing a negative-going 18 usec. pulse. The rising

edge of this negative-going pulse triggers another one-shot producing a 1

usec. positive-going pulse. The rising edge of this 1 usec. positive-going
pulse in turn triggers yet another one-shot (a high valued function 3 tied
to its clear) producing a =~ 142 usec. positive-going pulse. The result of

all this is the production of a = 142 usec. positive-going pulse that is de-

Llayed 18 usec. after the rising edge of the start packet pulse. This long,
positive~going pulse is used as the "clear" input to what we will call the
"DMA one-shot.” Only when the clear pin on any given one-shot is held high
can the one-shot produce a pulse. The input to the DMA one-shot will be
discussed shortly.

We turn now to the other digital signal coming from the IR-CCD device,
namely the external start convert signal. This external start convert is
once inverted using a Schmidt - Trigger inverter to produce the “internal"”

start convert signal which is sent to the ADC85C-12 converter. The falling

- 29 -

. — m“‘ . .

«
e e N e o e e ———

-
.

i A W e -

edge of this internal start convert causes the "end of convert” (EOC) signal
of the ADC85C-12 to move from the "ready" (lLow) state to the "busy” (high)
state. Therefore, the falling edge of the internal start convert produces a
positive-going = 10 usec. pulse for EOC. Ten usec. corresponds to the
specified time required by the ADCB5C-12 to do a conversion to binary
representation of an analog voltage. Eight usec. 1is the observed time.
The falling edge of €0C indicates the conversion is complete. An inverted
version (again using a Schmidt-Trigger inverter) of EOC is used to change
the SHMGD from the sample mode to the hold mode. A high to Llow transition
causes this to occur. Therefore, the rising edge of EOC is used to bhold an
analog voltage, and the falling edge to signify end of conversion.

The falling edge of EOC triggers a one-shot producing a 1 usec.
negative-going pulse. The rising edge of this negative-going pulse triggers
another one-shot producing a 1 usec. positive-going pulse. It 1is this
positive-going 1 usec. pulse that acts as the input to the clearable DMA
one-shot. The rising edge of this 1 usec. positive-going pulse triggers
the DMA one-shot (only if clear is high) producing positive-going 1 usec.
pulses that are used as "DMA Cycle Requests’. When the DMA receives a Cycle
Request, it loads a 16 bit word (16~bit CCD sample) into memory. The 12 ADC
output data bits have been inverted (SN7404's) and sign replicated to form
this CCD sample.

The software counts up to 255 (from 2ero) and then drops function 3 low
momentarily. Dropping function 3 low will cause the = 142 usec. positive-
going pulse to terminate prematurely. Since this long pulse was acting as
the clear input to tha DMA one-shot, the DMA one-shot will become disabled
(i.e. no more Cycle Requests) as soon as function 3 goes low. Function 3 is

immediately returned to its high state so as to be ready when the next start

————

packet arrives. The high to low transition of function 3 is not critical

since DMA Cycle Requests after sample #ZSS are ignored by the DMA until

after function 3 is momentarily set low. At this point the interface board
is ready for the next start packet to arrive.

In summary, start packet sets up the 4~bit shift chips by clocking the
flip~flops and then turns on (starting with the first '"good" CCD value) DMA
Cycle Request pulses whose observed occurrence corresponds to = 9 yusec.
after each internal start convert falling edge (= 8 usec. for conversion
plus 1 usec. delay). Function 3 turns off DMA Cycle Request soon after CCD

#

sample 255 and reinitiates the IR-CCD interface board for the next start

packet.

C. Signal Pin Assignments

Figure 2.3 indicates which signal appears at which pin of the 40-pin
"berg" connector on the IR-CCD interface board. '"Low" implies the pin is
tijed to ground and "high" to +5 volts. The wiring diagram of Section IV
shows the location of this connector.

fFigure 2.4 indicates which signal appears at which pin of the dual
40-pin berg connectors on the DMA board. The berg connector closest to the
board end is J1. Figures 2.3 and 2.4 can be used to infer connections
between the 40-pin IR-CCD berg connector and the two 40-pin DMA berg connec-
tors.

Figure 2.5 indicates the pin assignment at the IR-CCD converter for
ground, start packet, external start convert, function 1, and function 2
connections between the IR-CCD device and the interface board. This is a

#1, #15, and ”16 are the

drawing (top view) of a 16-pin dip socket. Pins
only common ground between the IR-CCD device and interface board. However,

all other unused pins are also grounded at the interface board to provide a

- 31 -

measure of noise shielding.
The analog voltages are supplied over an RG/174U coaxial cable. At

this writing the shield of the cable is ungrounded at the IR-CCD device but

is grounded at the interface board.

-32 -

e

Figure 2.3

IR-CCD Micro-processor Interface Board

40-Pin Berg Pin Assignment

OPEN

DMA CYCLE REQUEST
OPEN

ATTN (LOW)

OPEN

A0O (HIGH)

WC INC ENB (HIGH)
BA INC ENB (HIGH)
FNCT 3

FNCT 3

SINGLE CYCLE (HIGH)
cO0 (LOW)

OPEN

FNCT 2

OPEN

€1 (HIGH)

OPEN

FNCT 1

OPEN

OPEN

Y

z
AR
B8
cc
DD
EE
FF
HH
JJ
KK
LL
MM
NN
PP
RR
s§
T
w

w

OPEN
OPEN
OPEN
OPEN
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA

DATA

Pin assignment of 40-pin "berg" connector on

board.

81T
BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT

BIT

Vi 0 O 00 N

1"
3
12 (Low)
2
13 (Low)
1
14 (LOW)
0

15 (LOW)

IR~CCD interface

J1 INPUT CONNECTOR

A OPEN

B CYCLE REQUEST

C OPEN

D OPEN

E OPEN

f OPEN

H OPEN

J WC INC ENB
K SINGLE CYCLE
L OPEN

M OPEN

N OPEN

P OPEN

R OPEN

S OPEN

T OPEN

U OPEN

V OPEN

W OPEN

X OPEN

Y

z

AA

cc

]

EE

FF

HH

JJ

KK

LtL

PP

SS

7

w

v

DRV11-B DMA Interface Board

40-Pin Berg Pin Assignment

OPEN
OPEN
OPEN
OPEN
OPEN
OPEN
OPEN
OPEN
OPEN
OPEN
OPEN
OPEN
OPEN
OPEN
OPEN
OPEN
OPEN
OPEN
OPEN

OPEN

J2 OUTPUT CONNECTOR

OPEN
OPEN
OPEN
ATTN
OPEN
AQO
OPEN
BA INC ENB
FNCT 3
FNCT 3
OPEN
co
OPEN
FNCT 2
OPEN
¢1
OPEN
FNCT 1
OPEN
OPEN

>

Y

z
AR
88
cc
)
EE
FF
HH
3
KK
LL
MM
NN
PP
RR
ss
T
w
w

Figure 2.4 Pin assignments of 40-pin "berg"” connectors on

- 34 -

OPEN
OPEN
OPEN
OPEN
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA

DATA

BIT
BIT
BIT
BIT
BIT
BIT
81T
BIT
BIT
BIT
BIT
BIT
BIT
BIT

BIT

Wi 0 O 0 =~

13
1
14
0

DATA BIT 15

DMA board.

e A ¢ st o ——

GROUND

GROUND

OPEN

FNCT 2

OPEN

OPEH

FNCT 1

S I e e
GRoutD 1 O 1 16O
START PACKET O: 150
oren 1 O 3 14O
et { O 130
EXT. START COMVERT Os 120
oren | O 6 no
oreN | O 7 100
oren | O 8 90

Figure 2.5 Pin assignment of 16-pin dip connector to IR-CCD device.

16 PIN IC SOCKET

TOP VIEW

AT IRCCD DEVICE

- 35 -

OPEN

i s o et

e - o —

I1I1. Software

The discussion of the IR-CCD Intrusion Detection System software will
be divided into three main sections. The first of these will present an
overview of the basic program philosophy and include a general discussion on
the Input/Output procedures. The next section will concentrate on the actu-
al implementation. This will contain a very detailed look at the computa-
tional routine, the heart of the system. Finally, the last section will un-

dertake such topics as memory layout, partitioning of memory between MOS-RAM

and PROM, etc.

- 34 -

A. Overview of Software Operations

A flow diagram for the main executive routine of the IR-CCD Intrusion
Detection System 1is shown in Figure 3.1. The DMA "interrupt service"
routine flow diagram is shown in Figure 3.2. These two diagrams illustrate
the basic philosophy of the software by pointing out how the terminal han-
dling function and computational function of the software interact.

Input/Output to the terminal is all software driven (versus interrupt
driven). This means that the commands sent to the routine by the user and
the messages sent by the routine to the user are carried on only when noth-
ing else is going on. Thus, the computations are always given highest
priority as these are interrupt driven by the DMA board.

When the main executive routine is not being interrupted by the calcu-
Llations, it is in a continuous loop that is always checking (i) if there are
characters being typed in by the user or (ii) if there are any characters
that need to be sent to the terminal. If it is determined that the user has
typed in a character, the subroutine "ttyin" is called. This routine stores
the characters in a buffer, places them in an output queue to eventually
echo back to the terminal, and, at the end of a command Lline, decodes the
string of charccters in the buffer and takes the appropriate action dictated
by this string of characters.

1f it is determined that there are characters which need to be sent to
the terminal, the subroutine 'send" is called. The "send" routine takes
characters (or strings of characters) that have been placed on the output
queue and in turn sends them to the terminal via the serial interface.

When an interrupt is received from the DMA indicating that a new packet
of 256 data samples has been loaded into memory, program control is

transfered from the main executive routine (or some subroutine that was ul-

Initialization

Chars.
to send
out?

Yes send chars.
‘ to term.

Perform funct.
indicated
by char.

e v~ - ——

Figure 3.1 Flow diagram of main executive routine.

[|

e — e

- o e —e=

e e

Figure 3.2

Reinitialize
DMA

J

Perform
computations

\

Display
target info.

RTI

Flow diagram of OMA "interrupt service"routine.

-39 -

- — - « - - -
- R A A *- T M s et g st A et DO S

- -

- o~

ol W

-

timately called from there) to the DMA interrupt service routine. This
routine 1is called '"endpk” in the assembly language program section. Upon
entering the interrupt service routine, the first thing that must be done is
to inhibit the cycle request pulses being received by the DMA from the IR-
CCD interface. This is accomplished by toggling the function 3 Line (con-
trolled by bit 3 of the DMA Control Status Register) from high to Low and
then back again. This signal on the function 3 Lline 1is received by the
hardware on the IR-CCD interface and the cycle request pulses are halted.

The DMA must now be reinitialized so that it is ready to start accept-
ing the next packet of 256 data samples. This initialization is accom-
plished in several steps. First of all, the DMA Word Count Register (WCR)
must be set to -256. This allows the DMA to perform 256 data transfers into
memory for the next packet. Secondly, the "go" bit (bit 0) of the CSR must
be set. This lets one data transfer occur every time a cycle request pulse
is received by the DMA until all 256 transfers specified by the WCR have
taken place for the next packet. Finally, the Bus Address Register (BAR)
must be set to point to the location in memory where it is desired to start
loading the next data packet. There are two buffers that are used to hold
incoming data. These are called "ybufl1" and '"ybuf2". B8y alternating
between two buffers, it is possible to start loading in a new packet of 256
data samples before the computations on the previous packet have ended. The
only requirement is that the computations on the old packet be completed be-
fore the computations on the new packet are begun.

Once the DMA has been reinitialized, the computational routine called
"crunch” is called. This is an assembly language routine which actually im=-
plements the target detection algorithm of [2]. The "crunch" routine sets a

flag which indicates whether or not a target has been detected, and then

e e -

this flag is used by the '"C" routine "irout" to display the proper target
message on the screen. At this point an "RTI" (return from interrupt) in-
struction is executed and program control is transferec back to the ﬁain ex-
ecutive routine (or subroutine called from there) and tefminal handling
functions resume at the point they were before the interrupt occurred.

When the next 256 cycle request pulses have been received by the DMA,
another interrupt request is generated, and the procedure is repeated. This
continues to occur every time a new packet of 256 data samples has been
loaded by the DMA into memory.

Another function that the DMA handles besides providing for very fast
transfers of data into memory is that of allowing signals to be sent from
the 11/03 to the IR-CCD electronics indicating a stare time change is need-
ed. This 1dis accomplished by using the function 1 and function 2 lLines of
the DMA (bits 1 and 2 of the CSR). Figure 3.3 illustrates the timing of
this stare time changing sequence. When the computations calculate the
background spatial average and it is determined that a stare time change is
in order (by comparing this average with the thresholds C1 and C2), the
software immediately sends out new values of the function 1 and 2 Llines,
corresponding to this new stare time, to the DMA board from whence they are
sent to the IR-CCD interface. At the start of the next packet, the hardware
passes these new function lines to the IR-CCD electronics. Since the old
stare time was still in effect when this new packet was optically integrated
by the IR-CCD array, it is not necessary to check again for a stare time
change. When the second packet after the one where a stare time change was
deemed necessary is ready to be converted and loaded into memory, the new
function Line values are sent by the hardware to the programmable digitatl

shift Llogic since this second packet is the first one to be optically in-

- 41 -

si 7 + uf

*@dusnbas bujbueys swi3 aiols Jo Buwiy ge¢ a4nb | 4

*san|ea zJ pue [) mau Bugsn sbueys swi3 dJe3Is 404 NI9Yd suojIeindwo)l 6

*SO1UO0JI09([3 92€3493U] Y] AqQ AjBujpioode pRIjIys S| FdUIY pue

! W)Y D4LIS MAU DY SISN Ydiym 3I8oed 3Isd1y dyld sI Siyl Alowsw ojul yYWG Aq papeoi Buiaq z + uy 19vded g

+abueyd awil IueIs JO4 NOIYD Jou sIop asemyjos °/
*Adowsw oOju} yWQ Aq papeo| Bujaq | + uy IMded -9

*Albuipaodoe paualsoys Jo pauayibua|

uOv_UMQ 40 vojle|NWNOOE 3yl SNY] pue SIN|eA 7 UOIIJUNY pue | UOIjOUNy MIU $BA|IDIJ addyl g

*SaN[BA 7 UOIIDUNJ PUB | UO|IDUNJ MIU INO SPUIS IUEMIJOS ‘g

*bujbueyd spasu dw|l dJe3S IP)OIP suoilendwo) ¢

*s31y IdnasdIUY VWO 27
*AJowsw ojul YWg Aq papeo| buiaq uy iaddeqd |
4 4 S Ui 4
T . A2 -Lr,_)._\
19oed
1439

- h2 -

e e v e e . B
: T =y TS

-

tegrated under the new stare time. The background spatial average is again
computed using this new packet loaded in under this new stare time and this
value is compared to scaled (multiplied or divided by 2) values of the pre-
vious €1 and C2 threshold values.

This completes the overview of the software operation. The next sec-
tion will cover the actual code that implements the terminal handling and
computational routines. For more detailed information on use of the DMA,

the reader is referred to [3].

W T R R

B. Implementation of Software

e — - —— i ———

This section explains how the various functions of the IR-CCD Intrusion .
Detection System were implemented in software. The coding of the terminal
: handling routine will be covered first, followed by a discussion of the as-
sembly language computational routine. Some more detailed remarks regarding
J these routines may be found by examining the comments in the listings given
in Appendix B.
The main executive routine of the terminal handling section of code was
covered in some detail in the previous section so this discussion will not
be repeated here. The remaining routines will be discussed one at a time in
‘ the approximate order in which they might be called during typical use of

the IR-CCD Intrusion Detection System.

f (1) initial - This routine performs all initialization for the IR~C(D In-
trusion Detection System. It is called at turn on time and when the compu-
tations are restarted after performing one of the self-diagnostic tests.
The first thing that is done is to disable the interrupts from the DMA.

This prevents the calculations from being entered before everything is

ready. The DMA is initialized at this time following the same procedure as

discussed previously in the overview of software operation. Pointers to

',

B R et ————- 1 . WP A e ot e e an T B

various input buffers and output queues are set as well as the initial

values for all of the flags that are used to keep track of the status of

various events. The Tektronix 4024 terminal is then initialized. This in-

volves dividing the screen into appropriately sized workspace and monitor

- -

sections, programming the "PT" key to issue the "200006" sequence, and pro=~
gramming the various delete character and delete Line keys. At this point

it is necessary to see if the DMA maintenance cable is in place. This is

AW o -

done by sending out a bit pattern on the three DMA function Lines and check-
ing to see if it is echoed back by the three DMA status lines (as would be
the case if the cable were in place). If the transmitted and received bit
patterns are the same, it is assumed the maintenance cable is in place and
the DMA test is entered by calling the routine "dmatst". If the two bit
patterns are not the same, the rest of the initialization is performed.

The initial parameter display frame is now constructed on the screen by
calling the “displayl”, "bss", '"putttyl"”, “box", "alarm", and “send"
routines. After this, all initial parameter values are set by storing their
binary value in "datareg" and the ascii representation of this value in the
character array 'datstrng”. This allows the parameter value to be displayed
on the screen when the appropriate parameter changing routine (ddsrv, nnsrv,
ppsrv, dsrv, nsrv, tsrv, Clsrv or C2srv) is called. The convention assumed
for all ascii strings is that they will be terminated in a 0.

The final step in the initialization procedure involves the DMA, When
OMA interrupts are enabled, an interrupt is immediately generated due to the
DMA being in the ready state. Therefore the first interrupt that is re-
ceived causes program control to go to a dummy interrupt service routine
(appropriately called "dummy") which sets the interrupt vector pointing to
the actual end of packet interrupt service routine. This dummy interrupt
service routine also sends out the initial values of the DMA function 1 and
function 2 Lines corresponding to the stare time "tref". After this, the
alarm disable flag is set to allow the background time average to be comput-
ed before enabling the alarm, the "go" bit of the DMA is set so that the DMA
is now ready to accept data samples, and the function 3 line is sent high to

inform the IR-CCD custom interface that the software is now ready.

(2) ttyin - This is the routine that is primarily responsible for accepting

R s S —————————— A P A e - et e

- - -

s, M e

character data from the terminal. Called from the main executive routine
whenever a character is present at the input of the serial interface, this
routine first places characters into a temporary buffer until an end of com-
mand character 1is received (carriage return). As each character is re-
ceived, it is tested to determine if it 1is a special erasure character
(delete Lline or delete character) and if so, the appropriate action is tak-
en. If the incoming character is not a special one (erasure or carriage re-
turn), the character is echoed back to the terminal by calling the "putttyl”
subroutine. The actual sending of the character is handled by the main exe-
cutive routine via the calling of the "send" subroutine. When a carriage
return is detected, the subroutines "parse” and "decode’ are called. These
routines interpret the meaning of the incoming character string and return a
number that corresponds to that string. The value of this number from the
previous command string (stored in "oldcomnd") is used for detecting an in-
valid sequence of parameter or mnemonic entries. When an error of this type
is detected, an appropriate error message is sent to the screen, again via
the "puttty1" subroutine. At this point, two C "switch" statements are used
to go to the proper subroutine for handling the operation requested by the
incoming command string. If the current string is decoded and found to be a
valid parameter mnemonic or carriage return, a routine is called which Lists
the possible parameter values in the case of receiving a valid parameter
mnemonic, or, 1in the case of receiving a carriage return, the routine
"addfeat" is called to display the additional features frame. If a numeric
string 1is received, the routine 'decode" calls another routine "ascton"
which converts the incoming ascii into a binary number (appropriately for-
matted according to the previously typed command). The second "switch"

statement is then used to enter the proper parameter changing routine or, if

- 46 -

expecting an additional feature selection, the routine "lsrv" which in turn
goes to the selected additional feature executing routine. If an error of
any kind is detected at any step along the way (such as the routine receiv-
ing two numeric character strings in a row) an error message is sent to the

screen via the "puttty1" routine.

(3) putttyl - This is a routine which puts the starting address of a zero
terminated ascii string onto a circular gueue. ALL messages to the terminal
from user controlled functions are handled through this routine. The
pointer "bfpti1" is used to point to the location in the queue where the
next starting address of a string is to be placed. The operation of this

queue in handling output to the terminal is illustrated in figure 3.4.

(4) puttty?2 - This routine is identical to "puttty1" except that it is used
to handle messages to the terminal from interrupt controlled routines. This
primarily involves “no target/target detected" messages. The use of a
separate output queue for messages of this type prevents the interruption of
the displaying of normal ascii strings (from user controlled functions) by
the arbitrary occurrence of an interrupt controlled message display opera-

tion.

(5) send - This routine performs the function of emptying the two output
queues and actually sending the ascii strings to the terminal. Characters
are accessed by finding the starting address of the ascii string being sent
out. This pointer to the string is in turn pointed to by "ptout". See Fig-
ure 3.4 again. A counter called "bytecnt” is used to access the next char~
acter in the current output string. When the end of Line character (0) is
reached, "ptout" is moved to point to the next location 1in the circular

queue. 1f this location is the same as the location that the input pointer

;, /‘-—\\ -
7 N\
s / \
] / \
ll } f ascii string 1 0
| al _| bytecnt
| | 4
* I PLOUL g a2 > ascii string 2 0
{ l a3
I ptin —— \ ascii string 3 0
‘ | |
s l .
f ' l
| |
| .
|
\ /
! \ /
. \\ //
ré \ /
‘; Sa——~
; 'ptin' points to location where next address of an ascii string will be
.'1 placed.
3 'al' points to first character in zero terminated ascii string 1.
'g ‘a2' points to first character in zero terminated ascii string 2,
; 'a3' points to first character in zero terminated ascii string 3.
) 'ptout' points to location where pointer to next ascil string to
be sent to terminal resides.
! ‘bytecnt' points to the next character in the string that is currently
“ being sent out. .
\
“i Figure 3.4 Structure of output queues.
¥
s
i
- 48 -

"ptin" is pointing to, then all messages have been sent out and the output

queue is empty. When both output queues have been emptied, the "send"

routine ends. The routine is somewhat intelligent in that it does not just

S T

arbitrarily send characters to the terminal. When a 4024 "!Jum" command is
detected as being sent from the interrupt controlled output queue, it is

necessary to follow this command with several ascii nulls to allow the ter-

minal to catch up during rapid message changing conditions. In data sent to

the output queue from user controlled functions, there are several often re-
peated ascii strings which are replaced by special single ascii characters

to save storage space in PROM. These special characters and the ascii {

string with which the "send” routine replaces them are listed in Table 3.1.
The tines of repeated underscore characters in the parameter display list
are also coded in a2 special form which the send routine decodes. The con-
i vention used is that if an underscore is detected, the next character will

specify how many times the underscore should be repeated.

f (6) parse - This routine is used to ensure that the various typed in com-
mand Llines are all 1in the same format before attempting to decode these
| strings in the "decode" subroutine. There are two primary functions that
this routine handles. When a carriage return is typed, it may mean one of
i‘ two things: (i) a simple end of command Line or parameter entry terminator,
i or (ii) an actual command such as when toggling between the various screen

)
{ frames. For a numeric string, a carriage return would be interpreted by the
)

decoding routine as a non-numeric character and hence generate an error.
¢ Thus, command and parameter type strings are placed in a buffer with the
carriage return deleted and an end of line indicator (0) placed after the
Last valid character. When a carriage return is a valid command, it is

placed in the buffer followed by the terminating 0. The second function of #

- 49 -

Ascii code

Function or Ascii String that Replaces Special Character

{ 001 "rJume
: 002 "No error detected in")
| 003 “Error detected in"
J (111 cursor positioning information
005 "Hit 'RETURN'"

Table 3.1 Special ascii characters and their corresponding messages.

[

-

o e —— e M o o i+ o e A e

-
~

Do M e s

the "parse” routine is to remove any leading blanks that may have been typed

in before placing the string in the buffer.

(?) decode - The command decoding routine serves several different func-
tions. The string of ascii characters that was placed in a buffer (called
"string") by the "parse" routine is the primary input to this routine. 1f
this string 1is a valid command (such as a parameter mnemonic, single car-
riage return, etc.), the string is interpreted and a numeric value is re-
turned that corresponds uniquely to that command. If the string if found to
be numeric in nature (such as when a parameter value is typed or when an ad-
ditional feature is selected), the routine "ascton" is called. This routine
converts the ascii representations of numeric values into appropriately for-
matted binary representations. If an error was found in converting the num-
ber from ascii to binary (such as more than one decimal point, a non-numeric
character, etc.) an error flag is returned by "ascton” and in turn passes
the error indicator on to the "ttyih" routine by returning the value 0 as
the command number. If the conversion to binary is successful, the value 10
is returned. The value 0 is also returned if an invalid command mnemonic is
detected. Returning these different values back to the "ttyin" routine in-
forms that routine whether or not one of the keyboard entry servicing
routines (ddlist, nnlist, ddsrv, Llsrv, etc.) should be called, and also

which routine is appropriate.

(8) ascton - This routine converts ascii strings into appropriately format-
ed binary numbers. ALl numeric data entry into the IR-CCD Intrusion Detec-
tion System from the keyboard is in integer values except for changes to the
"d" parameter. The flag "oldcomnd"” allows this routine to know which kind

of data to expect by storing the number returned by the "decode" call of the

- §9 -

\
most recent valid command lLine. The actual typed entry for any numeric
value may be either integer or floating point. If expecting an integer
value, the "ascton" routine rounds it off to the nearest integer. Similar-
ly, when expecting a new value for the "d" parameter, "ascton” rounds the
entry off to 2 decimal (7 binary) places. Thus the proper format for the
"“d" parameter as stored in binary is bbbbﬁbbb.bbbbbbb. There are two loca-
tions in which the rounded off value of the data entry is placed. One is in
a buffer "datareg" which holds the formated binary representation and the
other is a character array buffer "datstring". The ascii characters stored
in "datstring" may be different than those that were typed in. This is due
to the rounding operation described previously. ALl of the routines which
expect numeric data look for it in the "datareg" buffer and assume that the
binary is already in the proper format needed for that routine. Also, the
ascii representation stored in "datstring" is transfered to another buffer
by these same parameter servicing routines. This allows the screen to be
refreshed without having to convert the binary representation back to ascii.
A much more detailed description of the inner workings of the ascton routine

js contained in the program comments.

(9-16) ddlist, nnlist, pplist, dlist, nlist, tlist, C2List, C1lList = ALL of
these routines are identical in nature and therefore will be discussed to-
gether. When a valid parameter mnemonic is typed, a List of possible param-
eter values must be displayed at the bottom of the screen. These various
"list"” routines perform this function. In each subroutine is a call to the
"bss"” routine. This "bss" routine blanks the bottom of the screen (4024
monitor space) and refreshes the instruction line telling how to display the
list of additional features. The "oldcomnd" flag mentioned previously in

the "ttyin" and "ascton" sections is set in these listing routines.

- 52 -

s e e+ b s

(17-24) ddsrv, nnsrv, ppsrv, dsrv, nsrv, tsrv, Clsrv, C2srv - These are the
routines that are entered from the "ttyin" routine actually to perform the
parameter changing operation. When each routine is entered, the new parame-
ter value is stored in the buffer '"datareg” from the "ascton" routine. This
value is then tested to determine if it is orw of the allowed parameter
values for the variable that is going to be changed. If not, an error mes-

sage is sent to the screen via "putttyl1” and the user is again prompted with

the List of possible parameter values. When it is determined that the typed

entry is a valid parameter, several things can occur. With some parameters
there are auxiliary quantities that must be computed for use by the computa-
tional routine. If the computational routine is entered before all of these
auxiliary quantities have been changed (which can happen due to these compu-
tations being entered under interrupt control), confusion will result.
Therefore, on some parameter changes (D, N, P, n, C1 and C2) the computa-
tional routine is temporarily disabled by use of the flag "intflg". The new
parameter value may now be moved from the temporary buffer "datareg" and
placed in a permanent storage location. The auxiliary quantities are also
computed for those parameters where it 1is appropriate. These will be
described in more detail in the section describing the computational
routine. When either N or P is changed, the computations must be started
from the beginning due to the need for a new background time average. This
means that arrays that store information dependent on or used in computing
the background time average must be reset to their starting state and in
some cases cleared to zero. More will be said about these arrays ("x", "m",
and "a") in the section describing the computational routine. In addition
to transferring the parameter value from a temporary buffer, the ascii

string representing this number which was placed in "datstrng” in the "asc-

- 53 -

ton" routine is transfered to a permanent location. Storing this string al-

lows the parameter values to be displayed at any time without having to con-

vert back from binary to ascii. When all of the necessary steps have been
I completed in changing a parameter (completed as far as the computations are
concerned), the new parameter value is sent to the screen via "putttyl" and
the prompt at the bottom is changed back to the instructions on how to ini-

tiate a parameter change

(25) adfeat - This is a routine which constructs the additional features
frame on the terminal screen by sending a number of stored ascii strings to
the terminal via "puttty1”. Calls are made to the "box" and "alarm"
routines to aid in this process. The subprogram "box' draws the alarm

status box at the bottom center of the screen while "alarm" fills in the box

with the appropriate message.

(26) putdsp1 - This routine constructs the parameter display frame on the
terminal screen by sending a number of stored ascii strings to the terminal
via "putttyl”. Calls are made to the "display1", "bss", "box," and "alarm"
routines to aid in this process. The routine "display1" draws the parameter
table at the top of the screen, "bss" fills in the prompt messages at the
bottom, "box'" draws the alarm status box, and "alarm" fills in the box with

the appropriate message.

(27) displayl - This routine aids "putdsp1" by constructing the parameter

display table at the top of the parameter display frame.

(28) box - This routine constructs the alarm status box at the bottom

center of the various frames displayed on the terminal.

(29) alarm - This routine examines the flag "almflg" indicating the current

- 54 -

LR ORGP U

i -

—

-

o ————— e S e

- -
DYy

g M M

L

status of the atarm (disabled, no target detected, or target detected) and

then displays this message inside of the alarm status box constructed by the

"box" routine.

(30) bss - This routine clears the bottom of the screen (monitor) and sends
the "Type L to see list of additional features" Line to the terminal via

“puttty1".

(31) bds - This routine clears the bottom of the screen (monitor) and sends

the invalid parameter error message to the terminal via "puttty1".

(32) help - This routine is called from the "end of packet" interrupt ser-
vice routine "endpk" when it is determined that the calculations are falling
behind. The purpose of this routine is to inform the user of this condition

by displaying an appropriate message on the terminal via "puttty2".

(33) irout - This routine is called at the end of the computations and
determines if the message presently in the alarm status box is different
from the one called for by the just-completed computations. This allows the
message in the alarm status box to be updated only if there is a change
needed thus preventing the terminal from getting bogged down. "irout" also
sends out the audible alarm (when enabled) for every packet for which a tar-
ge« is detected. This sustains the audible alarm for the entire time that a

target is present.

(34) Lsrv - This routine is used to service the additional features Llist.
1f feature 1 is selected (the toggling of the audible alarm status), an ap-
propriate flag is set and "lsrv" is exited. Ffor the remaining features, the
desired test routine is entered except for the DMA test. In that case only

the DMA test instructions are displayed and the 11/03 "halt" instruction is

- §§ -

issued if the user desires to perform the test.

(35-40) atodins, pdsins, termins, promins, ramins, dmains - These routines
are used to display a brief description and/or instructions for each of the
diagnostic test routines. There are also calls made to the '"box" and
"alarm" routines to allow the alarm status box to remain updated while the

test descriptions are on the terminal screen.

(41) atodtst - This routine tests the A to D converter on the custom inter-
face board by Lloading samples into memory via the DMA and then displaying
these samples on the terminal screen. The two function Llines are set to
zero to allow all 12 bits of the A to D converter output to be displayed on
the screen. The routine "atod" performs the actual data transfer and
conversion to ascii, and is called repeatedly in a while loop until a char-
acter is received from the terminal. Once the test has been completed, the
jnitialization routine ™initial" is called to restart the program from the

beginning.

(42) atod - This is the routine that actually controls the reading and
display of samples from the A to D converter. This code is called by both
the "atodtst" and "pdstst” routines. The first thing that is done in this
routine is to set up the DMA for a single word transfer into memory. Once
the "go' bit of the DMA is set, the routine waits for a start convert pulse
to be received by the custom interface board. That initiates the actual
data transfer. When the DMA has completed loading the word into memory, the
conversion from binary into ascii takes place. The word is converted into
the ascii representations of both its binary and decimal values. The de-
cimal conversion is handled by the routine "atodec". These two representa-

tions are then displayed on the terminal screen via the "puttty1" and "send"

- 56 ~

routines. A slight delay is added at the end to prevent the 4024 terminal

from falling behind.

(43) pdstst - This routine tests the programmable digital shift (PDS) logic
by repeatedly cycling through all possible values of the function 1 and 2
lines, loading these shifted samples into memory via the DMA, and finally
displaying these values on the terminal screen in both binary and decimal.
Initially both function lines are set to ones (corresponding to tref). New
values are clocked in using the start packet signal. The actual data at the
output of the PDS logic is loaded into memory via the "atod" routine where
the results are then displayed on the screen after the data transfer takes
place. The current values of the two function lines are then displayed on
the screen before it is determined if it is time to update these lines to
new values. The test continues until any character 1is received from the
terminal via the serial interface. At this point, the initialization
routine is called and the program is effectively restarted from the begin-

ning.

(44) termtst - This routine tests the Tektronix 4024 terminal and the seri-
al interface to which the terminal is connected. The terminal is tested by
issuing the standard 4024 "test" command. For more information about this
command see [4]. The next segment of this routine tests the serial inter=-
face and monitor section of the 4024 screen by repeatedly sending an 81
character Llong string of ascii data to the terminal. The "puttty1" and
“send" routines are used in this process. There is a short delay added
after sending each line to prevent the 4024 from lagging behind what is be-
ing sent out by the microprocessor. The last section of this routine tests

the serial interface and workspace section of the 4024 screen using the same

- 87 -

e cr———

— -

method as was used to test the monitor section of the screen. As with most
of the other test routines, the program is effectively restarted after com-

pletion of the test by calling the initialization routine "initial”.

(45) promtst -~ This routine computes two 16 bit checksums, one for the
lower 4k words of PROM and one for the upper 4k words of PROM. The expected
values of these checksums are stored in two words in the upper 4k block of
PROM. This section of PROM is not used in the computation of the checksum
for the upper 4k block of memory. Once these two checksums are computed,
they are converted to the ascii representation of their octal value by use
of the "atooct"” routine. In a similar fashion, the expected values of these
checksums are retrieved from memory and converted to ascii by calling the
"atooct" routine. In addition to displaying these actual and expected
checksums on the terminal screen, comparison is made of these values by the
microprocessor and an appropriate set of error/no error messages is
displayed on the screen. Upon receiving any character from the terminatl,
the initialization routine 1is called to restart calculations and the

“promtst' routine is exited.

(46) ramtst - This routine is used to test the integrity of each word in
the main section of RAM by writing unique bit patterns into a location and
then trying to read these patterns back to see if they were stored correct-
ly. This testing procedure is accomplished using three of the general pur-
pose registers to prevent destroying any useful information that had been
previously stored in RAM (specifically the stack which is used to hold all
subroutine caliing information). One register is wused to point to the
desired test Llocation, one register is used to hold the original bit pat-

tern, and the third register acts as a temporary buffer to store the origi-

- 58 -

DAt . — —

_A _,,. . - PO
R e —————— 5 A 1 o | o mm arn o

-

- -

P B U

nal contents of the desired test Location. If an error is detected during
the test, the Llocation of the error (the contents of the register that is
used to point to the test location) is converted to the ascii representation
of its octal value using "atooct'" and this value is displayed on the screen.
The routine then waits for either a continue symbol to proceed with the test
or a terminate symbol to end the test. Whenever an error is detected, an
accummulator is incremented to keep track of the total number of errors
detected. When the test has been completed (either by having tested all RAM
locations or having the test prematurely terminated by the user) this accum-
mutated error count is converted to decimal by "atodec" and displayed on the
screen. Finally, the initialization routine is called to restart the calcu-

Lations and the "ramtst" routine is exited.

(47) dmatst - This routine is used to call repeatedly the routine "dmats”
which in turn calls the actual DMA test routine which is written in assembly
language. A call is made to “dmats" every time a character is received from
the terminal. The "dmatst" routine is entered from the routine "initial"

when it has been determined that the DMA maintenance cable is in place.

(48) dmats - This routine is used to handle the output end of the DMA test.
The actual test routine is written in assembly language and is called "dma".
In "dmats” there are seven global flags, one for each function of the DMA
that is to be tested. These flags are originally set to zero. When the as-
sembly language routine "dma” is called, these flags are either left at zero
(if no error for the corresponding test is detected), or set to a one (if an
error is detected). After control has been passed back to the "dmats"
routine, these seven flags are examined and an appropriate error/no error

message is displayed on the screen for each segment of the test. At this

- 50 -

[

- - -

B T T ——- 7+ F A - AT

g A .(_:r."'

point, control is returned to the “dmatst" routine.

(49) dma - This is an assembly language routine that actually performs the
tests on the various DMA functions. The user is referred to (3] for more
complete details about DMA operation and terminology. The first three tests
that this routine performs involve verifying the read/write capabilities of
the Word Count Register, the Bus Address Register and the Data Buffer
Register. This is done by first writing into each of the various registers
an alternating zero-one pattern. The WCR, BAR and DBR are then read back
and the results compared to the original pattern. If differences are
detected, the appropriate error flags are set and the "“dma" routine contin-
ues with the next test. If no errors are detected, the zero-one pattern is
complimented and the test repeated.

The next DMA function that is tested is the clearing of various regis-
ters when a bus INIT signal is sent. This is accomplished by setting all
possible bits in the WCR, BAR, Control Status Register, and DBR and then is-
suing the "reset” command to send the bus INIT signal. The four DMA regis-
ters are then examined to see if they have been set to the proper values
(these are not all zero since some bits always read as ones). If all four
registers do not check out properly, an error flag is set.

The function-status lines are the next DMA section to be tested. When
the DMA maintenance cable is in place, the three function Lines are fed back
into the three status lines and hence the status lines should echo back what
is sent out on the function lines if all is working properly. This portion
of the "dma" routine sends out all possible combinations of function Lline
values and verifies whether or not the correct values are received by the

three status lines. If all tests are not successful, an error flag is set.

- —
.

- .-

TR e ———.. * - et AN o . .

gl W e -

The final two DMA tests involve the transferring of data to and from
memory and the issuing of interrupts at the end of data transfers. These
operations are again accomplished through the use of the DMA maintenance ca-
ble. When the maintenance, interrupt enable, and go bits of the DMA CSR are
set, and the WCR and BAR have been properly loaded, the "BUSY" Line feeds
back into the "CYCLE REQUEST” line to initiate data transfers which alter-
nately takes a word from a memory location pointed to by the BAR or places
this word 1in the next consecutive memory location. This cycle repeats it-
self until the WCR has been incremented to zero. At that time, an interrupt
request should be issued by the DMA and program control should transfer to
the DMA interrupt service routine "dmaint"”. This assembly language routine
sets a flag to acknowledge that the interrupt request has been honored and
then returns control back to the "dma" routine. After a short delay to in-
sure that the interrupt has had enough time to occur and to be serviced,
this flag is examined and if it is found to have not been set by the
"dmaint' routine, an appropriate error flag is set. The final part of the
"dma'" routine examines the locations in memory where data transfers should
have occurred, and verifies whether or not the proper values have been load-
ed into the proper locations. An error flag is set when an unsuccessful
transfer 1is detected. Program control 1is then returned to the "dmats"
routine where the seven error flags are examined and appropriate messages

displayed on the terminal screen.

(50) atodec - This routine takes a 16 bit word and converts it into a char-
acter string that contains the ascii representation of the decimal value of
this word. Negative numbers are first changed to positive numbers before
the actual conversion takes place. The conversion process itself involves

repeatedly performing integer divisions by decreasing powers of ten. The

- 61 =

results of these divisions are the individual digits in the binary coded de-
cimal representation of the original word. These digits are in turn con-
verted to ascii by adding 60 (octal). As with all ascii strings, a zero is 4

added to the end for a string terminator. f

(51) atooct - This routine takes a 16 bit word and converts it into a char-
acter string that contains the ascii representation of the octal value of
this word. The conversion is performed by first masking off groups of three |
bits to get the individual octal digits, and then converting these digits to

ascii by adding 60 (octal). A trailing zero is added to the string as a

terminator.

(52) thresh - This is an assembly language routine that computes a table of
decision threshold values corresponding to background time averages in the
range 0 to 1023. The basic method for computing the needed square roots is

a Newton-Raphson type scheme. That is, the roots of the equation

£ =x2 -a=0

are found by performing ten iterations of the equation

£0X)
Xo#1 = %4 = EALC
or
X: - a .
X ., =X =
n+1 n an

After these iterations, the value of X will be approximately equal to the

square root of a. Throughout this routine, numbers are carried around with ﬂ

- 62 -

i ————

[P

e e

an appropriate binary format to ensure integer accuracy in the final thres-

hold values.

Once the above square root is found, it must be multiplied by two other
factors. These are (i) the square root of the quantity N+1/N and (ii) the d
parameter. The first of these factors was found via table look up in the
"nnrsv"” routine and is stored in the variable "sagn''. The other factor was
stored in "smd" in the "dsrv" routine and has a format containing seven
binary places. After these three terms are multiplied together using the

fixed point multiply instruction, the resulting threshold is placed in the

proper location in the threshold table "btab" pointed to by "bstr".

(53) dmaint - This is a DMA interrupt service routine that is entered dur-
ing the DMA diagnostic test. The only function it serves is to set a flag

indicating that the DMA interrupt service request has been honored.

(54) halt - This is an assembly language routine that merely executes the
11/03 "halt” instruction. This allows the "C" routine "lLsrv" to halt the
program when the user desires to perform the DMA diagnostic test.

This concludes the discussion of what have roughly been called the ter-
minal handling routines. As mentioned previouSly, more detailed comments

are contained in the program listings in Appendix B.

- —
. i Y et . s JBPR Srht aan e ——TR =t

- -

-

- “_’ il SR G

The actual implementation of the computations performed in the IR-CCD
Intrusion Detection System will now be discussed. This will begin by
describing three main vectors which are used to store various quantities
used in the calculations. The first of these vectors is one called "x".
This may be thought of as a first in~first out circular queue that stores
the past data samples used in computing the background time average. Rough-
ly 1 Psn-of these samples are updated each pass so that in P passes one sam-
ple from each spatial element of the IR~CCD array has been stored. There
are N of these samples from each element that must be stored thus giving the
queue a length of N*256 words. This queue may be thought of as being broken
down into N packets with 256 elements in each packet and each packet being
updated over the course of P passes. See Figure 3.5. There is one pointer,
called “xptr", which points to both the location where the oldest element in
the queue may be found and also where the newest incoming element is to be
placed. This allows the background time average to be computed by subtract-
ing the oldest sample from an accumulated sum of samples and then adding in
the newest sample. This newest sample is then stored in the same (location
where the oldest sample was removed.

The second important vector is one called "m". This vector may be
thought of as being divided into four distinct blocks of 256 words each.
The first and last 256 word blocks are actualiy storing different parts of
the same quantity. This guantity is the accumulated double precision sum of
terms used in computing the background time average. In other words, this
is the background time average before it is divided by N. The first 256
words of "m" store the low order word of the double precision sum while the
last 256 words store the high order word of this sum. See Figure 3.6. Each

word of a block corresponds to one cell of the IR-CCD array.

i

e

.
A =

o -

packet
1] & JEe——— 1 256 elements
packet
2

1 Pth of one of the N packets
is updated each time.

. D ST S — —— N S S L — — — — " w——

packet - 7

'xptr' points to the location where the oldest element in the queue
is to be removed and where the newest element is to be placed.

Figure 3.5 Layout of "x" vector.

- 65 -

r—-—-
Low
order
word of
sum of
past
samples

e ————

256 words (one for each IRCCD
cell)

m—————-

——— e~ -

Background
time
average

256 words

‘ Threshold
! Corresponding
‘ to
background
{ time average

256 words

.

g

|
\————-Vf——-~/_————~\f—--_/\—"_-\v’—_“—/

High
order
word of
sum of
past
samples

256 words

‘ .
i A e o s s o P e

Figure 3.6 Layout of ¥Mm " yector.

i —————

The second 256 words of the "m" vector store the actual background time
average. This 1is just the corresponding element of the first (and last)
block of "m" divided by N.

The third 256 words of '"m" store the decision thresholds for each of
the background time averages in the second 256 word btock. This decision
threshold is found via a table look-up procedure.

The last important vector used in the calculations is the "a" wvector.
This 256 word vector stores the past history of threshold violation informa-
tion. Each word corresponds to a cell of the IR-CCD array while the various
bits of each word correspond to the past time instances. See Figure 3.7.
Bit 0 is always set to zero as will be explained later. Bit 1 of each word
represents the threshold violation information of the current packet, bit 2
corresponds to one packet into the past, bit 3 corresponds to two packets
into the past, etc. This format is used to simplify the target-no target
decision process.

The computational routine, called "crunch"”, is written in LSI-11 assem—
bly Llanguage and may be broken down into three main parts. These are (i)
the computation of the background spatial average, (ii) the computation of
the background time average, and (iii) the threshold comparison and decision
making section. The background spatial average is computed by summing D
equally spaced samples from the current packet of 256 samples and then di-
viding by D. In the software implementation of this calculation, there are
three auxiliary variables that are defined in "C" routines to speed the
routine up. 'ntbkspav'" is set to equal the number of terms used in comput-
ing the background spatial average (256/D) and is used as the initialization
for a counter to keep track of how many iterations are needed in this compu-

tation. "tbgd" is set equal to 2*D and is used for stepping along the array

s - -

Threshold violation corresponding to
the past time instances:

(bit B always set to zero)

2
" 3
w1
N
_/
\

OO

2\

256 words, one for
each cell of the
IR-CCD array.

- e an =

)

Figure 3.7 Layout of “a" vector.

- — - « - -
e~ ———————— ? " W e A o e T s e e

e A W T

- 68 -

g

of new samples (pointed to by "yptr"). The factor of two is due to the word
length of the LSI-11 being two bytes and thus, since each integer value is
stored in one word, it is necessary to increment by two to reach successive
elements in memory. For example, "yptr' points to the first element in the
array of new samples. "yptr" plus "tbgd” points to the Dth element in this
array, "yptr" plus 2x"tbgd" points to the Z*Dth element in the array, etc.
The section of code that computes the sum of D terms uses this procedure for

th element from the packet of new samples. The sum is

extracting every D
carried out in double precision to prevent overflow. The third auxiliary
variable '"dshft” is used in dividing this sum by D. Since all possible D
values are powers of two, the division is accomplished by a shifting opera-
tion. "dshft" tells the assembly language shifting instruction "ashc" how
many places to shift and which direction (negative numbers to the right).
At this point in the calculations, the background spatial average is in r3.
A flow chart showing the computation of the background spatial average and
stare time changing operation is shown in Figure 3.8.

The first thing that is done in checking for a store time change is to
determine whether or not a stare change was performed during the previous
set of calculations. If a change was indicated, it hasn’t had time to af-
fect the current packet and it would make no sense to check for a change
again. The status of whether or not a change took place on the previous
packet is indicated by the flag "fstat".

Stare time changes are initiated by comparing the background spatial
average with two thresholds, one to indicate a decrease in store time is
needed (C2) and one to indicate a stare time increase is in order (C1).
These thresholds are not constant for different stare times. When operating

at tref, the incoming samples are roughly in the range 256 to 511. When the

Clear
registers

]

Initialize
pointer

4

Add term to
accumulator

Reset pointer
to next
element

No

p iterations

Divide Sum
by D

]

Round off
after divide

Fiqure 3.8 Computation of background spatial average and stare time
changing operation.

- 70 -

i

g o S o b
Stare
time change
previous
packet?
Look up stare
time decrease
threshold.
« Decrease
8k. sp. avg. Yes .
> threshold? stare tfme
- if possible
Look up stare
time increase
threshold.
\
1 Increase Send new
;hsp.hargé stare time function 1
= thresho if possible and 2 values.

No

.

)

Update past
history of
stare times,

e d,

 ——————

e ks

-

DAL SR

stare time decreases to tref/2, the incoming samples are roughly in the

range 512 to 1023. Similarly, at tref/4 the samples range from 1024 to
2047, and at tref/8 from 2048 to 4095. Therefore, as tref decreases, the
thresholds must be increased by a factor of two at each change. Similarly
as tref increases, the thresholds must be decreased by a factor of two at
each change.

Since the current samples were integrated by the IR-CCD array with the
stare time computed two packets before, it is necessary to store this past
history of stare times. "tref" holds the value that will be computed for
the current packet, '"trefm1" holds the value computed one packet into the
past, and "oldtref'" holds the value computed two packets into the past. The
values that are stored serve several purposes. These purposes and the pos-
sible values for "tref", etc. are illustrated in Figure 3.9. This shows how
“tref” may be used to change the function 1 and 2 Lines and how "oldtref",
the value of "tref" from two packets ago, may be used as a pointer to Llook
up elements in the arrays "CC1" and "CC2" which hold the properly scaled
values of the user specified parameters €1 and CZ2.

When it is determined that one of the thresholds has been violated and
that a stare time change is in order, the current value of "tref" must be
checked to see if it is possible to increase or decrease the stare time any
more. If a change cannot be made, "tref" is saturated at the appropriate
extreme value. If a change is possible, "tref"” is updated by adding or sub-
tracting 2 from "tref”. This new value is then sent out on the DMA function
1 and function 2 lines and the past history of stare time changes is updated
by moving “trefm1” to "oldtref'" and "tref" to "trefm1". This completes the

section of code which computes the background spatial average and initiates

a stare time change when needed.

- 72 -

W e ———— " b WP e e S

-

el R A" SN

o O T i oo
last 3 bits of 'tref', 'trefml' | or ‘oldtref’
et i
d, 0 ‘tref!
Flf CSR of DMA

bits controlling function 1 and function 2 lines

stare time d2 d, f2 f, decimal value of d2 d, 0

tref 1 1 1 1 6

tref/2 1 0] 0 4

tref/4 0 1 0 1 2

tref/8 0 0 0 0 0
Start of Array 'CC1':} 8 * C1 Start of Array 'CC2': | 8 * C2
(Starting address+2){ 4 * Cl 4 % (2
(Starting address+4) | 2 * CI 2 % C2
(Starting address+6) cl c2

Figure

3.9 Uses of stare time information.

-73 - 4

RIS SR S SRR S e —

- . -

AN Bt W eI —————

PR o

The second major part of the calculations involves computing the back-
ground time average and looking up in a table the decision threshold that
corresponds to this time average. There are a total of 256 background time
averages that must be computed, one for each cell of the IR-CCD array and N
terms used in computing each average. Over the course of P packets, all 256
averages are updated by adding in one new term and subtracting out the old-
est term. In order to save time, only one Pth of the cells are updated each
packet. There are three auxiliary variables defined in the "C" routine
"ppsrv' which are used to divide the calculations over P packets. These are
"n1", "pnorm”, and ‘plast". These numbers are computed so as roughly to
divide the computations evenly over each 1teration. "n1" indicates the to-
tal number of passes during which any background time averages are updated.
For most values of P, "n1" will be equal to P. However, for some P values,
it is more efficient in terms of reducing the maximum number of cells that
are updated during any single pass (worst case condition) to have "n1" less
than P, “pnorm"” 1is the number of cells that are updated during the first
"n1" minus 1 passes, while "plast" indicates the number of cells updated
during the "“n1"th pass. There are no cells updated during the remaining P
minus '"n1" passes. For example, with P equal to 12, "n1" is 12, "pnorm" is
21 and ‘"plast” is 25. This means that during the first "n1" - 1 or 11
passes, 21 cells are updated while during the 12th pass, the remaining 25
cells are updated.

Since the computations are distributed Llike this, it is necessary to
store the location of the next cell to be updated in the array of 256. This
is accomplished by storing three pointers. "xptr" points to the next loca-

tion in the previously described "x" array which holds past sample values,

"mptr' points to the next location in the previously described "m" vector

which holds the accumulated sum of terms used in computing the background
time average, the background time average itself, and the corresponding de-
cision thresholds, and "yincr" is used to point to the next Location in the
current array of new samples whose start is pointed to by "yptr". It is
pointed out again that due to the addressing structure of the LSI-11 proces-
sor, it 1is necessary to increment by two to point to successive words in
memory. This factor is automatically accounted for in the various auto-
increment, auto-decrement instruction modes [1].

The calculation of the background time average begins by incrementing a
counter "pcnt'" which is used to keep track of which block of the 256 IR-CCD
cells is to be worked on. Also performed at this time is the loading of the
various pointers into registers. These pointers indicate where the next

cell is to be updated in the "x", "m", and "y" arrays. As mentioned before,
"x" contains the past samples used in computing the background time average,
"m" contains the sum of N of these samples for each cell, the actual back-
ground time average, and the corresponding threshold, while "y" (actually
"ybuf1" or "ybuf2") is the array of 256 current samples. The pointer to the
"x" vector is checked to determine if the last element in the vector has
been reached and if so, is reset to point back to the first element. This
is where the previously mentioned circular nature of the "x" vector is ac-
complished. The value of "wrap" is used to determine when the end of the
"x" vector is reached. ‘wrap" is set equal to 2*N%256 (the two factor is
again required in order to skip words instead of bytes).

Now that all is set up for the calculations to begin, it must be deter-
mined which segment of calculations is to be performed. If "pcnt" is less

than "n1", program control is transfered to a section of code that performs

the calculations on the next "pnorm" cells of the array. If "pcnt" is equatl

to "n1", program control is transfered to a section of code that performs
the calculations on the final "plast” cells of the array. Whan all 256
cells have been updated, "pcnt" is compared to P (stored in "bigp") to
determine if it 1is time to start updating the entire block of 256 cells
again. If "pcnt" is equal to P, "pcnt" is set equal to zero and the pro-
cedure 1is started over from the beginning at the next pass through the com-
putations. This procedure for distributing the background time average cal-
culations over P packets is illustrated by the flow chart of Figure 3.10.
The actual computation of the background time average and determination
of the corresponding decision threshold for one cell of the IR-CCD array
will now be discussed. At the beginning of a typical iteration, r0 is
pointing to the proper element of the current data packet, r1 is pointing to
the corresponding element in the first block of 256 words of the "m" vector.
It 1is noted that (1000)8 + r2 points to the corresponding element of the
second 256 words of "m" (the background time average), (2000)8 + r2 points
to the corresponding element of the third 256 words of "m" (the decision
thresholds corresponding to the background time averages in the second 256
words), and (3000)8 + r2 points to the last 256 words of "m" (the high order
word of the double precision sum of past samples). The first thing that is
done in these calculations is to subtract (in double precision) the oldest
sample stored in the "x" vector from the sum of past samples stored in the
first (and last) 256 word block of "m". Next, the newest sample, pointed to
by r0, is added (double precision) into the accumulated sum pointed to by
r2. This double precision sum is then moved into registers ré4 and r5 and
the fixed point division by N is performed using the "div" instruction.
After rounding off after the division, the single precision background time

average is stored in the proper element of the second 256 word block of "m".

Increment
‘pent’

) [

Load pointers
fnto registers |

L

Perform calc. on
on next
'pnorm' cells,.

y

Perform calc. on)
final 'plast’ Reset pointers

cells., to next Pth
group of cells.

\

Reset pointers
to beginning

| .

'pene’ = 0

Figure 3.10 Distribution of calculations over P packets.

- 77 -

-

N

In the "dsrv" and "nnsrv" routines, the assembly language routine
"thresh" is called. This routine sets up a table of decision thresholds for
the current values of N and d where each element in the table corresponds to
a different background time average ranging from 0 to 1023. For background
time averages greater than 1023, it is noted that dividing the average by &,
looking up the corresponding threshold, and multiplying this result by 2
(since the thresholds are proportional to the square root of the background
time average) effectively extends the range of the table from 0 to 4095. It
js also noted that when the stare time is equal to "tref" or "tref"/2, sam-
ples will range from 0 to 1023 and when the stare time is equal to "tref"/4
or "tref"/8, incoming samples will be in the range of roughly 1024 to 4095.
Thus, when the stare time s equal to "tref" or “tref’"/2, the threshold
corresponding to the background time average is directly looked up in the
threshold table. When the stare time is equal to "tref"/4 or "tref"/8, the
alternate look up procedure is employed.

Since word addresses must be used to find elements in the table, an ad~-
ditional factor of two is found in the code implementing the look up opera-
tion. For the two longer stare time, 2 times the background time average is
added to the starting address of the threshold table to find the correspond-
ing threshold. For the two shorter stare times, the background time average
is only divided by two (instead of four) before it is added to the starting
address of the threshold table to find the corresponding threshold. This
threshold is then multiplied by two to get the actual threshold value. Once
the threshold is found for any of the various stare times, it is stored in
the proper element of the third block of 256 words of the "m" vector for fu=-
ture use in the target decision making process. The computation of the

background time average and corresponding decision threshold for a single

cell of the IR-CCD array is shown in Figure 3.11.

The final segment of calculations involves performing the target-no
target decision process outlined in [2]. The difference operation and
threshold comparison operation that is performed on each of the 256 elements
in the IR-CCD array for each new packet of data is done simultaneously with
the actual target-no target decisjon. This portion of the calculations is
where the previously described "a" vector comes into play.

The main loop of this segment of calculations iterates over each cell
of the array. The first step in each intration is to compute the difference
between the background time average stored in the second 256 words of '"m"
and the array of current data samples pointed to by "yptr". The absolute
value of this difference is then taken and this value is compared to the
previously computed decision threshold which had been stored in the third
256 word block of "m". If the threshold is not violated, the bits in the
word of "a" corresponding to that cell are shifted one place to the left and
a zero moved into the second bit. (As discussed previously, this
corresponds to threshold violation information for the current packet.) If
the threshold is violated, the bits in the word of "a'" corresponding to that
cell are also shifted one place to the left but in this case a one is placed
in the second bit. This is the procedure that updates the past history of
threshold violations for each cell in the array. The shifting operation al-
lows the information stored during the previous packet now to be moved an
additional packet into the past. It is now clear that the target-no target
decision process merely involves summing the number of ones contaned in
three adjacent words of "a' (corresponding to three spatially adjacent cells
of the IR-CCD array), only looking at the bits in each word of "a" that

correspond to the n/3 most recent packets.

-79 -

e e et b 2 e R

subtract oldest
sample of 'x'

,: from sum

H ‘ ;.

Add new b

sample Lo
sum

}

Divide sum by
N to yet bk.
time ava

!

Store bk. time
avg. in ‘m'.

stare time =
tref or tref/2?

Yes

No }
Div. bk, time Mult. bk. time
avg. by 2. avg. by 2.
Look up Look up
threshold threshold
in table. in table.

!

Mult. threshold
by 2.

Stare
threshold in
lml

Fiqure 3.1 Com
bE mputation of background ti
decision threshold. time average and corresponding

- 80 -

This brings up the use of the 15t bit of each word of "a'" that is al-

ways set to zero. When the bits corresponding to the n/3 most recent pack-
ets are masked off, a number results in that word of "a” which can have at
most 32 distinct values (when n equals 5). The 0 bit allows this word in
"a" to be used as an address to an element in a table whose value is equal
to the number of ones (threshold violations) in that cell of the array dur-
ing the past n/3 most recent packets. This is the procedure employed here.
The actual implementation of this decision process involves the use of
the stack (pointed to by sp) and an accumulator r5. For any iteration
through this section of code, r5 contains the sum of the number of threshold
violations in the previous two cells (this is why no alarm decision is made
for the first two cells). The number of threshold violations for the
current cell is found by table look-up. This number is stored on the stack
(to enable subtraction from the total number of ones for two cells ahead)
and also added to r5. Register 5 now contains the total number of threshold
violations for three spatially adjacent cells over the n/3 most recent pack-
ets. This sum in r5 is then compared to t. If the sum in r5 is greater
than or equal to t, a flag (called "tar") is set indicating a target has be
detected. If the sum in r5 is less than t, the number of threshold viola-
tions two cells before is subtracted from the sum in r5. This set of calcu-
lations is then repeated until all 256 cells have been completed. If no
target is detected during any of these iterations, the flag "tar" is Lleft
set to zero. This completes the computations. Figure 3.12 illustrates this

target-no target decision process.

e e e

g 15 e s) LS o L B i . 2 - N

Set up
pointers

Take diff.
between bk. time
avg. and current

value.

Take abs.
value of
difference.

\

Shift word in
'a' vector |
bit to left

set second bit Yes

in

'a' vector

diff| >
threshold?

—| No

&

Mask off n/3 most
recent bits in
‘a! vector

\

Look up number
of ones in word
of 'a' vector

\

Add number of
ones into
accumulator

Figure 3.12

o ARSI o § = 8 Yobr

Target/No target decision process.

- 82 -

- -
e VR

=R

6f threshold
violations

NO |l

Set target
detected flag.

y

Up date
accumulated sum
of threshold
viol ati

A1l 256
cells tested?

Figure 3.12 continued,

SRR i R ot bbbt |

€. Memory Organization

There are a total of 16896 words (33792 bytes) of MOS-RAM and 8192
words 16384 bytes) of EPROM contained in the IR-CCD Intrusion Detection Sys-—
tem. 16384 of the RAM words are contained on the MSV11-DC board while the
remaining 512 words are equally divided on the two MRV11-BA uv PROM/RAM
boards. There are 4096 words of PROM on each of the two PROM boards.

The partitioning of memory between RAM and PROM is illustrated in Fig-
ure 3.13. The 256 words of RAM from one of the PROM boards starts at ad-
dress 0. This block of memory provides space for interrupt vectors, irap
vectors, etc. At this point there is a 3840 word gap in the addressing of
memory locations. This allows PROM to start at a 4k word-multiple. The
lower 4k words of PROM start at address (20000)8 while the upper &4k words
follow immediately after at address (40000)8. The 16k words of RAM on the
MSV11-DC start at address (60000)8 while the remaining 256 words of RAM from
the second PROM bound start at address (160000)8.

The Locations of several of the more important arrays in the calcula-
tions are shown in Figure 3.14. These arrays are discussed in more detail
in Sections III.A and III.B but will be briefly summarized here. "ybufi"
and "ybuf2" are input buffers which contain data from the two most recent
packets. "x" is the vector that contains past data used in computing the
background time average. The "m' vector contains several different quanti-
ties. The first and last blocks of 256 words in "m" contain the low and
high order words respectively of the sum of all the terms in the background
time average. The second 256 word block of "m" contains the actual back-
ground time average while the third 256 word block contains the decision
thresholds corresponding to the background time averages stored in the

second 256 word block. The "a" vector contains the past histories of thres-

-8‘-

AD=A091 630 PURDUE UNIV LAFAYETTE IN SCHOOL OF ELECTRICAL ENGINEERING F/6 15/3
A MICRO=COMPUTER COMPUTATIONAL UNIT FOR AN IR=CCD INTRUSION DET=-=ETC(U)
OCT 80 T W GOEDDEL» W T WILSON» S C BAS FSOGDZ-?S-C-DOEZ
UNCLASSXFIED ADC-TR-BO-S 8

A

000000

256 words RAM
from one MRV11-BA
PROM/RAM board

000776
(gap) 7////
020000
8 k workds PROM
from two MRVI1-BA
PROM/RAM boards
057776
060000
16k words RAM
from MSV11-DC
RAM board
157776
160000
256 words RAM
from second MRV1)-BA
PROM/RAM board
160776

Figure 3.13 Partitioning of memory between RAM and PROM.

- 85 -

B T

START OF RAM

(60000) 8

(60004) g—t ybuf2

(61004) g—> vbufl
(132076) g m
(‘36]01')8—" a

%
7

(160776) = STACKJ

- 86 -

} 256 words

} 256 words

40 x 256 words

1024 words

} 256 words

Figure 3.14 Locations of several important arrays in RAM,

hold violation information for each of the 256 cells of IR-CCA array. The
PDP-11/03 stack starts at the high end of RAM and sequentially fills up
words in descending address order. The stack is used in the calculations
and also for keeping track of subroutine calls and passing parameters.

The symbol table contained in Appendix B is useful for probing around
inside memory (using ODT) to obtain current values of various variables.
Use of this table is best illustrated by a couple of examples. If the
current value of the variable "pcnt" were desired, the user would simply
find the entry " pent” in the table. (The "C" compiler automatically
prepends an underscore to the start of all variable names.) To the left of
this name is the number "62052". This is the address in octal where the
value of "pent" is stored. This location may be accessed via ODT as ex-
plained in [1]. Similarly, if it were desired to examine the entries in the
array "btab", one would find the address to the left of the " _btab" entry in
the symbol table. This number (137122) is the address (in octal) of the
first entry in the array. The second entry would be stored in location
137124, the third in 137126, etc. As before these entries may be examined

using ODT,

- 87 -

-

oy M —— -

IV. Maintenance

A. Preliminaries to Testing

To shut down power while the system is operating, disconnect the analog
CCD signal Lline, disconnect the 16-pin connector at the IR-CCD device and
switch power to "off" at the right rear of the card cage. To power up, sim-
ply reverse the order,

To use the card extender(s), shut down power as above, remove board to
be inspected, insert card extender with finger "notch" to the left. Insert
board into card extender (you should provide support to the rear of the

board). Power up as above. When the interface board is to be inspected,

removal of the DMA board below the interface is required due to the

thickness of the interface board. After DMA and Interface removal, the DMA

should be inserted for proper testing to occur. You do not have to discon-
nect the ribbon connector between interface and DMA in order to remove ei-
ther board. Board locations in the card cage itself are shown in Figure

4.1,

8. Calibration Procedures and Use of Maintenance Software

The only times the card extender need be used are when a problem is
suspected in a board or when calibration of the A/D and sample-and-hold
gain, offset, and input voltage range is required. The A/D converter has
two input voltage ranges: 0 to +5 volts, and 0 to +10 volts. In order to
operate on the 0 to +5 volts range, jumper J1 (pin #25 on the ADC85C-12 un-
it) must be connected to pin #22 on the ADC85C-12 unit. In order to operate
on the 0 to +10 volts range, jumper J1 must be connected to pin A (open).
Pin #22 and pin A are both short in length. See Figure 4.2 for Location of
pins #22, #25 and pin A.

-y @

KD1-HA LSI-11/2
Processor Board

DCK11-AC
IRCCD Interface Board

DRV1I-B
DMA (nterface Board

MSV11-DC
16K word RAM Board

DLV
Serial Line Unit

MRV11-BA
UV PROM/RAM Board
lower 4K words

MRV11-BA
UV PROM/RAM Board
upper 4K words

e M

nll

Figure 4.1

Board locations in card cage.

OMA CYCLE REQUEST

Figure 4.2 Wiring diagram of IR-CCD custom interface.

- 90 -

O A§t- 09 wws
> 10N1= Og—y
A
T O— 138440
o+ : [~ 1= o 1nente
3 2 © %) 40
+—O0— ey
. 3 H h— 5‘“;'&1 t ‘Bﬂl‘;‘l
Oa > s 3
A
Anatno 138440 O~
DE/DC 546
1V10A O
r»—o AGlLe
.
[) roxe
- &
-~ | ; A
: ok . . 1
- i %1.':0- ¢ . M
3 H 52
A o ‘:C, > y-
= .,:8 mc:‘
S " e (&5 AnaL
N R 5 [3- 28] wth
& - u 5 ~ 5
- o S v e 3
X o =4 -]
3 -._Lu Qs . B o |
z ,l 8 -
19 . = - ~
o ° : F 3
PP 3% L33
o - &3d * F |
v - 2 o
2 8
1 oo oo
" " ~-§ 3 =
79510
;
»: I
ENCY [L13] rl
2tan) TUaA Y
Sy LS8,
11 eeeofooleslesee lLJMth_'
£ 2200909 XY 2200 LY X
5y oSy 5y
C&
n:(’ ;l::v BDFJLNRTV X2 BBODFFJILLNNRRTT VY
>
J‘(’(J ACEHKMP S UMWY ACCEEHH KK MRPPSSWU
HO-= et
I_. 5 '
3 * N a] caas]Lse von e wse
| o302 R D T N S A B ST I AN s
o5 o G Loy bad L\
- jold e e spoai vl v W e
1980N 10 IRCCD T PR ofati vy oJ Wl W]
S1aR1 PACKLT (oMt CTOR ragt i >n- 1 - wiv ‘lu 6| W] f)
TROM LRCCD -
et .] . el N

L I ——— |~ r— e —— -

- -

EEPRe

To adjust the gain of the sample-and-hold device, apply a known dc vol-

tage on the analog line, with the POP-11/03 powered up. Measure the voltage
between '"COM" on the SHM60 and Pin #30 on the A/D converter. This voltage
is the output voltage of the sample and hold device. Adjust the potentiome-
ter ("pot") marked "GAIN" until the proper output voltage is seen.

There are two types of offset possible: voltage offset, and charge
offset. A pot is provided for each. The vecltage offset should be adjusted
to zero by grounding the analog input, observing the SHM60D output on pin #30
of the A/D converter and adjusting the pot marked '"VOLTAGE" until the output
voltage indicates zero. The analog signal can be grounded by removing
jumper J2 and connecting it to "COM" on the SHMGAO.

The charge offset is the error between the sample value and the hold
value out of the SHM60. This charge offset should be adjusted using the pot
marked "CHARGE" so that a zero volt input just barely causes only the Lleast
significant bit (LSB) to toggle on and off. To perform this operation
ground the analog input as above, examine the least significant bit which is
pin #1 of the A/D converter, adjust "CHARGE" until only the LSB toggles.
(The charge offset might be considerable in order for this to happen. If
you are unable to do this, you can raise the voltage offset away from zero.)
Another approach is to examine the entire 12-bit A/D values using the
software test that looks at A/D converter output via the terminal. (This is
option #2 on the "Additional Features™ terminal display frame.) Again ground
the analog input and adjust "CHARGE" until only the LSB toggles.

This software test routine can also be used to adjust the overall gain
of the SHM60 and the A/D converter so that a known maximum analog input vol=~
tage turns on all the A/D converter bits. To do this, simply apply the

known maximum analog voltage, enter the software test routine, adjust "GAIN"

-9 -

- ———

— .

until all but the LSB are on, and the LSB toggles. Bit #12 (1,2,...,12)
witl always be low as it is the sign bit.

The use of the various software maintenance routines will now be
covered. Each test routine will be discussed individually and possible rea=
sons for test failure will be given. Several of the routines utilize more
than one section of the IR-CCD Intrusion Detection System hardware and hence

care should be used in diagnosing problems.

(1) A to D Test - This routine displays the output of the A to D converter
on the 4024 screen in both binary and decimal. The test works by taking a
sample from the A/D converter, setting the function Lines to displtay all 12
bits out of the programmable digital shift (PDS) logic, and writing this
sample into a location in the 11/03's memory using a single word DMA
transfer., This word is then converted to ascii and displayed on the termi-
nal screen. Hence, failure of the test could imply problems in either the A
to D converter, the PDS logic, the DMA board, the RAM board, the serial in-
terface, the terminal, or any of the connections between these devices.

The A to D test is entered by typing a "2" followed by a carriage re~
turn when the terminal is displaying the additional features frame. At this
point a brief description of the test will appear on the 4024 screen. If
the user then types another carriage return, the actual A to D test routine
will begin execution. When this happens, there will be two numbers
displayed on the screen, one on the upper Left portion and one on the upper
right portion. The number on the left is the binary value being read from
the A to D converter while the number on the right is the decimal value,
These numbers are continually updated at a rate of about five to ten times a
second depending on the clock frequency. For this test to work, it is

necessary for both the "start convert" and "start packet” signals to be con-

e r— - ——

Aam oo ——— e

1

.

- & -

nected to the custom interface board. The "start convert" signal initiates
the data conversions and also pulses the DMA cycle request Line to load the
samples into memory. The "start packet” line is used to clock the flip-
flops which set the function Lline values to the PDS logic. The test is ter-
minated by typing any standard ascii key.

Results of the test are dependent on what analog voltage level is being
input to the sample-and-hold and how the gain, offset, etc. of the A to D
and sample-and-hold are set. When all adjustments are set properly as dis-
tussed previously, and the analog input is grounded, the values displayed on
the screen should be approximately zero (within about one LSB). As the ana-
log input is increased, the numbers on the screen should increase also until
full scale is reached (all 12 bits should be ones). The full scale input
voltage level will depend on the gain setting of the sample—and-hold and the
input range setting. This full scale saturation test is useful for deter-
mining if bits are being dropped somewhere along the way. This condition
could be caused by say a broken wire in one of the Lines between the custom
interface board and the DMA board. Other possibilties exist. The linearity
of the A to D conversion process may also be examined using the A to D test
routine. When the analog input level is doubled, the number displayed on
the terminal screen should also double. Obviously, A/D monotonicity can
also be checked this way. This routine is also useful for checking the in-

put Level from the IR-CCD array.

(2) Programmable Digital Shift Logic Test - This routine is virtually
jdentical to the A to D test routine except that the function lLines are re-
peatedly cycled through the various possible combinations which in turn
cause the PDS logic to perform shifting operations. As before, the output

from the PDS logic is displayed on the screen in both binary and decimal.

- 93 -

- -

i, e W

In addition, the current values of the function 1 and function 2 Llines are
displayed on the screen. Like the A to D test, there are several different
devices involved in the test execution and hence several different places to
Llook for problems if test results are not as expected.

The PDS test is entered by typing a "3" followed by a carriage return
when the terminal is displaying the additional feature frame. This causes a
brief test description (including a table that indicates how many bits from
the A to D converter should be present at the output of the PDS logic) to be
displayed on the screen. Typing another carriage return uses the PDS test
routine to begin execution. As with the A to D test, there will be two num-
bers displayed on the screen. The binary representation will be at the
upper Lleft while the decimal representation will be at the upper right. In
addition, the current values of the two function lines will appear in the
center of the screen. The data values displayed on the screen are continu-
ally updated at a rate of about five to ten times a second while the func-
tion Lline values change every one to two seconds. Like the A to D test both
the "start convert” and '"start packet' signals must be applied to the custom
interface board. The test is terminated by typing any standard ascii key.

When analog voltages are applied to the analog input line of the custom
interface board, the corresponding digital values should appear on the ter-
minal screen. These values are dependent on the A to D/sample-and-hold
calibration and the current values of the two function lLines. An example of
the display values for the various function line settings is shown in Table
4.1 for the case where the A to D is driven full scale. It is seen that

changing the function Lines changes the digital values by factors of two.

- 94 -

s e M

Function Lines Output of PDS Logic

f1 f2 Binary Decimal
0 0 LANREARRARRE] 4095

1 0 01111111111 2047
0 1 001111111111 1023

1 1 000111111111 511

Table 4.1 Example of output from PDS logic test.

Sometimes it is useful to use this test routine in conjunction with
some of the others to help isolate a problem area. For instance, if the PDS
test results do not appear correct, the problem may be with the DMA since
that device is used to load data samples into memory during the PDS test.
Hence, execution of the DMA test routine might aid in isolating the problem.
Another case might be that the A to D test appears to work properly but the
PDS test fails (the numbers do not shift). This could indicate a break in
one or both of the function Lines connecting the DMA to the custom inter-
face, a bad flip-flop on the custom interface board (not clocking the func~
tion Lline values to the PDS logic) or possibly the PDS logic chips them-

selves being bad.

(3) OMA Test - This routine tests seven different facets of DMA operation.
The user 1is referred to [3] for more specific details about the DMA board.
A complete discussion of the items tested and the implementation of the test
routine is given in Section III.B(4a) in the discussion of the "dma" assem-
bly language subroutine. The description here will discuss the use of this

test routine rather than the routine itself.

- 95 -

«

LIPS ORI A

A ———— ..

-

VAL o,

1

The DMA test may not be entered directly from the additional features
frame due to the need for inserting the DMA maintenance cable. When the ad-
ditional features frame does appear on the screen the user may type a "4"
followed by a carriage return to display a brief summary of the DMA test.
When the user hits another carriage return, a PDP-11/03 "halt" dinstruction
is executed and the processor returns to the ODT mode. At this point the
following procedure should be executed to perform the DMA test:

(i) Disconnect signals from custom interface board.
(ii1) Power down 11/03 processor.
(iii) Partially remove DMA board so ribbon cable connectors are acces-
sible.
(iv) Disconnect both ribbon cables from DMA board.
(v) Insert DMA maintenance cable between two connectors on DMA
board.
(vi) Reinsert DMA board into slot.
(vii) Power up 11/03 processor.

(viii) Issue "20000G" sequence as outlined in startup procedures.

One of the first things that the initialization routine does is test if
the DMA maintenance cable 1is in place by sending out values on the three
function lines and determining if these values are read back corréctly by
the three status lines (as will be the case if the maintenance cable is in
place). If issuing the "20000G6" sequence when the DMA maintenance cable is
in place does not start execution of the DMA test routine, check connections
of the maintenance cable and try again. If the test is still not entered,
it is likely that there is a problem with the DMA.

When the DMA test routine is executed, seven Lines will appear on the

terminal screen which will indicate the success or failure of each of the

- 96 -

e e e e i ———

L ——

- —— - .
.

e R i ———- - #oL i I an s

- &

F ol W e

-

v .

seven DMA functions tested. These display messages are shown in Table 4.2.

The execution of the test routine is repeated any time a standard ascii key
is typed on the keyboard. The test is terminated by hitting the ‘break' key
rapidly twice in succession. This returns the processor back to the 00T
mode. To restart the program for the normal execution again, the procedure

outlined for entering the DMA test should be reversed.

1 (Error/No error) detected in R/W of WCR.

2 (Error/No error) detected in R/W of BAR.

3 (Error/No error) detected in R/W of DBR.

4 (Improper/Proper) response received from INIT signal.
S (Error/No error) detected in function-status lines.
6 End of transfer interrupt (not detected/detected).

4 (Error/No error) detected in data transfer test.

Table 4.2 Possible messages displayed by DMA test.

(4) RAM Integrity Test - This routine tests the read/write capabilities of
the roughly 16k words of RAM. This is accomplished by writing unique bit
patterns into each memory location and then attempting to read these pat-
terns back. If the patterns read back do not agree with what should have
been written in, an error is signaled.

The RAM test is entered by typing a "5" followed by a carriage return
when the terminal is displaying the additional features frame. This causes
a brief description of the test to be displayed on the terminal screen,

When another carriage return is typed, the RAM test routine begins execu-

tion.

-97 -

e e - —_ e -
. = o ¥ At T B et e o A M. A PO o

- -

If no errors are detected during the entire test, a message to that ef-
fect is displayed on the screen. Typing any standard ascii character will
then terminate the test and cause the computations to be restarted at de-
fault parameter values. When an error is detected, the location of the er-
ror (in octal) is displayed on the screen and the routine waits for the user
to type a command. If the user types a carriage return at this point, the
test proceeds until either another error is detected (at which point the
routine waits again), or the end of RAM 1is reached. When the end is
reached, the total number of errors detected is displayed on the screen in
decimal. The test will then terminate when the user types any standard
ascii character and the calculations will be restarted with default parame-
ter values. On the other hand, if the user types an ascii character other
than a carriage return after an error has been detected, the routine will
stop testing RAM Locations momentarily display the accummulated error count
up to that point on the screen, and finally restart the target detection

calculations from the beginning with default parameter values.

(5) PROM Checksum Test - This routine computes two 16 bit checksums, one
for the lower &4k words of PROM and one for the upper 4k words. These check=
sums are then compared to their expected values (stored in two locations of
PROM) and results displayed on the terminal screen. This test is intended
only to indicate that there is a problem in one or more of the EPROMS. A
more detailed procedure for isolating PROM errors and what to do about them
is given in Section IV.C.

The PROM test is entered by typing a "6" followed by a carriage return
when the terminal is displaying the additional features frame. This causes
a brief description of the test to be displayed on the terminal screen.

When another carriage return is typed, the PROM test begins execution.

- 98 -

e

-~

- M

When the routine has finished computing the two checksums, four numbers
are displayed on the screen. On the left side near the top are the actual
and expected checksums for the lower 4k words of PROM while at the right
side near the top are the actual and expected checksums for the upper 4k
words of PROM. The expected checksum for the lower 4k words is (at this
writing) 0612246 while the checksum for the upper 4k word block is 174240.
In addition to these four numbers, one or two sentences are displayed sum-
marizing the results of the test (whether or not the actual checksums agree
with the expected checksums and if applicable which 4k block(s) or PROM are
suspect. I1f errors are detected during this test, it is suggested that the
user perform the additional PROM checksum computations outlined in Section
IV.C to help isolate which EPROM chip(s) is(are) suspect. That section also

contains information about reburning PROMS if necessary.

{6) Terminal/Serial Interface Test - This test is intended to test both the
Tektronix 4024 terminal and the DLV11 serial line unit. The routine is di-
vided into three main sections. The first section tests the terminal itself
by issuing the standard 4024 "“test" command. The serial interface and moni-
tor section of the terminal are then tested by repeatedly sending a line of
81 ascii characters to the monitor section of the terminal. The 81 charac-
ter length causes the 4024 automatically to issue a carriage return (screen
“wrap around') once for each set of 81 characters sent. This in turn causes
the Line of characters to begin one column to the right each time and hence
makes detecting any discrepencies easier. This also allows each of the
ascii characters used in the 81 character line to assume every possible po-
sition on the screen. The final section of this routine tests the serial
interface and workspace section of the 4024 screen in a manner identical to

that used for the monitor space.

-99 -

- o
Sy

e

The terminal/serial interface test is entered by typing a "7" followed
by a carriage return when the terminal is displaying the additional features
frame. This causes a brief description of the test to be displayed on the
terminal screen. When another carriage return is typed, the terminal/serial
interface test routine begins execution.

Upon completion of the standard 4024 test routine, a bell is sounded
and the screen is left displaying the results of the test. The user is re-
ferred to [4] for information on interpreting these results. A prompt is
also displayed on the screen instructing the user to type a carriage return
to proceed with the terminal/serial interface test. When this is done, the
terminal should begin displaying the 81 character ascii Lines in the monitor
section of the 4024 (the monitor has been defined to be the entire screen).
When the visible portion of the monitor is full, the screen will begin
scrolling and continue indefinitely in this fashion until the user types a
carriage return. This causes the screen to be redefined as entirely
workspace (except for the last line which must always be monitor) and the 81
character Llines to be again displayed. As with the monitor test, when the
visible portion of the screen is full, the display will begin scrolling.
This will continue until either a carriage return is typed to terminate the
test (and restart the calculations with default parameter values) or the
jnternal memory of the 4024 is full. When the internal memory is full, the
terminal stops displaying characters and the screen freezes. When this hap-
pens the user should type a carriage return to terminate the test and res-
tart the calculations using default parameter values Figure 4.3 shows a typ-
jcal view of the terminal screen during either the monitor or workspace por-

tions of the terminal/serial interface test.

- 100 -

- o

TUADYZINT = abcdel ghi Jh laneparetuvenyzes, -, /01234367891 5 <« 3908
STUIDIYZENI~ LY ’,huﬁ lanoperetuvunyz®s, -, /.‘3343‘7”: 5Ce ,,.:gg(’:?g“m
RSTUVIDYZON] (“abcdefaht jh Imnoparetuveayzee, -. /8123456709)¢~ » POABCDEF G 1 IKLINGP
N‘-‘"g" Jhlenoparatuverysss, -, /8123456789 ; ~ > 26RBCDEFGHT IKLISD
cdefohijh lanopqretuvuryzee, -, 0123436789 ; < < > P0ABC DEF GHT JXLIwY
OPORSTUVMXYZI N1 (labede ’hlJll.‘...f.!uwlul‘0.-./.123‘5‘7“'- 3 <=) POABCHEF CHI AN
NOPORSTUVMXYZLN)A(,M Jhlsnoparstuvenyzes, -, /81234567091 ; C = > POABCDEFSHI N
’M Jhlancperetuvenyzss, -, /8123456789 ; ¢ = > PEABCDEF GMI IX
N gk lenoparetuveryzes, -, /@123436709: ; ¢ « > 2OADCDEF GNL S
defghi Jh lenoparatuvenyz e, -, /0123456789: ; (= > 20ABCOCF GMI
cdefght jk | enoparstuvenyzse, - /8123456789 ; < =) IPABCHEF Ca
1 JXLMNOPORS TUVMXYZE\)~ (*abcdefah i jh lancparstuvexyzes, - . /8123456789 : ; ¢ = > WABCDIFG
HIIXLNNMOPORSTUVMXYZE N1 (abcdefghi)k lmnopqretuvenyzes, -, /8123456789: ; («) 70A3CDLF
GH1 JXLMNOPORS TUVMDIYZIN 1 (*abedefgh jh lanopqretuvenyzss, - . /01 23456789: ; < = > 70QBCDE
FONI IXLMMOPORSTUVMXYZE\)~ (" abcdefghi jh lanepqretuvexyzes, - /P123456789: ; ¢ » > PEANCD
EFON1 JKLMNOPORSTUMDIYZIN)~ *abcde fgh | Jh lmnoparetuveny e, -, /@1234567689: ; (+ >70AKC
DEF 61 TILMNOPGRS TUVIXYZI N)~ (abcdefgh | sh lanopqratuvenyzes, - /8123456769: ; ¢ - > Peng
CDEF GHI JXLMNOPORSTUVMXYZ 7 1 (' abcdefgh i sk lanopqratuvenyzee, -, /@123456709: ; (= >N
BCDEF GH1 XL MNOPORSTUVIRCYZT N)~ *abcdef an | 3 1anopqr stuvaay1es, - /81234567091 ; ¢+ }9¢
ABCDEF 611 JIXLMNOPORSTUMMXYZ(\]~ (“abcdefgh| jk lanoparotuvenyzes, -, /8123456789: ;(*)?
@ABCDET QNI TXL NNOPORS TUVI(YZ(\)~ (‘ueoﬂ,m Jlanopqretuvenyzes, -, 7@123456709: ;<>
PEABCDEF GHI JX1L.MNOPORSTUVMXYZI\] (‘gbcdefghi)k lanopqretuvwxyzes, -, /9123456709: ;¢
> MABCDEF GHI JILMNOPORSTUVIOCYZI M 1~ (“abcdefght jk lanopqretuvenyzee, ~. /81234567891 ;¢
« YPPRPCDEF GHI JXLMMOPORSTUMXYZIN 1~ (“abcdedght sk lanoparatuvexyzee, -, /91234567991 5
< =) P@APCDEF GHI SXL MMOPORS TUVIXYZIN) ~(*abcdefgh | jh imnopqretuvenyzs+, -, /8123456799
3 <=) 7ABCDEF GHT JXLMNOPORSTUMMDXYZL \ 17 (* abcdef gh | Jk lmnoparstuveayzss, -, /8123456789
£ 3¢ = > POABCDEF GH1 JXLMNOPORSTUVMXYZ(\ 3~ (‘abcdefgh | Jk Imnopqretuvenyzss, -, 7/@12345678
91 ;¢ =) 20APCDEF GHI JKLMNOPQRSTUVMXYZ()~ (“abcdefgh i Jk lanoparetuvexyzes, -, /81234567
@91 ; <+ >2@RBCDEFGHI JXLMMOPORS TUVMXYZ[\]~ (“abedefgh i jk lmnopqretuvuxyzss,
709: ; (= >20ABCDEF GHI IKLMNOPORSTUVIXYZIN 1~ (“abcde fgh i jh lmnopqrotuvexyz®e, -,
6799: ; ¢+ > 2ABCDEF GHI JXLMNOPORSTUVMXYZI M)~ (" abcdefgn | gk Imnopqretuvexyzss, ~. 78124
S6789: ; (« > 2PRPCDEFGH] JKLANOPORSTUVNXYZL N1~ (*abcde Fah | Jk I mnoparatuvesyzes, -. /8123
4367891 ; ¢« >20ABCDEF GHI IKLMMOPQRSTUVIXYZI N\ 14 (“abcdeF gh | jk Jmnopqr s tuvwayzee, =. 812

436799 ; ¢ = > 20RDCDEF GHT IXLMNOPQRS TUVXYZ(N\ _

Figure 4.3 Typical view of terminal screen during either

monitor or work-

space portions of terminal/serial interface test.

- 10V -

-
A

SR A R Al

b

L

C. PROMS

There are a total of sixteen 2708 UV erasable PROM chips that comprise
the 8k words of PROM used in the IR-CCD Intrusion Detection System. Each
chip contains 1k bytes of memory. The MRVI1-BA PROM/RAM boards divide the
16 bit PDP 11/03 words into high and low order bytes. In other words, one
2708 chip will contain 1k consecutive Low order byes while another 2708 will
contain the corresponding 1k consecutive high order bytes. Figure 4.4 shous
which PROMs correspond to which section of memory on the two PROM boards.
The individual PROMs are also labeled with this information.

When it is suspected that there may be problems with the PROM section
of storage, it is possible to compute checksums for each 2708 chip using a
routine entered in RAM, The values returned from this routine may then be
compared to the original checksums to help isolate the problem chip(s). To
enter this routine in RAM, it is necessary to use ODT. The user is referred
to [1) for information on how to do this. Table 4.3 Llists the code that
should be entered starting at address 60000 octal. The assembly Language
listing of the routine is given in Appendix B.

Execution of this routine is begun by typing the sequence "600006" when
in 0DT. When completed, the number 60064 is displayed on the screen and the
ODT prompt returns. The results of the test are stored in sixteen consecu-
tive locations starting at address 65000 octal. These results can be exam-
ined using ODT. Table 4.4 tells which PROM corresponds to which checksum
and also what values these checksums should be if all is working properly.

If it is determined that new PROMs need to be burned, simply order the
new 2708's from a Motorola distributor and supply them with the appropriate
paper tapes. These tapes have already been set up in the Motorola "S1" for-

mat. They are identified according to their starting address and whether

- 102 -

Front
Board 1
(tower kk
words)

Front
Board 2
(upper bk

words)

Low Order
Byte Start
Address 34000

High Order
Byte Start
Address 34000

Low Order
Byte Start
Address 30000

High Order
Byte Start
Address 30000

Low Order
Byte Start
Address 24000

High Order
Byte Start
Address 24000

Low Order
Byte Start
Address 20000

High Order
Byte Start
Address 20000

MRV11-BA

Low Order
Byte Start
Address 54000

High Order
Byte Start
Address 54000

Low Order
Byte Start
Address 50000

High Order
Byte Start
Address 50000

Low Order
Byte Start
Address 44000

High Order
Byte Start
Address 44000

Low Order
Byte Start
Address 40000

High Order
Byte Start
Address 40000

MRVI1-BA

Figure 4.4 Location of PROMS on boards (top view).

- 103 -

Address Contents Address Contents

60000 012700 60032 002000

60002 000020 60034 111304
60004 012701 60036 060412
60006 065000 60040 005203
60010 005021 60042 111304
60012 077002 60044 060462
60014 012703 60046 000002
60016 020000 60050 005203
60020 012702 60052 077010
60022 065000 60054 062702
60024 012701 60056 000004
60026 000010 60060 077115
60030 012700 60062 000000

Table 4.3 Machine language code for performing checksums on individual PROMs.

Address where Starting Address of High or Low Correct Value

Checksum is stored Corresponding PROM Order Byte of Checksum

| 65000 20000 Low 165502

| 65002 20000 High 014634

} 65004 24000 Low 004127

65006 24000 High 165676

N 65010 30000 Low 161337

65012 30000 High 170301

65014 -+000 Low 137434

65016 34000 _ High 027706

. 65020 40000 | Low 000542

Q 65022 40000 High 045242

é 65024 44000 Low 031037

i 65026 44000 High 026626

| 65030 50000 Low 021106

B 25032 50000 High 022066

4 65034 54000 Low 003536

: 65036 54000 High 004530
' Table 4.4 Correct results for checksum test of Table 4.3.

-~

they correspond to the high or Low order bytes of the 1k blocks of memory

for which they contain information. There are sixteen of these paper tapes,

one for each of the sixteen PROMs on the two DRV11-BA PROM boards.

- 106 -

Mt e v

e -

- - - — <
P, T et st e A e LN

- e

S d W

REFERENCES

Digital Equipment Corporation, "LSI11 PDP11/03 Processor Handbook", May=-
nard, Massachusetts, 1975,

G. R. Cooper and C. D. McGillem, "IRCCD Intrusion Detection"”, Final Re-~
port for Rome Air DevelopmentCenter, Hanscom AFB, Ma. under Contract
No. F30602-75-C-0082, y RADC-TR-77-435, AD# A063 327.

Digital Equipment Corporation, "DRV11-B General Purpose DMA Interface
User's Manual", No. EK-DRV1B~0P-001, Marlborough, Massachusetts, 1st Ed-
ition, August 1976,

Tektronix, Inc., "4024/4025 Computer Display Terminal Programmer's
Reference Manual”, No. 070-2402-00, Beaverton, Oregon, Dec. 1978.

L o

Appendix A.

The following is a list of part numbers with a short word description,

manufacturer, and vendor.

Part #
BA11-ME
H780/E
7270KD11-HA
DCK11-AC
DRV11-B
Msv11-0C
DLV
MRV11-BA
KEV-11
2708
Am25510
SHM60
ADC85C-12
DC/DC 546

Description Manufacturer Vendor

Card Cage A 1
Power Supply A 1
Processor Board A 1
Interface Board A 1
Direct Memory Access (DMA) A 1
16K Word by 16 bit RAM Board A 1
Serial Line Unit A 1
UV 4K Word by 16 bit PROM/RAM Board A 1
EIS/FIS Extended Arithmetic Instruction Chip A 1
Motorola, Intel UV Erasable PROMS - -
4-bit shifter TTL chips c 3
high-speed sample-and-hold B

high-speed analog-to-digital converter B 2
+5v to *15v DC-to-DC converter B 2

Assorted TTL

- A-1i1 -

— - .

Manufacturers:

A Digital Equipment Corporation
Corporate Headquarters
Maynard, Massachusetts 01754

617) 897-5111

B Burr-Brown Research Corporation Inc.
International Airport Industrial Park
P. 0. Box 11400
Tucson, Arizona 85734

(602) 746-111

¢ Advanced Micro Devices
901 Thompson Place
Sunnyvale, California 94086
(408) 732-2400

Vendors:

Hamilton-Avnet

954 Senate Road
Dayton, Ohio 45459

(800) 543-4783

Burr-Brown Research Corporation Inc.
33 North Addison Road
Addison, Iilinois 60101

(312) 832-6520

C. S. Electronics Sales
1157 8 South Jackson Street
Frankfort, Indiana 46041

(317) (659)-1874

- A2 =

Appendix B.

The software Listings and the symbol table are contained in this appen-
dix and are presented in the following order:

(1) variable Definitions

(2) "C" Routines

(3) Assembly Language Routines

(4) PROM Checksum Routine

(5) Symbol Table

:
}
|
i
J
i
A
»z

- e -
B B et ———r——

- - -

ol e

] - B-iii -

123
L1 * e * CHECEEARRIR DR AINEES
~ ** (2]
& DEFINITIONS - all uminmitialized global ~ariables and all e
#% 1nitialized data are declared 1n Lhas seclion of code #»
e #+ These variables are used by both 'C roylines and ”
gscembly lansuase roulines Alzo rnclyded at the starl ¢
#% are ‘define’ statemenls which allow cerlain conslanis o #4
~ #% be ysed bv tnserting the svmbolic name 91ten tn the *”»
define slatement L
* "
° - SRR AT AR AR AR AR RF LSRR SR AR F RN R IR R H P R 00 R4
'Y
-
/¢ DEFINE statements #/
Wdetine TTIBUF 0177562 '+ addrez: of serlal anlartace 10sul bufter &
#det1ne TTYSTAT 0177540 '+ addres- ot sertal 1nlertace 1nrul slatus word ¢/
-~ #defrne TIYOSTAT (177544 r¢ addrezs of cerial inlertace oulrul slalus word &/ 1
¥detine TTORUF O177944 /% addres. ot cer1al rnlertace oulrul bufter #/
#devine INTVEC 0124 4 addres: of DA tnlerryp erlor ¢/
e #define WCR 0172810 -« addrecc of DMA word count restcler ¢/
#det1ne BAR 0172412 % addres: of DMA buz aftress resicler &/
#define SR 0172414 /v adares: 0 DMA control slatus wird &/
~ #det1ne STLAK 020000 /& addres: « clart of liwer & wirds of PROM ¢/
#efine ENILFY 037774 ¢ 3ddress of end of 'z & words of PROM ¢/
#def1ne ENDIFK 057640 o address rf end of urrer &b words of PROM &/
- #datine CTRTRAM 040000 /¢ address ot starl of RAM &
Ndet1ne ENDRAM 0140776 ¢# address ot end of RAM &
-
~ /4 dninttialized data seace Ty ba pul in RAM 4/
char tund Pn{ 321 4 buttes o hold iine ot chars 1n Lle Lest &
-~ int bufpum. ‘¢ 4123 Lo andicale which 1npul butfer &
18t $lase /% 1las uted an OMA Last e see 1f iplerrupl 1S received ¥/
nt vbuf1{296 1 ‘4 16Pgb butfef no 1 a¢
et 1t ibuf2(25¢1 *oaneut tutber o 2w/
int $.plr. /% sointer Lo 1npul buffer #¢
nt, t.¢lr. /% pornter Lo past data veclor #/
e it L1240). ‘v pach data veclor ¥
it n{1024]. ‘e cum of eal lerms, bkarnd Lime avy Lhresholds #/
nt, 12561 /% bishor, of Lhreshald w1olalions ¢/
= int htab{124} 4 table 1~ hold Larset Lhresholds #/
int mpfro oo pornter Lo moveclor #/
int taply, % parnlar Yo g neclir #/
~ tnt, *htr 7% parnler Lo dlab &
it penl, /¢ crle Ty indicale which FLh ot calcs Lo be done ¢/ .
1 athl squ 4 number -+ lerds in backaround sralial avs ¥/
e nl 1had, e o Times D o4/
nt drhEl, ¢ ne ot BELz Lo ihitl Lo divide by [¢/
nt folalo /% <hatys ob praegey: parkel slare lime changing
~ int cr1[4Y f% arra ot cogled Cf walue: &
10t ced[4). /® arra. ot ccaled V2 values ¢
int ne. 24 feadyt af Noand F &/
- it aldisad ¢ fmbor o packels alarm should be d15abled #/

- By -

!
}
t
z
;
|
{
J
7
|
%
4
{
“
i
i

1ot afeta e plar T el ot caler should be chieeed ¢/
il tret ‘4 2hai v Lime far current Fackel #/
= it rotal. ¢ lare Lime one fackel yrlo g e
it aldlref. -4 stare Lime tar Lo fackel 1nlo past &/
tal weap. ¢ addres: Lo wrar around circylar Ausue 1h g &7
=~ 1t viner. Ao caunter urad Lo pornt e Jacalion an correnl thrat veclor ¢/
it mach, 4 mach te laot 4l pash s most recunl U eshold a1 dalion bits &/
it prarm ‘e number o cwil the tir Lonl rater e
= tat, Lenorm /% Tun Lime: 0 am A
1nl rl. S onumter ot P4 et coprutalion. on ol arad Lime ave are rertformed ¥/ ¢
[rdlrch 8 aalae wted for raunding of adter divide B
b 1t elast, /& rn o0 cells urdated Lhe nt pass ¢/
18t el e slgee b Lemearani], zlerapa resisler value &/
nt me ‘¢ place o temsarartly Jlarpad ~eapsler value #/ v
- at Tar2, e rlacs dor tomeorgrtl, Lo iprramziter walue &4
it s, 4 oeagg] e sartiINELENY 4
18t dreesr. 4 uoad La ctors [MA VSR vajues ¢
=~ char +:linctat. ¢ eotnler To seral interface 1nrul stalus register &/
ohar L Lactal, * fointer %6 cerial antervace outrul staluz resisler ¥/
char LLrbef (101 ‘4 anpyl char bufter 4/
= char tirtrid. 4 entnler Lh anpyb char bufter tor ®iacima ¢hars an bup ¥
char #LLptyob, ‘¢ rornter to tnpul char dbufter for removin: chars trom buf ¢
10t tticnt. % counter oy number o chars th inpul bubter ¥/
- il aulsth1041). ¢ auleul, quege for 1nfo crom Frogral conlrol #/
it ot 314 2041) ¢ sutent ayeye for 1n¥n rrom anterrurl vontrol ¥/
char sehfrtyl. ¢ poraler Lo elements pornted Lo by elements of oulslkl #/
= ~har (LTINS # poinler Lo elements rainted Lo by elemenl: ot oulsikd ¥/
char sehfptat) 4 oparrler Lo pornler for ramousng elemenl: trom oulrul sueye | &/
char sepirloll, » porrler Lo pornter ear removing elemenl: from oulrul dueve 2 ¥/
=~ tnl blentl 7% value tndicates which b.le ot sirine eoinled Lo by elemenls ot oulslkl #/ '
s, bheal> ¢ ealue pndieate: which dyle ot sirind purnled Lo br elemenls ot oulslk2 ¥/ i
1t Jatarer 4 Lemparary localion far :Lar1ng new rarameler uglues #/
=~ nt conmard, ¢ holgs nomber corresronding Lo current command &/
int cldcomnd, + holds rumber resresenling erevious command enlry &/
Y, andalrm, 7% flag 1ndicaling whelher or nol audable d4larm 1s enabled #/
-
re Locatlions For fhoring rarametler value: #/
~ HA r19d. by an brar. md. see, omlocl, ok, oml
chat Aalsireallog ‘o lemparar o butter o hold ascit representalion of new parameler wlue #/
- nt holdent, ‘o coynler 1n char bufter ¢/
‘4 Locgliens b lorine acciy reeresenlalions of earameler »aluyes &/
-~
shar bradztrid).
char htanetrl4)
e ~har brapstir[4).
“har smdstr3).
char smtstrl4)
= shar smnstrid},
char oSk
“har efsirlS].
) char atdoctl’]), ‘¢ bupter tor heldind azitn rerresentalion ot oclal number #/
M char atdhin(1?) '3 batter for holding a- 1y rerresentalion ot bamry oumber #/
~ char thinez(£], ‘¢ buybrer for ;lorine azvit resresentalion of funclion lines #/
I 1t atadtyt, ¢ Jocalion tor ctoring word trom A Lo D converler ¥/
1t chieml. /4 checlzum for Lower 8 ot FROM ¢/
~ int chismd. 4 chaebom tor ueser 4K ot PROM &
%
| - B2 -
i
;
:
| e
f

« o

-

e o

- e

R e e A » o, M Gere e s e < 0 ar A AL e

B 3K S,

char chITE s putrer for Chering asely refrecenlglion of chksml ¢/

char SA2TY e batter dor sLorany ascny resrecenlation of chiswl #/

char eochtl], * butter for harint 4 cli ref ot exeecled checksum | &/
char 2ck2(7). + bufter tnr slaring a:ct1 rer of exrecled checksum J #/
char orriort?), v bufrer tor sloring aicil rer ot RAM error localion &/
char errentl(7], ‘¢ butter for stortn? a<cll rer of RAM error counl #/

it aldalfa # flag tor storing currenl slatus of alarm slalus box &/
nt alnfls, /¢ t1ar tndrcaling new alarm slalus &/

it tar, / #lax celoan caleulation: at tarset delecled #/

% Error flass for DMA fest ¢/

11t or'WCR, erBAR. ar B, arRST. erf (T, arINT. erTRM,

i evper e Lemporary lacalion tar yie to (MA Lest 4

shar haldcharl], ‘& teme butter tor echeind characlers tack Lo lerminal #/
ohar wf(10], ¢ commacd s\orase dutter ¥

4 faitialyzed dala Lo be fut g PR
char scirinaill rut. ‘agnrtialize puinler Lo but &/

4 ar] te g lable bar whirh Lhe enlries are s1ven by
aptftlzsartiie e 1) g th 4D hyngre elaew acoyracy ¥/

10t nrill ASSINT LATIA7. 048747, 043616, 0AI0F,
042441 (182152, 041742, 041540, 041440,
(41231 L4115 41152, 041077, 041031,
MNTTR. D40T73, 040701, W0LS2, 140625,
NA0L02, 240560, 040540, 040522, 040504,
DANATD, H408T, HANARD, D404 2. 040417,
040404, OAC374, 040366, 040357, 040350,
040247, 08324, 040326, 040321, (40314},

LL

1% 1ab 15 3 lable whose entrie: are equal to Lhe number ot ones

10 the binary resracentalin® of the inder for that enlrv #
1 T4k 52304
4.1,4,45:,

€ opdne conlatns 4 110 24 pumbars corraseonding Lo Lhe
V3105 COMMAnd mpemanyreg ¥

it cmdn {1 LIRS AT E e Le T N0,

“doemgs 1eoan aeras thal rr asilalized o Lhat eachk e containg
ane of the parameter muomenir: ¥/

har . el I LRI TR R TS I P T PURET LI PRI Lo
@ The remqintna Jurgrtbions ot tmtialized dale are e selline
qf Lhe carpeyz asitt Waeas That are yied Lo conzfrurl Lhe

different dicelay frames »t tre JROCD Intrusion Detection
Soetem These mill natl be <ommented 1norurdualis

~har blankl? W04y,

- B3 -

—
r—

e,

- P - - e -

L M

-

~har
char
char
char
char
char
char
char
char
char
char
char
char
char
char
char
vhar
char
char
char
char
char
char
char
thar
char
char
char
thar
char
thar
~har
char
shar
char
char
char
char
char
char
char
tchar
thar
char
rhar
<har
char
char
o har
~har
ahar
char
whar
char
~har
~har
ohar
char
char
char

)
g
RIS
crvl}
vetif}
crifl]
b el
LEIEt
nnloell
erlncl)
dlocl)
nlac()
thoe()
c2lac(]
chinel)
341 =10}
nelztl]
prlsyt]
dletl]
nist(}
st}
c2istl]
et
4411}
4¢121}
441301
4414{)
44150
d4140]
141801
ddi 1o
4411201
J4114()
1161
LLIBE(
401190)
dizezl)
ceelstl]
blnk(]
daterr(]
dalerd(]
NS
f1502()
J15¢30(]
warkl)
12arnll
11nedf]
thiell
Linetal}
Linetd{}
11ne2(?
Line?(}
Yinedf }
tineS(l)
lines {}
f10e7()
Tinet!]
homo(]
helel(}
pinter(]

“tlea tv ' "
“iles #0778
“tew 02 WY,
"ilea 24 R,
07,0

WS 0L

apa el o, e
“twor h 0014)4
Stlwar h001A 16,
“twer b QU8 16,
wor b, 000110 1S
“leor ho0ILT L4
“gor h, 0114 b
hwer b L,
Tlaop b COl19
tirpa 17 Fesoible

Utpya |7 oo
IS E R

i,

(thle
"a

itle

"y (T Eeernidle
Threr 17 Pesittie
iy 17 Bocerhie
“tria U7 Facible
tiwor hotara mler
B KRR SEABH
ATU AU AAA, 2

.
S
P!
4
iy
oy

“r
S
o

ol linge”)
RURD IO (G 8
RO BN UG (Vi A
BB TEU OGN [N
i anngdry,
N9 ei0*),
TTRENU TAY T
BT UN T AN
calue b @ ere 16,30 D oud
aiue ¢ N odre 2.sNisde N=T\0OA"S,
valye e Fogre 10-2P02S6 PEOANS,
calye rp 1 are noon 0.@u10 =P\0043,
adme e noare 6410 19020 n 00
caluer vae 1oare 315 La =7004%),
catye gor 1) are 1€ 101 LR 004,
salus tar Uhoare (3 SwO 01ET004),
4 w.owsi 26, [RLCD INTRS LN DETECTOR ALARM®S.

COVALE 1 MEANINGOLE 7Y, N1t

i 1ow4 I Nurber of rebls monstored for slare Lime uedale \0014 79; NOIA0IS™)

f
N
7
bl
" oty
A bonite
vy Prmy s

0 huotte

1rya ST 012wtS0).

Peinge 1 f Mumber of sameles ued 10 backeround Lise averase \0016 79; NOI2\0IS"):
10003 211 seraralicon ot sameles ysed 1a backsround Lime averdse
100110 21,1 Deterlran threshald scale taclor 00110 79, 1NOT2\015°):
! JL1 Y s memors nterval lensth used an alare decision \00112 79; NOIN015*2

NO12\015");

21,1 Numbers of seace-lime Uhreshold violations o cause alaralNOIN015%);

1,1 Urper Lhreshold used Lo 1mliale stare Lime decrease
21! Lower Lhreshold vced Lo tnitiale slare lime increase

TN e e T,
013 17 To chanae a paramelwr Lrse sYmbel chownh above \004")
“lepa 30T sea 4 11l ot other fealyres, lire L)
tmon h, tera w2
Cpga 17 Inealrd 1nryl command rarameler, or setuence)
Ctega 17, Taoalgg foatlure zafection ™Y,
{112,015, M2 018, 0y
Cwer hoera wonodl Ze, IRUCD INTRUSION DETECTOR ALARM®S,
“ R 3 Additional Fealures
Sl 38
"rlea ey 2000062, "
“ipya 17, Pleaze LyPe number ot desired fealure 004",

W00 17

Dr-abie audibl
Enable andible
Dieslac sutpyt
Fruwamable

« DM crannel Le

FAM 1rlearsty
FRIM < hecksum
terial interfa
D nolthipy - »

e alarm "),

alars 'Y,

of 1nlertace A/D convertler),
1%l hrl circurley tesl v}
LS

Yest "i,

test "},

ce/Lerminal lesl)

elure Lo rarameler diselay "},

“tmon b tur 10 A0S dow 4, 'r19 38)
hwor hotom 20 19.NOTE Calculalions are tallins dehind).

"t b vmblo

- BY -

NOI\015"Y
NOIN0IS")

-,

-

s Ry
~har
char
char
char
char
char
“har
char
~har
~har
thar
char
“har
ihar
char
~har
<har
char
char
char
char
~har
char
char
ohay
~har
~havr
“har
har
char
~har
hat
~har
char
char
char
char
char
char
char
char
&har
char
char
har
«har
~har
ehar
char
ohar
rhar
rhar
thyr
char
har
shar
char
~har
bar

aeiinct)
adrstgl
tinleel)
fd:dielll
izt
Lestl)
mhuior ()
mimard }
srmdreli]
Femdz 20
GEDIERS!
1iee(])
cH el
o Lteel?
o Meel}
promer (]
sherinf(l
Sherpnl{l
ramer{}
rleehl)
rament]
ramil])
nowand)
hrlestl]
[URANS]
rlzernt)
ravl}

b 2]
bo; 11
(232181
bavS{ !
slarl1{]
tari()
tarell}
aolarll]
aldst(?
MALLCE
NCRer{)
nakWCRE]
BARer(?
naBAREL
DPRer ()
naDBR]
RTar(})
oRSTE]
Frier!)
noFL 1)
[NTer{)
enINTL]
TRMer [}
neTENL L
FYALItS
atag2i!
atndif)
e1:10)
(L1219
rds3()
»4-4(]
#1501
el

BALLU B MRS

SOGLS 28 Oyleul ot AL comuerier A\00IB 6. Binary\)018 47, Decimal“y:

BALUU | (=
NS b Oglenl oe Frosrammible Mastlal smitt ctreurtey "),

CONE s Brnar ek 2LEL FOO0LE 67, Decimal ™),

theslowiSt.,

Yvera m lerq w, ‘wor 3% M"Y

“rera motera wh'men 34 R k)
“w0lS 32 PROM Checksums “X

A0l Y Lower 4k-0012 e, Urper 4K%)

Chnfte 4 Actel 1 Exrecled\00110 S7iActual | Exeectled\00111 13, 1NOOL1L 66 1%

LU IS
ARDI B B A PN

ALUPYS 5’-.

SMO0L0 2o My checksum errars delecled 1n FRUM “3,

010 15, Checksum errior delected 1n lower 4K of PROM “J,

ALY 12 Chechsum error delecled 1n uprer 4k of PROM °2,
SA001En M Errar delected tn RAM a) location "}
CQ0LE2 A 005eraveed with Lesl. anvihing else Lo lerminale Lest *l,

VI 1s, Total ranber of errors detecled 1n RAM was “),

0015 31 FAM [otesrily Tacl®,

Tm0l e 18 No errors delected during RAM inlearily lest ",

g4 35 05 terminate test Y,

Strdow % ey 22 00Serocesd wilh test M},

Lmer by 20012

|

BTV KK

TS 30,
L0126 30,
U RRECERS R RERR AR OERE"

'

“¥ "2,

Cewer b togm 28 320 TARGET DETECTED 'men b3

“twor by togm 28 32, NG TARCET DETECTED'mon t, "}

“iwor b, 'um 28 12. ALARM DISABLED 'mon ')

CONONT 36 DMA Test'y,

T001R 19 AN 003R/W of WCR. "3,
AOTS 19,30 002RW ot WIR "},
M09 19, b2\00IRW of BAR. "3,
TGt 19 Q02R W ot BAR. Y,

R0 pr 19, 0 \WOIR/W ot DBR ")
TP 1O e 0JRN of DER),

“UOLLY 1R 4y Imeroper rezponce o INIT signal delected “);
oot 1e) Frorer reseonze recetved from INIT stgmal "}
SO b e B cRetion-status lines U3

CUORLED 19, e 2eure Ly n-status f1nes i
TONELY 1T 0 End ot trancter talerryrl nol delecled *),
Tl 190 £nd ot trancter 1nlerrurl delected)

18 1- ahonidata trancter lest

T te a0l gty transfer Les) *»

"o (S 2% AD Converler Test Deserielion

01T)y Twelve b1t A/D converter outrul will be disrlaved on");

"y015 1z cereen 10 both binary and decimal ‘.

M4 L2 Frasrammable D1s1tal Shidt Carcuitry Test Desorartyon ™3,

“soole 1610 Oytrul of prosrasmable digital shifl ctreuiley will be diselaved®);
"NMT 13 oan screen tr bolh binary and decimal. *),

ST fe oy Fynelion toand 2 tines will eler Uhroush all possible®):

i L combinations)
Ouli e Number ot bils displared are related as follows "),

- 85 -

"
4
3
1
char ATLUSTIRIRS B SUN I TR TR TS SAR
thar AR R T P B I LA
= ~har LU o oty
chan LTS R B s
char (TN BRLCU N LU (¥
= “har dmall? toege 5O (MA Ukannel Test Deccrietion),
ha A (! ST ey NOTE - WA MAINTENAMCE CABLE W0ST BE IN PLACE BEFORE®),
rhat Ama ot} et FFETOEMMG, TR, TEST T,
1 - <hay imadt 3 TN 10, Var s 4 skl ot A operation ate leiled and resulls”;, o)
H char Mmanil . b b displaved teo wach seperate test).
char dmai{) ADLLG L4, AfLer talling &) Power down .
=~ char dma7f} v 0011S e bY Connect DMA mainlenance cable "3,
char dmasi) LA 3 or Restard sroaram 4k bestomng ..
char ramet(l “VIES 29 PAR [ntesrsty Test Deserartion *3, 4
' ~ char ramnli} SehlT g 1 ROR runclion ot each word of RAM 15 lesled '},
char ramnit} Svnns by oo Reuline halls when error 15 delecled and diselavs locatien®l,
~har ramindi} T 15, Tin aclgl) where error oCcured I,
= char raminS{) et e, T The accumslated error count is diselarved 1n decimal when'},
char ramnl] "] L the Tesh 1s terminaled M}
) rhar rroml () LIS IS M Check<um Test Deseription:).
} = char erom2() ST 10, 1) PROM checksums are compuled and disrlaved tor bolh®,
Y char prom3l ! P0M2 13, the lower and uprer 4K words of PROM "3,
char eromdl) SOl 1 2Y Comparason 1s Lhen made wilh expecled checksums “3,
~ char seri(} “\O014 19.Ger1al Interface/Terminal Test Descrirtion *),
char cor M} mHta 101t Standard 4024 terminal lest 1: ereculed Foutine walls*),
char cerdf) DOCLT 12 tor RETIRN betore rraceedine i,
~ char serd(: it o 5 Mantler and serial interface are lesled by diselaving“},
char sor&l! “tio 1) continuousty chanaing pallern of ascit characlers),
~har surif} Tl L4MTE ~ S terminate this cement of test),
- ohar tor?l} “00 14 b0 D) Workspace and seryal interface are Lested br diselaving™},
. ~har ~eraf) LS s continuously chanaing rallern of asclr characters Diselav™>,
char ser@f) S0tle 1 wall stee scrsliing when internal memory of 4024 15 full *),
. - char sorlal] SULLE [NOTE - \O0Sterminite test *),
i har hittstrl men b ir1d 13,1\005er0ceed or anv other kev Lo skir Lest \004"},
‘ ehar vumi) thgm tY,
: - char Mear (2 " No error detecled 10 "),
‘, char Errl) " Error delecled 1n “3,
; char hithitl} “imore h, 'r1g 13,0005halt or anv other kev Lo skip lest \0OA"):
| = char hitrerl] “0014 25, \W(Srereal test ",
' char hrtzar (] NG 1D Brestart conputations),
. har hitetl] "Mt RETIRNS Le ",
4 4 Iprer 1° 4 dummc arry- uzed Lo ensure PROM checksums are stored 1n
‘ the corract locaticns 4°
' 101 HIr e 00000 0,0 0,0.0,0,0,0,0,0, 0
. 00, 8,9,0.0,9,000.0,0, 00, 3, 9,9,
s D0 0,0, 000,0,0,0,0.0,0,0,0,0, 0
000,00 0,0,0.0,0.0,0,0,0,0,0,
N AN 0.0,0,0,0,0,0,0,0.0,0, 0,
' - 00,0 0,0,0,0,0,0.0,0,0,0,0,0,0,
' a0 e, 00,0, 0,0, 0,40,0,0, 4,
0,00 000,0,0,0,0:0,0,
' b A G, 0,0,0,0,0,0,0,0,0,8,9.
000,00 000, 00
v -~ /8 UYSML and CVSMD contatn Lhe cowrecl checkcums for Lhe Lower
and yerer & words af PROM receestiosly af
! - 1l rES] wneg2d,
1
.: - 86 -
!
I'
‘
[}
4
o

Crem2 V174240,

it

o - e — emin

-—— s e

——— I At AP g - ot
»

- B7 -

A T ————- -
- e e @ -

iﬂo‘.nll

243

A34ERRFVERERRHFRR AR H R IR R AL 4 R0 F R H 4 HEA F AR SRR R PR AR RSO0
+*3 +*
+ [RCED INTRUSION DETECTOR ALARM - "
++ This 1€ the Lermiral handling rouline tor the (RCCO 10trusiones
#+ delector alarm Tha Daci~ ehilosorhy for [/0 1n this srosras
15 Wt data Lo and from the terminal will be senl under "
4 proarim control versys Pe:ns tnlerrurt driven This allows ##
Lhe compolatyoral royline o have coarlele conlrol of the ®
+# procesior wheneer 11 needs 11, thus forcing lermrnal tandlinged
4+ funclions To be performad only when nothins is beins done
#4 Also contazned in this ceclron of code are Self-diasnoslic ¥
 roulines 1o aid 1n Wrouble-shooling the detector shoyld the ¢
. need ever arise Lol
+H *8
AHEEREF RS ER R 54 AR AR R A AR R R R E R RS D RN R R R AR RS A S
*i

'+ 1nelude uariable definttian: t1le for yse 1n commritng #/
#include “deferrced h*

¢ MAIN - royline Lo controi tasic Frodram tiow
The 1s Lhe section of code thal conlrels all lerminal handling
functions Characler dala 13 read from or writlen to the
Tekirontvs AD24 terpinal uyrder contral ot Whi: royline

Py

M\"” *

¢ toamibalizatior roulyee 8

FEIASTY RN

tart

4 lesh tar 1acmnd chara te il serial antertare #

peestinzlathzdt jote eryte

4 vt o haryeter fram butdor ard tabe aseraeryale attien Lz

MBLIN

vostyet,

r1te

ttet s Whera {7 spc it e wrtte oyl to the UL L4
tefbaptil Tz pietal] 00 pfel:l 3= beptold) anta slart,
oAt chargctors Ta e e

FLEN

P PN |

2ITYRY - acemine charater handlina reytire
Thi eootiec fake: A3ta thal Pas besr read from the
Tarmingl gnd calls ragtirec mhich 14 Lyen decode Lhi:
1la 1rTh commands wr parameler values ag necressary
Add1l1ang]l raytine: are Lhen cailed which take the
arerarriate action Ly sancice these compards

&/

tani) <

ohar 0. ¢4,

1ot 1

- 88 -

_—

e e

g

- -

S=TTIRE ‘4 cel pogaler U serjai intertace input butffer #/
o= ¢ ! 0177 re removd any farity bils from tncomins characler ¢/
e == 01001« 14 delets line ‘R ctri-<ior 3l itne kevs) &

FUlllsl(homer, 8 poilllon curzor. ¥

rutltsiblank), /% clagr line on screen »f

Lhrent=0; 7+ resel huffer counl la v #/

Llieteth=tlibuf, /& resal painlar L2 besinmins of itnput butfer &/

reoturn,
AY
1¥0e 3= 4% 1 /e gelete haracler (B clrl-h or del char kevs) &/
[TRRATT S AN /o mare syre nol al start of line ¥/
thient-- /¢ decrement, 1nrut bufter counler 4/
Pullly] (bkse). /% eyl dyckseace on oulprul slack #/
==thirtri /8 pooe parnter Lo 1neul buffer back one char #/
2
return
[SEEERL I & L 7% chank pr char ps el CK Leol: #/
1fLenl =3 return, c# checr 18 1aeul byffer 15 ull &
LIASY ST e St /¢ £yl char in buffer and increment pornler ¢/
[AATELRSH 7% tncrement 1neul butter counler &/
haldemar{o}=e. 44 pul char o an Leme locatyon to allow placement on stack #/
hold:har(41=0, ‘4 349 an el ohar &
polltylihnldehar'. /¢ pul char on oulrul stack &
ralurn,
A
LIAASYILEY LT ‘& eyt last char of line 18 1nrul butfer #/
titrnt=n, 74 sel inpyl butfer counl Dack Lo 2ero &/

Fulllrlior]f). /% oyl CR an outryl stack &
sendtt, i omply oulrul buffers hefore execullny command +/
‘¢ parce and decods command line »
rarse! }.
commandsdecafer), '+ command cenlasns decoded command number #/
1fteommand==0 1 o deomnd'=% L /2 1palld command, rarameler, or combinatiomd/
bite (), 1% pul error message on outrul slack ¢
sutttvltdierl) /% Ful ~etresh message on screen ¥
pulllclfhome). % reruilllon curser 4/

5

1ticommand==0 &0 o foamad==v: /& check ar itsalig deature selection &

bl f(hlnk). 4 clear bollom of <oreen ¢
eyltiel(dater) PN uR RPTOr MesSdlde o

et disi 2l ‘4 P L lines @

(IR ER TSR 7% rosvazh whLCR teature line ¥/

A onoM tegech Ta e sper cammar 3 e aculyan rouline #
iy bt s ommand:

PRCIH T R S e 11t raziible walues of D parameter ¢/

wrogk,

cate Doenlustoy /% 11t sesaable waluas or N parameler #/
tregk.

s35¢ 3 eelpstiy, ‘#1121 pagctble walues ot F rarameler &/
break

case 4 qlistoy ‘* 1eh resiible waluer ot 4 rarameler ¥/
hreah.

case 3 nlpetin. /8 13-t eossible values ot n rarameler #/
break

case & tiyan s Lt eocsible values 9 L parameler #/
break.

rase 7 ellpster, ‘o L1t passible valuer ot L2 rarameler #/

-89 -

e ———

———————— -

v

LYY SO

‘_‘ _.-.--‘ ——

-

dregh,

case 8 cllhisto), /¢ 11ct poscible valyes ot C1 rarameler &/
real,

cafe 9 addfeatl), /o putour 115t of addilional features &/
brexk

4 16 valid conmand betore 30 So rentine which services that command &/
rase 10 switch(oldcomnd) -

case | ddoma J% 30 1o ehange D rarameler &/
break.
case roanEr e /+ 3w 1o change N paraneler ¥/
treak,
ate 3 opegretd ‘4 20 Lo change P parameler #/
treak,
caie b gmore s a0 Lo cnat e d pargmeler 40
[TUH
SR T NIh o w an g s o osarareler &
W ogal
Lagy & oo 1 Lkt T oegrgeeler ¢
(S
e Tl ‘a3 change (2 rarameler 4/
break
AR B A ‘& 3+ Lo change U} parameter +/
break
a2 9 larel). e a0 la payline which ceropces addilional fealures list &/
break,
case 10 bdsfh. ‘4 pul up error message ¥/
rutitritdisels,
puttlilthome?
break;
\
break;
case 11 1ffaldeom 4==10) % check 1§ jine anlv consisted of (R &/
‘o eut yp additiona! tealures st LY
addseat ().
)
L
16 eldcomnd==41 £ /¢ pul ur 1mlia) parameler display #/
euldsel- o
R
else {
bz b A4 ent b error messade ¢
Pyl Lylidierl
eyt byl heme
aldcoamni=]
hragh.
‘#yocel papnters e +

Thetrpreztithye

caturr

SORRE - e iTine e ocae 01 ommand d1ne.
slae emmand ree il oo arrg “ilrpne”

- B0 -

® -

PIRUSEIE i iy

-

Y

ISANEH

PTG ERA Y TS /% zel poinler Lo bestnnins of butfer &/
teietlyetyab==019) < /% chack for CR &/
sstrina(0)z #liptrab, 1% pyl char 1nlo array ¥/
+istrinsl0]+])=0. /% 344 eol char &/
return;

For(#LL1etrob =2 G4 LUptrobee) /% ckip sraces #/
HieLleetrob == 015) retorn. /# check for (R 4/
torts=0. T#ll1plrob 1= 040) &4 (#thielrod 'z 015)iive) (

LFE2%0 429, /% 4 eoinls Lo each elenent in array &/
s slrans{01e))= Mlirtrobes, '* pul chars inlo array ¥/

*(stranaf0]e)=0 /% add eol char #/
retura,

% TECODE - command decodin? royline Relurns command number
0 1f 1llesald
Places command arsumenls 1n erorer localions tor use
by comeand servicing rouline:

*f
derade()
o kem

k=0 ‘% k 15 Lhe relurnad command number &,
Foriaz W17 ee)

{410 ng[0)== #cmds{]}~ ‘# cherd which command by comearins Lo list #/
k=emdnn{ 1] 74 sel b Lo command number #/
=13
)
I o AN /% check 14 01 or {2 command +/
100 steinal0)4t)== #eemds(TIe1)) k=3, /¢ check 14 L2 #/
else 1f(#istrinalicl+1r== w2 omdsléIe))) k=7 s# check 1t C1 &/
else b=n /v sel b Lo error value ¥/
)
(k=i £

4 shecy 15 1neyl sleina 1: numerye dala #/
1E{(actrinal0] b= 060 Y& ¢ztrinel0) 7= 071 11 #strinal0)==094) k=10,

/% Jecode numeric clring 1n approprizle mannner +/

tHik==1dn
p=aselont), /% "agelon” relurns manlissa 10 "dalares” #/
1f{m==1) k=0, /¢ m 1ndicales whelher or not there was an error in conversion &/

s

tfioldcomnd==9 &% k'=10) =0, /% zel error 1f ncl numeric when exeecling #/

1teesteyng(a] == 015) k=11, % theck 16 command 15 LR only (lo lossle diselar, ele.)&/
returnik);

< QTN - rouline tor cofioesling fmerie ascil steings 1alo
areraprialely formalled binary numbers

%

asetoni ¥

- Bil -

—

-

-

S R Bane e e ———- s 234V

<«

1ot 1o komom, d¥ls, erfla lin

1L eac powr . Carry,

LETANN

friwzertle=t. /% ymlialize some 1nlernal flass &

=0, /% inptialize nueber of 1nteser and fraclional rlaces &/

¢ dqalermine Lhe nmber of jrlezer places (n! and the aumber
of decimal tlaces (w ¢

fonfazld w2 44 trinal0)e 1 seer € /% 30 Ull end 2t fine &/
PHEC 08 B 4] 92200 nee 7% counl nuaber of decisal places before decimal roint #/
1iideleszy) mae, 18 counl fractional elaces &/
160080 &% ¢02056) i 1e00T1 1 1ez=036 &k dfls==1)) erflse=l, /# check for error #/
1£(0==036) dfle=l: /¢ check for decimal points #/

11002 m=3. /¢ allow for rounding of +1oating sotnt numbers #/

téioldeoand* =4 &% m20) m=l. /% allow for rounding of fleating pornt values Lo 1nlesers #/
12 1) foldeomnd'=d & m () { 7% round of floating poinl eplries &/

sHistrinal01{nen]d=045) £
/# round m Jecimal rlaces Lo lwo rlaces +/

arry=t
Sort rzmef, carey =0 B 00 ==y L /% g0 Lil) carrr nol equal Lo zero ¥/
strinsl01nes]=¢ carrr, /% add 1n carrv from previous place #/

LFlstranal0)(n+ 410071 strinal010n+ 112040, /* wrap around after carty 1f arerorriate &/
else carry=Q;
3
forts=n=1. carry'=0 ¥ 1020, 0-=) { /% round 1ntzaer parl ¥/
sUringl01L 1)=+ carry.
1f1stringl0, 171 steanal03D 112050,
else carrv=0;

>

téicaeey==1) £ 7 gdd Laading 1 at cares oul of last elage &/

strinsl01{91=06].
for =1, Zzp#?, e+ stenal0)0 - J=0se % sel remaining rlaces Lo 2eroe #/
strana{03{ne 1205 ‘+ add dtenimal Fornd %
e,
3
»
N
12 /# round 1o inteaar cajues when nol chanarna 4 rarameler ¢/

srinal0]10n)=0%.

TR TSRS TR AT N PR IO ISR LT TN

LN #ozat Lo lodvactiong) Flaver 8
LHeabEY pzd /% trgncata 1 T peteasr elaas 4/
téealdeomnd? =4 tim=n. (@ chotk if aat chanaing 4 earameler {only have n inleder places) ¥/
slze Lim=néme] /8 cat tatg] romber of elaces for chanding 4 value #/
torfazl lym 44) datstrnal o J=ste1nal030s0, /# copy string into buffer for diselaving on screen &/
flelrn2l)]=0. 4 add eol char #/
tHiarfl==h) relurni 1), /% sel error flag &/
‘& conuerh pateser parl of data from asert o binary ¥/
datarea=ii
‘% 34¢ 1n weighled value of each d1arl &/
for 120010, 1440 dalares=dalaread!Ne(#(strinafQ)+)-000",
e convert fractional data ¥
tfioldeomndi=d" retirn(On
elge {
fracsth
fort1=0. 1m, 144
7% 344 10 moyghted value of +rartional dints 4+
frac=fracelietecstrinal0)4ns 41 1-060",
frac=e 10,

- B2 -

P .

e e AN Ean o ——————

- d

Fowr-=1000.
tarl1=0
tracstras -l

w1 {

1¥{fracrzeomr) < ‘4 chack which bits Lo sel tn dalares #/
4 sel these oils &/

datares=tdatarea’ !t o
frac=— powr;
slge datares=datarae’ 1.
)

datareat+. /4 ragnd att fractional bit:

datares=datarvw il

‘4 don % sel b1t in dalares &/

& fatarea 17 1n braary Yormal dddddddid ddddddd when decoding
9 radues and 15 3 normal 1nleser for all other raramelers #/

vaturei,

o JEND - itine vae Zangina charadlers Lo lereinal via
roclas cateyt agege Cagtitackd “butelin® and "hefplout”
are the tneyl and outeut eoanlers Lo this quene .
Tur agans: are attuell: wretona far informalion drom Lhe
yier contralled funelisns and ore for 1nformalion from
tha talerryr) controlled tunctions

+
sepdi} £

inhoentret o bobrtecnt ¥stacket,
char o, #d, #eptin. #4e oyl

4=TTORLF,
Liostat=TrvIITaT.
foriysly ==} £
ICARES L r4 detormine which stack 15 berna senl oyl #/
plagl=biptoll /¢ el wyteul petnler Lo anlerrupl slack ¥/
FLIn=birlr2, 7+ 1 tneul pornter Lo anterrurd slack *

bylennt=bleptll

clackei=oulstk2, /% o2 trlerrupt aulrul quene ¢/

tast 1t

ael nert

itark emply

character

‘& sef outeul pointer lo user slack ¥/
ctipzbietit; & 2% 1npul rornter Lo user stack locatien #/
brlacntlzptentl. /¢ zel which byte ir slrins lo starl wilh &/

*/

sUostalus ot ready 01t on ser1al inlerface #/

*/

service tnterrurt stack */

N
elge €

plaul=tirloll

Sackrizoulshil, 2% uoe yser culrul Tmeud ¥/
H
onty =
shylefetyn t= ployglh ¢ 2]

whil»ie’tagtlat=0) A4

oz $iectayleh teenty. 4

IAREEI i*

V== eatesl. 23

slie 1cz=%9 A% enlri=z()

$d=¢.]

‘ zepd Mt ozome ngll: o 1ot term

sar s i, e
Tetellaztal =0y,

whilef#thnztat =

cheet far command characterl') . %

send onl
eateh uf

characler *

&

- B13 -

/% teteont tells which byte in ihe current ascly siring is beins senl lo tiy #/

|
|

— e

Bl I s e T s Re AT e

3
4

glse
FEREET) SN /e send oul 'ium © sesuence .. ¢/
Yo (120, <9, y44) ¢
+d=rumi),
while(#lLostali=0),
a7y,

}

phee=z0d) /% send ‘ No error detecled 1n * #/
torl =0, 22 e
#g=Noar(s],
whilet#tiostati =), .
[=UN
hY
ey ' zeng Error delecled 1n ' ¥/
ford =), 1719, 1es
s§=Err(1.
whilei#1losta" =0
Al
v:-l_l.
:\
1 ozsOdy '
Fop g0), e
#4znomel 1),
whilalellostat =0,

-

send “home sewyente %/

~zi, /% send nulj char +
3
11 az=ig) i
for (120, 1l 44 {
= mtrti},
whila(ettostat =0y

send "HIL FETURN “ seauence . &/

-

e=0),
i
LR kIANS % check for underscors reeedl &/
bz oa(aptlontetadhitaontys /€ check how man, ¥
vart a0, vy, veen
+4=0157,
«h’neullosh'..-‘-w

-n

4=r

Bytacntes 30 Lo neel omar 1a sleing &/

= sréptontan Lecnl)

P8 vhert tor end ot line char 4

ploagles,
st tacketedne plagt=stacket, ‘# wrar around circular ueue #/

A

X)

1fl== 4 rizat pointers *
betalizetoul.
bleatizh -tecnt,

. am —— ——

«

S = %A e e ———— e S kot an i nin o e

- - - -

- o«

else ¢
bretatlzetogls
drentizp Leenl.

f

ratyrn,

1

A PUTTTV] - rayline Lo rlace Localion of oulsoins ascay on
alegl 3uege list mo !
This 55 intormalion trom user controlled tuncliens
*
[UMATIRN T
il Dae,
et izloe ‘4 set eornter Lo star® of sirina #/
bretiles
Peeonset M aglelk1440)) bfplit=outztkl. /% check tor wrap around on aueue #/

s BUTTTVE - rogline £ elactes localion of aulaetna ascit trom

IpLerrupt cepulte rautine: an outeul sueve lish ne 2
.
LA A EO
1t Jeo.
epiptd={an ca st eapnter Toozlart ot Ilring ¢
[STARPLLIN

teeneelyl agtsthledney bepty —uulitkl, /4 cherk tar wraf around on dyeue ¥/

4 INITIAL - imitidinzatioe rogtine for JRUCD 1etrasion
telastor Called at Lurn or Uime and whep reuline 17
rastariad 3ater perdormirs drasnastie Lesls

.

HSRAEY ERI

JLIAR DT

2 Larn 1ol dnmmr.

‘4 dicatle snterysl: lemsarar il &

4=09R,

4=k D1774LT,

4=INTVEL.

% place ctarting address ot Jummy routine tn (MR pnlerryrt
veclor Lacalion ¢/

44 Lymm,,

#4=080),

H R

= 077400 ‘e cel OMA WIE fa 1ngtzal aiue 2% &
4=BAR,
4= vhutl. i¢ sel OMA BAF eatnling Lo cbutl tor 1l sackelss
2h1nastatzTIvsTAT, ¢ zet porrter Lo cwr1al uol o 1nful slalus brled

ol dromng=loe
aldpsap=n
flas=n
toaetritatiibuf,

-
)

Torarnter To 1nFul buster #-

- B'S -

- — « PR
S T .

e R ¢ Tt P s

-

R /N

-

Licge b ab=1 bty 7% et pornler 1o oulpyl butter ¢
ol e el byteer oAt tao &

4 ol sarnlue s Ly cartou otegl ageye, ¢/

[R TR

ety kagt
Spetall ety
e atds otk

fas"
L RLEMES!
SLoALfirtort e o4 el amitial char uals Lo O 4/ o
i% alga 1o tel] whan caiculalions should be disabled #/

Ao Aalrmen, ‘A tyen e gntible alarm tnitiaily #
belrs BAtah c4 caboerretee Lo ostart of lable used in comeulalions #/
aples Ay 4 cxt empnter 1 start o8 3 ceclor 4/
eont=0 4 cagpter (n Lell wkpch pir ot comrulatlions currently ond/ ‘
ryt=n
Teadzh @ col €1 +0 imliglt Lot
ML T
2ty e
B an 7% ynitial vulge of N oparameler ¢/
=il 4 vmtyal value of P orarameler ¢
trat nn=0 ‘4 ztart witk chufl for fir:t packel +

4 amlialite tek 4029 Lorminal *

Fullivliwerk), /4 Jofine mirkspace alc o
Fulilrittearn). /¥ sragram BT ¥ev Yo 3o sewence ¥
14 progean nartous erase char and eraze line kev: #/
PuLLLYL §9),

puttlvi(f10),

Fulilylictrhr.

PULLLY]! chm),

r# Test 1t TMA Lest cable 15 in flace #/

4=3R.

tmel= (~yeg 2 07000 08 ¥ 0k

gzt 0177741 4 et aynahion Lyne:r tauoe
4=i terl

(AT TS T XA TR A ‘# check 1t slalus = tunclion lines &

+ oyl yp rnt:tial droela .
troela

SR

[SIASS SR TR

b ot

alaret?

LE1AS 8 REAY. BN

et e amels ageqer o Lwgreal e

1
* col dubauid paramele cop ooz czed e ocaloulation: %

N R TN A Y
dataveasts

e Mol o 3w
d1tares
ALsirralh
Jatitrnall
fatelrna
anzpeld

REAUTDIIES JE V)

- 816 -

-

A - Bt

— e

T tar ety
1% bepate)=0gt.

Rt teas{l]=esd,
dat:traal2]
PRIPOL

4 pyalue = 12 &/
nired);

4 (2 value 3 430 &/
datareg=430
datsirnalt
datetrnail
Jat:trnalll

edwol),

sondtd. & oy yte out mpteul djenes ¢
1t atue = IR0 4

dataras=
dat:lena(o] .
dat-ienalld-oe s
fatelenall e

far et

andy
4t ealue TS/
datare
Aot afy Ty
R R IR
Pt

(RTINS VA B
€ sonmat ot 4 1S DRON DRADRST ¥
datareasildly,
BEAR NS 1T L 1

EABLOEFISRRLTH

palsivn,

LSERNE (L) '8 anable tntaenets trom (MO 4/

Y oan b .

re tall wath dor 3 baw piorececands lo ke fure 1nteryrl has tl &
s cal alarm Jtzable count #-

algrzab=hianapraps! /% 1h1c chonld do 1l +/
A1 01

"% rarze tanelion Yhree line ®/

s4=| O1h.

return,

4 OOLIZT - eagtime 4o lest "0 valuer #
ddtrstin

beet).

[SIAAAIRL T AR

aldcomad={

¢ NNLIZT - rayline Lo L1sl "N calyes &
antastes o

- B17 -

PO

«

- -
e A ————. 4 e’ AR B . e e ¢ s =1 A o~

-— —

«n—,w—‘

—

hosts

suellliloan] o0y,
sl icomng=sl

o4 PPLEST - rouipne Un 1ps) *S nalger 4
[SFATAN

LEEIRN

LIIAA NS T Y S AN
2deomng=,

Y

& DLIST - ragtane to izl o8 values W
st

© MLIST - »gline e 1rst "no nalyes A\
alystod

AR

B I?".’. 1'3!:“

14 aang=S.

ezt
hriiy,

[EAAAT IR AL

soootioa Too st My calyes *

cidcomndzt

Sowmader

S USRS avyee 1o skaase P paramelen *:
LR ST
B
+ cherk 14 g Lawed afue o4 Torarameler #/
thefalareaivie U gqtares'=s]
pdst 18 oyt yp errar messate ¥/
eultivligdlety,
reture,

% Lemporary- drgable caleulation routine: 4/
1ntfle=t

brad=datarea ‘4 col, new [valys &2

4 eyl asern strina of saramoter talue in butter

- BB -

sorfr20, galztens(al, 144) bradstrl1)=datstrnslal,

bradstria)=n.

atbksrarc2Sh b 2d, /% sel nuaber of lerms used 1n compuling backsround seal qus &/

thad=brad /1 /¢ 24D value ysed 1n calculation rouline #/

(% ol oumbar of shitls Lo drade by D &/

1f{b19d==14. dechft= -4,

else dshit=s -5

4 emable calrulation: ¢/ £
s intfle=n. &

' PUbLLyL 4dlas)
i IS ET RN /% send new valve of D to lerminal #/
! . - /% refrech botlow of soreen #f
' brelh
: RUAMSED I8 N
i - Teoand=10
1' . [1
- tesline to change NY parameler #/
-
\ '3 kel tar walid N orarameter values #-
! f 10 4alaree? 11 dataraaiddy ¢
~ Mz (), 74 Pyl up errar message On screen ¥/
[HIALR IO R 4N
i ratyrn,
-
<4 tome dycatla caleglalion rouline &
irfala=g.
- Manzdatares /¢ zel new rilye ot N &
4 faok gp s LINELND tn table &
san=netngan-i]
= Lhwazhio % rorumeule awe Lhrecheld tadble used 1n compulalions &/
for (120 datstrnalrd 1e4) branztrl1l=datzlrnalyl.
branstr(:)=
‘ ~ wrae=S12#t1an, /% vaiue Lo lell when vector holding past data 1s full #/
; pent=0; % counter 1o Lell mhich pLh of compulations on &/
{ rdtrsh=tbiansi i, 7% value ysed Lo a1d 1n rounding off oreration &/
, b veirs by, /% zel pornter Lo starl of » weclor #/
meir= /¢ set pointar Lo starl of m veclor &/
{ for (120, 1<(bLand8Y. 144) x(11=0, ¢ clear ¥ vector ¢/
: ~ for (1=0, 171024, 144) n{11=0, /% clear m veclor #/
i viner=0, /% clear poinler 1o elemen\ 1n vbuf ¢
! npshiondbror. /¢ compule NeF ¥/
~ aldisab=np. ‘& zot alarm drsatle counler &/

‘% enable comrytations &/
intela=l
e S4 cend mew eglne 1o 00y ¥

(1A LTI I
et tibrac-te,
=~ 4 padrgch 1o1tam of zoreen ¢
' besin
! RS IR TENN
- ~Armags i
' petipn
! A
- CUPRERY - ¢ gline ‘o change BT rargmeler 4
. ! Feepedd
” - HOANY
{ - 819 -
{ -

- -

v

4 cheek ¥ valid P orarameler ajue &/
thidataresdin U dataresrdSe

bel, o cend error messave Lo Lb e
rultiritertcld,
return,

'+ Lempararil. drsatle comeulitions &
1intfle=t
brae=datares /% el new rglne ok Poss
Fort1=0. 4a)shrnglt} 1440 breestrisl=datsirnel;).
braestrlal=n
‘s compyle how comenlalional 1oad should be divided
/4 enorm lells how many comrutalions will be done the first
n1-1 1leralions while plact lells how many will be done Lhe
n1th time nl may or mav nol he eaual to P derendins on the
cyrrent valye of P .
L 23
n1=broe-1.
pent=0;
snora=t (512/b19p) 41001,
Lenormzpnorm l;
plagl=25-cnorminl;
1Fiplast™?S) £ /% allow maxamum ot 25 comrutalions each lime ¢/
PRormEs,
tenorm=pnoreC.l,
rlazt=256-rnoraenl.
>
whiletplast =0t {
al—
e13:1225%4-rnorminl.

/% zel pointr Lo x veclor w:
SEEIE ARy tee) 1 ‘* clear x ceclor %/
LS ‘4 cal eapntwr Lo slard ot B veclor &/
‘8 olegr M overtor ¥

otz i ey mi)l

4 ocptoperntee To oztarting foacalion in bduy e

1aepzt

nezbyanedyac '# crppula flef o

atficat=nw cocal qlarm fiogbys Lo N#F e
st enable catoclatyon: #f

palal =i

& sond mow £ oqlye o 1L, 8

eotit freet .

ety ibeae -t

hostdo 13 vatragh batlem ~+ orean &
eytthpltdroels,

aldeomng=tn.

relyrn.

2 JERY - regbine Lo dhanse "4t earameler ¢
darerin 7

LV

'+ chack for ozlid 4 parapater ralyes ¥
1fidatares= b datar egp=nddnn o

bdctr, ‘4 zend eprov teszate ho LN 4/
oty oalatys
relyrs.

- B20 -

mizdatares ‘e et new alye of d rarameler 4
tor(130 datsiras(i].a+4) smd<'ri1l=datsirnaltl,
smdstrlyi=0i

thresht), /% compyla new thresheld table for use 1n compulationss,
/% send new 4 vajye Lo Uiy &

rutilyitdlac),

Fulltylesmdster),

best)

eyttt dierly.

Al fromnf=in

retarn

N

Te NRRY - v aqtine nochanas trt earameler ¥

poendd

HLANY

cooahe totar o3l norarameler vajues ¢

LF datare2 zh LY galarea’sY 1 datares'=1l 4L datares' =1 |1 datares(spl)

LL A ‘@ pylerror mazfige on Lly #/
putlt llalet),
relura.

‘4 Temeorarils d1gable compulalions &/

tnte]9=)

mp=datares ‘4 zel newt o afue ¥/

tart1=0 datstenaly), 1++) smnzirlil=datstrns{n],

eanstel-1=),

Mack=rCLTPIN (S-amn 2 F D % cal up agsk for come roulined/
14ialdrzabdsmn/ 3y aldrsab=cme ‘ ze\ alarm dizable #/
4 enahle comrytations #/

iatf] a=n

4 cond nem nocalye o LL 4

Pytihyinlan)

eyt lyl smpctyr.

bieiy,

Futliviidize2),

o deomnd=1en

aturm

{6,

s T3RY - rontine Lo change "1 parameler. +
tapel) 4

[IAS S

« check for ualid L rarameler values &
1rdataresismn 1 dataresls !} dalaresrlS) |

bz /% zend error messase Lo Lly #/
LUIARAS LR EL 2N
reture.

N

‘v zel nem 1 oalve e
wml=datares

torfr=0 dalstrnafi] 1#4) ambotrit)=datstrnaly).
metrly =0,

ocerd aew L oalyus Lo 4L e
ettty s tioe),

LUIARAY R 123 1ol

hesid

Lt

EER LR

- 821 -

—

- - -

relurn

e DR - poytine for chanalng LI paremeler. &/
slernt)

it

¢ cbeoh for valid £I rarameler valyas &/

per b taper =0V O 1y datars S
[N ¢ cend srrar mesiage o Ll e/
syttt 1iezla),
retuorn

+ col paw T2 paraveler vajus 4,
s2zHhlares.

etz qatetraa{il aes) 2ot Didadatstrnalnd
2t r2=0.

& tame drzable cempylation” ¢

ntetant

e compite muttipler of C0 tw uie tn slare Yime chanie:r &/
~2)=e2,

b= N -=) eed[1)zeeil10t)L

‘& enable comeutalions #/

1011 9=0.

'# cend new C2 vallue Lo thy &/
eytltyifeZlon!

pultlrlec2stir.
broly,

eyltivitdisedy,
ol dcomnd=10;
return,
N

/& L1GRY - routine tor chanairy "C1" rarameler #/
elarult

it 1

/& cherr 1§ valid (1 parametor ajue
tHodataredl=ila2e10001r 1) datares®) o

pdst, /% cend errar message Lo Llr ¢/
[ZIAARS LIS 44
raturn;

b

2 el new valya ot L1 Parameler e
stzditlares

dor . fgletrnaly! peer Liitou o datownsy,
R SRETH

% tomr dlsatle cemsyla, o 0

1atela=]

e ocomenite anltiple 0 sooctert Care Lime chamaer ¢
[T E

poarfyzy e o 103 1Tl

'e apatle cometaly oo
vatilez

1% zand mem V| calye to 1L s
LEMANS ERS O

eylthel -1t

Pige)

st ttelogroel?

At deamng=10,

return
\

- B22 -

- - .- -
S

i M

¢ LSRV - rontine Uy do “olher fealures” *
[
10t ¢ #d.
4=TTIBF.
m1lent datares) {
4 ochange slatys ort audible alarm #/
rate 1 andalresiquialras!)tol.
breab.
& 90 e renline which lesh: the A Lo D converler #¢
caze 2 aledtsroy,
relurn
‘& a0 Lo rogline which Lests Lhe srosrammable disital shifl Josic &/
2ace T opgstetin,

ratyrn.

o4 a0 Lo oroutine which dicpla-c Lhe DMA Lest tnslruclions o/

ase 4 dmatnciy, /4 put ur DMA test instruclions
whiletestinstali=0r cerdl), /o waph tor halt or ship leslds

ox 44 4 0177,
pete '= 015 addieal'). /& pul up addstronsl teat liste/
else haltl). 7% execyle hall instruction &/
relurs.
/4w To rogline which Lests RAM part of memory &:
r3ze S ramtsto),
return,
4 20 Loorogline which Leshs PROM pard of memor: #/
cate b opramtinl),
return,
¢ 33 1+ ragline which legts the iy and gerial intertace ¢
£ame T teratst(y,
~olyrn
o hast Lo the wimmal diselay #f
eutd-eted,

= ANDEEQT - rontige Leopnl ur decrlay of addiliomal features st
Thie 115t Lells the eperator which lesls he may or mdv nal
choace Lo perforn

e

adfregly ©

peltlel- d1srd)

sulfiyligaoeibe,

ealtiyliorlet

patthele chp).

% dacyde whather 1a pyt up audible alarm enable or disable &/

1 audalem==m eyttt inelar,

alza pyltlvl{lineth).

ettt oshie),

eylity]rlinel),

el tleltehte),

Fultivl- lined)

entitleltshie);

eutllvl lined).

ruttivleckier

(SIS R T LY TN

[AAA VSRR S

el llvislinek)

sulilelickie),

- B23 -

pulllil: Line?),

ettt skre!,

sylltrle 1ineR).

eqlilvliblak),

AR L Y)

(A ERFT.T 0

| ‘+ dram bov for larze) messages 4/

ilamal) t# 4111 ur tov wilh areropriale messade +/
o1 dcomnd=9.

4

4 PUTDEPY - roytine tor sulling 1n1t1a] parameter d1selay 1ist on the
corvar Thiz 15 Lhe disela Lhal 15 first zeen at lurn on Lime

o

eutgoeil)

Jr.rla.lt). ‘4 draw lahle 2t Lok ot screen ¢

zend), /4 smplc aulpyl queyes ¥/

¢ §111 1n various paramelar 3lyes #/

sytttvicddloc.

ruttlylibradeir:.

syltt-1:anlect,

rytitviibranstr.

cytitylrrplor?

sutttvlthiercip),

rullty] dlec).

sqltty)f smdstr)

culhivl onlec).

puttivlemnsir).

sulttyl Llec?,

syttt st

sl tivlialon).

et 1rodsle)

erllteoclloc,

eptttrleoletry,

< o1l! 1n botlom of sereer *

brein,

eyttivl digels

Maxid 4 draw bor tor larsel mescate; #/

alaral> & 6111 ue b with arerofriale messase &

“1dromndzli

4 DISPUATE - voatire o and Une PUTDSPY 1srlas roctine an
canstrygeting the 1ntlial g-elas TRis reutine actualls
Araw: Lhe rarametes Lable 4l Yh2 Lo of lhe 4024 3rzelas

o

d1selaviin:

eutllrliddil).

ruliivitadi).

rulltrlfddl),

rilliy 4014),

[UIAAREREI IR

sytitv]’ a4l6)

euttirl 4415,

LUMARIRR | 4

- B2h -

sulllv]l 445y
Falll, - 441102,
- ity ddls).
ALY | I3 IdN
Pulllel/ 4d15).
- eqhilel ddl1d).
sulltel 4015

N PutLlvl iddlt .
,i -~ et U011 4415)
i Pyttt gl
i LIAASERLIT LA
el zendt). 4 emrly oulryl aueyes ¢/
1] 1)

S+ ATODTET - rouline to tesh & Lo D converter
This routine Test: the A Ln D converter on Lhe cusiom 1nlerface

: board by loading samrles 1nlo memory via the DMA. The funclion
[- Lines of the DMA are sel o g to allow all 12 bils of Lthe A Lo D
% Lo be dicelaved [0 17 ascumed Uhal slart comvert and slart
! rackel syanals are beins aerlied o Lhe 1nlerface board These
‘ b allow clocking of Lhe flie-flops for Lhe funclion lines and provide
! cyele request rulses for Lne DMA.
*/
- atodtstey {
inl #b,
char o &4,
ht $=TTIBUF.
atodinsi), ‘& p9L up 1nstructions for A Lo I Lest . #/
‘& Wart for continue symbel treturn) or ckie test {anvthina elseld/
-~ whilel#slinetatl>=0) zend(), /% retresh tarael messase while vaiting o chare/

e= 44 4 M7 /3 remove sarity bile 1§ ans 4!
1hie '= 015) £ /% check 1t nat (R #/

- m——"—

. - addfeat(), /% pul ue additional fealures l1st 4/
returm
i Y
- ‘4 perform A Lo D test e
1. ‘& drsable 1nterurts */
i b= SR
K - #b=t 0177877,

'+ cel functicn limes to diselav all 12 brts of A/D.. ¥/
sh=l 0177771,
- ‘4 diselav A te D ouleut on :oreen 1p binary and decimal *
ruttlolo4dl1Y. /4 CIRCED fine al Lop of soreen 4/
palitrl adish). /4 test latel 4/
- egtihil Mtpre?),
el vl home!
/4 repeatedl: rall rouline which gels samele from A Lo D #/
Yoshit whrle'®301nslatio=t) atedl), /o warl for some kind of break ¢/

©z &4,
' /¢ Lerminale Lecl and regel prosram 4/
- 1nrtzalie. /# call 1nitralization roytine #/

)

——— o e A e ———

‘4 ATID - woutine Lo actuall read ang disefas samele trom A Lo D
- Thic routine 15 callaq tw “ath the A Lo D tect and the FDS tect

-

- B2S -

- -

S e e ——————— .+ P IO S
¢

. e Wi e

O —

-

R S S SO,

- -

N SR

- -

e e~ m—————

For the A Lo D test, the tunclion lines are sel lo diselay all
12 bits betore calling white for the the PDS test, the function
lineg are cyrled Lhrough Lhere various 3lues

"

atodt) ¢

char #b,

tol #d. 1, durrde chet

/s cel up DMA th load 1o | word trom anterface . &/

4=WCR;

+4=0177777,

G=BAR;

4= hatedhrt.

4= SR,

szl 01 /% WL ‘30 it A

1oif DMA done loadiea 1 word ¢/

whilet#p =t)
o0 dreelal Catedbyl on soeraen ¥4
‘4 comert word from binarv Lo ascll resresentalion of binary ¥/
4 onle 12 b1l of the 16 Mt word are displaved ¥/
shpét=gtodbrt.
aldbinl121=0,
forg=] 11020, 1)

atdbinl1l=tehfL b O1) + Gl

HITAS L TN
¥
* cagreert binary word 1o accit reeresentation of decimal ralue ¥/
atedecialodbr L. atdoctl),
/4 drselay bimary and decamal versions of word on screen ¥/
suttivlebinloc),
eltivlatdmse

AV EE T A BT
[ANSEART S LIgA

* 0 lear aulse? bytters +
Jepge

ST A0 e /e qala e qllw lLersioal svoe ¥/

"> ATODING - roatine Lo diselas 1nstruction frame €or A o D test
B brief desceiption of the A Lo D test 1e dizelased on Lhe
feraen

-

atedtpsrt £

syttiviioddll).

AT ERRLE AN

SN teated?y

LMAL AR LY cAN

EELARE KR RA A N

Yoeddo 7@ draw bov tor larae’ mescazes #/

alarm(}. 8 01l bar milh aeeropriale mescase #/

sendf), /& emety onlrul queyes #/
\

4 PRATST - rouline ta tesl the prasrammible diattal shaftl losic
Thic routina Lests Lhe PIE losic rircuitey by disrlaving 1ts
outryl on Lhe sereen wia a DMA Uanster The funellon lines

- B26 -

are ioled Uwoush Lhe vartoys possible combinations and Lhe
approeriatels shifled verzion of Lhe outpul of the A Lo D are
Alsetaved ~n Lhe sureen tn bolh binary and decimal This rouline
1s very samtlar Un Lhe A Lo D lest rouline excerl tor Lhe fealure
of cveling Lhroush Lhe function line values

*/

fdstster ¢

tnl #b, fin. 1.

char ¢ ¢4

=TTIRF.

sdsinst) s& pyt oup ed: 1nstruclions .. &/

/¢ wail for continye cymbol trelurn) or skip test (anvihing else) #/

while(®chipctlald=Q) zend), ‘% emply oulpul aueues Lo diselay larael &/

o= wd & 0177

ttee b= 045 £ 74 chesk 1¥ not (R #/
addfeatt), /% pul ue adoitional fealures list #/
ratuyrn.

/e pepsorm pd: test *

‘¢ drzabla interypls &

b="SR,

sh=t 0177677

/% sel tunclion lires tarlialiv Lo trey */

+1n=06.

= fin

1% label screen ¥/

pultlyl(ddll),

Pulllvi(pdsdist),

pulltvl!pdsdlsl .

rtttrithitret);

Fulllylfhomer.

1=,

¢ anitialize buffer used Lo dicrlay value of funclion lines on tiv#/
t11nas(11=¢11nes{21=¢11nes{2]=040;

tlinesl31=0;

testit atod(). 7 actually 90 U3 routine which displars ouleul of PDS +.
¢ figelay funclion lines &/

flipesfN)= (1fln & 02153114040,

flines(4)= ({fln & N4Y)1204Q6n,

pullivl!flnloc);

cutily) flanes),

144,

AR08 O s dela 1 chanaind ¥ lines ¥/

1=0.
flns+ 2 /4 change furvlion line: #/
tftelazg) #ln=; s chock Lo cee 1f valid combination &/

% zond oyt new funclion lires 7
b=t 0177771
=t Fin

pEastyeatal =0Y ante Lestal 7% 120k for break cranal ¥/
Y]

4 termpaate teshoand reset poasram */

BTN 4ot oaestalization rouline #/

' CO3ING - v yline o f1:cla PO
.

sioaatine L

Lot tnstryetlions
et oon of the tezt of

R CRELN B

- B27 -

At

the Prosramamtble 2191030 Sriel jodle circurtry,

' T4

dae ha o bar ey elooana Larael (9ta 40
Alart? /2§00 in b uith aprrosriate messqie ¢
sty i eqpt, ontrel quaye- &/

»OTSMTST - eiytire Lo fest the 4024 termina] and serial inlerface
This rontine tect- the 4024 Lerminal and serial tnterfaze Lo Lhe
POP 11-0% 1n Lhree stases (1) Bv performing Lhe :tandard 4024
terminal Lesl rouline (2) Br sendine a untaye character patlern
Lo the monitor area of the terminal ‘3) Br zendina a1 unjave
rharacter sallern Lo Lhe worksrace area of Lhe Lerainal

*

Leralst() {

Int, #d b

char ¢, #d,

$=TTIBUF,

Lermine(), /% eyl up lerminal lest instruclione &/

7+ wall tor conlinue symbol (return) or chkip tecl tams olher) &/
while(#stinstati=0) cendi). /% retresh Larzel me:zases whtle wailine ¢/
= w4 & 0177,

téte 1= 01S) ¢ /% check 1+ natl (R &/
addrealf . /2 pub ur additronal fealures 11st o/
return

e pertarm aclual 1ntslerm tozt: 4/

‘4 frsable interyels &/

+he

o tast Larmrnal with slandard 402474005 tec) &/
[T RR LI AN

sandd o & emety auleul ageyes 0 Legt 15 eveculed o
oot and mgt for o4 while e

Lo thn U5 bee) fart) g Newl peed,

rooanrter e boan £ charaster fine for rereatsd f15el3: on screen &/
L2g 3,
s =R qesy s

RIEET 2T AL A PSR E T

CIREINUTAR TS0 EAL AN 4024 command haracter (1) &/

RIABIARREIR A ent b Trre char
[CIAANS R X 3 LA

can gt s emet antant quone - 4

- 828 -

. -

«

A B Ek e e ———— - ¥+ s SV e . s e ps. 4 5 e

- -

e

s¢ gt tor proceed Lan, kevDoard enlry: #/

oriaele Tractat =i

- (d

8 411! manytar ccreen with € charaster lines #:

sutllritmkmon). /& mabe <ereen all monator srace #¢

while(#slinstat=0) { ‘« check ser1al inlertace status &/
Pty Liunkln), /4 eyt clrang on oulrul queye ¢/
sandi), /& emply oulrut aueuves so strins s diselaved &/
forth=0, bCN0: ke4) ¢ wg2l @ while so terminal can calch ur #/

ez 44,

7% 1111 work:irace with ©) characler lines. #/

eultlriimknor). /# mabe sereen all workspace (excerl last line) #/

while(®slinglat>=0) € /¢ check serial inlerface status &/
eutllc1Ciunkln). ¢ eyl steing on outpul queye ¥/
sendt), /% emply ouleul quens so slrina 1s displaved #/
For(h=, kSO0, k+4). /% warl a while for Llerminal %o calch up #/

.

c= i

‘¥ pogel rouline and retyrp +
imitial e, /¢ 30 Lo 1mtialization routine ¢/

N

+# TERMINS - rantline ¢#or fiselavang Lerm/interface lest inetruyctions.
A briet decoription of the 4028 Yermimal and ser1al 1nterface test
rouline 15 d1celaved on Lhe screen

*/

Terminsi) {

Fullicliddl)).

LAAAAARERT SR

Felitvliserd),

enlllv]iserdy.

enltlvliserd),

FulllvliserS).

AL L Sert).

ralttyliser?r,

FultLelfcer@),

Eultlvleserd)

Futtivlisertd

[ZIRASS RN FRARIAN

hovir. /e draw bex for largel info ¢/

alara() /% £111 bov wilh arpropriale messase &/

zand(}, 14 emply auleul egeyes &/

3

'+ FROMT:Y - ronline o ceritc PROM checksim:
Checksims are compuled tor all ot the lower
4 wmords ot PROM &94 most -} Lhe ureer & words o}
PROM The srorer value: ot bnth of these checksums are
“lored 1n o words 1 the ureer 4k ceclion These
two words are pol ysed 1n actually comeuling the checksums
tutl are onlv used for comearison parposes Actual and
avpaited «alues ot chechsom: are diselaved for bolh Lhe lower
and uerer & word ceclion:

*/

eromtetin ¢

- 829 -

-~

————

i ——

— - PUS « - -
B e AP B s e o b e A

i M TR

Lo

it #b,o evst, o ekslockilar sksler.
vhar -
4<TTIRUF
Frmipset. e eyl oye erom Lesl anstryclions ¢/
1¢ wit Vor continge hymbelfreturn) or end teslianvthing else} &/
whtle(#:11nsta17=0) send!) /% refrash larsel messages &/
oz ad & D177
e = 09 € /@ cheek 1t o} TR ¥/
aditeal!) 7% pyl ur addtlional fealures list &
relyrn.

& perdarm acrtugl tashs
there will te ane rhecksm for each 4k prom board

o
‘4 drsable unteryple 1Y
k= 3R,

2h-t (3177477,

4 label screen &/

entii g4,

sutltivl{ermdict),

[ADAMAREE S TRV

Pttt ermdisd),

sardi), ‘4 emrly ouleul ageyer &
' compyle aolual checksums &

beSTLA # zal potnter Lo address of start of lower &K &/
~hksmi=n, 78 claar checksum accumylator #/
whileth <= ENDLF¥ } chkeml=+ &bes, 4 comryte lower A4 checksum #/

‘4 b 1: now letl painting ab starl of ueeer 4k o

chksml 14 clear ueper & checksum accumnlalor #¢

while(h <= ENDUFK) chksml=+ sbes, /% compule urper AK checksus ¥/

/4 b1z now Farnting Lo lacation where tirst exrecled
checksum 1< La gpragn

+/

& 3ot onperlad checksyms trom focatiens in PROM &

*hee,

o cksl= ab,

s+ zel From error flaas .

rsler=0.

oheler=i,

* comrare aotusl wilh eveec’ed checksums #2

titehksml '= evekst) cksler=t.

1F(chksm? '= excksd) cksler=).

qrsela actiual and acrected checksums +/

4 capeert Lhoasast toclall @

ahaoclichksmt, k1),

atoactichtml ck2).

ataactlo-cksl. acckl:

Ataactioveksl oy ekdy,

el ctrnac pa oulpel auene #/

UARKREEI2 R AN

AR R I

Faltistradtlos

[EIARTS KRS I

LXNAARS R T NN

ANA ST RN FAR

EOARAS AR VAT TN

eutltylieveko.

4 J1srlay no error messade 1+ arprosrigle ¥

10 ackeler 22 0) 8% (ekeZer =2 01) pulltalipromok),

¢ JLsrla- error mescadec 14 error has been delected ¢/

G ke

- B30 -

e -

e A W e ————— S W B v L

-

Sy 2. o

Qe {

ftekcter = M pulllvitekerinl),
1ftcksor 1= 0) ruttivl(clerind),

el livithiteird,

pulllyls home).

send(), /& enely oulryl dueyes &

‘4 w31l for break A

whilel(¥s41ne1a0>=0),

= *4,

thilalet, /¢ an Lo 1mitialization routine #/

* PROMING - rouline for dizplaring PROM Lesl tnslructions
A beref desrrrplion of the PROM checksum lesl i5 disrlaved
an the sereen

*/

ermnst® ¢

Pyltlrliddiy

£SU0L 1 T proml Y.

aytityl/erom2)

satitel promd).

salLtvlpr o),

sullty i mttst),

taxé), 7% draw box for tarsel mecsases #/

alarmt), /% £1]11 b2 with appropriate meccage #/

cond(), f% emply oulpul aueues 2/

1
N

4 RAMTST - reatine o Lest RAM 1ntlearyty
Bach word of RAM 15 lecled for ils read/wrile carabililies
by wriling 2 untaue bit eaflern 1o and atlensting Lo read
the word back I+ an errer 15 delected, the routine slops
and diselays the lecation of the error tn oclal The yser
may then conlinue Uhe test or he may termirale 1t prematurely
wilh arproprigle kevboard entries Upon legving the lest routine.
the accumulated error count 15 diselaved on Lhe screen in
decimal Alternalelr. a no error messase 15 1sPlared 1 lhere
were ni R/ errors delectad durtng Lhe Lest

$.

ramtstey o

inl #hd koerfla erentl, erloc

rearster int erl.p2 v /e dosine [1-0% regizlers ¥/

char oo

$=TTIRF

raminst fe duielac RAM et aastrysticne &/

'Eowapl dar cuntipgetrelarn) r ckir Lesl fane alher key) &/

whilere:Lin:141720" zendt}, ‘4 resrech Lardel Meszase shile wailing &
(ST L R
[N b2 /8 cherk (b oot TR 4

Addioqtis & el oge adiitianal features fasl 8¢

reluyrn.

purorm gotig] Fam test s
'+ J1sable intergpl. &
h="SR:

- 831 -

e o

Apst AT
» et ogr intlial arselay headings W/
sutllivi 4411y,
Pulityl ramly,
cendt). ‘8 emprly outrul dueyss #/
ertloerenl=0, /& el srror §lag and error count Lo O &
ri= STRTRAM, /e load starling address of RAM 1n resisier &/
whilelr! <= ENDRAMY ¢ /# 90 U1l] end of RAM #/
r3=(52525. ¢ load in 0101010101010101 b1t pqtlern &/
r2= orl, % eyl localion in buffer . #/
iz r3, /% eyl bit patlern 1atc location @/
r3= el /¢ read location back in%o resister #/
ri= r2; ¢ restore localion ¥/
1F(r3 '= 092523) aoln error: /% check for error #/
r2= #rli /% eyl location 1n buffer &/
r3=0125252, /¢ sel up 1010101010101C10 eatlern #/
1= r3 /¢ 1nad pattern 1nte localion &/
r3= g, /4 read location back inte regyster ¢/
eriz p2; 7% pestore location #/
1itr? == 0125252 solo next. /% check if no error ¢/
/4 41eelay error 1nformation (location? &/
error erflest,
sponted 3 increnent error counl &/
erloc=ri: /% read error lecation back trom resmizler ¢/
/% converl error localion lo ascr toclal) #/
atonctierloc errlok)i
‘% pyl error location strins on oulrul queve #/
sulttvifraner),
puttivllerrlok);
rotiivitrtceh);
seng! v /% emply oulpul dueues 3o error messase 1s displaved #/
4 wail for continuelreturn) or Lest lermimate . #/
whilal#stinztat;=0),
oz #4 & 0177,
1iie =2 019 soto next, ‘& check 1f (R &
% cormerl and diselav the er-or count /decimal) &/
atodecterenl, errent),
14 eyl error count on eulpyl Jueye #/
eutttilirament),
eulllvi{errent),
send’). /% eaply outpul queues so error counl 1s displaved #/
Sart=), S bed forliz0, 1730000, 14415 /% delay 5o erron) may be seent/
wnttiadt). /% 90 Lo imtialization reutine &/
return.
ne t ~fé4, /% a0 Lo paxt word 1n RAM #/
]
‘4 qiselav end of testh mesriaer %
tflerent == 0) pulllyltnoram’ /% no error messagse 4/
‘4 comrerl and diselas Lotal error counl (decimal) #/
elce {
atodectercnt, erront):
eylityl/ramentt:
entticlierrint),
hY
[SIAMA T L TN
randi). c% empty oulrul Jyeyes co messates are senl Lo lerminal #/
‘4 wall for ane syabol Lo break &/
whijelestinglati =)y
T 4,
tartali), /% 90 Lo 1art1alizatlion rouline #/

- B32 -

}
;
:
!

4 RAMING ~ royline Lo diselar RAM Lest 1nslructions
vrief descrirlion of Lhe RAM Lesty is displaved on
the sereen

*/

rampst}

euttilyl!4dll).

suttty!iraminl).

syl iiviframinl).

rullivlframindy.

Fyttteliramind?,

sttt iramnS),

tirgminst.

mettw ! hetteny,

tavty, 1% draw box Yor lardel nessases ¥/

2larm! 1% £1]11 boy with arerorriale messase &/

cendtli 4 empty outleul dueyes ¢/

.

‘s LTODEL - routane Lo coneer L word Lo ascii representation of decimal value
This ~outina lakes 3 16 21U inleser binary word and converts it
1o an asc1l string which contatns the decimal rerresentation of
this word Leading zeroc are blanked and the strins is left
stifred

1Y

alndactoum, ace)

1nt

char ascl7

1nt 1, dide,

for (150,16, 144) ascl11=040; /¢ £1]11 string with blanks &/

ascls)=0. /% add eol char al end of string #/
4 check for nesative number &/
1f(numl0) €

num= -num, /% make posilive ¥/
ascl0l= 45, /% add nesalive sisn Lo strins #/

]
d:vi de=10000,
1=l
1% chect for largesl power of 10 which 15 less than num #/
white(dividednum) divides: 19,
whiletdiindesd) /% 30 Lil) ones place 1: converled ¥/
ascl1)=num/divide, /¢ rull off current decim] rPlace value #/
num=~ ascl118divide. /9 remove this rart from num &/
ase(1l=+ 060, 4 comvert number to ascii &/
144, /2 1ncrement decimal rlace counter ¢/
divides/ 10, /% so 10 nexl rower of len &/
?
1£(12=1) a<el1)=060, /% make sure al least on disil 15 diselaved when num=0 &/
}

/% ATELT - royline Lo convert word Lo ascii resresentation of octal wlve
This routine lakas & 16 Mt 1nteser dinary word and converls it Lo
a string of ascii characters which rerresent jts octal value
Leading 2eras are not dlanked. 1 e .6 disils are diselaved at all

-833-

[

i 1 e . v S

e

FE R .

Unes Numbers are considered Lo be Wo‘s cosrlinenl, however,
the routine 15 never called with nesative nuabers in this

rrowan,
Y]
atooctinum, asct
1ol numi
char ascl7); ¢
inl v
ascf61=0, /% add eol characler #/
forti=9 130, 1-~) { /% converl 3 d1911s \o ocla) #/
ascli)z(num & 07) + 040, /% mask off bits and comvert Lo ascri &/
nm=numd>3;i /% shift in next octal disit Lo 3 least sisnificant bitls #/
ascl1)=tnum & 01) + 080; /% mask off and convert last bit {sisn) &/

)

& ALARM -~ rouline 1o urdale <stalus box’ on screen
This routine displavs one of Uhree messages:
(1) Alars Disabled
12} Tarael Delected
(3) No Targel Detecled
The routine is only called 14 1L 1s delermined thal the box
needs changing or when lhe entire screen ts chansed Lo a new
frame 1n which case the old messase 15 rerealed
1%
alare)
switchtalafle) {
case O putlllv2(aldst); /# pul alarm disabled messise 1n oulrul aueue #/

break,

case 1 eyttle2(larsl); /# pul larsel detecled messase in ouleul sueve #/
break,

case 2 pyullty2inetarl); /% put o tarsel delecled messase in oulrul eueue &/
break.

[ROUT - rouline lo determine 1f largel messase needs yrdating
Thic roytine 15 called at the end of the comrulalrons and
determines 1f Lhe messase 1n Lhe stalus box is different from
Lhe ane al Lhe end of the erevious packel This saves Lime by
rol hauins Lo chanee Lhe ccreen every rackel The audible alare
15 sounded from Lhic rouline every lLime a larset 15 delecled
unlesc Lhe audalrm flas 1s set (from seleclion of fealure 1)

[24

sroudt) €

int 1,

yEaldisab)or { alefls=0, /% check if alarm is disabled #/
aldisab-~. /% gecremenl alarm disible counter ¥/

3

else 1F1ar = 0) almfle=l, /¢ sel flas to indicate tarsel detectled &/

else alofle=2, /% sel flas Lo 1ndicatle no larset detecled #/
/% send audible alarm 1f srover &/
1flalmfls==1 &k audilre==0) ryllly2(dell);
/% check 16 screen should be uedated ¥/
1fialnfl s*=oldalfe) (
oldalfs=ainfly; /% store new screen stalus for fulure use in urdaling &/

- B34 -

[————

-

- B . e —————— - TR o ot < o o

-

-~

okt AP A"

/¢ yrdale screen ..
alare()i /% this routine urdales the status box %/

/% HELP - routine Lo 1ndicale calculalions are lassins behind
This routine sends 4 messase to Lhe screen if the system 15
beins ryn faster ihan the compylations can keer ur wath The
surrose 15 Mastly Lo examine just how fasl one can rush the
comrutations Ertered from rlace in comrvlationa] routine
that checks 1f new set of calculalions are beins started
before the current set 1s done Routline should set lost
shortly after this messase 15 diselaved due to use of stack
1n comeutalions

1Y

helel) € -7

rutitv2ihelrtl); -

send(), /% emely oulrul ayeues #/

y
b

/% BOX - routine Lo draw slalus box in workspace
This routane constructs the box at the botlom of the
vorksrace area tht is used Lo hishlisht imrortant info
about the current slatus of the detector such as if
the alare is disabled or 1f a tarsetl has or hasn’t
been detecled

1%

box{)

Fulityl(boxt);

rattty]estar2l)i

euttty]fhox?),

s ztar2),

cut vl iboydr,

rulltvitstar)

putilylthovd);

rulliyidstar2y,

eyltiv!tborS).

subthht: -tar21),

.

13 MATST - routine to \est operation of DMA board
Thiz routine is used o enler an assembly lansuage
~aytine which actually does the testing of Lhe DMA
Thao are an seraratle leste which are rerformed
1q the airembly languase routine
.
dmatztiy €
har e 44,
AITIRF
Tagr dmatst). /¢ 30 Lo rouline which sels up for call to assembly code#/
whilef#stinstatd=0); ‘% wa1l for rereal characler &/
= 34,
3010 looe, /% g0 back and serform DMA Lest asain #/

- B35 -

VB - £ T - 2 s . s na e

/% DARTS - rouline Vo erevare for and call assembly lansuase DMA test rouline
This routine 1nitializes a fow flass which are used Lo interface
between the assemdly lansuase code and here and also rrovides
for the diselay of Lest results on the soreen The assembly lansuase .
roytine tests seven funclions of DMA oreration.
= (1) R/ of WCR
(2) R/ of BAR
(3} R/ of DBR
he ¢4} Funclionstatus lines
(3) Reseonse Lo bus INIT sismal B
(6) Generalion of interrurl resuest
17" Transfering of Al 1nto aemory
It 15 assumed that the user has inserted the DMA maintenance
cable between the tvo DMA rorls. This srovides the feedback belween
several lines INU is neccessary for srorer execulion of several
of the tests

1Y

e dmatst) ¢
1t #b,
't perform actual DA lest . &

- /% disable dmq 1nterurls. . &/

b=CSR;

b=k 0177677,

/% label scraen #/

rulttyitddil),

rulltyl (DMALL),

- rutttvithitrer);

sendt), /% emrly oulrul syeves &/

7 sel error flass Lo 0 These will be set to a 1 during Lhe

assembly lansuase test routine if an error 1s detectled ¥/

erCR=erBAR= & DBR= erRST=erFCT=0;

i), /% 30 Lo assembly lansuase DMWA test routine .. &/

/4 diseiay resulls &/

1 terdCRM) sylLlr] {WCRer), /¢ error 1n R/N of WCR ¥/

else rulllyvltnoMCR), /% no error 1n R/W of WCR ¢/

= 111 erBARYO) pyltly] (BARer), /% error in R/W of BAR ¢/
else putliv]inoBAR) /% no error 1n RN of BAR %/
1£{erDBRIO) sutilvl{DBRer); /% srror in R/W of DBR ¢/

- else putllyl(noDBR); /# no error tn R/M of DBR ¢/
1F1erRETHY) #yltlv](RSTer), /% 1mprover reseonse Lo INIT &/
else rulllrl{noRST), /¢ srover response to INIT o/

= 1E(erFCT0) syl Liri(FCTer). ¢ error 10 funclion-stalus lines 8/
else rutllvlinofCT), /¢ ac error in furclion-status lines ¢/
1 erINTM0) putiiv](INTery, /% no interrurl delected &/

~ elce ulll/i(noINTY. /% no interrurl detecled ¢/
161arTRD0) putttyl (TRNerY, ‘s orror 10 Al Uansfer &/
else pultlvi(neTRN): /¢ no error In Gt lransfer &/

send(). /% emply oulrul queues SO @ ror BESSASCS APPERr OR Screen #/
}

/% [MAINS - rouline o diselay DMA lest 1nstruclions
This routine disrlars a brief deserirtion of the DMA test
rouline and some 1nstructions on how Lo perform Lhe test
The execution of the DMA Lest resutres Lhe insertion of Lhe
DM maintenance cable

*

dminsi? {

- rullivi(déll),

- 536 -

e L ‘:_:.

e,

- - ——

O

rutllyl(dmat)s

rolttyl(om2).

rulllylidnald).

eutlivl(dmad).

rylityl’ @Y%),

rulllyltdmas),

rutllrltdme?),

rulltvi(dmad),

sutitvithithil),

bact), /% draw box for slatus messases &/
alaral). /% §111 bor with current status messase ¢/
rulllvithome). /& rerosalion cursor &/

sond), /v emply oulrul sueves ¥/
3

'# BSS - routine lo place “Type L to see list of . ‘ line on screen
Tms routine clears Lhe botlom of the screen (monitor) and sends
the Trre L Lo see 115\ of additiomal features ‘ line The main
rrrose of Lhis routine is lo save srom space by avoiding
rerealed cubrouiine calls when this function is needed
Three for the srice of one . .

LY

bsst) ¢

rutlltyl{blnk),

rylltyliseelst);

rutttvltsk2l),

}

% BOS - rouline lo elace ‘lrvalid rarameter or cosmand * line on screen
This roytine clears Lhe bottom of the screen (monilor) and sends
the 1nvalid earameler value line to the screen The reasoning
behind Lhis routine 1s idenlical to lhe BSS rouline - numely lo
save space 1n PROM

L2

bds() €

rultivl (blnk).

rulllyl(daterr),

ruttiviisk2l);

3

- B37 -

———

e e e -

_ _
T . e) A M B - et e+ — e o ———C—

—

- o -

ol Al e

L

N 2

T T T S T

7

*

#4 ASSEMBLY LANGUAGE ROUTINEZ -

4 This seclion of vode contains all assesblr Jansuaze routines
used 1n Lhe IRCCD 1atruysion deteclor qlarm promam These
1nclude

(1 07 runtime startof§ routines

#4 (2) Other routines that © calls

(31 Interurt service roulines

(4) Compytational routine Lo actually imelement 3liorithe
(3) DMA test routine

(6) Routine for comeuling (hreshold table

{7} Roytine Lo execule ‘HALT' instruction from L

*
+*

szt

#*t
L2}
L2

*
*
*
"
"
44
4
+
*»

Define 1nstructions that are normally nel tn the ascemtler: worabular«

Ly = 000002
nor = 000240
reset = 000005
alrs = 104404
halt = 000000

C runtime startoff roylines

Text

alabl «ennl
alebl emarn
slobl «end
alobl +edata
Aabl sctart

Iet start ot erosram Lo Mwww aclal

= N0
HETU T $400, r0 rselyp vactor ared with halts
elr -(r}
an e =(e}
1541 ro
bne 1b
LR $eedata 11 ‘elear beg area tumpmitialized data:
14 r{), $¢and
bes 3
clrd ir2e
br b

Sel Dlacy eayaler to hiak RAM

LEd $O[A0T78. e
LT e

Lo ey, -5
st trie

mor e 200y

-338-

j
!

«

- Bt > i o ¢+ 8 v M e e

-

¥

-

i P vMalN

cmF Lsp)s. Lsp)d
LI rin Usph

e pooebeenyl
vy extl

20 rearster save and restore -- version 12/74
©Called al enter Ln ang et trom U roulines

re)
ma
e
more
fove
L
i
[l 1

ral
"o rS.rl
ry! -tri).rd
mor -iri).e?
LLY ~tridoel
nou rS. cp
L1 lsrr+ 19
ris L2

Tetornel canegoa v qtyrag

Al eamdrs

alnbl «duae

e Lo Db como st ufLocoourared aloend ot dala packel
SUMe ragtire 1z et 0 e et L RS e Lhe DM

© heralding that 3 4atsy trariewr g bt miieled he uith 15 Lhen

s resel 1n anticieation of Lha reel rqbel ard Lne a: embls tanduage

¢ compulational routine 15 erterad Thi: eactane alse qelermine:

+ where the next packel of data 15 o be loaded. 1t Lhe comeulalions

f are setling tehind and calis the ' routine thal disela.s the
+ eroprer slalus message

[HILI RN

cendrl mow rQ. ~fop) ! save regicler)
o rl.-ter) fozave vesltier |

¢ Theck 1§ $ailing behind

ret, +flaa
bes seltla

¢ Pranl arrar mocgye
i £ oehele

selfla mo

LI

_839-

¢+ Tosale funclion 3 1ine Lo stor slarl convert pylses

£ $30, #8) 72414

Wk ©wall 4 whiie patore cwllching rr iine B
bis 410 44172418
- mov $17740 eg2} 7140 ‘loat wor renpster wilh ~)56

+ Set 90 MY ¥or naxt load

: -
! pre o S100 es172414 ‘
!

!

: - Datermine which buffar Lo 1224 nevt rackel 1nle

Y tst +hyfrum

e bne Tb¥2

Loadoea toare pala bhate

AE $t ~boprngn
1) . .
} move [S UTRIR L U RATIN /Toaig BAR
) ! - LD $evbyr] exete 0 cel pointer Lo oty but o
i b carl
t
‘l ~ Load re bopasbel tefe sougt
L r “hutnm
=~ o LI DTSSR LR b [NRPY I T
LLE $erbytl ~rlr aa3topopater Lo current tutrer
~ s iheck 1F comsntations b by be hirred due Looearatelor hanae
cmel 15t *1ntfle
l et ped orn
ine “aldrsat ©gr-abte alarm tor g leasl are packel
br noern
+ 131} computational reutine cruncr
[} ~ orn rer ee, borgpeh
' CRall U orentire whioh urdalat statys be- un tereen
-
aern e Fe. o erant
clr “flas ¢ clegr Flas uced in delarmenina b faleglatrons Ciow
-
! Restore rt and rd
’ - mon igE)e v}
! pan Tepde, rin
|
i rt1
v -
il
.
A
) - DUMMe - et et seterr el sumipca vuling
; FThs e a mwrtine Thal 1o ertered arl al Cestem tmbialization
- ¢ when the DMA tnlerruets 3o sinch anatled 31 That time, A inlerrys!

15 denerated by the DMA frirca 1t 13 tn vwady 3% bt tho
1nterruet does not stanal the end af 4 daly raciet Henie Lry
routine merly sels the inlerrypl vector poaalie Vo Lhe ENIR

routine and Lhus prevents enlerine the compulatian: betvc up

-~ = =

-

- BhO -

W TN B e —————— g
4

< W

3Mat dala rackel 1o pecepreed
shymm, mwe $eendrr #9014
Set 1mtial ralees o8 funslisn Jipe:

bie $6. #8172414
b1 elref #$172414
rt1

WD petresyoa [R2eotor Qlarm comeulational royline:
*CRUNCH - TRYCD tntrusion detoclor alarm compulaticnal »~untines
* This routine 15 Lhe heart ¥ Lhe deleclor [1 rersorm: all

+ compulatlions and decrsinns dirlated by the eriatna] alevwithe
/ The roytine 1s divided 1nte Uhree marn seclions

/(1) Compulalion of background spatial averige ang :mifratin:

¢ stare Lime changes

¢+ {2) Comeulation of backsround Lime averase

/ 13) Threshold comparison and targel - no targel decision

/ Throush oul Lhis routine Lhere are manr shranae {onbine

7 quanlities which were 1ntlialized elsewhere 1n some 7

routines. The purpose of lhese inlermediale variables 1s

/ to save Lime 1n this critical seclion of code These will

/7 be exrlained as ther are used

7 There qre several main vectors thal are refered to 1n the

/ compulational rouline These are

/(1) 'x* - this vector conlains the past N packels of dala

4 samples | PLh of these samples are urdaled each rleration
/ throush Lhe calcylations The wector 13 zel ur a7 a ciroular
/ queue of lensth 256#N where Lhe 1asl elsmenl 13 Lheyaht

/ of as being immediately followed by lhe firel This anables
! ane poinler to access bolh the lncatiens of the remes? wnlry
/ and the oldest entry “<plr’ 15 his poanter and i: left

4 entnting to the location or Lhe oldesl data samrle after each
!
7
i/
!

pas5s through the routine
(2} m - Lhis vector conlatns several different suantilies The
first 254 elements contain the low order ward of Lhe accumulated
double rrescision sum nf pasl fand currenl) dala cameles The
second 256 words contain Lhe backaraund Lime jeerage 'z divided
' wersion of the first 25 elemenls of 1 Tha third (5
! words contagn Lhe dectzion threshold carrazrendina 1o the
backaround Lime averase stored tn the secand 54 rords The
1asl 256 words contain Lhe hish order word of the acoumulated
double prescision sum of rast fand present) data sameles
This stranse struclure 1s eresent Lo allow for fastler
romrutations
(3} 3 = this 1s a vector o¥ 256 words Lhal contasns the rast
hrstory of threshold r1n}alions Each word corrresronds Lo
3 cell of the IRCCE arrav while varioy: bits corresrond tn
! the past history of threchald iolatians The :aviond bt of
each word reerecents Lhe threshold vialation intormalion
af the rurrent packel, the third bil correspongs 1+ ane raciel,
inte the pastl, the tourth bil corresronde to twn rachel: 1nle
the past ele This formal sreally simpltéiec the fywautenc {grael
dectsion process

- m m o~ o~ -

~ o~~~

- B4 -

abudl ecrunch

Levt
+erunch

(31

"o

r3 e

rS. ¢lme2

/ ocal] regisler sque rouline

/ save rS

Womeala bacl aonnd seqllat aarae

fontb)erg

L LY

13 pumber that srjal: Lhe numbar v dYerm 1 Vne
/ backeround zpralial averase.

nibksra

o

toe . 256 drepded o U

s Sal r) parpting Lo clart b tecomina dala bukter
soyplet was cel o ENDPY 1atesrgel corctrs vogtine

! thad

1o0ra

no

+velr.rl

15 eanal 1~ 13D ;
© address, 1t aust be multielred by Two Lo accountl dior me
/ brles to a word

mos
elr
cle
add
ade
add
sob

~lhad rd
r3

rl
(ri).r3
r2

rd.rl
r0, loora

S

7 oadd
/344
/ sel

e Doreoygsed 1o

samele 16lo accomylalor
carry Lo comFyle double rrazcifion sum
r1 Lo posnt 1o next DL wird
/ 90 back U111 all terme are 1n accumulator

/ Divide sum by D Lo Tomeule backsround spalial averase

7 Since all rossible D walues are eomerc of 2. divisicn 1- dane
/ by shifting the accumylaled double prascision sum - dshsl

/ Lells how many places Lo shift for the current I walue

ashe

edshil.r.

2

7 Round of f result after divide fehifl)

ad¢

]

£ Backaround sPatial o e
£ Cheth 18 should test $or tas Lime chamde

/ Stare time chanse shoyld oniv be shevied 1+ 1 ohanaw was
7 nol performed the previous lime fslal’ keers Lrals

¢ of Lthrs stalus

Lot
bea
ele
"

fc1al
ckst
efslat
date

3w

(I T]

/a0 Lo check tor stare Lime change

/ gn not check for ctare time chanje

/ Cheek for stare Lime chanse
1 Set r0 pointing Lo slart ot £2 value lahle

ckst

L [

$ecel.ri

/ Choose element, tn table corresponding Lo :lare time Thal was yn
/ yce when current dala packel was formed “oldired” conlain this
/ informalion

- Bh2 -

e e s s e

-. - - .
e s+ e e

— A O e

4dd “oldlref.rd

Chack sur Tare Lime gecreae

LU rYoem
ol stine

< Docrease shar e Time it rFac-inle
ef:1qt 0 ocel sla0 indicating tare Lime chanse

¢ Tast 1f <lare Lime fqr he derregced any fur ther

1333 ot
bee dle s 1f note do nel change
b 82 slres i (hanse tret tnel :ert oyl rel»

7 (30 Lo ~ode which sends oul new stars time 14 funclion itnes 12
" wdle
£ Check for slare Lime inereqie
tline me $erc] vt ©osel re porntina Lo clart of L1 Lhreshols table

/ Choose element which corracronds o tare Lime usod when ryrrreal
£ packel was foraed

add énldtret.ri
o r3. (PO} + check for tnereace
bet date

¢ Inereq-e slare Time 16 roccible

ine +f5tat 1 cel flay Lo gndicale clare Lime thande
e 86, ¢lrey Poehack 16 Ueaf’ ol mavimm alue
bea date ! de nol change 1f al maziaum

add $2, ¢+lraf / 1ncrease slare time

Send urdaled stare Lime Lo oulside world
¢ Set funclien | and 2 lines lo newly compyled wlue
¢ These lines are accessed »1a two bils 1n the (SR of Lhe DMA

urdile bic $5, 43172814
bis “lref, 48172414

! Urdate past hislory of slare Limes Musl keer lrack
/ wo packels into the past

date mo +lretal, ¢oldires
nov tlret. “lreinl

©Compylating of bach wound Lime averase

£ The compylations for the backaround Lime acerage are Jivided

< up so WhaL roushly § PLh of the comeutations are done each

2 \ime There are three raramelers comeuled tn £ which determine
/ exactly how these comrutalions are divided up Theze are

/ "enore’s “plast’s and ‘ol There are enorm calrulatione

-BI.}-

e

PRS- * SRS

- -- - -
e R B ————

-« o

I‘ - - .

coeervrormed nl -l pleralions and ‘rlash talculations rertormed
" the 1 teration There are ne calculalion; pertorned Lhe
4 last F- a1’ ateralions.

© Increment counler Lo keer trachk of which FLh ot cailiulatiens on

blave 1nc ercnl,

£ Chack o cen 1f wrap around on circular ueue ~lartne ral samdeie ajux

aov exele, rd)
syb []
car r0, 4wrar

b1t nowrar
" $ex, ¢ oply
nowirap Moy velr, rQ sel rQ pornting o clart ot current pachel,

/
add “yiner, r 7 increment Lo prorer Pth ot parkel
"oy xptr rl / sel rl pornling Lo srorer PLh of pasl samsjes
L 1Y artr.r / sel r pornting to prorer PLh of accum som
/Determine 1§ “nl’ P-Lh of backsround lime averase
AP “pcnl +nl
¢ G2 o section of code 'hat rerforms “plast’ calculations
beq last
+ Gn Lo section of cede thal performs no caleglations
bat chiklel
£ Go Lo seetion of code thal cordorms enorm caleulatinns
L1 nors
! Ferform last ceclion af sal ylaticns

el cayntor e plyct

v

lact L1ul wplact.r? 4

/ Subtract oldest pach samele from 4 summulated double sreserzisn oum

leore zub (1) (rd)
she 3000tr2) 7 make double erezcysion cublratlion

/ Replace past camrle 1n “x wilh current camrle
mos (rd) . irie
! Add corrent. amele tnlo acenmulated dogble erascicion tum

add (rd)+. ey
ade 200042} / make double prescizien sum

/ Move double eresersion sum tnto rd rS 10 preraralion for divside

noy 3000(r2). rd
no r2)e.rs

* Divide sum by N Lo 9ot backaround tLime averase

- Bk -

. ——

«

-

LW R B e —————— % P e

Zaed W

dir crign rd

£ Ragnd ot atbe grerde (edheir os sel an 0 ok
omF r%. erdl
bit aord
the r4 Copoung

£ Slore backeround Lime averade 1n serond 156 words of a
nord m rd, 7760r2)

7 The backaround Yime gwerase will now be uysed Lo look ue Lhe

/ areroeriale threshold 1o a ftable ('b%ab’) which 15 papntud to

S by bstr Ths table contalins threshald: corresronding Le

/ backeround lime averases of belween @ and 1023 This 17 alrisht
/ for the twe londest stare Lime~ bul when operaling al the twn

/1 shortest slare times the qlues may 90 a5 high as 4099 Thus. when
£ usind the two shortest stare times, Lhe theesholds are looked

£ up by first disndins the backoround Lime averase by tour. lookins
/ ur 1n Lhe table, and then multirlying this result by twe Thig

/ eroceedure works since Lhe thresholds are eropoartional Lo Lhe

! sauare rool of the backaround Lime querise

/ Check whether ysing one of lwe lonsest or twe shorlesd ctare limes

oar “oldlref, $23
bat nashfl 7 using one of two lonsest slare Limes

7 Using one of twe shorlest stare times AL this rornl the rezult

/ 15 only divided by lwo (inslead of &) since il will be used to

£ Yook up an element 1n 3 word lable (msust increment two btes for

/ each word) Thi: 1s eauivalent Lo lookina upr lhe vqlue corressanding
/ o Lhe backaround lime averade divided by four

asr ré

bie $1,rd 7 make zure euven address

add bstr.r4 7 sel rd rointing Lo correct element 1n taris
nov tr4),rS / move threshold into rd

asl rs / muttiely threshold by 2 !sinece dirded by 4 befms
mo rS, 1776(r2} ! move threshold tnte third 25 werds of m
b raleat /g0 back for nexl tleralion

7 Laak uyp threshald for lonsest twe stare Limes

noshtl asl r4 7 mylt b lwe Lo Make word address
add sbitr,rd + sel rd4 pointing lo profer element tn table
me (rd, 1776(r2y ' move threshold 1nty Lhtrd 1% elemenls of 'm
relral sob r looee ' 90 Mack for nerl 1tleratinn

/ Rezel poinlerc

Mo ri,+velr
A $em. “arlr
elr #ancr

¢t Cheek tf PLh ttorgtion

cehyl-l cms srenl, bt
bne dorqg 7w Ta dacygran rantine

- B4S -

m

S ol pint
N v etont
b decd
= P e cem snerm cesment of caloglalions
f Thare caleylatiens are essertially rdentical to Lheze it Lhe
7 rlast seclion of code The <ade 15 rerealed Ly increase spead ;
) = / For comments, see ‘plast’ seclion o)
+
) nore A senormr? S
{ ~ loord sub ey edy
‘ sbe 30a(e 2t
| [T rd), irf i+ .
{' ~ add (r0)+, (r2? 1
ade ELL T
ne W00ir2). rd
he L 1.0 (P4 rS
div +branrd
2 13 rS erdirsh
) ~ bit nornd
. 1ne rd
' nornd mov rd, 71btr2)
1 ~ car coldiref. 83
bst noshf2
‘ asr ré4
~ bie $1,rd4
add bstri rd
aw (r4), rS
~ asl rS
nov r5:1776(r2)
. br retral

noshf2 asl r4
add €bsir,rd
{ s trd) 1776000
retrnl sob r3: loosh

! Recel poynters

. meee rl explr
! [10 r mptr
i ~ add +hEnoem. éxiace
Toypen mgbye o welien e aegtylyons
¢ See comment: 4l Tart a6 camentityamal o Lirw cer delerpptyon
~ 2 of 2 veclor
g decd Mo $orrl
i - add 1090, 1} r1oFoIAL: Lo pasi eyt Lime 3oorgge
s nou “trr2 ©ord pornls Lo rureen’ Gamele cague
o $400,r3 / r3 15 counter Yo keer track of sralial lucalton
ol ~ (1Y $¢a,r4 / r4 pornts Lo ‘a2’ wector
i elr rs
no sp, ¢larl ¢ save slark pointer
" = clr *tar 7 clear larset flae
loord s rive, e 1 eyt backaround Lime averare Late rit
] sub (r214.00 ©osublract current cample oalye
H
{ - BY6 -

—— e gy

ST

- =

¢« Tgbe Lhe absoluls value ot ditterence

be: (%3

ne M

CIRped Bt ogR g Y make room tor curresl Lhrethold crclatien
1ntormalyon

LD LN ‘ri}

CTompare theechinlg with adrobute value of dittence of eyrrent sample
/ and backwoynd Lime @oraze

s 13 Thari)ro
bat nabr: 7 test it no threshold «nelatyon

+ Set second D1t Lo indicate threshold cuolation al curvenl time 1nstant
bis 2, trd)

¢ Mazk afd n o diided By 3 mosl recent threchald dectcyen:
f mazk’ 15 selan ‘" roulipe

nobrs e a5k 4
! Were BlItary inte o
ny rde e
* Mabe r cagnt Lo lozation 1n lable lad Lhal conlitn: 3 numper
/ whieh eagls the Lolal number of Lhreshold vinlalinns 1o Lhe

/ rast n divided br 3 most recenl packels

ad $etab 0
ane ird), -teoy fove Lhis number rn Lo stack

7 rS contains the sum of Lhe Lolal number of threshold vielations
/ 1n the past n drurded by 3 packels of Lhe W sraliqllv
/ srevious cells of the IRCCD array

ad4 tsp),rS / add violalions tn precenl spatial cell
Do not mike tarsel decision for first two cells

oar $376,r3
bl tnit

/ Compare L Lo Lhe sum of the number of threshold violalions 1n the
/ \ree spatially adoacent cells which have occured durine the last
1 0 divrded by 3 rackels

onre sl rd
bat tarsa / skip relling largel delecled tlaz
LLE $1, #tar / cel targel detected flas

/ Sublract number of threshald «rolations 1n the IRCCD cell
/ two Postlions amay from the current cell

fars cub AdisehrS
imt sob r3. leord foan Laonevt oyt ally adracend cell ap arras

- B4y -

"¢ het @ C o Thete
here mo “tmel. sp

L LY elae, rS

mr erel

'tlle
vastors itach sointer
Crectore rS

1 g0 Lo resrster restore routine

+ THRESH - routine for selling we threshold lable
* This routine -omrules the threchold Table thal te used 10 the

1
/
/
taple lookur tn a ‘C' routine
/
/ The 1terative rortion t5 used
7 lo the backaround lLime averase
slobl ¢thresh
lerl
tthresh sor rS esv
[TD 5 elne
LT $2000. 1S
clr rd
loor! mov $77775.r3
ash 4. rd
o $10,r2
loerZ mov r3.r0
aul r3.r0
sub rd,rd
die r3 el
e ro
asr ri)
sub 03
sob r. loor2
ash $-3rd

/ Now must multiely Lhree Leras

e rird
ayl “eap o
ashe $L,r0
mul «snd, rQ
ashe st r(
inc ro

asr rd

mov ebstr.rl
add rd,ri
asr rd4

ne ré

[1Y rd, tr1)
sab r9 Loort
ele «blab
no’ +iar3, rs
L4 cret

Larset caleulations The alaor . the for compuling Zaudre roote
15 3 Newlons method Lree scheme using 4 Ledrous fore ot
fixed point ar1theetic The taclor derendent on N was found by

tsan) The ¢ perameter 15 ascumed

Lo be 1n & napan nonanan binary formal (7 binary rlacest
Lo compule sarliq) where a corresronds

‘no of elements tn tabte

fr3 contalns instial sues: tor «
/r& contains shifted valye of a
‘set no. of 1leralions for N.R

rdirl containg x##2

'r0.rt containg fix)

/e contatns fix) over ¢ ()
‘round

fset b.p Lo match x

r3 contains new x value
rd containg 243

Logether to sel threshold

r0 now contains desired thresh

/sel address 1n lable
‘return a Lo normal

'pul entrr 1n lable

7 IMA = ragline Lo actyally partovm the Lo-t an the DMA board

/ This routine 1 entered from the '

roytine DMATE To-1 ragylts

/ are relurned U ‘T by selling error flass Thers are ruvar IMY

- 848 -

i

- -

.

N e

et e e i

¢ tynclions wheeh are tesled

CAly R-Woor WR

/40 R-W ot BAR

¢+ {3) R-W ~f DER

s (4 Reseinse Lo bas INIT spanal

¢ {51 Function=Status line¢

7 (6) End of tran:fer 1nterrur’ sorerafion
£ 17) Data transfer carabilityer

slobl «dma
tevy
“dma rer)
s $200,r4
L1134 ‘disable svelem interurl:

! Test r-w of warjous resslers

nov $172410, r0 'lvad WCR address
ne $52525.r1 /104d test patlern
mov el r0) /write les patlern inle WOR
nov (r0),r2 /read WR back

P rir2 fcheck 1f error

bea WCRok}

tne terbl(R /52l error flasg
WCRokl com rl Uy new ratlern

a0 r1 (r0) Jurite 1nto WCR

v (LN /read WCR back

cor ri.r2 /test 3f error

bes WCRok2

ine cerdR /sel error flay
WRok2 mou ri (r0) ‘lest BAR

no (r0),r2 /read back from BAR
bie $1.r2 /isnore first bit falwavs reads as a 1)
o rhr2 /lest 1f error

bey BARok1]
e cerBAR /<ot error flas
BARck] com rl try new D1t ratllern
o ri (r)) ferite 1nte BAR
(1Y (r}+. 02 ‘read from BAR
onr rlr2 /test 1f error
bes BARok2
e +erBAR /sel error flay
BARoL? bis st.rl ‘test DBR
toe rn /make ri pornt lo DBR
tne r
ne rl.(rQ} /write b1t pattern tnlo PBR
(1.8 tr0),r2 /redd b1l rallern from DBR 'y
L 4 162 /lesUat error
bee DBRok!
the cerDBR /5ol orror flag
DBRok! com rl Uy pew b1l ratlern
(LD rl. {r0) /wrile b1l patlern 1nto DBR
aov {r0),r2 /read b1t rallern back from DBR
e ri.r2 stest af error
beq DBRok2
tne ¢eorDBR /sel error flag
DBRok. wou $172410, r0 +lest if resel clears aperoeriate brls
elr ri

7 Sel all rassible bils 1n rarions resicler:

- Bhg -

.- ‘

e +1troye

T $-0 frve

" $ L ae

mer e $-1, pd

[18 $172410.r0) sebori parnling Lo WCR

recel /1scye recel command (byz INIT?
' 7 Tesl 14 sroper Dils dre cloared 1n vartoss reajstore
: *
t L L8 {(r0)¢, +esper #
‘ bre RSTer
: e ne Irh)4, #evpar
} nme $1. cexrec
‘] bne RSTer
’ = nov (r)+, +exeec

one $200. ~exrec

bne RSTer

e "ot {rd), vexpec
bea RSTok
RSTer 1nc «erRST /<ol error flag

t

¢ Test fynctron ~ status lines b sending oul all fessitle
+ combinations of function line 'alues and delermintng it
1 erorer values are read back by stalus lines,

f
RSTok mor $7000. «expac 'sel up expecled slalus line valyes
- [1.8 $16, 70 /sel inttial walye: of funclron lines
(1.0 $172414,r2 ‘sel r) to point to CR
FCY [1 r0, (r2) fsend oul funclion lipes
- (1.8 (r2), « et 'read (SR
b1 $170777. «tarl /mask of § slatu:r bite
> 13 +iapl. fexpec ‘Lest 1f error .
- bea FCTok
‘ ine ~afCT /sel error flas
} FCTok sub $1000, +expec
i = sob $2,

brl FCY /a0 Lo nevt sel of f line malyes

i ~ ¢ Test DM data lransfers and end ot load 1nterypis
: pev $-1000, 48172410 fsot ur WER
i - nor $evbutl, e81724L "set up BAR

¢ Pyl something interestine 1n vhufl

(1% $evbufl. r0

i (19 $400,r1
’ - load rlo(r¢
eir {re
) sob rl. lead
f - mo Sedmaint. #8124 /load 10, service address
! dr “flay
of
- £ Enable svstem interypls
. e rd
- [18
j‘ SHEoeapnt o oeoand e bl
’i - B850 -

. - -

o

LT ol e917:414
b Sdo0, 48172414 smyoeicle rer

/ Go 1nle war’ Inor

el i per
wle 1t sipe
bne watle

! Test how Lhin3s went
7 Check for 1nterurt

st “riae
bne INTob
mne e INT fietl error tlas
INTok me $exbutl, r0
a $400, r}
TRN [0 (rot+,r2
o v (rhe Lest 1f proper worg trancfersd inloe memar
bne TRNer
sob ri. TRN
br TRNok
TRMer tpe corTRN 5ot data Lransfer error flas
TRNck reset
ne crel

¢ DMAINT - 1nterryel cervice roultne gsed te cel flaz indizatine
/ 1aterrurl receiued during lesting of DMA board

9labl «dmaint

tevt
cdmalnt mov $1.¢flag sel flas
rty
©HALT = roglrne U be walledg tram v Lo execule @ halt

fanstrachion This 15 used La slor Lhe proceessor when 1% 1s
¢ destred to enler Lhe DMA 1ozt rouline The hall allows one
/ 1o 1nsert Lhe DA matntenance cable

shobl ehalt
text
halt halt

«

B s T B o e

- ;- -

© e a i —

2 Checksm Test Routine

loasy

loord
loorc

(Y8
no
or
H
no
Rt
(1.0
v
noud
add
ine
noud
add
1ne
<ab
audd
(1113

L KIN L1
$45000. 1
fr)rs

r Yool
$20000.r3
$45000, 2
$10,rt
$2000, rO
(r3),rd
c4, (p
r3
(r3).rd
4, 2r)
r

ro, loorc
$d.r2

‘clear checksum areas 1n RAM

‘load starl of PROM addre<:
"1cad start of chechsum 3ddress
/10ad number of ¥ word: counter
/lead nusber o+ bdrtes counler
/3¢t low order brle

‘comrule Low order checksum
790 Lo hish order dyle

/9ot hish order brte

termrule hish order chechsum
730 Lo next word

/move poinler Lo store ne: ' b checksums

- 852 -

e . ——

.

T e —— -
[Y U

- o -

bl b A G

4 -

0215501 BARoKI
0215661 BAROK2
0216124 DBRok1
0216301 DBRoK2
021752 FCY
0220021 FCTok
0221264 INTok
0577444 LI
0577704 L10
0222001 L10000
0576464 L10002
0576724 LI000A
0237021 L3003
0235721 110004
0201644 L10007
0241341 110008
0243321 L10009
0307744 110010
0314021 L1000}
032112¢ L10012
0323321 L10013
0323221 L10014
026361 L1001
033026t L10016
0333041 LIOMT
0577204 L10019
0577364 L10021
03777268 L1
577744 \12
0577766 112
0222120 1175
0226441 L179
022450t L180
0225741 L184
0225524 L18S
D26761 LIRE
0227041 L18°
0227124 LI%
0227200 LI
0227261 L1892
0227341 L193
022744 LI
00754 L195
0227641 L19%
V22T 10T
0577860 L2
0230241 L200
0222061 120001
0223441 L20003
0223741 L2000
0223341 L20006
0233541 L20008
0234728 L20010
024054 120012
0244000 L20014
0245324 L2001

0246621 L20018
0250064 L20020
0251348 L20022
025230t L20024
0253261 120026
(25A32L L20028
0253108 L20029
0260764 L20032
0261521 L0034
026226% 120036
0263021 L20038
0263561 120040
0264561 120042
0256001 L20045
0309621 L20047
0310561 L20049
0311721 120051
0312321 120053
0314441 L20055
0316161 120060
0316661 L20062
0314741 L20064
0317420 L20060
0321461 L20068
032374 L2KTO
0326724 L2072
03306t L20074
0331424 L2007
0333408 L 20078
0334201 L.20080
0336421 L2008
0340201 120083
035020 120083
0351501 L2087
035310 L2008
AL L2000
0356061 L200V3
0364158 LIS
0365241 120097
0365201 120099
0230341 L.201

035661 L2011
0372761 120103
0374401 L 20105
0374720 L20L07
040045¢ L20108
0402521 L20110
0408401 L20112
0436348 L2014
0410061 L20115
040400t L2017
0407524 L20118
0411361 120120
0412620 L2122
0413121 L20124
0415041 120126

0418421 120127
0423601 L20128
0424041 120129
0424301 £20130
0424541 120131
0425001 120132
0425241 120133
0425501 L2014
0230441 1202
020BAL 1203
0230641 1204
023074% 1205
0231041 1206
0231148 L207
0231244 L208
023134 L209
0231641 L210
0232141 L213
0233144 L217
0233200 L2119
0233381 1220
0234264 1222
0234361 1223
023402 1223
0235341 L23t
0236444 1233
0236101 1.234
0236401 L236
023710 1.238
0237421 L2260
0237608 L2202
Q200041 1243
0752121 L2&
0210 1287
0282101 1289
0241008 L230
02814 1250
V20T 12N
0242501 L2734
024270\ LSS
OZ8TEIL LIS
024516¢ L239
0245041, 1260
0245001 L261
024626% 1263
0246341 L2604
0286224 LS
0206181 L26b
0247021 L269
025048 1272
0250261 1273
0250701 1276
025110% L277
0291261 L278
0251561 1279
025216\ 1282

0252701 L283
0253141 L2%
0253748 L287
0755121 L292
025300t L293
0577504 L3

0266601 1300
0256401 L30)
0256701 L302
0266081 L303
025700% LX0S
0260621 L307
0257524 L308
026016% L314
0260501 L316
026512t L318
0261361 L319
0261101 L323
0262124 L1325
Q7616418 L329
0262661 L331
026240t L3335
0263421 L337
0263141 L34
0264161 L343
026370t L347
0264761 L3S0
0264641 L353
0766M0 L3S7
0267401 L3681
0270024 L343
0275108 L370
0305344 L397
0305408 L378
030602 L399
0577524 L4

0306701 L402
0306764 L403
0310101 L40S
0316141 L407
0310764 (408
0312101 L&t}
0314161 LOIS
031422t L420
0314641 t421
0316400 L425
037120 L7
0321260 LAY
0321328 L4368
0321664 L437
032368 LA42
0323521 L3
0324141 LAMA
032530t Lad7
0326324 W40
0326364 L4#SL

853

e e ——

—

- o -

— ‘V"‘-‘w.—-‘...--—:——-:;.. o - —

0327171 LAS2
0330421 LiS?
0330451 LASE
0331021 L4S®
0333201 Lde?
0333241 L4o8
0333600 L9
033a141 L47?
0336101 L47S
0335721 L480
0336200 LASY
0336261 LAG2
03634 LRI
0336401 L4
0337041 L48s
0337121 Lags
0337201 L4go
0337261 L4%0
0340140 LA94
0577544 LS

0351748 LS04
0350241 L35
0064 L507
0351541 LS09
0352621 LS14
0361724 L527
0336121 L3528
0356521 L5330
Q360021 LS31
0361521 L532
036131 LS33
370621 L9
0354221 L0
0364641 LSA2
0366361 L9
0364241 LSS2
0364761 LS54
038722 LS5
0387661 LS57
034750 LS58
0370041 L5461
0370501 L5e2
0370321, [S6}
0401168 LSTL
0373021 L572
0373441 L5748
Q374541 LS7S
037508 L37?
0375444 L5790
0376041 LS20
0400161 L581
040057 {582
0400341 L5823
MA00THL L58S
0410421 LS92
0402561 L593

0403201 LIS
0404741 L3%
0404441 L598
0406728 LS99
0577364 L6
0405341 L&00
0407201 Lo0R
0407724 Lo1O
0414548 L617
0412441 L621
0413001 L6220
0414241 L624
0416461 LOIS
041636 L4638
0416521 L6X9
0416401 L5640
0420101 L6423
0417141 L6844
0417401 L&4S
0417321 Lo46
0417661 L4648
0422061 L6390
0422121 L6b0
042354¢ L6685
042400 L6467
0424241 L&69
0424301 Lo71
OA24741 L&T3
0425208 L&TS
0425448 L8TT7
0577604 L7
0577634 L8
0577664 L
021730t RSTer
0217348 RSTak
022136t TRN
0221500 TRNer
0221541 TRNok
0215124 WCRok1
0215301 WCRok2
052034D +BARer
0576420 «£KSML
057644D «CKSM2
0521100 «DBRer
051740D «DMALL
036734D ¢Err
0523400 «FCTer
0524440 «INTer
056706D «Noer
0521640 «RSTer
0524040 ¢ TRNer
0317600 N(Rer
0430561 e+cleany
136104B «a
0337347 eaddfeat
O47704D eadist

0414127 «alaram
04620108 «aldisab
051664D ¢3lds)
1440308 «alnfls
1432648 ¢artr
0240147 «asclon
1437148 «aldbin
1437048 ¢atdoct
0352007 «atod
0527000 ¢atodt
0527460 €atod2
0530440 ¢atod3d
1437408 «atoddvi
0411427 «atodec
0354867 ¢atodins
Q37747 «atodist
0A1480T «atooct
1436048 +audaira
043000T ¢bds
0434780 «bel)
1433428 «bfel1t
1435648 dfetla2
1435668 +bfrtoll
1435708 «bfrtot
1434068 «b19d
1436348 ¢bredstr
1320708 «b19n
1436408 «bisnstr
138076 «b1 sy
1436448 «Dropsir
0476560 ¢binloc
0435040 ¢bkse
0433720 «blank
046422D ¢blnk
0420407 ebox
0514000 ¢box!
0514200 ¢box2
0514300 ¢box3
051440D +dox4
0514500 «boxS
0827407 ¢bss
1320748 +bstr
1371228 ¢blad
1435728 eblent]
1435748 ¢dlent?
1440348 «byf
0600028 ¢bufnum
1438128 ¢c)
0304407 ¢ctlast
0437480 ¢clloc
0445500 ¢ciist
0332327 ¢clsrv
1436748 ¢etstr
1436148 «c2
0304067 ¢c2l1st
043716D ¢c2loc

OAMALID «c2lst
0327741 «c2sry
1436708 ¢c2sl
0620408 ¢ccl
05620268 €cc2
143742B ¢chksal
1437448 echksa2
1437468 ¢ckl
0504200 ecklloc
1437368 ¢ck2
0504400 ¢ck2loc
050544D ¢ckerini
0306300 ¢ckerin2
03513620 eelsern
0433020 +cmdno
0433360 ¢cads
1435008 «command
0435000 eorlf
0203341 ~crunch
0434420 sctrt
0434600 ¢ctrx
1435768 ¢tatares
0433 chaler:
0464420 edaterr
1436208 edatstrn
044534 «¢dlt
0454260 ¢4dl10
045526D ¢dd112
0456500 «ddlld
0457700 «ddl1s
0451100 eddl18
0462300 edd119
0447260 «4dd12
044734D ¢4d13
0450060 +ddld
045124D «dd1S
045164D ¢ddib
0453060 «ddi8
0301527 ¢ddlast
0435100 +ddloc
O43776D eddlst
0304727 ¢ddsre
0234327 ¢decode
046284D ¢d1se?
0464604D ¢d1se?
046700 ¢dase3d
0343307 «drsplay
0302707 edlast
0436120 ¢dloc
0442220 edist
0214547 «dma
0540100 «dmal
OSA0S4D «dma2
OSA1920 «dmal
0542060 «dmad
0543100 ¢dna5

- BS54 -

e W e e

W = i ————

—. “’-‘.‘w--

03670 «dmab
054430D edma?
0545020 +deal
0475647 «dmains
022167 edmaint
0422307 edmals
0421707 ¢dmatst
1432708 «drucsr
042022R «dshit
0320641 ¢dsry
0203107 «dummv
0600000 ¢edata
1440448 ¢end
0201227 «endrk
1431248 cerBAR
1431268 «erDBR
1431348 eerfCY
1431268 eerINT
1431378 +erRST
142140R «erTRN
143122R ¢erdlR
144016B ¢errcnt
1840048 errlok
0504500 ¢ex1loc
0504600 eex2loc
1427668 ¢orckl
HA3774B ¢exck2
0430407 eexit
1431308 cexrec
D43424D «£10
043406D «§9
0400008 ¢flas
1437328 «flines
0477740 «flnloc
042N24B +fctat
0221727 «halt
0420147 #hele
0475640 ¢nelrl
056762D +hitnt,
0570500 «h1trer
0512660 ¢h1lret
0571340 ¢mtry
0513160 ¢hitrt2
0570740 +hststr
0564100 «h1tist,
1840328 «holdeha
1434 22R +holdent
MTIS D «home
M70LT wrratral
0L2MEB +1nlflae
Q4{A8AT s1royt
0547000« rum
1411428 +1ynkln
QA6TAD ¢legrn
0470540 «linela
OR710AT ¢11ineld

OATIAOD *11ne?
DAT218D «lined
OA7274D ¢lined
0473220 ¢l1neS
0473520 ¢lined
0474020 ¢l1ne?
0474460 ¢l1ned
0A6760D ¢liney
0335307 €lgry
1320768 “a
0221747 emain
1371108 emask
0502020 eakmen
0501500 ¢mkwor
1320628 ¢melr
1320648 <nl
0303227 enlast
0436420 «nloc
Q443100 enlst
0302047 ¢nnl1st
0435340 €nnloc
044034D «nnlst
0307441 ¢nnsry
0520620 +noBAR
0521360 ¢nohBR
0524020 ¢nofCT
052526D +noINT
0522520 ¢noRST
052642D ¢noTRN
0520060 «noWCR
0512000 *noram
0516100 €notart
1432668 ¢np
0430620 +nel
0322547 ¢nsrv
0620168 #nibksera
047674D ¢octloc
1440268 ¢oldalfa
1435028 ¢oldcomn
0620368 “oldlref
1433148 €outstkd
1434408 +outsik2
02325;T ¢parse
0420528 +eent
0%3114D erdsl
053724D ¢rdsi0
0537620 *rd<lt
0332180 ¢sd-?
0933280 *rac
053400 +rd -4

(€ Xn U URE E33
0535300 ~rdss
0536240 +rd:?
0536600 #5928
0537041 +pds®
0500040 #edsd;)

050072 +pdsdi:l
031767 #pdsin:
0355621 epdstit
1320668 *plast
1361008 ¢rnorm
0302367 «ppl1st
043564D ¢reloc
DAI3D ¢rrlst
0313547 «ppsry
0502360 ¢rradast
0502640 ¢rradis2
0503200 ¢rradis3
0401227 errains
055226D ¢eroml
0352740 ¢orom2
055370D #rrom3
035444D ¢rromd
0504700 “promok
0372521 ¢eromist
0342567 «pytdsel
0267027 eputtivl
0267447 epytityl
0511460 eramt
0510620 ¢rament
0507140 ¢ramer
0545520 ¢ramini
05846200 +ramin?
0547060 “ramin3
0550120 “ramind
0550620 +ramynS
055166D ¢ramine
0810147 “ramins
OAN24T eramtet
1320728 *rdtrsh
0507660 ertceh
0463340 ¢seelst
0255447 ~<end
0555400 «serl
545500 ¢ser10
0556220 eser
0357220 «ser
OS5T70D ~serd
0360700 «serS
0561420 #cerd
0562420 +ser?
0543440 +s0r2
0564450 #sero
0465760 #sk21
CATOMD «skip
1371208 +smd
1436508 ~smdste
1436168 «sm)
143810R ¢smn
1426448 «smnstr
1371128 ~smt.
1436608 «smistr

057154D espcer
13TH14B ¢san
CSI6D estyr?
0514600 #starl)
0200007 estart
1432728 ¢stinsla
0430400 €string
0432020 «lab
1371068 ¢lar
0515340 «tarst
0620208 ¢tbed
0370667 ¢tlersins
0343727 ¢leratst
050140 ¢test
0213167 ¢thresh
NITSAT eyt
04356200 «Uoc
044400D «1}st
1371048 ¢tarl
0620148 «lme2
1371148 ¢ar3
1361028 ¢tenorm
062012B €tref
0620508 ¢trefml
0326007 €lsry
1432768 €41ibut
143314B ¢titent
1423108 eltirlry
1433178 €tlirlro
142274k €tlostat
0222467 ¢llvin
044724D +work
1320568 +wrar
420568 .
N&20N4R expir
0610048 ¢vbufl
0600048 ¢vbuf2
1320608 €viner
062004B ¢velr
0000062 asc
0000064 asc
1T b
177770
177770
1777704
1777704
1777704
177770a
0205461 dlavs
1777602 briecnt.
1777524 ¢
1777824
177770
1777542
1777422
177770

To o oo

o o on e o

_BSS-

1777004 ¢ 1777564 1 1777608 <hift 0326000 ~Lsrv
1777624 ¢ 177764 2 177756a stacket 0222461 “tlvin
1777544 ¢ 177770a 1 0204601 stinc
1777664 ¢ 1777704 1 0212700 tarse
1777444 carry 177756a 1 0205148 urdate

- 020772t chilst 1777704 4 0221041 watle
177762a ckeler 021274¢ 101t 0202321 vb§2
1777404 cksler 0221742 1rccd o 0337341 ~aditeat

= (204201, ckst 000000 1rcedein 0418128 ~alarm "
020252 carl 1777702 0240141 ~asclon
1777703 entr 1777663 035200t ~atoed

- 0201047 ¢ret 1777684 + 0411421 ~alodec
02026b1 cro 1777704 0354461 ~atlodins
0200647 e 177768 k OUTTAL ~atodls! v

hd 0430804 cyev1l o 177764a ¥ 041450 ~alnoct
177780 4 1777623 & Q430001 ~bds
1777604 ¢ 1777662 k 0420401 ~box

= 1777522 d 177764a & 0427401, ~bse
1777%ha 4 0206341, last 0304401 ~cilrst,
1777642 d 1777520 L1m 0322520 ~elirn

- 1777644 4 0220421 load 0304061 ~¢211sl
17776ka d 0000042 1oc 032774 ~clsre
17778ka 4 000004 loc 0301521, ~ddlist

- 1777322 ¢ 0213341 1oorl 0304720 ~ddsr
1777704 d 021350t loar2 023452¢ ~decode
177754 4 020364 1oora 0345301, ~diselay

- 020532t date 0210141, loord 0302701 ~dl1st
0211461 decd 0204401 1oopc 0475641 ~dma1ns
1777%a dfls 021204t laord 0422301, ~dmals

~ 1777662 d1u1de 1777402 » 0421701 ~dmalst
1777622 divide 1777642 03206861 ~dsrer
1777602 ercnt 1064042 atps 0420141 ~helr

- 1777584 erfls 1777522 n 0270061 ~1mitial
177762a erfle 021230t notr s 0416661 ~trout
177754 erloc 020272\ nocrn 0335300 ~Lgr

~ 1777hba excksl 000240a nor 0221741 “main
1777644 excks2 020700%, nord 0303221, ~nl1st
000001 evat 021010 norm 030204% -nnjist

- 04305 fakey o 0210541 norng 0307441, ~nnsrv
177766a f1n 0207401 noshil 0322541 ~nsr
1777901 frac 021114 noshi2 0232520 ~rarce

- 0000002 halt 0205761 nowrar 0361761 ~pdsin:
0213021, here 0000042 num 0355621 ~pdstst
1777704 1 0000042 num M02361% ~pplist

= 1777644 1 0212181 pos N4 ~prery
1777704 1 1777463 powr 0401221 ~praine
1777794 1 1777502 plin 037252t ~eromtst

- 177770 3 1777462 plout 0342561 ~puldsrl
1777704 1 0000043 r1 0267021 ~putltityt
1777701 1 000003 r2 0267441 ~pulllyl

- 1777644 1 0000023 r3 0410151 “ramins
1777703 1 0000052 raset 040224%, ~ramts?,
1777704 0207528 retrnt 0295461 ~send
1777704 0211261 retrnl 0370641 ~lermins
1777664 1 0000023 11 0363721 ~Leraist
1777644 1 0201401, setfls 0303541, ~tl3 =t

o e T H———— e el (18 4281

and engutemng Support wothin Mw o‘
is provided 2o ESD Program Offices (POs)
elements. The prineipat :

