
1 AD-A091 630 PURDUE UNIV LAFAYETTE IN SCHOOL OF ELECTRICAL ENGINEERING F/S 15/3
M RICRO-COMPUTER COMPUTATIONAL UNIT FOR AN IR-CCD INTRUSION DET--ETC(U)

UNCLASSIFIED RADCT8 GEDL T R WILON SC30 605CO08 N*2 ffffffffff
Emhommhhhhmson

EMhMhhEMhhEEEI
IMMhMhEEMhhhhEE
MhhEEMhhhhMhEI

IV,

amh.
'y

-t-

'51

i~I 4 "
I * -.

*~s

'.IN'1~ 6

DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY
PRACTICABLE. THE COPY FURNISHED
TO DTIC CONTAINED A SIGNIFICANT
NUMBER OF PAGES WHICH DO NOT
REPRODUCE LEGIBLY.

fi

- w

UNCLASSIFIED
SCURITYS .SSIFICATION OF THIS PAGE (UInDote Enterod) ___________________

RC TR-8 -3 8

A XCRO-SOMPILTER.;OMflUTATIONAL 4jIT FOR Fieeu1c t

9A.I-C, MIN RANIA DETIONMA N RSSTEMPORM LMN.PRJC.TS

PurueUnvesiy REARN 00.RKENIT N UMBE

16.~~~S CONTRRACIT OTTEEN GRoN IhI, Repot

Apprloeddfrpbieelaelitiuto niie

:1 ~ ~ R- I. UALnaYNOE

RADC ProjectIN ERGNgZAINr NA yn AN .ADESkli (ESRORMEE)M ROETTS

Schsicl sfEecriy niern 4/ 16 61P~
Wsot arayteI 0

Tepurpos fof etheni BTS(elg ISltoE ecrt)ytm)pori

radaton dOIORNAerive foME a ARE ditant fmCoie Ofie 5 EUIYCASof visio onoae ort)d

DDSame 43 EIINO INVI SOSLT UNCLASSIFIED
SECURITY DCLASSIFICATION IS PA G RAnDte

UNCLASSIFIED
CURnITY CLASSIFCAION OF THIS PAOWOnSm £*.e" Entere)

the end of the stare time, all 256 charge packets are broadside loaded
into a CCD shift register (of length 256) also integrated onto the
detector chip. The CCD register may then be clocked to shift out these
analog samples for processing by a small local computer. The hardware
and software development of such a signal processing computer is the
purpose of the effort discussed in this report.

1
vi

UNCLASSIFIED

SECURITY Ct.ASSI ICATION OF ' PAGCIE(^O. Dot Enteeld)

-"" °..........................

ABSTRACT

The purpose of the BISS (Base Installation Security System) program is

the development of sensors for physical security systems. One technique

under investigation within this program involves the focusing of infared ra-

diation, derived from a distant field of vision onto an integrated Linear

array of 256 platinum silicide Schottky barrier detectors. Over a period of

time (called the "stare time"), charge packets, of a size proportional to

the infrared intensity, develop within each detector. At the end of the

stare time, all 256 charge packets are broadside Loaded into a CCD shift re-

gister (of Length 256) also integrated onto the detector chip. The CCD re-

gister may then be clocked to shift out these analog samples for processing

by a small Local computer. The hardware and software development of such a

signal processing computer is the purpose of the effort discussed in this

report.

-I--

',.I, ,

"~~~~~~~~~- - - :: --2 . .. q t LI- l

I -:: _ . "..

.. r

TABLE OF CONTENTS

List of Figures. v

List of Tablesvii

I. Introduction

A. Purpose of Overall System. 1

B. Computational Unit 2

C. Start-Up Procedures for IR-CCD Intrusion

Detection System 6

D. Description of Parameter Display Frame 8

E. Description of "Additional Features" Frame 16

F. Verification of System Operation 20

II. Hardware

A. Overview of Hardware Operation 25

B. Step-by-Step Discussion of IR-CCD Interface

Operation. 27

C. Signal Pin Assignments 31

III. Software

A. Overview of Software Operations. 37

B. Implementation of Software 44

C. Memory Organization 84

IV. Maintenance

A. Preliminaries to Testing 88

B. Calibration Procedures and Use of Maintenance

Software 88

C. PROMS.............. 102

-tii-

.. . , .-.. .. . ,. ...,.i, .. , ,m

V. References

Appendix A. Parts List, Manufactures and Vendors

Appendix B. Software Listipgs and Symbol Table

/

-iV-

LIST OF FIGURES

Figure TitLe Page

1.1 System Level depiction of the computational unit

)described in this report together with its connections

with the IR-CCD detector system 3

1.2 Flow diagram of the major calculations involved in

a single cycle of the computational unit software . . . 5

1.3 Initial parameter display frame 9

1.4 Frame showing typical prompt for changing a parameter . 11

1.5 Flow diagram of parameter charging operation 14

1.6 "Additional features" frame........ 17

1.7 Flow diagram illustrating additional feature selection

process 21

1.8 Setup used to verify system operation 23

2.1 Functional level drawing of IR-CCD interface board. . . . 26

2.2 Timing diagram of IR-CCD interface operation 28

1 2.3 Pin assignment of 40-pin "berg" connector on IR-CCD

* interface board...... 33

2.4 Pin assignments of 40-pin "berg" connectors on

DMA board 34

2.5 Pin assignment of 16-pin dip connector to IR-CCD device . 35

3.1 Flow diagram of main executive routine. 38

3.2 Flow diagram of DMA "interrupt service" routine 39

3.3 Timing of stare time changing sequence42

3.4 Structure of output queues. 48

3.5 Layout of 'x" vector. 65

3.6 Layout of "m" vector...... 66

3.7 Layout of "a" vector 68

3.8 Computation of background spatial average and stare

time changing operation 70

3.9 Uses of stare time information 73

3.10 Distribution of calculations over P packets 77

3.11 Computation of background time average and corresponding

decision threshold 80

3.12 Target/No target decision process82

3.13 Partitioning of memory between RAM and PROM 85

3.14 Locations of several important arrays in RAM 86

4.1 Board Locations in card cage89

4.2 Wiring diagram of IR-CCD custom interface 90

4.3 Typical view of terminal screen during either monitor

or workspace portions of terminal/serial interface test.101

4.4 Location of PROMs on boards. 103

-vi-

- [" - ", t " ' I o ll ro l lim t I II l~ I i mll I ,i

LIST OF TABLES

Table Title Page

1.1 Possible parameter values and their defaults 13

1.2 Brief descriptions of software maintenance routines. . . . 19

3.1 SpeciaL ascii characters and their corresponding messages. 50

4.1 Example of output from PDS Logic test 95

4.2 Possible messages displayed by DMA test 97

4.3 Machine language code for performing checksums on

individual PROMs104

4.4 Correct results for checksum test of Table 4.3105

Iv

I

-vii -

EVALUATION

The ability of the RADC/ESE IRCCD fence system to discriminate between

targets and false alarm sources is dependent on the performance of its

signal processor. Under this effort Purdue University has produced the

hardware and software models for an advanced signal processor. In the

laboratory this processor has met or exceeded all its design goals.

LYN H. SKOLNIK
Project Engineer

i,

viii

AMONO

I. INTRODUCTION

A. Purpose of Overall System

The purpose of the BISS (Base Installation Security System) program is

the development of sensors for physical security systems. One technique

under investigation within this program involves the focusing of infrared

radiation, derived from a distant field of view, onto an integrated Linear

array of 256 platinum silicide Schottky barrier detectors. Over a period of

time (called the "stare time"), charge packets, of a size proportional to

the infared intensity, develop within each detector. At the end of the

stare time, all 256 charge packets are broadside loaded into a CCD shift re-

gister (of length 256) also integrated onto the detector chip. The CCD re-

gister may then be clocked to shift out these analog samples for processing

by a small local computer. The hardware and software development of such a

signal processing computer is the purpose of the effort discussed in this

report.

-1

B. The Computational Unit

Physically, the unit developed under this contract is a PDP-11/03 com-

puter with certain optional boards tied to the bus. See Figure 1.1. These

include 8k words (16 bits) of PROM (programmable read-only memory) for pro-

gram storage, a DMA (direct memory access) board for highspeed inputting of

CCD samples into RAM, and a custom-built interface board for scaling, digi-

tal conversion, and simple pre-processing of these samples.

With the exception of the latter "custom" board, all these components

are standard items manufactured by Digital Equipment Corporation (DEC).

These are documented in Ell together with Appendix Section A.1.

The custom interface board, detailed in Section II.B., receives the

serially-shifted contents of the detector's CCD array, together with two di-

gital pulse timing signals: START PACKET and START CONVERT. The former is

required to appear immediately prior to the CCD's outputting of the first

analog sample in the array of 256. The latter timing signal executes a

positive-going transition to accompany each incoming CCD sample. This tran-

sition immediately initiates an A/D conversion of its corresponding analog

* (CCD) sample. Hence this pulse should not be transmitted until the analog

data is certain to have settled at the custom -nterfai.e input.

Two digital control signals, Leaving the custom interface, inform the

detector electronics of which one of four stare times are to be used by the

detector array. As the overall dynamic range of the detector charge packets

shrink or increase (with changing ambient temperature conditions), the mi-

croprocessor will instruct the detector electronics to change its operating

j stare time by a factor of two.

A computational algorithm for the automatic signaling of "intruder tar-

gets," given the IR-CCD data, was developed in C2]. A flow chart of the

-2-

co -V

0-

100
4.9 w- 4

u 0

0

* EI

4.40

060

CAC
Un

934

V~ 0

Cox j6

calculations called for in E23 appears in Figure 1.2. The software

developed under this effort carries out these calculations using the parame-

ters D, Cl, C2, P, N, d, n, and t. These parameters are adjustable by the

user through terminal interaction. See Section I.E.

The software also includes a number of maintenance routines for testing

and fault isolation on the custom, DMA, PROM, RAM, and serial interface cir-

cuit boards. See Section IV.

The software was written in PDP-11 assembly language and "C", and com-

piled under the UNIX operating system running on a PDP-11/70.

-4-

I-

F. 1:
I~)c, YSIIIT TR

Pig 12 lo dagrm f hema or Tueinsno IME CAGE ge YC

of th comptatioal unt sofware

C. Start-Up Procedures for IR-CCD Intrusion Detection System

The basic start-up procedures for the IR-CCD Intrusion Detector System

will be described here. It is assumed that all connections to the IR-CCD

interface have been properly made as discussed in the hardware section, and

that the serial interface is connected to a Tektronix 4024 terminal set at

9600 baud.

The power switch for the PDP-11/03 minicomputer is located on the right

hand side (when viewing the 11/03 from the front) of the back face. When

this switch is moved to the on position (up), the 11/03 receives A.C. power

and begins executing a built-in terminal handling routine known as "ODT."

The ODT mode is described in some detail in [13, but briefly, it allows the

user to control the Load Address, Deposit, Examine, Continue, and Start/Halt

functions of the microprocessor. When in ODT, the user is prompted for a

command with the "2" symbol. Whenever it is desired to begin execution of

the IR-CCD Intrusion Detection program, the command "20000G" must be sent to

ODT. This may be accomplished by one of two methods. If starting the

routine from a "cold" status (both the microprocessor and the Tektronix 4024

have just been brought up from a powered down condition), it is necessary to

type the "20000G" command after receiving the "@" ODT prompt. The second

method is effective only when the Tektronix 4024 terminal has not been

powered down since the program was last executed. In this case, the "PT"

key on the far right hand side of the 4024 keyboard will have been pro-

grammed to execute the "20000G" sequence automatically. Hence, it is only

necessary to depress the "PT" key to begin program execution.

To halt the routine, it is necessary to send a break command to the

11/03. On the Tektronixs 4024 terminal, this is accomplished by hitting the

"BREAK" key rapidly twice in succession. The processor should return to ODT

-6-

I mode with the "a" prompt appearing on the screen.

The start-up procedure for the IR-CCD Intrusion Detection System may be

summed up as follows:

(1) Connect Tektronixs 4024 terminal, set at 9600 baud, to serial in-

terface on PDP-11/03 processor.

(2) Connect IR-CCD analog data and timing signal lines to IR-CCD in-

terface board.

(3) Power up terminal and PDP-11/03.

(4) When ODT prompt (a) is received, issue "20000G" sequence by ei-

ther:

(a) typing 20000G.

(b) depressing terminal "PT" key (if 4024 has not been turned off

since Last execution).

.7

* I

D. Description of Parameter Display Frame

When the start-up procedure outlined in the previous section is per-

formed, the routine begins execution and places on the screen a table list-

ing the initial default parameter values and a brief description of the

meaning of each parameter. Immediately below this parameter display table

is a box containing information about the status of the alarm. More will be

said about this box later. At the bottom of the screen, two lines should

appear informing the user of how to change a parameter value and how to

switch the display to the "additional features" list frame. This initial

frame is shown in Figure 1.3.

To change a parameter, the user should type the mnemonic for that

parameter (which is listed in the first column of the parameter display

table on the terminal screen) followed by a carriage return. For parameters

wherein no ambiguity will result if upper or Lower case symbols are typed,

either case may be used, i.e., the "P" parameter. If ambiguity will result,

then the exact mnemonic must be typed, i.e., the "n" or "N" parameters. If

errors are made in typing, there are three keys which are programmed to be

"delete character" keys and three keys which are programmed to be "delete

line" keys. The delete character keys are:

(i) DEL CHAR (top row of 4024 keyboard)

(ii) CTRL-H (type H key while depressing "CTRL" key)

(iii) # (upper case 3)

while the delete line keys are:

i) DEL LINE (top row of 4024 keyboard)

(ii) CTRL-X (type X key while depressing "CTRL" key)

(iii) a (upper case 2).

The delete character keys backspace one character while the delete line keys

-8-

IRCCD INTRUSION DETECTOR ALARM

SYMBOL VALUE MEANING
D 16 Number of cells monitored for stare time update. I

N 32 I
N 2 Number of samples used in background time average. I

* P 12 Separation of samples used in background time average.

d 6.17 Detection threshoLd scale factor.

n 12 3 * memory interval Length used in alarm decision. I

t 8 Number of space-time threshold violations to cause alarm

C2 480 Upper threshold used to initiate stare time decrease.
Cl I I

C1 230 Lower threshold used to initiate stare time increase.

• ALARM DISABLED *

To see a List of other features, type "L".

To change a parameter, type symbol shown above.

Figure 1.3 Initial parameter display frame.

-9-

erase the entire Line that has been typed.

When the mnemonic for a parameter is typed, one of two things will hap-

pen. If the mnemonic is not a valid one, an error message will be displayed

and the prompt for changing a parameter will be repeated. If the mnemonic

is a valid one, the prompt for changing a parameter will be replaced by a

line indicating the possible values that that parameter may be set to. An

example of this is shown in Figure 1.4.

At this point, the user has three options. He may i) type in the

desired new value of the parameter followed by a carriage return, or (ii)

type in the mnemonic for a different parameter followed by a carriage re-

turn, or (iii) depressed a carriage return. If a new mnemonic is typed in,

the List of possible values of the original parameter will be replaced by a

list of possible values of this new parameter. If a carriage return is

depressed, the display will return to the original frame, and no parameter

change will take place. Thus, if the user decides after examining the list

of possible parameter values that he no longer desires to change that param-

eter, he may pass over the actual changing operation.

When a new parameter value is typed, one of several things may occur.

If the new value is not one of those allowed, an error message is displayed

and the list of possible parameter values is repeated. If the new value is

ail allowed one for that parameter, the old value listed in the second column

of the parameter display table is replaced by the new value. When a parame-

ter that may take on only integer values is changed (any one except the "d"

parameter), the value typed is rounded off to the nearest integer. If the

"d"' parameter is changed, the value typed is rounded off to two decimal

places. These rounding operations are carried out before determining if the

new parameter value is valid. After a parameter change has taken place, the

-10-

IRCCD INTRUSION DETECTOR ALARM

SYMBOL J VALUE f MEANING
D I 16 I Number of ceLLs monitored for stare time update.

N I I
N 32 Number of samples used in background time average.

II I
P P 12 I Separation of samples used in background time average.

d I 6.17 Detection threshold scale factor.

n 12 3 * memory interval Length used in alarm decision.

I t j 8 Number of space-time threshold violations to cause alarml

C2 480 Upper threshold used to initiate stare time decrease.

C1 230 Lower threshold used to initiate stare time increase.

I *

* ALARM DISABLED *

********* ****** *

To see a list of other features, type "L".

Possible values for N are 2<=N<=40. N=?

Figure 1.4 Frame showing typical prompt for changing a parameter.

- 11 -

messages at the bottom of the screen are restored to their original state,

informing the user of how to change a parameter value. All allowed parame-

ter values and their default values are listed in Table 1.1. Figure 1.5

shows a flow chart illustrating the entire parameter changing operation.

The last section of the parameter display frame which has not been dis-

cussed in any detaiL yet is the alarm status box located in the lower center

* I section of the screen. The information in this box tells the user which one

of three possibLe conditions exists. These conditions are (i) that the

alarm is disabled, (ii) that no target is currently being detected, or (iii)

that a target is currently being detected. The alarm is disabled any time

there is an insufficient amount of data based on the current parameter

.alues to ensure a valid target decision. This condition will occur in

several different situations. When the routine is first started, it is

necessary to compute a background time average which extends N*P packets

into the past. Thus the alarm is disabled for N*P packets whiLe this ini-

tial background time average is computed. With a time between packets of

about 100 msec, the time the alarm is disabled (assuming default parameter

0* values) is approximately 38 seconds. A similar situation occurs whenever

I the values of the N or P parameters are changed. When the parameter n is

changed, it is necessary that threshold violation information be known for

the n/3 most recent packets. Therefore the alarm must be disabled for n/3

packets before a valid target decision can be made.

When the alarm is enabled, either the no target detected or target

detected message is displayed in the alarm status box. The message is up-

dated any time the computations determine a change is in order or when the

alarm is disabled or enabled as explained previously.

-12-

Parameter DefauLt Value Possible Values

D 16 16 or32

N 32 2 <N <40

P 12 10 <P <256

d 6.17 0 <d <10

n 12 6, 9, 12, or 15, n > t

t 8 3 <t <n

C2 480 2 *Cl < C2 < 511

Cl 230 0 C1 1 *C

Table 1.1 Possible parameter values and their defaults.

-13-

START

Display
parameter list
Lframe

paramet er
value?

YesD

err

)ero mnemonic

No i N

YYes

List valid
parameter
values

User types in
! next command

Yes New
| mnemon ic?

No

2

*CR. =carriagle return

Figure 1.5 Flow diagram of parameter changing operation.

-14-

aeNo Display error
value message.

vlid

Change parameter

val ue on

screen.

Prompt user
for nextcommand.

.tFigure 1.5 continued.

- 15 -

In addition to this visual indication of target detection information,

there is an audible alarm signal which sounds every time a target is detect-

ed by the computational routine provided the following conditions are met:

i) The alarm is not disabled.

(ii) The audible alarm feature is enabled.

The audible alarm is in the enabled state when the routine is first started.

The status of the audible alarm may be changed, as will be described in the

next section.

This completes the discussion of the parameter display frame and the

procedure for changing parameter values. For a more detailed discussion of

the meanings of the various parameters, the reader is referred to (23.

E. Description of "Additional Features" Frame

In addition to performing the basic intrusion detection function, the

IR-CCD Intrusion Detection System has several self-diagnostic and testing

features which are accessed via an "additional features" frame displayed on

the terminal. This frame may be displayed by one of two methods. When the

terminal is displaying the normal parameter display frame, and the routine

is waiting for a parameter mnemonic to be typed, the additional features

list will be displayed if i) an "L" (upper or lower case) is typed followed

by a carriage return, or (ii) a carriage return by itself is typed. Simi-

larly, when the additional features frame is being displayed and the routine

is waiting for a feature to be selected, the display will switch to the

parameter display frame if i) an "8" is typed or, (ii) if a carriage return

is typed. Thus, the user may toggle between the two frames by repeatedly

hitting the carriage return key. The additional features frame is shown in

Figure 1.6.

-16

IRCCD INTRUSION DETECTOR ALARM

Additional Features:

1) Disable audible alarm.
2) Display output of interface A/D converter.
3) Programable digital shift circuitry test.
4) DMA channel test.
5) RAM integrity test.
6) PROM checksum test.
7) Serial interface/terminal test.
8) Do nothing - return to parameter display.

**** *** * ***** *** ** ** *

* ALARM DISABLED *I * *
**** * * ** * * ****** **

Please type number of desired feature.

Figure 1.6 "Additional features" frame.

41
1

11 -17 -

A particular "additional" feature is selected by typing the number

shown on the display corresponding to that feature, followed by a carriage

return. The delete character and delete line keys are the same as for the

parameter display frame. If an error is made in typing a feature selection

number, an appropriate error message is displayed at the bottom of the

screen. If a valid feature is selected, one of two possibilities will oc-

*i cur. If the audible alarm enable/disable feature is selected, the audible

alarm status will be changed and the routine will switch back to the origi-

nal parameter display frame. However, when one of the self-diagnostic tests

is selected, the screen is blanked and a brief description of the selected

test along with any special instructions are displayed. At this point, ex-

cept for the DMA channel test, the user is prompted to hit a carriage return

to go ahead and execute the test or any other ascii character to skip the

test and return to the additional features frame. Since it is necessary for

the user to halt the 11/03, power down, and insert the DNA maintenance cable

in order to perform the DNA test, when this feature is selected the user is

prompted to hit a carriage return to halt the routine, or any other ascii

key to skip the test and return to the additional features frame.

The actual operation of the self-diagnostic test routines will be

*.1 covered in the section on maintenance, and is not dealt with here. The

various test routines are listed in Table 1.2 along with a brief description

of each test. Once a test is completed and the appropriate exit command

given, the routine reinitializes itself to the defautt parameter values and

begins computations, as was done at start-up time. To enter another test

routine, the user must first toggle over to the additional features frame

(since restarting returned the screen to the parameter display frame) and go

through the feature selection procedure discussed previously.

- 18 -

Test Description

A to D converter Displays 12 bit output of A to D converter

Ion screen in both binary and decimal.

Programmable Digital Cycles through all possible function 1 and

Shift Logic function 2 Line values and displays output

of programmable digital shift Logic on screen

in both binary and decimal.

DMA Tests various functions of the DMA board through

use of DMA maintenance cable.

RAM Integrity Each word of RAM is tested for its Read/Write

integrity.

PROM Checksums are computed for both the Lower and upper

4k words of PROM.

Terminal/Serial The terminal is tested via the standard

Interface Tektronixs 4024 'test' command and then

the serial interface is tested by sending unique

ascii character patterns to the terminal.

TabLe 1.2 Brief descriptions of software maintenance routines.

*1

- 19 -

The alarm status box, which contains the visual target detection infor-

mation, is serviced throughout the additional feature selection process

until one of the self-diagnostic tests is actually begun. Target detection

computations cease once the user decides to execute the test (after viewing

the test description frame).

A flow chart illustrating the additional feature selection process is

shown in Figure 1.7. This completes the discussion of the additional

features frame and the additional feature selection process.

F. Verification of System Operation

The setup shown in Figure 1.8 was used to test the operation of the

IR-CCD Intrusion Detection System during its development. A software

routine written for the PDP-11/70 was used to generate files containing up

to 256 packets of data samples. These files were then down-Loaded to a

floppy disk attached to a PDP-11/10. The 11/10 was then instructed to send

these samples to a 12 bit DAC in real time under the control of external

timing circuitry. After conversion, this analog signal was sent to the PDP

11/03 custom interface board. The external timing circuitry also supplied

the "start packet" and "start convert" signals for the 11/03.

The procedure for testing involved generating known packets of data,

sending them to the IR-CCD system as described above, and then observing the

target/no target decision responses. This was done for several different

patterns of packets and a Large number of possible parameter combinations.

All test results agreed with those expected.

The speed of computations was also tested by applying only the clock

signals (analog input grounded). The nominal time between packets was

specified to be l00msec. Experimental results indicate that the unit will

actually run at up to twice that speed for worst case parameter combinations

- 20 -

Displa errora

tyed

V I

1.7digrm llsttngadditionalfetr seeio
prOur 5efame

2-22

No-.-

c c

W) a) U
41 41~ Lf

-c Wj

-le0

0.

rLJ L)
CL

~Lu

Fm U.

23'

and at about 40msec (2 1/2 times faster) for the default parameter values.

2

- 24 -

II. Hardware

A. Overview of Hardware Operation

Physically, the unit developed under this contract is a PDP-11/03 com-

puter with certain optional boards tied to the bus. See Figure 1.1 for a

system level depiction of the computational unit. These boards include 8K

words (16 bit) of PROM for program storage, a 16K word RAM, a serial inter-

face for terminal communications, a DMA board for high-speed reception of

CCD samples into RAM, and a custom-built interface board for scaling, digi-

tal conversion, and simple pre-processing of these samples. Figure 4.1 in-

dicates board location in the PDP-11/03.

With the exception of the latter "custom" board, all these components

are standard items manufactured by Digital Equipment Corporation (DEC).

These are documented in El) together with Appendix Section A.

Figure 2.1 depicts a functional level drawing of the IR-CCD interface

board. The left side of the drawing represents connections to the IR-CCD

fdevice, while the right side represents connections to the LSI-11 computa-

tional unit.

The positive analog input voltage from the IR-CCD device is sampled and

held constant by a Burr-Brown SHM60 high-speed sample-and-hold unit. This

device has a 1 usec acquisition time, 12 nsec aperature time, and a variable

gain. The gain can be varied between +1 and +1000 by use of a 10K ohm "trim

pot" located near the device. The held voltage is converted to a 12-bit

complementary 2's complement number using a Burr-Brown ADC85C-12 analog-to-

digital converter. In complementary 2's complement (00 00) represents

positive full scale while (11 11) represents zero. Since both the SHM60

and ADC85C-12 devices require ± 15 volts, as well as +5 volts, a Burr-Brown

DC/DC 546 voltage converter is required. Positive 5 volts from the

- 25 -

-i--
V 0 -

c k4 -
-

I j I

LaL

- I

u A == I E-

26-3

_
I-

=a

r4

0

Irr

LL.

V, 0

26U

LSI-11/03 bus is converted to ±15 volts by this device. Specifications for

these three devices are given in Appendix Section A.

The remaining IR-CCD interface board components are resistors, capaci-

tors, and TTL Logic devices. The +5 volt supply pin of each TTL chip is

bypassed to its ground pin using a .01 uf ceramic capacitor Located on the

underside of the interface board. The TTL chips include three SN 74123

(one-shot multivibrators), one SN 74174 (hex D-type flip-fLop), two SN 7404

(hex inverters), one SN 7414 (hex Schmidt-Trigger inverter), and three AMD

25S10. Except for the latter, all are standard TTL devices with specifica-

tions given in any TTL data book. The AMD 25S10 is a 4-bit shifter. This

device has the ability to shift four bits of parallel data 0, 1, 2, or 3

places. The AMD 25S10 has two select lines that are decoded internally to

determine the number of places the data is shifted. Specifications for this

device are also given in Appendix Section A.

B. Step-by-Step Discussion of IR-CCD Interface Board Operation

Figure 2.2 is a timing diagram that will aid one's understanding of the

following step-by-step explanation of the IRRCD Interface operation.

We start this discussion with the arrival of a start packet pulse from

the IR-CCD device heralding the arrival of a pa.ket of 256 CCD voltages.

The start packet pulse is sent through two successive Schmidt-Trigger in-

verters to reduce any noise on the start packet line which might be misin-

terpreted as another start packet. The positive-going threshold is 1.7

volts and the negative-going threshold is .9 volts. Therefore, only

glitches Larger than 1.7 volts will cause an erroneous start packet to oc-

cur. From this point on, "start packet" will refer to this conditioned sig-

naL.

- 27 -

[i '-p

o-

.I 0

. .. . I aI.),

I I

I a.

i0
,- .a.,

* .

The rising edge of start packet clocks the input "D" through to the

output "Q" of the tandem connections of D-type flip-flops of the SN 74174.

The inputs to these flip-flips are "function 1" and "function 2" supplied by

the DMA board. Functions 1 and 2 are used to represent the appropriate

stare time as determined by the CPU. The IR-CCD device receives a once-

delayed version of functions 1 and 2 denoted as function 1(A) and function

2(A). The three AND 25S10 TTL 4-bit shifter chips receive a twice-delayed

version denoted function I(AA) and function 2(AA). The purpose of the de-

lays can be understood by looking at Figure 3.3 in Section III. The three

AMD shifter chips are now properly aligned to shift the converted CCD vol-

tages to the appropriate places. See table on wiring diagram, Figure 4.2.

The rising edge of the positive-going start packet pulse also triggers

a SN 74123 one-shot producing a negative-going 18 usec. pulse. The rising

* edge of this negative-going pulse triggers another one-shot producing a 1

usec. positive-going pulse. The rising edge of this 1 usec. positive-going

pulse in turn triggers yet another one-shot (a high valued function 3 tied

to its clear) producing a - 142 usec. positive-going pulse. The result of

*all this is the production of a s 142 usec. positive-going pulse that is de-

layed 18 Usec. after the rising edge of the start packet pulse. This long,

positive-going pulse is used as the "clear" input to what we will call the

"DMA one-shot." Only when the clear pin on any given one-shot is held high

can the one-shot produce a pulse. The input to the DMA one-shot will be

discussed shortly.

We turn now to the other digital signal coming from the IR-CCD device,

namely the external start convert signal. This external start convert is

once inverted using a Schmidt - Trigger inverter to produce the "internal"

start convert signal which is sent to the ADC85C-12 converter. The falling

-29 -

A > -I .. l ilI I I liilIl Il•.. ,,.- ...

edge of this internal start convert causes the "end of convert" EOC) signal

of the ADC85C-12 to move from the "ready" (Low) state to the "busy" (high)

state. Therefore, the fatling edge of the internal start convert produces a

positive-going - 10 usec. pulse for EOC. Ten usec. corresponds to the

specified time required by the ADC85C-12 to do a conversion to binary

representation of an analog voltage. Eight Psec. is the observed time.

The falling edge of EOC indicates the conversion is complete. An inverted

version (again using a Schmidt-Trigger inverter) of EOC is used to change

the SHM60 from the sample mode to the hold mode. A high to low transition

causes this to occur. Therefore, the rising edge of EOC is used to hold an

analog voltage, and the falling edge to signify end of conversion.

The falling edge of EOC triggers a one-shot producing a 1 usec.

negative-going pulse. The rising edge of this negative-going pulse triggers

another one-shot producing a 1 usec. positive-going pulse. It is this

positive-going 1 usec. pulse that acts as the input to the clearable DMA

one-shot. The rising edge of this 1 usec. positive-going pulse triggers

the DMA one-shot (only if clear is high) producing positive-going I Usec.

* pulses that are used as "DMA Cycle Requests". When the DMA receives a Cycle

*i Request, it loads a 16 bit word (16-bit CCD sample) into memory. The 12 ADC

output data bits have been inverted (SN7404's) and sign replicated to form

this CCD sample.

The software counts up to 255 (from zero) and then drops function 3 low

momentarily. Dropping function 3 low will cause the - 142 usec. positive-

going pulse to terminate prematurely. Since this Long pulse was acting as

the clear input to the DMA one-shot, the DMA one-shot will become disabled

(i.e. no more Cycle Requests) as soon as function 3 goes Low. Function 3 is

immediately returned to its high state so as to be ready when the next start

-30-

packet arrives. The high to low transition of function 3 is not critical

since DMA Cycle Requests after sample #255 are ignored by the DMA until

after function 3 is momentarily set Low. At this point the interface board

is ready for the next start packet to arrive.

In summary, start packet sets up the 4-bit shift chips by clocking the

flip-flops and then turns on (starting with the first "good" CCD value) DMA

Cycle Request pulses whose observed occurrence corresponds to 9 Usec.

after each internal start convert falling edge (- 8 usec. for conversion

plus 1 psec. delay). Function 3 turns off DMA Cycle Request soon after CCD

sample #255 and reinitiates the IR-CCD interface board for the next start

packet.

C. Signal Pin Assignments

Figure 2.3 indicates which signal appears at which pin of the 40-pin

"berg" connector on the IR-CCD interface board. "Low" implies the pin is

tied to ground and "high" to +5 volts. The wiring diagram of Section IV

shows the location of this connector.

Figure 2.4 indicates which signal appears at which pin of the dual

40-pin berg connectors on the DMA board. The berg connector closest to the

board end is J1. Figures 2.3 and 2.4 can be used to infer connections

between the 40-pin IR-CCD berg connector and the two 40-pin DMA berg connec-

tors.

Figure 2.5 indicates the pin assignment at the IR-CCD converter for

ground, start packet, external start convert, function 1, and function 2

connections between the IR-CCD device and the interface board. This is a

drawing (top view) of a 16-pin dip socket. Pins #1, #15, and #16 are the

onLy common ground between the IR-CCD device and interface board. However,

all other unused pins are aLso grounded at the interface board to provide a

- 11 -

measure of noise shielding.

The analog voltages are supplied over an RG/174U coaxial cable. At

this writing the shield of the cable is ungrounded at the IR-CCD device but

is grounded at the interface board.

*1 -~32-_ _ _ _

<- ._

IR-CCD Micro-processor Interface Board

40-Pin Berg Pin Assignment

A OPEN Y OPEN

B DNA CYCLE REQUEST Z OPEN

C OPEN AA OPEN

D ATTN (LOW) BB OPEN

E OPEN CC DATA BIT 7

F AOO (HIGH) DD DATA BIT 8

H WC INC ENB (HIGH) EE DATA BIT 6

J BA INC ENB (HIGH) FF DATA BIT 9

K FNCT 3 HH DATA BIT 5

L FNCT 3 JJ DATA BIT 10

M SINGLE CYCLE (HIGH) KK DATA BIT 4

N CO (LOW) LL DATA BIT 11

P OPEN MM DATA BIT 3

R FNCT 2 NN DATA BIT 12 (LOW)

S OPEN PP DATA BIT 2

T Cl (HIGH) RR DATA BIT 13 (LOW)

U OPEN SS DATA BIT 1

V FNCT I TT DATA BIT 14 (LOW)

W OPEN UU DATA BIT 0

X OPEN VV DATA BIT 15 (LOW)

Figure 2.3 Pin assignment of 40-pin "berg" connector on IR-CCD interface

board.

-33-

DRV1I-B DNA Interface Board

40-Pin Berg Pin Assignment

JI INPUT CONNECTOR J2 OUTPUT CONNECTOR

A OPEN Y OPEN A OPEN Y OPEN

B CYCLE REQUEST Z OPEN B OPEN Z OPEN

C OPEN AA OPEN C OPEN AA OPEN

D OPEN 88 OPEN D ATTN 88 OPEN

E OPEN CC OPEN E OPEN CC DATA BIT 7

F OPEN DD OPEN F AOO DD DATA BIT 8

H OPEN EE OPEN H OPEN EE DATA BIT 6

J WC INC ENB FF OPEN J BA INC ENB FF DATA BIT 9

K SINGLE CYCLE HH OPEN K FNCT 3 HH DATA BIT 5

L OPEN JJ OPEN L FNCT 3 JJ DATA BIT 10

N OPEN KK OPEN 1 OPEN KK DATA BIT 4

N OPEN LL OPEN N CO LL DATA BIT 11

P OPEN MM OPEN P OPEN MN DATA BIT 3

R OPEN NN OPEN R FNCT 2 NN DATA BIT 12

S OPEN PP OPEN S OPEN PP DATA BIT 2

T OPEN RR OPEN T Cl RR DATA BIT 13

U OPEN SS OPEN U OPEN SS DATA BIT 1

V OPEN TT OPEN V FNCT 1 TT DATA BIT 14

W OPEN UU OPEN W OPEN UU DATA BIT 0

X OPEN VV OPEN X OPEN VV DATA BIT 15

Figure 2.4 Pin assignments of 40-pin "berg" connectors on DMA board.

- 34 -

GROUND .0 I 160 GROUND

START PACKET 0 2 150 GROUND

OPEN 0 3 I',0 OPEN

OPEN 0 i 13O FNT 2

EXT. START CONVERT 0 5 12 0 OPEN

OPEN 06 I1O OPEN

OPEN 07 loO FNCT I

OPEN 0 8 90 OPEN

16 Pill IC SOCKET
TOP VIEW

AT IRCCD DEVICE

I
Figure 2.5 Pin assignment of 16-pin dip connector to IR-CCD device.

35
" 1

I!
- 35 - '

III. Software

The discussion of the IR-CCD Intrusion Detection System software wilt

be divided into three main sections. The first of these will present an

overview of the basic program philosophy and include a general discussion on

the Input/Output procedures. The next section will concentrate on the actu-

al implementation. This will contain a very detailed look at the computa-

tional routine, the heart of the system. Finally, the last section will un-

dertake such topics as memory layout, partitioning of memory between MOS-RAM

and PROM, etc.

I3

~- 36 -

A. Overview of Software Operations

A flow diagram for the main executive routine of the IR-CCD Intrusion

Detection System is shown in Figure 3.1. The DMA "interrupt service"

routine flow diagram is shown in Figure 3.2. These two diagrams illustrate

the basic philosophy of the software by pointing out how the terminal han-

dling function and computational function of the software interact.

Input/Output to the terminal is all software driven (versus interrupt

driven). This means that the commands sent to the routine by the user and

the messages sent by the routine to the user are carried on only when noth-

ing else is going on. Thus, the computations are always given highest

priority as these are interrupt driven by the DMA board.

When the main executive routine is not being interrupted by the calcu-

lations, it is in a continuous loop that is always checking i) if there are

characters being typed in by the user or (ii) if there are any characters

that need to be sent to the terminal. If it is determined that the user has

typed in a character, the subroutine "ttyin" is ca(led. This routine stores

the characters in a buffer, places them in an output queue to eventually

echo back to the terminal, and, at the end of a command line, decodes the

string of characters in the buffer and takes the appropriate action dictated

by this string of characters.

If it is determined that there are characters which need to be sent to

the terminal, the subroutine "send" is called. The "send" routine takes

characters (or strings of characters) that have been placed on the output

i queue and in turn sends them to the terminal via the serial interface.

When an interrupt is received from the DMA indicating that a new packet

of 256 data samples has been loaded into memory, program control is

transfered from the main executive routine (or some subroutine that was ul-

- 37 -

r7

S TART

Initialization

C a .No Ch r . Yesse d ha s
from to send sen chr.

t erm. ? out? t em

4Yes

i ndi cated
by char.

Figure 3.1 Flow diagram of main executive
routine.

-38-

" a

STARTII

Reinitialize I
DMA J

Perform

j computations

I Display

target info.

RTI

Figure 3.2 Flow diagram of DMA"interrupt serviceSroutine.

- 39 -

timately called from there) to the DMA interrupt service routine. This

routine is called "endpk" in the assembly language program section. Upon

entering the interrupt service routine, the first thing that must be done is

to inhibit the cycle request pulses being received by the DMA from the IR-

CCD interface. This is accomplished by toggling the function 3 line (con-

trolled by bit 3 of the DMA Control Status Register) from high to low and

* K then back again. This signal on the function 3 line is received by the

hardware on the IR-CCD interface and the cycle request pulses are halted.

The DMA must now be reinitialized so that it is ready to start accept-

ing the next packet of 256 data samples. This initialization is accom-

pLished in several steps. First of all, the DMA Word Count Register (WCR)

must be set to -256. This allows the DMA to perform 256 data transfers into

memory for the next packet. Secondly, the "go" bit (bit 0) of the CSR must

be set. This lets one data transfer occur every time a cycle request pulse

is received by the DMA until all 256 transfers specified by the WCR have

taken place for the next packet. Finally, the Bus Address Register (BAR)

must be set to point to the Location in memory where it is desired to start

loading the next data packet. There are two buffers that are used to hold

incoming data. These are called "ybufl" and "ybuf2". By alternating

between two buffers, it is possible to start loading in a new packet of 256

data samples before the computations on the previous packet have ended. The

only requirement is that the computations on the old packet be completed be-

fore the computations on the new packet are begun.

Once the DMA has been reinitialized, the computational routine called

44 "crunch" is called. This is an assembly language routine which actually im-

plements the target detection algorithm of [23. The "crunch" routine sets a

flag which indicates whether or not a target has been detected, and then

- 40 -

this flag is used by the "C" routine "irout" to display the proper target

message on the screen. At this point an "RTI" (return from interrupt) in-

struction is executed and program control is transfered back To the main ex-

ecutive routine (or subroutine called from there) and terminal handling

functions resume at the point they were before the interrupt occurred.

When the next 256 cycle request pulses have been received by the DMA,

another interrupt request is generated, and the procedure is repeated. This

continues to occur every time a new packet of 256 data samples has been

loaded by the DMA into memory.

Another function that the DMA handles besides providing for very fast

transfers of data into memory is that of allowing signals to be sent from

the 11/03 to the IR-CCD electronics indicating a stare time change is need-

ed. This is accomplished by using the function 1 and function 2 lines of

the DMA (bits 1 and 2 of the CSR). Figure 3.3 illustrates the timing of

this stare time changing sequence. When the computations calculate the

background spatial average and it is determined that a stare time change is

in order (by comparing this average with the thresholds Cl and C2), the

software immediately sends out new values of the function 1 and 2 lines,

corresponding to this new stare time, to the DMA board from whence they are

sent to the IR-CCD interface. At the start of the next packet, the hardware

passes these new function Lines to the IR-CCD electronics. Since the old

stare time was still in effect when this new packet was optically integrated

by the IR-CCD array, it is not necessary to check again for a stare time

change. When the second packet after the one where a stare time change was

deemed necessary is ready to be converted and loaded into memory, the new

function line values are sent by the hardware to the programmable digital

shift Logic since this second packet is the first one to be optically in-

- 41 -

-.-

C4C

4).

0n

c Eu

I&n

4J m

3 .2 24

tn c

04

. , &- cn &

Im u C

0. 0)

41 Eu *C

Eu 0

01 - Eu

In U N - M L

4-' 4 4, 0 4-J0 4- M "a 4, #A
01 C .- 0 u m

3 3 Eu 0 0

0 4- 4
0 .r

2 :2- 0 '4-
N 0 C 0

5 ~ 0. IA C4.L

0- C M 0 00-1
c Eu 3 C c E U

41 ~ ~ 0. C ~) u 6

to L- u . >. * . c, >
4, 61 - m 1 &

CL. >1 al 1 4-1 1 1 06

C4 4,0 .0 'to UP c
A CU L CAL

Cj 0U ~ L
4A 0 - Eu 0 '- 0 4

421. i. e. ~U i

tegrated under the new stare time. The background spatial average is again

computed using this new packet loaded in under this new stare time and this

vaLue is compared to scaled (multiplied or divided by 2) values of the pre-

vious Cl and C2 threshold values.

This completes the overview of the software operation. The next sec-

tion will cover the actual code that implements the terminal handling and

computational routines. For more detailed information on use of the DMA,

the reader is referred to [3].

1-43-

B. Implementation of Software

This section explains how the various functions of the IR-CCD Intrusion

Detection System were impLemented in software. The coding of the terminal

handling routine will be covered first, followed by a discussion of the as-

sembly Language computationaL routine. Some more detailed remarks regarding

these routines may be found by examining the comments in the Listings given

in Appendix B.

The main executive routine of the terminal handling section of code was

covered in some detail in the previous section so this discussion will not

be repeated here. The remaining routines will be discussed one at a time in

the approximate order in which they might be called during typical use of

the IR-CCD Intrusion Detection System.

(1) initial - This routine performs all initialization for the IR-CCD In-

trusion Detection System. It is called at turn on time and when the compu-

tations are restarted after performing one of the self-diagnostic tests.

The first thing that is done is to disable the interrupts from the DMA.

This prevents the calculations from being entered before everything is

* ready. The DNA is initialized at this time following the same procedure as

discussed previously in the overview of software operation. Pointers to

various input buffers and output queues are set as well as the initial

i- values for all of the flags that are used to keep track of the status of

various events. The Tektronix 4024 terminal is then initialized. This in-

volves dividing the screen into appropriately sized workspace and monitor

sections, programming the "PT" key to issue the "200006" sequence, and pro-

gramming the various delete character and delete line keys. At this point

it is necessary to see if the DMA maintenance cable is in place. This is

44

done by sending out a bit pattern on the three DMA function Lines and check-

ing to see if it is echoed back by the three DNA status lines (as would be

the case if the cable were in place). If the transmitted and received bit

patterns are the same, it is assumed the maintenance cable is in place and

the DMA test is entered by calling the routine "dmatst". If the two bit

patterns are not the same, the rest of the initialization is performed.

The initial parameter display frame is now constructed on the screen by

calling the "displayl", "bss", "putttyl", "box", "alarm", and "send"

routines. After this, all initial parameter values are set by storing their

binary value in "datareg" and the ascii representation of this value in the

character array "datstrng". This allows the parameter value to be displayed

on the screen when the appropriate parameter changing routine (ddsrv, nnsrv,

ppsrv, dsrv, nsrv, tsrv, Clsrv or C2srv) is called. The convention assumed

for all ascii strings is that they will be terminated in a 0.

The final step in the initialization procedure involves the DNA. When

DMA interrupts are enabled, an interrupt is immediately generated due to the

DNA being in the ready state. Therefore the first interrupt that is re-

ceived causes program control to go to a dummy interrupt service routine

(appropriately called "dummy") which sets the interrupt vector pointing to

the actual end of packet interrupt service routine. This dummy interrupt

service routine also sends out the initial values of the DMA function 1 and

function 2 lines corresponding to the stare time "tref". After this, the

alarm disable flag is set to allow the background time average to be comput-

ed before enabling the alarm, the "go" bit of the DMA is set so that the DMA

is now ready to accept data samples, and the function 3 line is sent high to

inform the IR-CCD custom interface that the software is now ready.

(2) ttyin - This is the routine that is primarily responsible for accepting

- 45 -

-4

character data from the terminal. Called from the main executive routine

whenever a character is present at the input of the serial interface, this

routine first places characters into a temporary buffer until an end of com-

mand character is received (carriage return). As each character is re-

ceived, it is tested to determine if it is a special erasure character

(delete line or delete character) and if so, the appropriate action is tak-

* en. If the incoming character is not a special one (erasure or carriage re-

turn), the character is echoed back to the terminal by calling the "putttyl"

subroutine. The actual sending of the character is handled by the main exe-

cutive routine via the calling of the "send" subroutine. When a carriage

return is detected, the subroutines "parse" and "decode" are called. These

routines interpret the meaning of the incoming character string and return a

number that corresponds to that string. The value of this number from the

previous command string (stored in "oldcomnd") is used for detecting an in-

valid sequence of parameter or mnemonic entries. When an error of this type

is detected, an appropriate error message is sent to the screen, again via

the "putttyl" subroutine. At this point, two C "switch" statements are used

to go to the proper subroutine for handling the operation requested by the

incoming command string. If the current string is decoded and found to be a

valid parameter mnemonic or carriage return, a routine is called which lists

the possible parameter values in the case of receiving a valid parameter

mnemonic, or, in the case of receiving a carriage return, the routine

"addfeat" is called to display the additional features frame. If a numeric

string is received, the routine "decode" calls another routine "ascton"

which converts the incoming ascii into a binary number (appropriately for-

matted according to the previously typed command). The second "switch"

statement is then used to enter the proper parameter changing routine or, if

-46-

expecting an additionaL feature selection, the routine "Lsrv" which in turn

goes to the selected additional feature executing routine. If an error of

any kind is detected at any step along the way (such as the routine receiv-

ing two numeric character strings in a row) an error message is sent to the

screen via the "putttyl" routine.

(3) putttyl - This is a routine which puts the starting address of a zero

terminated ascii string onto a circular queue. ALL messages to the terminal

from user controlled functions are handled through this routine. The

pointer "bfptil" is used to point to the location in the queue where the

next starting address of a string is to be placed. The operation of this

queue in handling output to the terminal is illustrated in Figure 3.4.

(4) puttty2 - This routine is identical to "putttyl" except that it is used

to handLe messages to the terminal from interrupt controlled routines. This

primarily involves "no target/target detected" messages. The use of a

separate output queue for messages of this type prevents the interruption of

the dispLaying of normal ascii strings (from user controlled functions) by

the arbitrary occurrence of an interrupt controlled message display opera-

tion.

(5) send - This routine performs the function of emptying the two output

queues and actually sending the ascii strings to the terminal. Characters

are accessed by finding the starting address of the ascii string being sent

out. This pointer to the string is in turn pointed to by "ptout". See Fig-

ure 3.4 again. A counter called "bytecnt" is used to access the next char-

acter in the current output string. When the end of line character (0) is

reached, "ptout" is moved to point to the next Location in the circular

queue. If this location is the same as the location that the input pointer

- 47 -

Iptout 4- a siisrn2

/ \
/ \

7-v

ptin-. ascii string 3 0

'Pt if' points to location where next address of an ascif string will be
placed.

a' points to first character in zero terminated ascii string 1.
'a2' points to first character in zero terminated ascii string 2.
'a3' points to first character in zero terminated ascii string 3.
'ptout' points to location where pointer to next ascii string to

be sent to terminal resides.
'bytcnt' points to the next character in the string that is currently

'II

being sent out.

Figure 3.4 Structure of output queues.

-48-

"ptin" is pointing to, then all messages have been sent out and the output

queue is empty. When both output queues have been emptied, the "send"

routine ends. The routine is somewhat intelligent in that it does not just

arbitrarily send characters to the terminal. When a 4024 "!Jum" command is

detected as being sent from the interrupt controlled output queue, it is

necessary to follow this command with several ascii nulls to allow the ter-

minal to catch up during rapid message changing conditions. In data sent to

the output queue from user controlled functions, there are several often re-

peated ascii strings which are replaced by special single ascii characters

to save storage space in PROM. These special characters and the ascii

string with which the "send" routine replaces them are listed in Table 3.1.

The Lines of repeated underscore characters in the parameter display List

are also coded in a special form which the send routine decodes. The con

vention used is that if an underscore is detected, the next character will

specify how many times the underscore should be repeated.

(6) parse - This routine is used to ensure that the various typed in com-

mand Lines are all in the same format before attempting to decode these

*t strings in the "decode" subroutine. There are two primary functions that

this routine handles. When a carriage return is typed, it may mean one of

two things: (i) a simple end of command line or parameter entry terminator,

or (ii) an actual command such as when toggling between the various screen

frames. For a numeric string, a carriage return would be interpreted by the

decoding routine as a non-numeric character and hence generate an error.

Thus, command and parameter type strings are placed in a buffer with the

carriage return deleted and an end of line indicator (0) placed after the

Last valid character. When a carriage return is a valid command, it is

placed in the buffer followed by the terminating 0. The second function of

- 49 -

Ascii code Function or Ascii String that RepLaces Special Character

1 0 0 1 "! J U R "

002 "No error detected in"

003 "Error detected in"

004 cursor positioning information

005 "Hit 'RETURN"'

Table 3.1 SpeciaL ascii characters and their corresponding messages.

il

-" 50 -.

the "parse" routine is to remove any leading blanks that may have been typed

in before placing the string in the buffer.

(7) decode - The command decoding routine serves several different func-

tions. The string of ascii characters that was placed in a buffer (called

"string") by the "parse" routine is the primary input to this routine. If

this string is a valid command (such as a parameter mnemonic, single car-

riage return, etc.), the string is interpreted and a numeric value is re-

turned that corresponds uniquely to that command. If the string if found to

be numeric in nature (such as when a parameter value is typed or when an ad-

ditional feature is selected), the routine "ascton" is called. This routine

converts the ascii representations of numeric values into appropriately for-

matted binary representations. If an error was found in converting the num-

ber from ascii to binary (such as more than one decimal point, a non-numeric

character, etc.) an error flag is returned by "ascton" and in turn passes

the error indicator on to the "ttyin" routine by returning the value 0 as

the command number. If the conversion to binary is successful, the value 10

is returned. The value 0 is also returned if an invalid command mnemonic is

. detected. Returning these different values back to the "ttyin" routine in-

forms that routine whether or not one of the keyboard entry servicing

routines (ddlist, nnlist, ddsrv, lsrv, etc.) should be catled, and also

which routine is appropriate.

(8) ascton - This routine converts ascii strings into appropriately format-

ed binary numbers. ALL numeric data entry into the IR-CCD Intrusion Detec-

tion System from the keyboard is in integer values except for changes to the

"d" parameter. The flag "oldcomnd" allows this routine to know which kind

of data to expect by storing the number returned by the "decode" call of the

most recent valid command Line. The actual typed entry for any numeric

value may be either integer or floating point. If expecting an integer

value, the "ascton" routine rounds it off to the nearest integer. Similar-

ly, when expecting a new value for the "d" parameter, "ascton" rounds the

entry off to 2 decimaL (7 binary) places. Thus the proper format for the

"d" parameter as stored in binary is bbbbbbbb.bbbbbbb. There are two loca-

tions in which the rounded off value of the data entry is placed. One is in

a buffer "datareg" which holds the formated binary representation and the

other is a character array buffer "datstring". The ascii characters stored

in "datstring" may be different than those that were typed in. This is due

to the rounding operation described previously. ALL of the routines which

expect numeric data look for it in the "datareg" buffer and assume that the

binary is already in the proper format needed for that routine. ALso, the

ascii representation stored in "datstring" is transfered to another buffer

by these same parameter servicing routines. This allows the screen to be

refreshed without having to convert the binary representation back to ascii.

A much more detailed description of the inner workings of the ascton routine

is contained in the program comments.

(9-16) ddlist, nnlist, pplist, dlist, nlist, tlist, C2ist, Cllist - ALL of

these routines are identical in nature and therefore will be discussed to-

gether. When a valid parameter mnemonic is typed, a list of possible param-

eter values must be displayed at the bottom of the screen. These various

"list" routines perform this function. In each subroutine is a call to the

"bss" routine. This "bss" routine blanks the b9ttom of the screen (4024

monitor space) and refreshes the instruction line telling how to display the

List of additional features. The "oldcomnd" flag mentioned previously in

the "ttyin" and "ascton" sections is set in these listing routines.

- 52 -

(17-24) ddsrv, nnsrv, ppsrv, dsrv, nsrv, tsrv, Clsrv, C2srv - These are the

routines that are entered from the "ttyin" routine actually to perform the

parameter changing operation. When each routine is entered, the new parame-

ter value is stored in the buffer "datareg" from the "ascton" routine. This

value is then tested to determine if it is ore of the allowed parameter

values for the variable that is going to be changed. If not, an error mes-

sage is sent to the screen via "putttyl" and the user is again prompted with

the list of possible parameter values. When it is determined that the typed

entry is a valid parameter, several things can occur. With some parameters

there are auxiliary quantities that must be computed for use by the computa-

tional routine. If the computational routine is entered before all of these

auxiliary quantities have been changed (which can happen due to these compu-

tations being entered under interrupt control), confusion will result.

Therefore, on some parameter changes (D, N, P, n, Cl and C2) the computa-

tional routine is temporarily disabled by use of the flag "intflg". The new

parameter value may now be moved from the temporary buffer "datareg" and

placed in a permanent storage location. The auxiliary quantities are also

*computed for those parameters where it is appropriate. These will be

described in more detail in the section describing the computational

routine. When either N or P is changed, the computations must be started

from the beginning due to the need for a new background time average. This

means that arrays that store information dependent on or used in computing

1] the background time average must be reset to their starting state and in

some cases cleared to zero. More will be said about these arrays ("x", "Im",

and "a") in the section describing the computational routine. In addition

to transferring the parameter value from a temporary buffer, the ascii

string representing this number which was placed in "datstrng" in the "asc-

53

ton" routine is transfered to a permanent location. Storing this string al-

lows the parameter values to be displayed at any time without having to con-

vert back from binary to ascii. When all of the necessary steps have been

completed in changing a parameter (completed as far as the computations are

concerned), the new parameter value is sent to the screen via "putttyl" and

the prompt at the bottom is changed back to the instructions on how to ini-

'* tiate a parameter change

(25) adfeat - This is a routine which constructs the additional features

frame on the terminal screen by sending a number of stored ascii strings to

the terminal via "putttyl". Calls are made to the "box" and "alarm"

routines to aid in this process. The subprogram "box" draws the alarm

status box at the bottom center of the screen while "alarm" fills in the box

with the appropriate message.

(26) putdspl - This routine constructs the parameter display frame on the

terminal screen by sending a number of stored ascii strings to the terminal

via "putttyl". Calls are made to the "displayl", "bss", "box," and "alarm"

routines to aid in this process. The routine "displayl" draws the parameter

table at the top of the screen, "bss" fills in the prompt messages at the

bottom, "box" draws the alarm status box, and "alarm" fills in the box with

the appropriate message.

(27) displayl - This routine aids "putdspl" by constructing the parameter

display table at the top of the parameter display frame.

(28) box - This routine constructs the alarm status box at the bottom

center of the various frames displayed on the terminal.

(29) alarm - This routine examines the flag "almflg" indicating the current

- 54 -

status of the alarm (disabled, no target detected, or target detected) and

then displays this message inside of the alarm status box constructed by the

"box" routine.

(30) bss - This routine clears the bottom of the screen (monitor) and sends

the "Type L to see list of additional features" line to the terminal via

"putttyl".

(31) bds - This routine clears the bottom of the screen (monitor) and sends

the invalid parameter error message to the terminal via "putttyl".

(32) help - This routine is called from the "end of packet" interrupt ser-

vice routine "endpk" when it is determined that-the calculations are falling

behind. The purpose of this routine is to inform the user of this condition

by displaying an appropriate message on the terminal via "puttty2".

(33) irout - This routine is called at the end of the computations and

determines if the message presently in the alarm status box is different

from the one called for by the just-completed computations. This allows the

message in the alarm status box to be updated only if there is a change

needed thus preventing the terminal from getting bogged down. "irout" also

sends out the audible alarm (when enabled) for every packet for which a tar-

gt is detected. This sustains the audible alarm for the entire time that a

target is present.

(34) Isrv - This routine is used to service the additional features list.

CIf feature 1 is selected (the toggling of the audible alarm status), an ap-

propriate flag is set and "Lsrv" is exited. For the remaining features, the

desired test routine is entered except for the DMA test. In that case only

the DMA test instructions are displayed and the 11/03 "halt" instruction is

f-

issued if the user desires to perform the test.

(35-40) atodins, pdsins, termins, promins, ramins, dmains - These routines

are used to display a brief description and/or instructions for each of the

diagnostic test routines. There are also calls made to the "box" and

"alarm" routines to allow the alarm status box to remain updated while the

test descriptions are on the terminal screen.

(41) atodtst - This routine tests the A to D converter on the custom inter-

face board by loading samples into memory via the DMA and then displaying

these samples on the terminal screen. The two function Lines are set to

zero to allow all 12 bits of the A to D converter output to be displayed on

the screen. The routine "atod" performs the actual data transfer and

conversion to ascii, and is called repeatedly in a while loop until a char-

acter is received from the terminal. Once the test has been completed, the

initialization routine "initial" is called to restart the program from the

beginning.

(42) atod - This is the routine that actually controls the reading and

display of samples from the A to D converter. This code is called by both

the "atodtst" and "pdstst" routines. The first thing that is done in this

routine is to set up the DMA f3r a single word transfer into memory. Once

the "go" bit of the DMA is set, the routine waits for a start convert pulse

to be received by the custom interface board. That initiates the actual

data transfer. When the DMA has completed loading the word into memory, the

conversion from binary into ascii takes place. The word is converted into

the ascii representations of both its binary and decimal vaLues. The de-

cimal conversion is handled by the routine "atodec". These two representa-

tions are then displayed on the terminal screen via the "putttyl" and "send"

- 56 -

routines. A slight delay is added at the end to prevent the 4024 terminal

from falling behind.

(43) pdstst - This routine tests the programmable digital shift (PDS) logic

by repeatedly cycling through all possible values of the function 1 and 2

lines, loading these shifted samples into memory via the DMA, and finally

displaying these values on the terminal screen in both binary and decimal.

Initially both function lines are set to ones (corresponding to tref). New

values are clocked in using the start packet signal. The actual data at the

output of the PDS Logic is loaded into memory via the "atod" routine where

the results are then displayed on the screen after the data transfer takes

place. The current values of the two function lines are then displayed on

the screen before it is determined if it is time to update these lines to

new values. The test continues until any character is received from the

terminal via the serial interface. At this point, the initialization

routine is called and the program is effectively restarted from the begin-

ning.

(44) termtst - This routine tests the Tektronix 4024 terminal and the seri-

al interface to which the terminal is connected. The terminal is tested by

issuing the standard 4024 "test" command. For more information about this

h command see [4]. The next segment of this routine tests the serial inter-

face and monitor section of the 4024 screen by repeatedly sending an 81

character long string of ascii data to the terminal. The "putttyl" and

"send" routines are used in this process. There is a short delay added

after sending each line to prevent the 4024 from lagging behind what is be-

Ving sent out by the microprocessor. The last section of this routine tests

the serial interface and workspace section of the 4024 screen using the same

- 57 -

method as was used to test the monitor section of the screen. As with most

of the other test routines, the program is effectively restarted after com-

pletion of the test by calling the initialization routine "initial".

(45) promtst - This routine computes two 16 bit checksums, one for the

lower 4k words of PROM and one for the upper 4k words of PROM. The expected

values of these checksums are stored in two words in the upper 4k block of

PROM. This section of PROM is not used in the computation of the checksum

for the upper 4k block of memory. Once these two checksums are computed,

they are converted to the ascii representation of their octal value by use

of the "atooct" routine. In a similar fashion, the expected values of these

checksums are retrieved from memory and converted to ascii by calling the

"atooct" routine. In addition to displaying these actual and expected

checksums on the terminal screen, comparison is made of these values by the

microprocessor and an appropriate set of error/no error messages is

displayed on the screen. Upon receiving any character from the terminal,

the initialization routine is called to restart calculations and the

"promtst" routine is exited.

(46) ramtst - This routine is used to test the integrity of each word in

the main section of RAM by writing unique bit patterns into a location and

then trying to read these patterns back to see if they were stored correct-

ly. This testing procedure is accomplished using three of the general pur-

pose registers to prevent destroying any useful information that had been

previously stored in RAM (specifically the stack which is used to hold all

subroutine calling information). One register is used to point to the

desired test Location, one register is used to hold the original bit pat-

tern, and the third register acts as a temporary buffer to store the origi-

-58-

naL contents of the desired test location. If an error is detected during

the test, the Location of the error (the contents of the register that is

used to point to the test location) is converted to the ascii representation

of its octal value using "atooct" and this value is displayed on the screen.

The routine then waits for either a continue symbol to proceed with the test

or a terminate symbol to end the test. Whenever an error is detected, an

accummulator is incremented to keep track of the total number of errors

detected. When the test has been completed (either by having tested all RAM

locations or having the test prematurely terminated by the user) this accum-

mulated error count is converted to decimal by "atodec" and displayed on the

screen. Finally, the initialization routine is called to restart the calcu-

lations and the "ramtst" routine is exited.

(47) dmatst - This routine is used to call repeatedly the routine "dmats"

which in turn calls the actual DMA test routine which is written in assembly

Language. A call is made to "dmats" every time a character is received from

the terminal. The "dmatst" routine is entered from the routine "initial"

when it has been determined that the DMA maintenance cable is in place.

(48) dmats - This routine is used to handle the output end of the DMA test.

The actual test routine is written in assembly language and is called "dma".

H In "dmats" there are seven global flags, one for each function of the DMA

that is to be tested. These flags are originally set to zero. When the as-

sembly language routine "dma" is called, these flags are either left at zero

(if no error for the corresponding test is detected), or set to a one (if an

error is detected). After control has been passed back to the "dmats"

routine, these seven flags are examined and an appropriate error/no error

message is displayed on the screen for each segment of the test. At this

- 59 -

point, control is returned to the "dmatst" routine.

(49) dma - This is an assembly language routine that actually performs the

tests on the various DMA functions. The user is referred to [33 for more

complete details about DMA operation and terminology. The first three tests

that this routine performs involve verifying the read/write capabilities of

the Word Count Register, the Bus Address Register and the Data Buffer

Register. This is done by first writing into each of the various registers

an alternating zero-one pattern. The WCR, BAR and DBR are then read back

and the results compared to the original pattern. If differences are

detected, the appropriate error flags are set and the "dma" routine contin-

ues with the next test. If no errors are detected, the zero-one pattern is

complimented and the test repeated.

The next DMA function that is tested is the clearing of various regis-

ters when a bus INIT signal is sent. This is accomplished by setting all

possible bits in the WCR, BAR, Control Status Register, and DBR and then is-

suing the "reset" command to send the bus INIT signal. The four DMA regis-

ters are then examined to see if they have been set to the proper values

*(these are not all zero since some bits always read as ones). If all four

registers do not check out properly, an error flag is set.

The function-status lines are the next DMA section to be tested. When

the DMA maintenance cable is in place, the three function lines are fed back

into the three status Lines and hence the status lines should echo back what

is sent out on the function Lines if all is working properly. This portion

of the "dma" routine sends out all possible combinations of function line

values and verifies whether or not the correct values are received by the

three status lines. If all tests are not successful, an error flag is set.

- 60 -

The final two DMA tests involve the transferring of data to and from

memory and the issuing of interrupts at the end of data transfers. These

operations are again accomplished through the use of the DMA maintenance ca-

ble. When the maintenance, interrupt enable, and go bits of the DMA CSR are

set, and the WCR and BAR have been properly loaded, the "BUSY" line feeds

back into the "CYCLE REQUEST" line to initiate data transfers which alter-

nately takes a word from a memory location pointed to by the BAR or places

this word in the next consecutive memory location. This cycle repeats it-

self until the WCR has been incremented to zero. At that time, an interrupt

request should be issued by the DMA and program control should transfer to

the DMA interrupt service routine "dmaint". This assembly language routine

sets a flag to acknowledge that the interrupt request has been honored and

then returns control back to the "dma" routine. After a short delay to in-

sure that the interrupt has had enough time to occur and to be serviced,

this flag is examined and if it is found to have not been set by the

"dmaint" routine, an appropriate error flag is set. The final part of the

"dma" routine examines the locations in memory where data transfers should

have occurred, and verifies whether or not the proper values have been Load-

ed into the proper locations. An error flag is set when an unsuccessful

transfer is detected. Program control is then returned to the "dmats"

routine where the seven error flags are examined and appropriate messages

displayed on the terminal screen.

(50) atodec - This routine takes a 16 bit word and converts it into a char-

acter string that contains the ascii representation of the decimal value of

this word. Negative numbers are first changed to positive numbers before

the actual conversion takes place. The conversion process itself involves

repeatedly performing integer divisions by decreasing powers of ten. The

-61-

results of these divisions are the individual digits in the binary coded de-

cimal representation of the original word. These digits are in turn con-

verted to ascii by adding 60 (octal). As with all ascii strings, a zero is

added to the end for a string terminator.

(51) atooct - This routine takes a 16 bit word and converts it into a char-

acter string that contains the ascii representation of the octal value of

this word. The conversion is performed by first masking off groups of three

bits to get the individual octal digits, and then converting these digits to

ascii by adding 60 (octal). A trailing zero is added to the string as a

terminator.

(52) thresh - This is an assembly language routine that computes a table of

decision threshold values corresponding to background time averages in the

range 0 to 1023. The basic method for computing the needed square roots is

a Newton-Raphson type scheme. That is, the roots of the equation

f(X) = X2 - a = 0

are found by performing ten iterations of the equation

'! f(x)
Mn

"I n+l = n -
x n~

or

X 2 _ a

x x n
n+1 n - X

After these iterations, the value of X will be approximately equal to the

square root of a. Throughout this routine, numbers are carried around with

- 62 -

an appropriate binary format to ensure integer accuracy in the final thres-

hold values.

Once the above square root is found, it must be multiplied by two other

factors. These are (i) the square root of the quantity N+1/N and (ii) the d

parameter. The first of these factors was found via table look up in the

l"nnrsv" routine and is stored in the variable "sqn". The other factor was

stored in "smd" in the "dsrv" routine and has a format containing seven

binary places. After these three terms are multipLied together using the

fixed point multiply instruction, the resulting threshold is placed in the

proper location in the threshold table "btab" pointed to by "bstr".

(53) dmaint - This is a DNA interrupt service routine that is entered dur-

ing the DMA diagnostic test. The only function it serves is to set a flag

indicating that the DNA interrupt service request has been honored.

(54) halt - This is an assembly language routine that merely executes the

11/03 "halt" instruction. This allows the "C" routine "Lsrv" to halt the

program when the user desires to perform the DNA diagnostic test.

* This concludes the discussion of what have roughly been called the ter-

minal handling routines. As mentioned previously, more detailed comments

are contained in the program listings in Appendix B.

-63-

The actual implementation of the computations performed in the IR-CCD

Intrusion Detection System will now be discussed. This will begin by

describing three main vectors which are used to store various quantities

used in the calculations. The first of these vectors is one called 'x".

This may be thought of as a first in-first out circular queue that stores

the past data samples used in computing the background time average. Rough-

ly 1 F h of these samples are updated each pass so that in P passes one sam-

pe from each spatial element of the IR-CCD array has been stored. There

are N of these samples from each element that must be stored thus giving the

queue a length of N*256 words. This queue may be thought of as being broken

down into N packets with 256 elements in each packet and each packet being

updated over the course of P passes. See Figure 3.5. There is one pointer,

called "xptr", which points to both the location where the oldest element in

the queue may be found and also where the newest incoming element is to be

placed. This allows the background time average to be computed by subtract-

ing the oldest sample from an accumulated sum of samples and then adding in

the newest sample. This newest sample is then stored in the same location

where the oldest sample was removed.

The second important vector is one called "m". This vector may be

thought of as being divided into four distinct blocks of 256 words each.

The first and last 256 word blocks are actually storing different parts of

the same quantity. This quantity is the accumulated double precision sum of

terms used in computing the background time average. In other words, this

is the background time average before it is divided by N. The first 256

words of "m" store the Low order word of the double precision sum while the

last 256 words store the high order word of this sum. See Figure 3.6. Each

word of a block corresponds to one cell of the IR-CCD array.

-64-

hpcket

xptr 1 256 elements

, packet
'i 2

I Pth of one of the N packets

is updated each time.

packet
N

'xptr' points to the location where the oldest element in the queue
is to be removed and where the newest element is to be placed.

Figure 3.5 Layout of "x" vector.

- 65 -

Low
I order
I word of
Isum of 256 words (one for each IRCCD

past cell)

samples

Backg round

time 256 words
average

Threshold

Correspond inc
to 256 words

backg round

time average

High
order
word of
sum of 256 words
past
samples

Figure 3.6 Layout of Urn vector.

-66-

The second 256 words of the "m" vector store the actual background time

average. This is just the corresponding element of the first (and Last)

block of "m" divided by N.

The third 256 words of "m" store the decision thresholds for each of

the background time averages in the second 256 word block. This decision

threshold is found via a table Look-up procedure.

The last important vector used in the calculations is the "a" vector.

This 256 word vector stores the past history of threshold violation informa-

tion. Each word corresponds to a cell of the IR-CCD array while the various

bits of each word correspond to the past time instances. See Figure 3.7.

Bit 0 is always set to zero as will be explained later. Bit 1 of each word

represents the threshold violation information of the current packet, bit 2

corresponds to one packet into the past, bit 3 corresponds to two packets

into the past, etc. This format is used to simplify the target-no target

decision process.

The computational routine, called "crunch", is written in LSI-11 assem-

bly language and may be broken down into three main parts. These are i)

the computation of the background spatial average, (ii) the computation of

the background time average, and (iii) the threshold comparison and decision

making section. The background spatial average is computed by summing D

equally spaced samples from the current packet of 256 samples and then di-

viding by D. In the software implementation of this calculation, there are

three auxiliary variables that are defined in "C" routines to speed the

routine up. "ntbkspav" is set to equal the number of terms used in comput-

ing the background spatial average (256/D) and is used as the initialization

for a counter to keep track of how many iterations are needed in ihis compu-

tation. "tbgd" is set equal to 2*D and is used for stepping along the array

- 67 -

Threshold violation corresponding to

the past time instances:

nI n-1

n- I (bit 0 always set to zero)

256 words, one for

each cell of the

IR-CCD array.

, i

ft

Figure 3.7 Layout of "a" vector.

6

] -68 -

l -J

of new samples (pointed to by "yptr"). The factor of two is due to the word

Length of the LSI-11 being two bytes and thus, since each integer value is

stored in one word, it is necessary to increment by two to reach successive

elements in memory. For example, "yptr" points to the first element in the

array of new samples. "yptr" plus "tbgd" points to the Dth element in this

array, "yptr" plus 2*"tbgd" points to the 2*Dth element in the array, etc.

The section of code that computes the sum of D terms uses this procedure for

extracting every Dth element from the packet of new samples. The sum is

carried out in double precision to prevent overflow. The third auxiliary

variable "dshft" is used in dividing this sum by D. Since all possible D

values are powers of two, the division is accomplished by a shifting opera-

tion. "dshft" tells the assembly language shifting instruction "ashc" how

many places to shift and which direction (negative numbers to the right).

At this point in the calculations, the background spatial average is in r3.

A flow chart showing the computation of the background spatial average and

stare time changing operation is shown in Figure 3.8.

The first thing that is done in checking for a store time change is to

determine whether or not a stare change was performed during the previous

set of calculations. If a change was indicated, it hasn't had time to af-

fect the current packet and it would make no sense to check for a change

again. The status of whether or not a change took place on the previous

packet is indicated by the flag "fstat".

Stare time changes are initiated by comparing the background spatial

average with two thresholds, one to indicate a decrease in store time is

needed (C2) and one to indicate a stare time increase is in order (Cl).

These thresholds are not constant for different stare times. When operating

at tref, the incoming samples are roughly in the range 256 to 511. When the

-69-

I Clear
registers

' In it ial ize

'' po inter

Add term to

accumulator

Re e p t er o

Yes

Divide Sum~by D

Ilz

f Round off
after divide

Figure 3.8 Computation of background spatial average and stare time

changing operation.

-700-

Stare
Yes time change

ptrevtimes

N

stare time decreases to tref/2, the incoming samples are roughly in the

range 512 to 1023. Similarly, at tref/4 the samples range from 1024 to

2047, and at tref/8 from 2048 to 4095. Therefore, as tref decreases, the

thresholds must be increased by a factor of two at each change. Similarly

as tref increases, the thresholds must be decreased by a factor of two at

each change.

Since the current samples were integrated by ihe IR-CCD array with the

stare time computed two packets before, it is necessary to store this past

history of stare times. "tref" holds the value that will be computed for

the current packet, "trefml" holds the value computed one packet into the

past, and "oldtref" holds the value computed two packets into the past. The

values that are stored serve several purposes. These purposes and the pos-

sible values for "tref", etc. are illustrated in Figure 3.9. This shows how

"tref" may be used to change the function 1 and 2 Lines and how "oldtref'°,

the value of "tref" from two packets ago, may be used as a pointer to look

up elements in the arrays "CC" and "CC2" which hold the properly scaled

values of the user specified parameters C1 and C2.

When it is determined that one of the thresholds has been violated and

that a stare time change is in order, the current value of "tref" must be

checked to see if it is possible to increase or decrease the stare time any

more. If a change cannot be made, "tref" is saturated at the appropriate

extreme value. If a change is possible, "tref" is updated by adding or sub-

tracting 2 from "tref". This new value is then sent out on the DNA function

1 and function 2 Lines and the past history of stare time changes is updated

by moving "trefml" to "oldtref" and "tref" to "trefml". This completes the

section of code which computes the background spatial average and initiates

a stare time change when needed.

-72-

last 3 bits of 'tref' 'trefml' ,or 'ol dtre f

d 2 'OItreE'

f 2f CSR of DMA

bits controlling function 1 and function 2 lines

stare time d 2 d I f 2 f I decimal value of d 2d 10

tref 1 I 1 1 6

tref/2 1 0 1 04

treE/i 0 1 0 1 2

tref/3 0 0 0 0 0

Start of Array CClP: 8 * Cl Start of Array ICC21: 8 *C2

(Starting addressi2) 4 *Ci 4 * C2

(Starting address+i) 2 *Cl 2 *C2

Ii(Starting address+6) Cl C2

Figure 3.9 Uses of stare time information.

-73-

The second major part of the calculations involves computing the back-

ground time average and looking up in a table the decision threshold that

corresponds to this time average. There are a total of 256 background time

averages that must be computed, one for each cell of the IR-CCD array and N

terms used in computing each average. Over the course of P packets, all 256

averages are updated by adding in one new term and subtracting out the old-

est term. In order to save time, only one Pth of the cells are updated each

packet. There are three auxiliary variables defined in the "C" routine

"ppsrv" which are used to divide the calculations over P packets. These are

"nl", "pnorm", and "plast". These numbers are computed so as roughly to

divide the computations evenly over each iteration. "nl" indicates the to-

tal number of passes during which any background time averages are updated.

For most values of P, "nl" will be equal to P. However, for some P values,

it is more efficient in terms of reducing the maximum number of cells that

are updated during any single pass (worst case condition) to have "n1" less

than P. "pnorm" is the number of cells that are updated during the first

"n" minus 1 passes, while "plast" indicates the number of cells updated

during the "nl"th pass. There are no cells updated during the remaining P

minus "n1" passes. For example, with P equal to 12, "nl" is 12, "pnorm" is

21 and "plast" is 25. This means that during the first "nl" - 1 or 11
passes, 21 cells are updated while during the 12th pass, the remaining 25

cells are updated.

Since the computations are distributed like this, it is necessary to

store the Location of the next cell to be updated in the array of 256. This

is accomplished by storing three pointers. "xptr" points to the next Loca-

tion in the previously described "x" array which holds past sample values,

"mptr" points to the next location in the previously described "m" vector

-74-

which holds the accumulated sum of terms used in computing the background

time average, the background time average itself, and the corresponding de-

cision thresholds, and "yincr" is used to point to the next location in the

current array of new samples whose start is pointed to by "yptr". It is

pointed out again that due to the addressing structure of the LSI-11 proces-

sor, it is necessary to increment by two to point to successive words in

memory. This factor is automatically accounted for in the various auto-

increment, auto-decrement instruction modes Ell.

The calculation of the background time average begins by incrementing a

counter "pcnt" which is used to keep track of which block of the 256 IR-CCD

cells is to be worked on. Also performed at this time is the loading of the

various pointers into registers. These pointers indicate where the next

cell is to be updated in the 'x", "m", and "y" arrays. As mentioned before,

"x" contains the past samples used in computing the background time average,

"im" contains the sum of N of these samples for each cell, the actual back-

ground time average, and the corresponding threshold, while "y" (actually

"ybufl" or "ybuf2") is the array of 256 current samples. The pointer to the

"x" vector is checked to determine if the last element in the vector has

been reached and if so, is reset to point back to the first element. This

is where the previously mentioned circular nature of the "x" vector is ac-

complished. The value of "wrap" is used to determine when the end of the

"x" vector is reached. "wrap" is set equal to 2*N*256 (the two factor is

again required in order to skip words instead of bytes).

Now that all is set up for the calculations to begin, it must be deter-

mined which segment of calculations is to be performed. If "pcnt" is Less

than "n" program control is transfered to a section of code that performs

the calculations on the next "pnorm" cells of the array. If "pcnt" is equal

- 75 -

to "nl", program control is transfered to a section of code that performs

the calculations on the final "plast" cells of the array. When all 256

cells have been updated, "pcnt" is compared to P (stored in "bigp") to

determine if it is time to start updating the entire block of 256 cells

again. If "pcnt" is equal to P, "pcnt" is set equal to zero and the pro-

cedure is started over from the beginning at the next pass through the com-

putations. This procedure for distributing the background time average cal-

culations over P packets is illustrated by the flow chart of Figure 3.10.

The actual computation of the background time average and determination

of the corresponding decision threshold for one cell of the IR-CCD array

will now be discussed. At the beginning of a typical iteration, rO is

pointing to the proper element of the current data packet, rl is pointing to

the corresponding element in the first block of 256 words of the "m" vector.

It is noted that (1000)8 + r2 points to the corresponding element of the

second 256 words of "m" (the background time average), (2000)8 + r2 points

to the corresponding element of the third 256 words of "m" (the decision

* thresholds corresponding to the background time averages in the second 256

words), and (3000)8 + r2 points to the Last 256 words of "m" (the high order

* word of the double precision sum of past samples). The first thing that is

done in these calculations is to subtract (in double precision) the oldest

d sample stored in the "x" vector from the sum of past samples stored in the

first (and last) 256 word block of "m". Next, the newest sample, pointed to

by rO, is added (double precision) into the accumulated sum pointed to by

r2. This double precision sum is then moved into registers r4 and r5 and

the fixed point division by N is performed using the "div" instruction.

After rounding off after the division, the single precision background time

average is stored in the proper element of the second 256 word block of "m".

- 76 -

IncrementIpn'i
SLoad pointers
nto registers.

Yes

Perform caic. on

Perform caic. on

IReset pointers
to bcqinninj

Figure 3.10 Distribution of calculations over P packets.

-77-

In the "dsrv" and "nnsrv" routines, the assembly language routine

"thresh" is called. This routine sets up a table of decision thresholds for

the current values of N and d where each element in the table corresponds to

a different background time average ranging from 0 to 1023. For background

time averages greater than 1023, it is noted that dividing the average by 4,

looking up the corresponding threshold, and multiplying this result by 2

(since the thresholds are proportional to the square root of the background

time average) effectively extends the range of the table from 0 to 4095. It

is also noted that when the stare time is equal to "tref" or "tref"/2, sam-

ples will range from 0 to 1023 and when the stare time is equal to "tref"/4

or "tref"/8, incoming samples will be in the range of roughly 1024 to 4095.

Thus, when the stare time is equal to "tref" or "tref"/2, the threshold

corresponding to the background time average is directly looked up in the

threshold table. When the stare time is equal to "tref"/4 or "tref"/8, the

alternate look up procedure is employed.

Since word addresses must be used to find elements in the table, an ad-

ditional factor of two is found in the code implementing the look up opera-

tion. For the two Longer stare time, 2 times the background time average is

added to the starting address of the threshold table to find the correspond-

ing threshold. For the two shorter stare times, the background time average

is only divided by two (instead of four) before it is added to the starting

address of the threshold table to find the corresponding threshold. This

threshold is then multiplied by two to get the actual threshold value. Once

the threshold is found for any of the various stare times, it is stored in

the proper element of the third block of 256 words of the "in" vector for fu-

ture use in the target decision making process. The computation of the

background time average and corresponding decision threshold for a single

- 78 -

cell of the IR-CCD array is shown in Figure 3.11.

The final segment of calculations involves performing the target-no

target decision process outlined in [23. The difference operation and

threshold comparison operation that is performed on each of the 256 elements

in the IR-CCD array for each new packet of data is done simultaneously with

the actual target-no target decision. This portion of the calculations is

where the previously described "a" vector comes into play.

The main loop of this segment of calculations iterates over each cell

of the array. The first step in each intration is to compute the difference

between the background time average stored in the second 256 words of "m"

and the array of current data samples pointed to by "yptr". The absolute

value of this difference is then taken and this value is compared to the

previously computed decision threshold which had been stored in the third

256 word block of "m". If the threshold is not violated, the bits in the

word of "a" corresponding to that cell are shifted one place to the left and

a zero moved into the second bit. (As discussed previously, this

corresponds to threshold violation information for the current packet.) If

the threshold is violated, the bits in the word of "a" corresponding to that

cell are also shifted one place to the left but in this case a one is placed

in the second bit. This is the procedure that updates the past history of

threshold violations for each cell in the array. The shifting operation al-

lows the information stored during the previous packet now to be moved an

additional packet into the past. It is now clear that the target-no target

decision process merely involves summing the number of ones contaned in

three adjacent words of "a" (corresponding to three spatially adjacent cells

of the IR-CCD array), only Looking at the bits in each word of "a" that

correspond to the n/3 most recent packets.

-79-

START

Subtract oldc~.t

from st11

Add o

sampI'. Lo
s urn

Divide %urn by

N tL 1"1 Ilk-

seklnthreshYedIIrfo r42

This brings up the use of the 12tbit of each word of "a" that is al-

ways set to zero. When the bits corresponding to the n/3 most recent pack-

ets are masked off, a number results in that word of "a" which can have at

most 32 distinct values (when n equals 5). The 0 bit allows this word in

Ila" to be used as an address to an element in a table whose value is equal

to the number of ones (threshold violations) in that cell of the array dur-

ing the past n/3 most recent packets. This is the procedure employed here.

The actual implementation of this decision process involves the use of

the stack (pointed to by sp) and an accumulator r5. For any iteration

through this section of code, r5 contains the sum of the number of threshold

violations in the previous two cells (this is why no alarm decision is made

for the first two cells). The number of threshold violations for the

current cell is found by table look-up. This number is stored on the stack

(to enable subtraction from the total number of ones for two cells ahead)

and also added to r5. Register 5 now contains the total number of threshold

violations for three spatially adjacent cells over the n/3 most recent pack-

ets. This sum in r5 is then compared to t. If the sum in r5 is greater

than or equal to t, a flag (called "tar") is set indicating a target has be

detected. If the sum in r5 is less than t, the number of threshold viola-

tions two cells before is subtracted from the sum in r5. This set of calcu-

lations is then repeated until all 256 cells have been completed. If no

target is detected during any of these iterations, the flag "tar" is left

set to zero. This completes the computations. Figure 3.12 illustrates this

target-no target decision process.

Set
up

pointers

Take diff.
between bk. time
avg. and current

va l ue.

|zzi
Take abs.
value of~difference.

Shift word in

'a' vector I
bit to leFt

set second bit Ye if>

in 'a' vector trsod

Mask off n/3 mostt I recent bits in|

' I I a' vector _

Look up number
of ones in word

of 'a' vector

'I
Add numbr of

ones into
accumulator

Figure 3.12 Target/No target decision process.

- 82 -

2

f threshol Yes Set targetviolations detected flag.
N0

Figue 312 ontiud

-83-

C. Memory Organization

There are a total of 16896 words (33792 bytes) of MOS-RAM and 8192

words 16384 bytes) of EPROM contained in the IR-CCD Intrusion Detection Sys-

tem. 16384 of the RAM words are contained on the MSV11-DC board whiLe the

remaining 512 words are equally divided on the two MRV11-BA uv PROM/RAM

boards. There are 4096 words of PROM on each of the two PROM boards.

The partitioning of memory between RAM and PROM is illustrated in Fig-

ure 3.13. The 256 words of RAM from one of the PROM boards starts at ad-

dress 0. This block of memory provides space for interrupt vectors, trap

vectors, etc. At this point there is a 3840 word gap in the addressing of

memory locations. This allows PROM to start at a 4k word-multiple. The

lower 4k words of PROM start at address (20000)8 whiLe the upper 4k words

follow immediately after at address (40000)8. The 16k words of RAM on the

MSV11-DC start at address (60000)8 whiLe the remaining 256 words of RAM from

the second PROM bound start at address (160000)8.

The locations of several of the more important arrays in the calcula-

tions are shown in Figure 3.14. These arrays are discussed in more detail

in Sections III.A and III.B but will be briefly summarized here. "ybufl"

and "ybuf2" are input buffers which contain data from the two most recent

packets. "x" is the vector that contains past data used in computing the

background time average. The "m" vector contains several different quanti-

ties. The first and Last blocks of 256 words in "m" contain the low and

high order words respectively of the sum of all the terms in the background

time average. The second 256 word block of "m" contains the actual back-

ground time average while the third 256 word block contains the decision

thresholds corresponding to the background time averages stored in the

second 256 word block. The "a" vector contains the past histories of thres-

- 84 -

AD-A091 630 PURDUE UNIV LAFAYETTE IN SCHOOL OF ELECTRICAL ENGINEERING F/B 15/3
MICROCORPUTER COMPUTATIONAL UNIT FOR AN IR-CCD INTRUSION DET--ETC(U)

OCT 80 T WGOEDDEL, A T WILSON, S C BASS F30602-75-C-GOoa
UNCLASSIFIED RADC-TR-80-308 NLrfllfllffAff;.EDlf

OIL

256 words RAM
from one MRVII-BA
PROM/RAM board

000776

(gap)

020000

8 k workds PROM
from two MRVi1-BA
PROM/RAM boards

057776

0 6 o o o o

16k words RAM
from MSVII-DC
RAM board

i 157776

, 160000

256 words RAM
from second MRVII-BA
PROM/RAM board

160776

Figure 3.13 Partitioning of memory between RAM and PROM.

- 85 -

(60000)a START OF RAM

(60004)8-* ybuf 77 256 words

(61004) 8 -- ybufl }256 words

(62056) 8---

40 x 256 words

(132076)8m

S1024 words

I(136io4) 8 a 256 words

(160776)8 STACKJ

Figure 3.14 Locations of several important arrays in RAM.

-86-

hold violation information for each of the 256 cells of IR-CCA array. The

PDP-11/03 stack starts at the high end of RAM and sequentially fills up

words in descending address order. The stack is used in the calculations

and also for keeping track of subroutine calls and passing parameters.

The symbol table contained in Appendix B is useful for probing around

inside memory (using ODT) to obtain current values of various variables.

Use of this table is best illustrated by a couple of examples. If the

current value of the variable "pcnt" were desired, the user would simply

find the entry " pcnt" in the table. (The "C" compiler automatically

prepends an underscore to the start of all variable names.) To the left of

this name is the number "62052". This is the address in octal where the

value of "pcnt" is stored. This Location may be accessed via ODT as ex-

plained in [13. Similarly, if it were desired to examine the entries in the

array "btab", one would find the address to the left of the " btab" entry in

the symbol table. This number (137122) is the address (in octal) of the

first entry in the array. The second entry would be stored in Location

137124, the third in 137126, etc. As before these entries may be examined

using ODT.

~- 87 -

IV. Maintenance

A. Preliminaries to Testing

To shut down power while the system is operating, disconnect the analog

CCD signal Line, disconnect the 16-pin connector at the IR-CCD device and

switch power to "off" at the right rear of the card cage. To power up, sim-

ply reverse the order.

To use the card extender(s), shut down power as above, remove board to

be inspected, insert card extender with finger "notch" to the Left. Insert

board into card extender (you should provide support to the rear of the

board). Power up as above. When the interface board is to be inspectedp

removal of the DNA board below the interface is required due to the

thickness of the interface board. After DNA and Interface removal, the DMA

should be inserted for proper testing to occur. You do not have to discon-

nect the ribbon connector between interface and DMA in order to remove ei-

ther board. Board locations in the card cage itself are shown in Figure

4.1.

B. Calibration Procedures and Use of Maintenance Software

The only times the card extender need be used are when a problem is

suspected in a board or when calibration of the AID and sample-and-hold

gain, offset, and input voltage range is required. The A/D converter has

two input voltage ranges: 0 to +5 volts, and 0 to +10 volts. In order to

operate on the 0 to +5 volts range, jumper J1 (pin #25 on the ADC85C-12 un-

it) must be connected to pin #22 on the ADC85C-12 unit. In order to operate

on the 0 to +10 volts range, jumper J1 must be connected to pin A (open).

Pin #22 and pin A are both short in Length. See Figure 4.2 for location of

pins #22, #25 and pin A.

- 88 -

KDII-HA LSI-I1/2 OCKII-AC
Processor Board IRCCD Interface Board

DRV 11-B
DMA Interface Board

MII -DC DIViII
16K word RAM Board Serial Line Unit

MRVII-BA MRVI 1-BA
UV PROM/RAM Board UV PROM/RAM Board

1lower 4K words upper 4K words

I Figure 4.1 Board locations in card cage.

-89-

0 - 130J -no-0

To adjust the gain of the sample-and-hold device, apply a known dc vol-

tage on the analog line, with the POP-11/03 powered up. Measure the voltage

between "CO" on the SHM60 and Pin #30 on the A/D converter. This voltage

is the output voltage of the sample and hold device. Adjust the potentiome-

ter ("pot") marked "GAIN" until the proper output voltage is seen.

There are two types of offset possible: voltage offset, and charge

offset. A pot is provided for each. The voltage offset should be adjusted

to zero by grounding the analog input, observing the SHM60 output on pin #30

of the A/D converter and adjusting the pot marked "VOLTAGE" until the output

voltage indicates zero. The analog signal can be grounded by removing

jumper J2 and connecting it to "COM" on the SHM60.

The charge offset is the error between the sample value and the hold

value out of the SHM60. This charge offset should be adjusted using the pot

marked "CHARGE" so that a zero volt input just barely causes only the Least

significant bit (LSB) to toggle on and off. To perform this operation

ground the analog input as above, examine the least significant bit which is

pin #1 of the AID converter, adjust "CHARGE" until only the LSB toggles.

(The charge offset might be considerable in order for this to happen. If

you are unable to do this, you can raise the voltage offset away from zero.)

Another approach is to examine the entire 12-bit A/D values using the

software test that looks at A/D converter output via the terminal. (This is

option #2 on the "Additional Features" terminal display frame.) Again ground

the analog input and adjust "CHARGE" until only the LSB toggles.

This software test routine can also be used to adjust the overall gain

of the SHM60 and the A/D converter so that a known maximum analog input vol-

tage turns on all the A/D converter bits. To do this, simply apply the

known maximum analog voltage, enter the software test routine, adjust "GAIN"

- 91 -

until all but the LSB are on, and the LSB toggles. Bit #12 (1,2,...,12)

will always be low as it is the sign bit.

The use of the various software maintenance routines will now be

) covered. Each test routine will be discussed individually and possible rea-

sons for test failure will be given. Several of the routines utilize more

than one section of the IR-CCD Intrusion Detection System hardware and hence

care should be used in diagnosing problems.

(1) A to D Test - This routine displays the output of the A to D converter

on the 4024 screen in both binary and decimal. The test works by taking a

sample from the A/D converter, setting the function lines to display all 12

bits out of the programmable digital shift (PDS) logic, and writing this

sample into a location in the 11/03's memory using a single word DMA

transfer. This word is then converted to ascii and displayed on the termi-

nal screen. Hence, failure of the test could imply problems in either the A

to D converter, the PDS logic, the DMA board, the RAN board, the serial in-

terface, the terminal, or any of the connections between these devices.

The A to D test is entered by typing a "2" followed by a carriage re-

turn when the terminal is displaying the additional features frame. At this

point a brief description of the test will appear on the 4024 screen. If

the user then types another carriage return, the actual A to D test routine

will begin execution. When this happens, there will be two numbers

displayed on the screen, one on the upper left portion and one on the upper

right portion. The number on the left is the binary value being read from

the A to D converter while the number on the right is the decimal value.

These numbers are continually updated at a rate of about five to ten times a

second depending on the clock frequency. For this test to work, it is

necessary for both the "start convert" and "start packet" signals to be con-

-92-

nected to the custom interface board. The "start convert" signal initiates

the data conversions and also pulses the DNA cycle request line to load the

samples into memory. The "start packet" line is used to clock the flip-

flops which set the function line values to the PDS logic. The test is ter-

minated by typing any standard ascii key.

Results of the test are dependent on what analog voltage level is being

input to the sample-and-hold and how the gain, offset, etc. of the A to D

and sample-and-hold are set. When all adjustments are set properly as dis-

cussed previously, and the analog input is grounded, the values displayed on

the screen should be approximately zero (within about one LSB). As the ana-

log input is increased, the numbers on the screen should increase also until

full scale is reached (all 12 bits should be ones). The full scale input

voltage level will depend on the gain setting of the sample-and-hold and the

input range setting. This full scale saturation test is useful for deter-

mining if bits are being dropped somewhere along the way. This condition

could be caused by say a broken wire in one of the lines between the custom

interface board and the DNA board. Other possibiLties exist. The linearity

of the A to D conversion process may also be examined using the A to D test

routine. When the analog input level is doubled, the number displayed on

the terminal screen should also double. Obviously, A/D monotonicity can

also be checked this way. This routine is also useful for checking the in-

put Level from the IR-CCD array.

(2) Programmable Digital Shift Logic Test - This routine is virtually

identical to the A to D test routine except that the function lines are re-

peatedly cycled through the various possible combinations which in turn

cause the PDS Logic to perform shifting operations. As before, the output

from the PDS logic is displayed on the screen in both binary and decimal.

-93-

In addition, the current values of the function 1 and function 2 Lines are

displayed on the screen. Like the A to D test, there are several different

devices involved in the test execution and hence several different places to

look for problems if test results are not as expected.

The PDS test is entered by typing a "3" followed by a carriage return

when the terminal is displaying the additional feature frame. This causes a

brief test description (including a table that indicates how many bits from

the A to D converter should be present at the output of the PDS logic) to be

displayed on the screen. Typing another carriage return uses the PDS test

routine to begin execution. As with the A to D test, there will be two num-

bers displayed on the screen. The binary representation will be at the

upper left while the decimal representation will be at the upper right. In

addition, the current values of the two function lines will appear in the

center of the screen. The data values displayed on the screen are continu-

ally updated at a rate of about five to ten times a second while the func-

tion line values change every one to two seconds. Like the A to D test both

the "start convert" and "start packet" signals must be applied to the custom

interface board. The test is terminated by typing any standard ascii key.

When analog voltages are applied to the analog input line of the custom

interface board, the corresponding digital values should appear on the ter-

minal screen. These values are dependent on the A to D/sample-and-hold

calibration and the current values of the two function lines. An example of

the display values for the various function line settings is shown in Table

4.1 for the case where the A to D is driven full scale. It is seen that

changing the function lines changes the digital values by factors of two.

- 94 -

Function Lines Output of PDS Logic

fl f2 Binary Decimal

0 0 111111111111 4095

1 0 011111111111 2047

0 1 001111111111 1023

1 1 000111111111 511

Table 4.1 Example of output from PDS logic test.

Sometimes it is useful to use this test routine in conjunction with

some of the others to help isolate a problem area. For instance, if the PDS

test results do not appear correct, the problem may be with the DMA since

that device is used to Load data samples into memory during the PDS test.

Hence, execution of the DMA test routine might aid in isolating the problem.

Another case might be that the A to D test appears to work properly but the

PDS test fails (the numbers do not shift). This could indicate a break in

one or both of the function lines connecting the DMA to the custom inter-

* face, a bad flip-flop on the custom interface board (not clocking the func-

tion line values to the PDS logic) or possibly the PDS logic chips them-

selves being bad.

(3) DMA Test - This routine tests seven different facets of DMA operation.

The user is referred to [3] for more specific details about the DMA board.

A complete discussion of the items tested and the implementation of the test

routine is given in Section III.B(4a) in the discussion of the "dma" assem-

bly Language subroutine. The description here will discuss the use of this

test routine rather than the routine itself.

-95

The DMA test may not be entered directly from the additional features

frame due to the need for inserting the DMA maintenance cable. When the ad-

ditional features frame does appear on the screen the user may type a "4"

followed by a carriage return to display a brief summary of the DMA test.

When the user hits another carriage return, a PDP-11/03 "halt" instruction

is executed and the processor returns to the ODT mode. At this point the

following procedure should be executed to perform the DMA test:

i) Disconnect signals from custom interface board.

(ii) Power down 11/03 processor.

(iii) Partially remove DMA board so ribbon cable connectors are acces-

sible.

(iv) Disconnect both ribbon cables from DMA board.

(v) Insert DMA maintenance cable between two connectors on DMA

board.

(vi) Reinsert DMA board into slot.

(vii) Power up 11/03 processor.

(viii) Issue "20000G" sequence as outlined in startup procedures.

One of the first things that the initialization routine does is test if

the DMA maintenance cable is in place by sending out values on the three

function lines and determining if these values are read back correctLy by

the three status lines (as will be the case if the maintenance cable is in

place). If issuing the "20000G" sequence when the DMA maintenance cable is

in place does not start execution of the DMA test routine, check connections

of the maintenance cable and try again. If the test is still not entered,

it is likely that there is a problem with the DMA.

'When the DMA test routine is executed, seven lines will appear on the

terminal screen which will indicate the success or failure of each of the

Fi - 96-

seven DMA functions tested. These display messages are shown in Table 4.2.

The execution of the test routine is repeated any time a standard ascii key

is typed on the keyboard. The test is terminated by hitting the 'break' key

rapidly twice in succession. This returns the processor back to the ODT

mode. To restart the program for the normal execution again, the procedure

outlined for entering the DMA test should be reversed.

1 (Error/No error) detected in R/W of WCR.

2 (Error/No error) detected in R/W of BAR.

3 (Error/No error) detected in R/W of DBR.

4 (Improper/Proper) response received from INIT signal.

5 (Error/No error) detected in function-status lines.

6 End of transfer interrupt (not detected/detected).

7 (Error/No error) detected in data transfer test.

Table 4.2 Possible messages displayed by DMA test.

(4) RAM Integrity Test - This routine tests the read/write capabilities of

the roughly 16k words of RAM. This is accomplished by writing unique bit

patterns into each memory Location and then attempting to read these pat-

terns back. If the patterns read back do not agree with what should have

been written in, an error is signaled.

The RAM test is entered by typing a "5" followed by a carriage return

when the terminal is displaying the additional features frame. This causes

a brief description of the test to be displayed on the terminal screen.

When another carriage return is typed, the RAM test routine begins execu-

tion.

- 97 -

If no errors are detected during the entire test, a message to that ef-

fect is displayed on the screen. Typing any standard ascii character will

then terminate the test and cause the computations to be restarted at de-

fault parameter values. When an error is detected, the location of the er-

ror (in octal) is displayed on the screen and the routine waits for the user

to type a command. If the user types a carriage return at this point, the

test proceeds until either another error is detected (at which point the

routine waits again), or the end of RAM is reached. When the end is

reached, the total number of errors detected is displayed on the screen in

decimal. The test will then terminate when the user types any standard

ascii character and the calculations will be restarted with default parame-

ter values. On the other hand, if the user types an ascii character other

than a carriage return after an error has been detected, the routine will

stop testing RAM locations momentarily display the accummulated error count

up to that point on the screen, and finally restart the target detection

calculations from the beginning with default parameter values.

(5) PROM Checksum Test - This routine computes two 16 bit checksums, one

for the lower 4k words of PROM and one for the upper 4k words. These check-

sums are then compared to their expected values (stored in two Locations of

PROM) and results displayed on the terminal screen. This test is intended

only to indicate that there is a problem in one or more of the EPROMS. A

more detailed procedure for isolating PROM errors and what to do about them

is given in Section IV.C.

The PROM test is entered by typing a "6" followed by a carriage return

when the terminal is displaying the additional features frame. This causes

a brief description of the test to be displayed on the terminal screen.

When another carriage return is typed, the PROM test begins execution.

- 98 -

When the routine has finished computing the two checksums, four numbers

are displayed on the screen. On the left side near the top are the actual

and expected checksums for the lower 4k words of PROM while at the right

side near the top are the actual and expected checksums for the upper 4k

words of PROM. The expected checksum for the lower 4k words is (at this

writing) 061224 while the checksum for the upper 4k word block is 174240.

In addition to these four numbers, one or two sentences are displayed sum-

marizing the results of the test (whether or not the actual checksums agree

with the expected checksums and if applicable which 4k block(s) or PROM are

suspect. If errors are detected during this test, it is suggested that the

user perform the additional PROM checksum computations outlined in Section

IV.C to help isolate which EPROM chip(s) is(are) suspect. That section also

contains information about reburning PROMS if necessary.

(6) Terminal/Serial Interface Test - This test is intended to test both the

Tektronix 4024 terminal and the DLV11 serial line unit. The routine is di-

vided into three main sections. The first section tests the terminal itself

by issuing the standard 4024 "test" command. The serial interface and moni-

tor section of the terminal are then tested by repeatedly sending a line of

81 ascii characters to the monitor section of the terminal. The 81 charac-

ter length causes the 4024 automatically to issue a carriage return (screen

"wrap around") once for each set of 81 characters sent. This in turn causes

the line of characters to begin one column to the right each time and hence

makes detecting any discrepencies easier. This also allows each of the

ascii characters used in the 81 character line to assume every possible po-

sition on the screen. The final section of this routine tests the serial

interface and workspace section of the 4024 screen in a manner identical to

that used for the monitor space.

- 99 -

im

The terminal/serial interface test is entered by typing a "7" followed

by a carriage return when the terminal is displaying the additional features

frame. This causes a brief description of the test to be displayed on the

terminal screen. When another carriage return is typed, the terminal/serial

interface test routine begins execution.

Upon completion of the standard 4024 test routine, a bell is sounded

and the screen is left displaying the results of the test. The user is re-

ferred to [43 for information on interpreting these results. A prompt is

also displayed on the screen instructing the user to type a carriage return

to proceed with the terminal/serial interface test. When this is done, the

terminal should begin displaying the 81 character ascii lines in the monitor

section of the 4024 (the monitor has been defined to be the entire screen).

When the visible portion of the monitor is full, the screen will begin

scrolling and continue indefinitely in this fashion until the user types a

carriage return. This causes the screen to be redefined as entirely

workspace (except for the Last Line which must always be monitor) and the 81

character lines to be again displayed. As with the monitor test, when the

visible portion of the screen is full, the display will begin scrolling.

This will continue until either a carriage return is typed to terminate the

test (and restart the calculations with default parameter values) or the

internal memory of the 4024 is full. When the internal memory is full, the

terminal stops displaying characters and the screen freezes. When this hap-

pens the user should type a carriage return to terminate the test and res-

tart the calculations using default parameter values Figure 4.3 shows a typ-

ical view of the terminal screen during either the monitor or workspace por-

tions of the terminal/serial interface test.

- 100 -

.bcg.#7a I 1 k ui!qetbou 1d,. -. SOL45699" (Acf93K~
PQtu.AM.tjg ,124SGS9 a(amI"aDro41,cu,

aePQAS7UVWXYZC '] (SobcdilhI jklemopqe *tu .wVz S-./1234l56?"S9 a (*)?9A3CDFQI~Aa
pavoSTUVXYZC)-V'bcdfghik IWn.pqrt.y.-. IZ34S6799i I(- >79%AS~ckgi,

.cu,.%oSTuvaYZ2Va'bctfhjaw...,'atwx.ta.-. '123457099 -)?VAK~rmjQU
jagOP6WSTUVWYZt\)^(aebcdefght jkiinoptwtz..-. /023456Sf?9;..A>" M 4K

13u(Lgoop4CPTJiWXYZ\2I '.bCdefgha 0IZ~pfs.~uw@* .'134S6799; z(-)VQACVW
Wlja1Cg*PASTuV1CYZt]2V'bbd.fghijklmGpqrst~.....zeS. - '0123456799,;()?"OC9U~~ '01?34S67":;< ,. ,Oaci

.a'..zjynr"Om gS'MrQCZt\- abdefghl bi IunOPqrVt...u. 1 z.+ - /0246S:~ d4hJI~p~tu~~js.- 1234567991; ;(IM

qW UMjL ~ ~ ~U~W()'acdofhi jbi)opeu %Ve -. '6l34567s9. (*

?9inCDCFGH IXLMPWPSTLJMYZt\i ('abcdefgha jk Ieeopqretu~wsyze*.-. /61Z34567991;(*
)VVA8CD(T041JELWOPRSTU1WXZC lJ(*bcdefgh ij& I'@pqrstu..w.xs+. -*'6123456799: $
)'6"KCDCVQIJK'4PRSTIJW)C1\P^I 'aCdefgha Jk mAopqratgvw.~zS*, -. /912345670911
)qA3DCFG41J1CLiMOPgSflMWXaZ\^('abcdofgh ajki Wopqrstu~wsuza*. -. '01234S6799'

a(t 'O DFGIKMIOWTUWY .\^'bei.4)gIjk lfopqr uvwxz*. '3 34%9

U9:;(.)7%3CDVGI.KLI61CfSUVWYZC\'abCeghijklanpqrtuvwazS.-./SI23d
6719;)t DF~YLhPRTVXZ\^ 'obceogh Ijk ImopqevtuvwVz*, -/e6lm

3

56799s;'.'ACDFGIJKLMQPS'VIZC\PI asbcdefglajklmnopqrtu.'w' 1 j16*-.41
03

4561W9: $ *)I9Q3D(EF14IJXLMP OQTUYbIXYZK's1I 'abcdefgh ijk ImnopqratuwV~ZS*.-/1
3457V99:i(.)'9"DEGNUKL94CPQSTUVdYZ(\2-

Figure 4.3 Typical view of terminal screen during either monitor or work-
* space portions of terminal/serial interface test.

-101-

C. PROMS

There are a total of sixteen 2708 UV erasable PROM chips that comprise

the 8k words of PROM used in the IR-CCD Intrusion Detection System. Each

chip contains lk bytes of memory. The MRV11-BA PROM/RAM boards divide the

16 bit PDP 11/03 words into high and low order bytes. In other words, one

2708 chip will contain lk consecutive low order byes while another 2708 will

contain the corresponding lk consecutive high order bytes. Figure 4.4 shows

which PROMs correspond to which section of memory on the two PROM boards.

The individual PROMs are also labeled with this information.

When it is suspected that there may be problems with the PROM section

of storage, it is possible to compute checksums for each 2708 chip using a

routine entered in RAM. The values returned from this routine may then be

compared to the original checksums to help isolate the problem chip(s). To

enter this routine in RAM, it is necessary to use ODT. The user is referred

to (13 for information on how to do this. Table 4.3 lists the code that

should be entered starting at address 60000 octal. The assembly language

listing of the routine is given in Appendix B.

Execution of this routine is begun by typing the sequence "600006" when

in ODT. When completed, the number 60064 is displayed on the screen and the

ODT prompt returns. The results of the test are stored in sixteen consecu-

tive locations starting at address 65000 octal. These results can be exam-

ined using ODT. Table 4.4 tells which PROM corresponds to which checksum

and also what values these checksums should be if all is working properly.

If it is determined that new PROMs need to be burned, simply order the

new 2708's from a Motorola distributor and supply them with the appropriate

paper tapes. These tapes have already been set up in the Motorola "Sl" for-

mat. They are identified according to their starting address and whether

- 102 -

1 MRVI1I-BA
Low Order

High Order

Byte Start j Byte Start

Address 34000 Address 34000

Low Order High Order
Byte Start Byte Start

Address 30000 Address 30000
Front

Board I
(lower 4k Low Order " High Order
words) Byte Start Byte Start

Address 24000 Address 24000

Low Order High Order

Byte Start Byte Start
Address 20000 Address 20000

~MRVI I-BA

Low Order High Order

Byte Start Byte Start
Address 54000 Address 54000

[Low Order High Order
Byte Start Byte Start

Front Address 50000 Address 50000Board 2-

(upper 4k

words) Low Order High Order

Byte Start Byte Start
Address 44000 Address 44000

Low Order High Order
Byte Start Byte Start

Address 40000 Address 40000

Figure 4.4 Location of PROMS on boards (top view).

- 103 -

Address Contents Address Contents

60000 012700 60032 002000

60002 000020 60034 111304

60004 012701 60036 060412

60006 065000 60040 005203

60010 005021 60042 111304

60012 077002 60044 060462

60014 012703 60046 000002

60016 020000 60050 005203

60020 012702 60052 077010

60022 065000 60054 062702

60024 012701 60056 000004

60026 000010 60060 077115

60030 012700 60062 000000

Table 4.3 Machine Language code for performing checksums on individual PROMs.

I

- 104. -

Address where Starting Address of High or Low Correct Value

Checksum is stored Corresponding PRON Order Byte of Checksum

65000 20000 Low 165502

65002 20000 High 014634

65004 24000 Low 004127

65006 24000 High 165676

65010 30000 Low 161337

65012 30000 High 170301

65014 .*000 Low 137434

65016 34000 High 027706

65020 40000 Low 000542

65022 40000 High 045242

65024 44000 Low 031037

65026 44000 High 026626

65030 50000 Low 021106

25032 50000 High 022066

65034 54000 Low 003536

65036 54000 High 004530

Table 4.4 Correct results for checksum test of Table 4.3.

- 105 -

... : L ' " . - , L . . • A

they correspond to the high or Low order bytes of the 1k bLocks of memory

for which they contain information. There are sixteen of these paper tapes,

one for each of the sixteen PROs on the two DRV11-SA PROM boards.

- 106

V. REFERENCES

1. DigitaL Equipment Corporation, "LSII1 PDP11/03 Processor Handbook", May-
nard, Massachusetts, 1975.

2. 6. R. Cooper and C. D. McGiltem, "IRCCD Intrusion Detection", Final Re-
port for Rome Air Deeometenter, Hanscom AFB, Ma. under Contract
No. F30602-75 -C-0082, 1977, RADC-TR-77-435, AD#~ A063 327.

3. Digital Equipment Corporation, "DRVI1-8 General Purpose DMA Interface
User's Manual", No. EK-DRVIBOP-001, MarLborough, Massachusetts, 1st Ed-
ition, August 1976.

4. Tektronix, Inc., "4024/4025 Computer DispLay Terminal Programmer's
Reference Manual", No. 070-2402-00, Beaverton, Oregon, Dec. 1978.

-107-

Appendix A.

The following is a List of part numbers with a short word description,

manufacturer, and vendor.

Part # Description Manufacturer Vendor

BAll-ME Card Cage A 1

H780/E Power Supply A 1

7270KD11-HA Processor Board A 1

DCK11-AC Interface Board A 1

DRV11-B Direct Memory Access (DMA) A 1

MSV11-DC 16K Word by 16 bit RAM Board A 1

DLV11 Serial Line Unit A 1

MRV11-BA UV 4K Word by 16 bit PROM/RAM Board A 1

KEV-1 EIS/FIS Extended Arithmetic Instruction Chip A 1

2708 MotoroLa, Intel UV Erasable PROMS - -

Am25S10 4-bit shifter TTL chips C 3

SHM60 high-speed sample-and-hold B 2

ADC85C-12 high-speed analog-to-digitaL converter B 2

DC/DC 546 +5v to ±15v DC-to-DC converter B 2

,I
Assorted TTL - -

-A-iii

Manufacturers:

A Digital Equipment Corporation

Corporate Headquarters

Maynard, Massachusetts 01754

(617) 897-5111

B Burr-Brown Research Corporation Inc.

International Airport Industrial Park

P. 0. Box 11400

Tucson, Arizona 85734

(602) 746-111

C Advanced Micro Devices

901 Thompson Place

Sunnyvale, California 94086

(408) 732-2400

IA

4

- A1 -

Vendors:

1 Hamilton-Avnet

954 Senate Road

Dayton, Ohio 45459

(800) 543-4783

2 Burr-Brown Research Corporation Inc.

33 North Addison Road

Addison, IlLinois 60101

(312) 832-6520

3 C. S. Electronics Sales

1157 B South Jackson Street

Frankfort, Indiana 46041

(317) (659)-1874

] - A2-

Appendix B.

The software listings and the symbol table are contained in this appen-

dix and are presented in the following order:

(1) Variable Definitions

(2) "C" Routines

(3) AssembLy Language Routines

(4) PROM Checksum Routine

(5) Symbol TabLe

- B-l

5*

E FINITIONS - all uninjtialis:d 9l,0l "arialne and all C'
44 initialized data are declared in this section ot code 40
- These viriables are used b, both C routines and 44

assembly language routines Aso inc,-luded at the start #
H are 'define statements which allow certain constants to 44
- be used by inoertins the sysbolic name 9i"en in the 4*
e define statement 4*

/I DEFINE itatemeut ,'

#defi ne IT 1 8 1177),/ -* addre 7; -f seril] intertace mnfst bufferC
*detine TTYST 01 77155 '0 addre"ot serial intorsa-, isrut status cord 4/
define TYSTT 4 '- address of s ial interface output status word C/

$define TT09F 0 /74s 'o ad e, e; ,f serial interface outiut buffer v/

#define INTVEl 0124 ,4 addr es of tMiAnterropt 'ertsr ti
*define IPCP 017?4l' a -ddtefs' of t4 word sount re'i:ter 0/
#detin, P 0 M (172412 'a 4d'o :t e b's 4ddress I ister 4/
Idefine C5R 0172414 adOres: W5 t ontrol sta,: word it

- de i ne ST1* (1l)(1' ddess s* tar t of Is-er * cords of P"1)4YC
#define ENLFF 0377 '* dress ,f end of !' 4. words of PROM et
#define ENDfI 057640 'e addren: "f end ct upfer 41 word; of FO
- define cT118184 ')6M ' addres. 'it start of RA C,
Odefine ENDRA0 0160776. a ddress oe end of RAM ,

oI 'Jnuintiallzel data Space to t- rot in PA C'

,har uOnI2[.. C b',te" to hold line ot chars in tte test v
- nt bufne. '- flag to indicate ehich input. buffer C,

Int tlelq, * lalo used in MA test to see of interrupt is received vo
I nt bfllC,56] 'C inrjt buffef no I C'
int tuf2(25t1, C input bulfer ro 2 4*
int *ptr. C Pointr to input buffer C'
int ptr 'C romntor to past data ''etor C'
it. .1l024 'C pat daa '-ecto *o

int m[10241 'e sim of Fat terms, bhrnd time avg, thresholds ./
int a1256) '' hiso, , of threshold 'molations C,
- n t htabll,'24. '4 table t, hold taret thr esholds C/
nt Cmptr, C i pO a~r to n ''estsr vf
Int taPir, ,C pointer , ' tyr C,0
In t ebotr 'r,, ntr to M t 4,

* mt, Pint, ' ortr I., isdsste which Fth 0f calms to be done e,
I nt. ntb ta' 4 number t ttels in backround rpatial a'vi C/

- int thd t'te :m D P
In. dshft, /* r,', *s bit: to shift, to dJide by [; C,
int f1at ' 'tts of Pr ,l-j Pa,ket stare time changing 41

IC mt c1141. ' ar~i' a tc .1 s~I e ,t '4 alues 0
.* I int c21. ' ar,' t ",'-4led '- ,alo e'
l 1 int si 4 r ,d'1 I At a and P #1

- iInt 41dita5 - r',th'r ,,pa ckets alarm should be disabled e/

i- -8% -

6

I.

jut troet It t4;- timef $0 rirr ent rici et *
i n'. tr-tnL * sar - time vre tike iinto i i
jut .1ldtret. - star- time tor twn Pa- i.t. into Past 4/
tAt rap. ' d& en: to uoot around q rculot vseu it, xo 41

- jt ;I ncr. winokw t ied I, poit t n l oca tin in current into it or #s

al nrh 4nm-w t(jIoh i at t v
I nt.l 'ndated the np tas

int rI. tnl 'ut" fl N -o t rOrl4 oti- resister 'aloe */ r Prfrmd#

in list.;?4 "ocontIthtvoahebdthetit Pass i

"tr j1DI4t #po trt ntrface input status register #/

c har *4 hf . ol ne t poii% # I nted to !w a Ntta e o t u element ofe oust l 0/

char ottitts. # Cite v 'lemeto 'ojo ute tor element hs in obt C'
r, 'tthfptot '.. 4 pointer to rn elr emewns chrrom but quue1

char ittftct2. -~ 9 Ite.Fc to pI~ fjnr info romPogam elemnts rom ouet uue2
- jt eItrotl 1 %;. '0 'alo uet ch i

t
-e +trjnn intep koto lent 0+onob

btr 44flt f 'aii incte: toic bytfe tri pointed to o elements of t otits
int +-atare,. ' i tempscVrrlocat oint tn'n o b paramero nines V

S jut, command1 C4 holds L n C-intr ore ospu ing tolcurent: comn ouptquu
it s-If dmi. A hoI r tt V -ir w roeresen in reu emannt, ro ouptquu
in
t
. aidairn #0-i f~iao injiti etetb. e of1rx, Fnot o abelmisenable ofou!t

jut biPn r'n hil t- dire- nt- ci bv2. ot-rn oitdt y lmnsofot 2t

chat datrli t emr)rar ,hte tor holdaiiereetino new parameter -A luesC
- jt hol dent, hod co'jntr nr, boftorin tocren5omad

c bocitoy + itce in a6ccj rr; u v ohd si representation of earameter 'vaaecue

char ho dndttfle tbr ~fr4

-bar iptr1

'nar nmdrtrSl.

* - char ;enstr(41
-bar :ntr[4l.

clcrtrl

chAr a tdo-, ' bite 'r n--I dini aif- it reereiontation -ct octal number 41
char atdbintl?l b* hter 'or holdin3 a-, it representation ot binary number 4/

char fliuemCI. '0 bote" fr toing ascii ropresentationi ot tunction lines It/

inut a todt-t * tI ocati '. tin - rn tor jn er ti-am A to D coo-er ter #1
in'.t chkuml. !ft hferl nTu ter ILoser 4+ t o IMl It

- jt ehksm2. 4 chorl n-in tor 'iner 4K)t PROt *!f - B2-

char c0 1.), Eur rror :1..i :r, 4SclIi reer eetotson of cbksal *1

Ar 0ctJ171 '4 b-itt toer ;t. in, jorliI retroenttin if chlo *I
char, el '41 e but 0e f Ofr te V0' .'Li rep)t ecectet checs I 4
'hat o r2173. 4 bolter err ster!ns a *czc rev of expected chechoca2 t
char erriokt'!. e butter tcr stormsin tsr-ic rep ot RAM error location 4;

- char erret(
7
1, '4butter I or storing ascii ret of RAM r-or count e/

int oldalfl. flag tier storing corrent status of alarm stAtus box t1
leet 4l01s. 14 flai inaicatine new alarm statuc */
Int tar. It Ht3.. ret ire ralcolatioo; it target detected *

sError flag, fmr WA test e

Isn t -rA. erFR. orLE'., erR$Fr. rFL!T. er-IN!., eribl.

- ~ 1 c1 oe 0 t-Met'rar, locatoon for use is CiM test 4,
chbar hedchart. I e tent butter for echoini characters btac to. tertlinal #1
char b'tl!, *ctoo torace butter

chear *OrifeLit co"t. ' coctialcor- toonter to bat 0

n,4 xifi a table +or A!hf the ertrie- are open bo
cox~ir-srt/c2li ti tt IA hinar djare aCeurar 4'

cot n!!t 05'2r2 J)47142-, A474?. 043,616, 043034
042441 04O3153o041?42. 041566,.(4144,
A "4! A1 ".125. 041152, 0410?1, 041()1,
-A01j77. 0073. 040701, 040692, 941625,

140)246560, 0405,44) 041522,040504,

(0470, 04:6T95 00426, 04t.357L. (10435.
Ao0406 c4f05, 040442 014,3,, 4051v.

049)34:. 9493A4. 040226. 046321, 040314".

!4 tab i s a1 table '"hosoen cot't Pc aeqcual to the number oc ones
Ins the Monaro r-evrecetaticn' ^t the Inde& t Or that entr 4;

cottaM '0 1..2. .23.12, 2 .233, 4,

I .2. 32 3.3.4.2,3.3.4.3.44..5).

4 'Mo, co ntuco r: co t)i oceqros corr oponliox tc the
..c oo mcnad oornr-o e

cot r-,dr 11 .2 4)
7
.$< v, .~h

40 d mIs in 40a-. tht~t i~t cacei that. eath ro-o, contains

'Oot toe taranetr mwCnef.fiO :

oharOlr' 0 L.d .t""2.'i ' "p", "c". "1",).

aThe r omeanire Ielot ixc tI :rtotialczeei da. ta qr txi sottinq

-IF ice 'ar-crc asi tr ios that a~o 'iced to, cotru,'t the

dif'ernt hoel., trainer ., t lCDc Intrusion Ot~to

.stt There '"ll not be o mesAt. d iv:i dnal!

I I - 'lehar blank! .'141

-B3

ctar f*jIo["'ea I' VC

c har ctrh,1 "'ea4 t '
char H'll 1..

'her itlfI
h a r r 1! 1 ''1 5" 14 ' !

char ,j,11 ,,r ''*Off h ''014 k,

char FpInirl I "'Vot Ai. '019 16, '...~)A ').~.00

char dloC ',c h tr I. ''Xiil' IS 45 0 ul'\0001'Y),

char Aloe[!) "Ivr It -)'Oi e V cs rNac2m 4't93
- char eiot(] -'~ I ''::M ''aV "a' rjliw.cls.±:5 Ro

char cdlst I ' t <'i n

char I: Io1 1 "ive V 'csl~ 19 u 1 to I, ! II I,!" ~ '0Q
char tddli I.1 17 % l. ' Ili 'r it ar e16

char cFlSt("'3A "i lu. -tr '.re 1 2P-.= 5 P"4)
char rl io~ 1' l..4 ' ,u 1w I jrvAn , I)'. 4%1 0 104)

- har A411 'nr er a e '1 r iij ""I . 15, l ~A -t0
char, t42(' c1 t P'-I'117',kr 315 t- 0

char C.11 ')j ' I cO hit " ' u s I .w Aeel ,'f CO. X-'

char L4 1A I "Ili ''14 i'lI -' %snbeV Vc Iell monitore OV tr ieeeat\047%l02
'har dd151) ira m. a I '0I l)o! l 5').T~tljh DTCO X R'

char .141!] 'I '"'Ia4 VALU ae~aIo MAa10 co e 7sed in WU krudtm an \l\
char 44! 191"I t, 1 .I)1 '' I Dufee ti e 11 on thr o d cal C ar e eudter s lC7, \00145 9i101\15;

char I N4(f' '. '" l 'I Nnbr at sar ti th' s o uld iltions to caus\001al 79ml\012015");
char 21m, 1' 'hI! I IUppe threshol used intiate star time decrease. 1\01200l5";
char 44l1,,(3 .1 1 .01P, 21 . I ene thrshol d sct ate tre timel inceas l\Ol2\01r)
char I1110(3 I I.5.ll< tli.'I z4tvr neva e), sdi Jmdeiln\0127;\1\1
char di 4pM 2 ''o 7 a haona arneactces2hc sin ars s4)

cha ccc s I 1 21
t
' 1~ is t c other e tie hre sh L iltin to'aus

char 44ate" f I ii'i (.(al pit rn t retlde d o initiateC str im eras \1205)

char Ca!~l ''i I 1ai teat' wer res d usdt"ntit3trim nrae 10205)

c har 2 1 ("2.05r2 3,i'
c ha, lis:o,1 I I y'o h. 'ercano. " A 2samt l ttO eNhJSC 1eC1hW ae00 ") .
char dil sIt(I .'")0I 11l. -ed li t na O teres aurs tr
char '"orb!) "'o 20.te I '2r I

'har Ia eart (I '"'lri r2.in "'ai"0'u. mmnPraeeors~e
char I s.

5
r(I 'roI (l eas l lw ly obr tdsrd featw'e.I s004":.lo

char JslbI ,I lC' iti I e'. VDe
tra ~ r in]! "I' ('.rae audbl alam

.char !isslall '3' tI-le a'sdible alarm
char Ii11'0'-1- cpl,' cutet if interface AID conve'r"
chw line-I! '':' F'"ocaabic dital shitt circuitry test .5

c'har lisc4?l '4! [io ""annol Let'
chbar !'I ot . "1., F'AI "teiri' test
char Iirne/U " POIM "Nhecksu test'.*1wr 7char isnt " I' (e i nterfice;lerminal test".
char 1q D.lI ~ [, 'r.'hisa - rotors to Parameter disela' 2
chtar h~o 'non h. 'ir V'' \W51 dcw 4, 'rio9318,").'Ibcar holpll '"''er h ''mi 2P P, NOTE Cal culation are ratllIi behind'.4 c~~~har oilol l(I ''~j ''1'

4B

,har ad 1 I.U1 -'"wlt ,f~'tSL~ A'l, ,obverter \0OIB 6.hbary\0O1B hl.Decimal")v

c har Ie S Iis I '00ll15 is. arjL. m- Progranaie Digi tal soaift circuais','.

"har mlX 2' orC e am, ec r errIt or etcte inloer4I
b car IOI.Im IrnF "s o r a3hck' error deece inme of, PR4 "t3k

char FraterI!I I '0q)5 12' ERO C tecte it F0 l.lcaior
char, Frcel) I "i I Lowe)roVeYe1 t!,pLet antW s let tri.e et1

char 1oa 11-1 1'Oi54 Atul Ier l E':
"a . r .ca I '' at i: 11 . hi r o e ected 'lir'r1 s TON 5 i nc t e n t I t e t ed 0 1 1 1 , \ 0 1 6 l

char 'iOrs! 1't N1 1.

char ho i] 002

batrm iti ''*t(nto II !-oc-tO m erirtetcedICPO

char sterM] I 0" l1)2,Errdtctdi A tlcto)
6"car ltir-ilI "'mts11 6 .(5rec '''It 2est , anyD toing hlse. otm n ets

chr so etorI] """c I6A, 'ota 24 ne 32. eror TetectET iEETE n . Mwa

char, a DM 11 ,' 315 D, FM It Test" ',
char WI.rCmI "010W i lls a~o03 o f de~(eC uigRA3.eriits
chbar n'ICl '0018j? %I5,a5QR'$ tes1CR"t
char BAirITC m (> 1 13. -O3r/ oree wiR "3 es
cha In-r fil 'hor! N h's0022'h so - ."

- car 11e3"''i'. ~ h 'V3' " otR, "3

char nnbP(N 'I01 I"Ov .4 02'W s B
char tR,,4lrt ''1W P ' rse reonetINT ina deeed"

- har 5 tr-'1 I '')1ii 1 rrrrsosercie rm It ia 3
"nar 5 'T..rt] 'I1 I ~ es"":cinoau ie 3

oaid rch11iwo h,'ii V.m ei''2 o t n- ta 'i liGT D TE T D ne h,
- 'bar Ihkr],1 I '''hailh, I"' 'm End s2o TRGoET iteCT'ono deete

'har c'Ill '('Ii I""h, ' End4 S ALAR tr SBE ne 'o deece, 3
char

TFAert1 '0154 3t '"DM a t trncertet 3
char oW(fhslI "'''t 1". :w "''"'t trf e test "

'Nor at"12l ''\OP IQ. V\0' R Te obtfl co reARts.wllb iea~do")
"ha" at'd31 I I '001$ IkOOreen ibth binrW n eia 1

c ha r n#1:*1 "'0l !?Ocsarnal DI Shif Cirs'sstr Tes Decipin
'ar W421 -"'IIM\N I .' I' Qo, o ofr , oer aiiabio e INTsial shitecrte wllbdiplyd)

- char rdcI "017 P'ooroer ispohe recearved decmiTs gn" l
I" ch~~ar .d'4Te1"1 ' "'5X'l" 1' q3) F Ucti n and lineswil te tron al osb")

bMr .1:(It1 0'.") I' IQ 0. cnmb rnatin 5.1i line
"Car r'O'd I (" .I' -' fN nhe o ts e di seae r e ro.eatedc olw

hai -8 -1.-Edi rnfrit r~ eetd

4brTfpI 9dt rnfrts N

it

char iqi 1 ' "F., ,4 I I No of hits")"

tbar .:,r, '"lul , 4 I <if.

Char il<'!' " " - ' I Ia-,
,hat 1 ,,

1 12.).
- ha, deal! ' ["I' A 'l' h rsael tot 0ecriptiot f

(''..... I I WIIE - IM nAIlTE(E (ABLE Wt BE IN PLACE BEFORE'),
t,,. ~ ~~~~ ir.,.W '" rPr1, IHJ .TE'-, ";,

' '-4 1 -, I ? Vt1 i I- L ,t IOM ter 4t .teAed and results';

4har 4 [t "1S1-111 L:i displamvd I'i ach seperate test 'N
,har dut[] "4 IdAfte, halting a) Power down ".
char dipa7l) 1 001!',3'b! Connect DNA maintenance cable ~
char dm) """tli,. 'I. ':, Re. ,,r

t
rrga at beginninh

char rc-11s [! "' 5l ZPAM Il.em'it.. Tost 9eyctriptiso ';,
char rann} . ' I .j I, i'I ,W t'nctson)t eah word of RAM is tested. ")

char rdmO! "'' .1.' Rcutine hall when error is detected and displays location')
,har rams cf4) "''7I' ., ''n ,ta "'o.e error ocured -
char r.,M16t(! "'"'1 '- 1.' The an'sated error count is displayed in decimal when').

char rmin
0
! "r']l ' : tho test i t'ninated "),

- h,'h~l rrlm I! I "v!, 'S EWAt9l '.hek5i Test Description".
char rrm2(11' ' , PMI checOsos are cmputed and dislaied tor both'),
char P, 'ye)!! '"')m 1? 1. -the lower and upper 4V3 words of PRM "
char prsolI .1"1'' 1,,2 Coaarisonr is then made with expected checksums '3
char serl "4)(114 IQ.Serial Interfae/Ter m nal Test Description 1).
char .r!] 2'1 '.' 1' 11 Standard 4(..4 terminal test i executed Routine waits'),
char -c3f)] A'

0
(1' 13 icr RETURN beore priceedins.

char fer4" ",1'' -P ' N,?n.n
t

or and serial interface are tested bi dlisplanins'),
that <o0! ''h1,5i 1 ' continuous), ci~an~s nq Pattern of ascii characters. 9

elar ". I "-"'1. I, .,N TE - l.0_torm nate thi fe:ent of test "',
,'har 'rl I IVI 14 1' .:) Wortspace ani ,erial interfa.e are tested by displasino'),
that -or'[! lIl ? Is. cantinuosli changing rattern os ascii characters Display'),
<har -Q[! ''01i'. ls'.,ill stop scrolling when internal meor of 4024 is full. ")
-'har serl'(. S "'(o t" I:. tME - 'Oi5termivste test "),
har hi t.s I 5."', f, 'rig 13. O05proreed or any other key to skip test. \004)
char ,,ml "-c; '5.
chat 'r11 ' No error detected in ')'
char Err['" Error detected in '),
char h Ithlt] "'mor, h. 'rig 13, \0Schalt or any other key to skip test \Cf)4"}i
char hitrep[] "''a0124 25 1.1Srepeat test "c.

char hittrtl "106124 2 O'kO5restart computations. '3
char hitrt[l "Hit RTET'i to "3,

, cpcer i, dicmt arta'iS t.' ensure F'l(RM checksums are stored in
the cr*ect location's 4'

9)' 0 "'6, . , 0 , 0. O , 1), , 0, O , ,).

0. ,, Q0, O,,) .0,0,03,6 , 0, 3"
0. 0'. . , 0' C. , 0 , 0, 0 , 0.0 , 0, 0., 0 , 0 ,,

S , 0.,' , 0 0

and tjpp P4 c d,,' - PRPqi ,.,pecli..),s

m)SM, 061. ,

!6

ryEPM. 'JI74.140

Li - 87

#4 IRC1*O INTRUIONY DETECTOR ARf -

T4 ThtIs i the terminal hand~ling rotsre for the LACC intrutininn*
4.detector alarm The ba's' Philornehy far lPO in this Prerm if

is n that data to and from tie terminal will be sent under if

+4 o trie toaidintrnuble-sheoing the detector shnuld the i

**nee'd ekver arise i

'e include "ar-iable definiti,; tile foe, use in cseiin *!j hinclode 'def'irccd h'

MAIN - routine 1.) contri 6 tasic ernst-am tloe
Thio is the fie'2on, of cole that confrolz all terminal handling
funettions Character data I' read ft-s or written to t
Te~trnins 40214 terpinal j,,r le-cntcol of thi routine

etain''

tfart
'test im ifv-tini --

t
i a.-t serial interlac t

it 4.tonstatX:K% 3nt, :rj'.o

4'et h raciqr fr' -n' ajtl-i tah e anrs'riato action 4

-- ant~ tVt'eot oth

In! 't! ta ljt; ta th~t ti,- teor read from the
to:naI a-! cals r.o'creo ,h in turn decode this
lia t-i cnn ~ J .r na'ometer ''alnes as necetssar,
Additil r~qtine: are tton ralled shich tae the
acerneriat action to '. cc there tcamrds

Intan

- 48

4. T tflaPC ' et pointer t-, seriai aitertace input buffer #/
e=4d If 1 ' rsmoe ass irity bits from incoming character C
Iff, = (.101 1* delete line 5@. ctrl- or del line keys) *1

ruttt'l(homo' '4 Pos'iTion ccrut- .
*pttt.,I/blank), . Lea 14r line kn screen, *'

Au~t;,~ittbf !* rese t e t a ipt buffer flntU1j*
ttict,btiV /4 rese ')~p kbsii fipt buffer contj s4

if 15' It /e h''jrt i' char i or dReul chr4' s) #

I*ttirtri ,~ I- IkiT' chr ino buft Sand Oinet 4 o/ er4
ttint- /# Incremtent input buffer counter 9/

fis tldcarl' if ;-A car i em loaintalw c et on otu stack 1
hol'lcftar to inpu bufe 41 one echcaar

if tvlhldhr I= M5u t car i oupu stack 4/

- 4lttierib+*4 . p '4 coO la t ha o In sinput bu terul *1
ttx In

t
.''. - 1. set hi inpu buffer ouicrmnt bacotozerer

send!'.- '4 emetv out Iput bufcbeweeeutng counte Cl

came P- ri o oaintoalwPaeeto tc

-0 c Wen a (dIc'de), ': 4 r n*qg ,)I c hrt in de o e o1a n b r I

has)l~h 54dha Put ro nuafe on output stack C

eUttt ,-l'bome'/* ou 54 rsfozit stacktoot
ifCmfendl ' to*cni '''/ %.t~ bef re exctngai futm re seetiv*

eutttr/blnk t .li ler bto f cen

- 4 Par tse l 'eo e coman LLne s 41

I* ~mn- t o tmn Lt' osible alue: co f D prameter~o 4, bnain
'a' s.) ms '. Put Liror m o'ile f alutue t Nc aeteri
P'tIfi~' # utereak.si o cre

breakttt o ren4

* ~ ~ ~ ~ ~ ~ ~ ~ 1 t c.4dm. ' i9 os values cf d Praemeter C

cac5 s1' 4 i: -t r~sible value, ot N Parameter 4

casze 5 t o'' '4 ,; sinble ''alues of It Parameter C

break

cage 7 cUlmt' ' I I P. rScible ' alIoe: IfI arameter *Ibr%

*1
045 e a 0lh~ !* hot io sbl. Ale: ot Cl Parameter #1

.. e 9 adjf. At) /0 F,:l. u r lis of t,40tisonal teatures *'
break

*If "oli "Meaod weore 3o to 1roshrt which oeratIes that Command 0/
.e IA nw ttch(,sldomnd,)

C
v

e I 'r' 14 9(, to change D P arameter to

break.
,- "a- 2 /4r,' I t1, to chan e N Parameter *1

break,
.4', pcrr" '4 3, t. change P Parameter 05

break.
'rOC' 4 :3"")oi to - n, Parameter 4'

Iof ,, ,:rose ~ ~ ~ ~ ~ hag Q Farwhe'" 4 *51 ~ 53t?'l0~

- ~ 1 tK (''. ange C2 Parameter 0

break

o . r- ' 4 gv to rnjtne whi t' rites, additi)nal features list 4/

breal,
0400 I') his' I. /,4 Put np error message 41

puttt.lthme)
break.

:se 11 W-oldm ,=10) '4 check If line ot' consisted of tR f/

' A it o additiona' teitures lint U~
add~ea:(

if oldcomrd , f /4 Put or initial Parameter display C1

else A
- ~~t: A0. .'? up error beooaoe

t ty'lidiot:'

* I

.. I
- . t c ,'t v .t f -'o'a' . tood1s

I],1 .+ """1, , "oC, + 1'. ai ,] t rrt" .l _

I'+

I. -)_

-eBIO-

tr , 'U but. /* :et Pointr to bosinin of buffer Cf~t ''r."r0,--15) /f check for CRe
C.otrcn.t0: *ttuetrob, 1 Pot char into ray /

ent1riA9o0] l)r0 /4 add esl char 4/
return,

$,tr(.Cttiptrob =1 041). ttiftrob+); /# skip spaces 4/
if tetitrob - 15) rota., / check for CR e/

for' j--O 'Cttoptr-b = 040P && (#tti rob !z OlSh J (
jf5,' -. /C points to each eeleont in array #/

SSotrnqg0]4,)))= Cttitrob*+, ,C Put chars into array i/

Cstrn[0O]0) " add eoi char if

0 DECODE - , cafa.sj decodi? " outine Retur-n. comAnd number

1 '0 if I IIle)
Places cofmand arguments in Proper locations for use

by cummand oer'lin- routine,

ec yde()

tot ,k i
,=0 ' k io the returned ro.sand numter It,

-itC.rjnn[O]: Ccm ldso('C che:f which com nd by comering to list /

kzdnnC 0. ie et t o cea'nard sAber t

-)

i/",rns(0]4fl" 'c+=m 7 k', ce cho1h if (2 el

else iifk*strin) 1*)
==

*cmdso6. l') W" /# check It Cl #/
else I', 4C ret k to error .aloe 0/

.14(i=I k::Q

,he.? it input tri is, numeric data #/
'i l (I.strin.g[O] :,= (060 14. -~rinstOJ 1=. (711 11 nstngs[O]:56) k=10,

5* lecode numeric string in ppropriate Imnnner Cs

e:'actoni), / "ascton" returns eantssa in ", alre." 41
l(ol) k=O, if m indicates whether or not thern was in error in conversion 4/

' Ifloldcmnd:-"O && k'lr.) kZI), 1# set error if noct numeric then extecting #/

I S - ss.trs.'ntr Oi :'= 015) '11. ft (hetk if command is CR only (to to gle display,etc.)/
retjrn(p

S .e " icT(IN - routine for" con,','ti numeric ascii strins into

4 1 a p r o pr a tel s f or a tt ed t nir , n omb er s

'f' - flBl -

,1

0 '. '. PoWr. ,ear ,

z of . 4 Initit :e scey Internal flag.,4
-. , /ini .alihie number f integer and fractional Places s/
.4 4eteine he number of inteo.r Places Wnl and the number

of decimal Places)
fo. '=0 ,- 4j ;.rionAOJo' ,, o ' / till end of line /

S if's,'-0 t. 019=-0) no+ if count nmber of decimal Places before decimal Point 4I

ni~dl4:~ moo '4co'snt fractional places v/
%","
0
6
0
&& U) l 11I¢-?405 && dfls==l)) erfltlI, 1 check for error 4/

if =--606) dflg=l /c check for decimal Points !

I tt£*2) =3. e allow for rounding of iloating Point numbers 4I

i
t

/oldctnd':4 1 £0O) m=l. it allow for rounding of floating Point values to integers *
it'm:2)1 toldcomnd'=4 &I, m6) * round of floating Point enries /

/* round n decimal pla.es to two Pia.es 4/

carrcflj
ftr' =%-lIcarr,-O ' . ,t C --) /* go till carry not ecoal to zero e/

- trinoO]tn+ol+ carry
,

/* add in carre from Previous Place e1

if(strino[O1n+JD)7l) strin(OJ][n =060, i* orap around after carry if appropriate t/

else carrvO;

for)j'n-l, ~carr'') 14 ';), ,-) (it round intwetor rart 4

stringlO) ,=+ carr .

ifstringt(M]O71) string[",)
r

,(.,
else carry'zO;

if'cArr,=l)1 f . /4ll leadini I it :rr. sot of last Place 4/

strtn.[O(] ,O--061,
for) =1. ':n+3, J)(0 t1rtnj[[set.. * set remaining Places to zero 4/

- :trr~o(]trl]O~f add 4ecimai nOtnt

i w'2, /* round ts j.'oo 'ai ifS .not cining d narameter of

b't++ ntt) n)=Lo6.

pr; r 4? Ze 2 /'oc'o a 'I a,;

if t-rwic~' I 1ctstor ' jes 4'

li'Ilrmnd'=4) lI:mn. ' 0 ,'.4 '.t charin d Parameter (only have n integer Places) 4/
-'I le 11nM l loet. 'taOl ro,'.r 'f aTe for chanting d value 4/
f,"r' "0 '(],. ") da tstrn[J=itri NgOl], '* copy string into buffer for displaying on screen f/

la totrn()=(,. 14 add eoi cr 1 4'

if'orfl-i, return'l). e set. error flag *p
4 (on et integer Part of data from ascii to binary 4/
lI. tlre O =.

-4 add in weighted "alJe of oacfh isit #.
• (~~~o' '

3
=) in+O too' datarerda ta re.o*l'})()string(O].i '-')kt',

S* ' ~ocrt"t (ractional data '

-t(foldcmnd'4' retrn(o.

else

'or'l- t. , d
!1 add in me ghted "aloe .) erArtional diit; e

$fr c'=fr4 A+) 4 c trioo('),[Ol*t '+1-Oh60',

f'ac'4 10,

- B12 -

'..
;4

(frv-,or) h~c whohints to set in Sataret *

frarw- P-*r:

else 1a'oreg=datareI 1. '4 don t. set bit in datareq is

4atareq++ 1# r)sind 5ftf tractional1 hits 4

4 letrei: in binars *rnat 4ddd.ddddlddddddd when decoding
I'-aloes 4nI is a nem! intewe tsr all other Parameters 0

I iio t-1 Tesdins'hara-:ter: to terminal qa

-:IAa i''st luoon "'ttl bueptin', and "h'sptsot"
vr ' he :,-it and ostrot , inter: tn this quest

T- ore tt'.'ul ise-n ' r inecenatuon 4fe the
tjq r fionctirn.s end one for information from
the in' erropt conttsl led fujnctions

4,

int cntr. i ' I ,t ecnt, ntaCfr
har c td. teptis. t'tsst

ttnotatT~vtTAT

it!:"'t '4 ds..re which tack is bein3 sent out

ptot'fpot54set c'atpu IIPointer It interon~t otacli4
ptir'~stu2 54.st inpst yinter ts interritt 'tack

- hteC-t'btc~t2 t4 l'rtecnt tells .hich byte in the cirrent ascii string is being sent to ttn *l

ctaort-notsth2 ',:a irterropt soJtrot quest 4'

- else
ptottfrtst1 '4 set output Pointer ts oser stai

rtin~~ptil 54 et input Pointer to user stack location 4/
n-tecnt'btcntl 54 set whchb butt ir stringf to start with 4!
nterhpt'nssl !:i 'Co sor output ilotue 4/

',ierv e'o' ' test it stat empty 45

011 'tnotat>=O5 ' test statous of reads nit on serial interface ~
- ''oobtc s 4 wet nest cfaracter #/

U''': er.,ic.e irterrUpt stack #/
"33' ~ ~ ~ ~ fv rnrl 4 hc -sr nand characterl' 4

41=C.'s send sit rharacter ~
' tl s)V -mt 'e nulls to let tore, cath vi U5

whi ie-!4toto t

I Iile'' stat"

0 13-

if Cr)!)1/ send out ''um ieICtJAO 4
n ' 0,

-ht.'r'l, St , =

+.=:02) /* send No error detected in 41

- for,)'O 1K22; itW
4d--N, I ,[1,

hi cItts t'''

z.); (' * eno E - ,4 detected in I/

for('9, ri
0

. '*.

*mEsrt ,1.

tr hwr .. I

,t. weot nto sringl o

io he s o end null nchar 4'

/4Ii=1Akt sen wrat around(circulart - 4

*h'' t Y -n d.ponters e

-t , l . 'i 9 e li ,ar ,t n4 ' ,r

u.4rt .ftrt

- r"t .l, . ul tac7 t44", ptrst'st" rktt. 'en rhan arjdcrulrqee4

b t;2' tou ,.
iA btrnt.2'b tet..

I - alA -

else
bt ktirz p tout.

-btrn tlr I tteut.

- return.

- 4 PUTITlV1 - rouJtine t.0 nlace koisca n o$ outoing ascii oa

output oue'se list no

41This i i int Irmats tfi o M ,er controllIed t unctieons

4# -et .,mntec tos start ot A'rmn

it. SPtjil'% nqtSTfl0)) bfPtil'cjtottl. it check toer hap around on queue 4

PATrTTV2 - "'stinf.), Po la'i lscatm -nIf ootssin' ascii trom

interruprt er'ice rou'ine: on output. queue list us 2

ebn ~ ~ ~ -t,2I. ii~t tw, -tart of ctr'ni 4

IF'Mtti
2

.?t5,'1*t.vtt.' hie'l or, 'wap around on quee

4 TfIT4I . ini
t ~iajs:Ati- -Aine tOr MU(D irtruoi'n

,tAt.'n ale t turn -or time .ini When routine to
rsstarlaoi after nert,rryr hiatiosti,. testsS

nitial'

otern int 'looffr.
'4dittle jnlterstt k. tetr 4'

4I lThEr
- 4Place starti ng addres ot 1umm, 'suti ne in DMAP interrupt

''crlocation #I

*- 0rr 17 '41, Ifret DMA wf f- initmal au S. i

tI # BAR,
4d- nbull. -- etDI EAPl rm 'intins tc hbufI for tirot niiiett

stintatzOK O . onte .I cc al Ink input, status byte-

A1.11 cat.=,

-t'rrO~tibut, * c" rrintor '.0 inrut bswer4

B B15-

kL'.I~ It, ''kttIt'," O ? Polnts '.o nutrul, butter *

4 rt F"!.ts -a i tio,I ''lut ;utve. */

At s 101t i~
t

r harl ntf to 1

'lun4 !1 t' lvli when ;aCiiI uSoold be disabled #1

'al - =,f 4 i'js-n r,' a~i:ite iara Init-ajin *'
Al ht4b * -t' r''' zta' of Labia used in computatinsn9

apir= Na '4 LIw. P.,] "tr U start ot a ''eetus 4!
,jrAe -'' I-t tell 1i 1, et, oft coerutatin swcuel ow

fy44 t 0 s'tlA t c

- AlIrIIaa ,i f lPrmeer4
I !i pm

nintal '' III PC N rameter 4'

lt.jnlrs) ' sart '-!t1 bufl t
us- first Packt 4'

1 t /ial Jet in ;
2 kspannoui 4'

I r'ttty IllIearo' It prntaR' FT Cey to ?o seluence a'
/4 .Pronram ''artmon erase char and es-ace line kevosIt'
rittol'I t9).
PutttollflO?.

rutttol Icst'

'a Test it DMA Lent cable is :'i place a'

ted' I t j I 07000 , '.-1

(d4 0l7761 ;4 it'. -1:nu: t, v'

ito r ten' ect'' '4 chart it status tunction lines 4)

''ipt on 'I t i scl

4 'li4 l4

4 t frt'""Y''A

II ' P'a 12 4/

4 -816-

,a . -
t
rnAt I J' 2.

41.t ,tr ni(2)11~r v4*aL'i 12 *

; 2 alue 4A 4

'k tvtr(I tl j17o.

- *t.t Itt. c "Au ~,

4.1 ' . - Q

- ot 3
4

4/

- r : f 7,

-17~

is $ 1lu 0 nnnnrsr *

- i ;:~:~ loheto itak Sure unteruWt has hit) f!

d!1bthb:"OiP+! /f 4' shnold do it 4

'raife ,rwi'top three line *1

.4=i 010.
r cotrn

* * NM.U'- -0'itne to liot -vP 'ilues *

0 17-

- 4PPL! - utin lis -'aije:

- ttjrj.

OUELST - r.ui. a jt~ lues 1

l

l. I

'A und-,

itT' I' cal Ar

teraI -222 .le 4~iti: . mit

,1 - '4 Pt anra r i ngbl of ''ltn -ae i butf

ntflBig

*+,rfo t. oatstr,fa let) + basdStr(Ijodatst.roga]t

ntt'ka,-'26,tb:d i set number of terms used in comPutinh background spat avg #/

t.b94:bod, 1 1 # 240 value used in calculation routine a,
* $e comber of(shlits to 4Ide bh 0 4/

af(bz9d4le. dshft:"-4,
else dshft= -5
' enable ,al'JlatOOr 4,
Intftl q- 0
j ut I -o l o "

r'jt1tt,:'il;', send n alue of) to terinal /

- /# refresh b.'.tom o screen '
N-.T(;;
wi; t~t+'d xsr-' 2

'rIFI.
'

- tfine t change "N" Parameter V

i %eev'ror alid N rarameter -alues -
;"!.lutare.2 !! datareOtd "

hI:-(. /'4 pt op error m ssage On screen 4/

-o =.ttor - n al~j ot N

'J ,4 'IF 'vr',N+l,N) in titlbe
+

+ ++ t'nOi:i ru v.atijt 1.+ tsil, Itrn used in ctputatono *I
It')s -tr '4"oc'ptto';

tntJ? atftrnqiiI. i++) bisr:'rhidatsril
Hinoctr(0 1
trapo=Sl2et,?n, /* ,,lse to tell e hen vector holding past data is full 4'

P(ntz0, * counter toy tell ahch pth of computations on /

rltrsb± bi .n+i'X., I* value used to aid in rounding off operation 4l
- etre t, /m set Point.er to start of ,v ector is

mptr' m, /4 set Pointer to start of m vector 4'

forfleO, n0K(bLnKSI. t+) x'ti-O, c clear Y vector e'
f--r(i=(', vi)i2f. i++) msl]0, /0 clear m vector #/
vincr'0, It clear Pointer to element in obaf 0!
nPzbigr q _F. /4 compute NOF a'

4l4154b~nP. e alarm disable counter 41

'+enable nrs tAti'ns 4'

4 send It , ie t., .ty

- 4 " 1't. oPf4 -re.-,4

r;7:};b: nr *rbr- aaoer *

IBi

I

I, ~,.+ ,+,
.i4::rnj ,

Pe41 Pparameter *'al'ie #/
la iatAreq)2%' C

Ms(I. - od err nr mr/sa tL' tt,4

retu'rn

'4 emvsrari I disahle comr'jtisss 41

for' i'
0

-jl:\rglil j4-I biqpltrlIj=4atslrnqLxl.

'4 compute hy'" omoutationil load should he di'.idwd.4
14 pnorm tells how many computations will be done the first

n0-1 iterations while Plas'. tells hew many will he dome the
nith time ft may or may not be equal to P dePeodiog on the
current k-al ow of P

4-i

rnrrf 512'hiwp)+l >A.l
- tpnrm=Pnrm'.l:I''I last256-norm~nl,

iflulst 25' /4 allow ma-icon of 25 comutations tash time *

* I trrsrm~pnormn'Zl,
r&Ast215t-normeopi.

nl-

F- tit , 4 set -ointt' ?, 'statof-ect
*nreat i--tirB ,) s'I ' la etra

cut' '~Tet *ys,r t trt0I'etr*

* rut s"'''t s ani "oI''S Par it 4

hr k fpn. alid '4 sruto~p ' 4

in:ton ,,. - to 'uls 4'ti

ptt * I.ii

-820-

smP'iata'eq. I* ;et qe 'Aloe of d ;.rauwr ts
- tr(ir--I Oat strnos izJ. js+) sadc tj I tl'datsrng(zJ1,

s~trx i W.
thresht), /4 carote new threshold table for use in cosputatiunsf.,

- /4 send flet d 'value to ttn 4

p',tt' di sC'.

sl Puse

tecld ,i.rameter -aiues
4u'~eo'b t oaare'~"tt 4etari'=l t& Utare,'l5' I aarsZst

ti: '4 r't error se.'sase un tU

n~lalares o new P cAlue

swi ,tr I-'v)
'A * set up kslk for.2omf rotinle,

- s~ldxab~en/t a~ssa~:e'3. '4 et clarm dec.able ilt
'4 unable coeep'tatloSsi

'*S~t. send no' ''aloe to tt, 4'

*'stttsl'"'r'

F-AtttutieQp2
dcsmnd'l

- *rp'R - routine tU hlanie "t" Parameter. 4

- hecrk (r uiled t Paraneter ",aloes '

efrdataressn 11 datare' 11 datarei'19t
hisI'. ' 4 send error' message ts tts *!

r etorr.

I'- 4st se. t 'elsje4

tr atsFtrr'ofil it., snA,I c'.ilrdat~trns~il.

I cr1 Ino".' ''clue to tt
- I.ttnl'tlo),

I :Ptsl

- B21-

-rojtzoe for changing "£2' Prameter. *1

-. t. slY 4 tod errgr mess;age to tt *'

-a w£ 4~et "am4,

'2dearei.

'rf*P-t. mi! !:it:r £f2C tv -e it P.tare time shanses *i

4enable strutatlror 4'
intflor

0
1.

14 se nn £2 ch&icq to tt 4

r'sttyl'dop2

- retwnt

"*I s roustite tnt' chanlo r "(I" Parineter' 0/

- '4 lier f ''ld(I paramtr 'alue4
it'ltarC''ls2*'.'' 11I da'.areql&'

Ifds s4end error. message to t *'

return;

: et nev' ralu* of I. parosrfte~ef

0Iit i

'''mo :eu'1.:l , a' A"oci. e

- 4 q ,st lttAl'lI cC'

-822-

LSRV -routine to do 'other features" 4

5r.(I
int Cred,
dtTTIBtF
s~itceC~atareo (

- '4 hance status of# audible ilarm 4'

case I Ajdalroztjidalrgtj tVIl

.4In t ~:iewh test: the A toDconvjerter:

I4 tot t DMltes

S. orini ddicatets) th4 trot at audital teatt loot'!

elset, nuti vIh /4 ereuthe haet instructions

a4 s s ouine ebiutupch tests iAMstrtrsmemons*

ase 6 ato /tromntcthlt'srucio

r etun.

14 -o U rite woi esas RoMnart ofe' or

go ti lost tell whc rr eih te ottshe eaPart'imar not
shoe t Po nrfs

- -jreat)

.1'44 deod tethe t, cut ,f uibelar efadinabl ordiablyes list

.,e ot r oI'

n'stt l shin)

nott Odd in).

if asura~l ot). tnlv

Put t tslcinkO

F-ttts ,l in5,

I~ &A ,~tti tmnehI.

-823-

Putt'jline7'.

~iftt I skiP'

- . 4 am be, for terie. mesage$ 4!

st*m '# Ill up ho,, with appropriate mesagne
- cldcnd:q.

'FI!ThPl - rqutsne tsr Putting inital Parameter display list an the

7 c'r cer Thi: is the di zlI, that if frst seen at turn on time

- 1 la P'). 4* tiC1 tahP, it top)t screen 4

send'). '4 em..' nut. 4 quee
'fill in toari ui serame. 'saluei *'

rutttul be edstrl

'eitt1' I l~cc

- sutttyl'biqnstr'.
P-ttyl 'CpOO,
-WAtvI biostr'
s'stttnl' disc).

- ss'ttlI monntr

"At 1 i 1.1 o2ln).

- -itttvlI'lIstr"
i , in ot.'e Of screer

- c'tty. Idisp2',

I ~N,, ' tam be> #or tarW? messace; 0'

alarm)' 't fill upe r. with wprr ate BanSlage4

I - NIT tPAvi -Avtie ti. 'iO hU~T'I.F' isla- r ,Aine in
srj~,the initial 'It

T 'i; ,""stsne actuall

a " -'

I retttul'dII).

- petttfltddl2).
PutMY I '0013'

r'stttcl'61)*1 - ruTt'll ,I

B 24 -

F ,,It I. L'I, ddi5 *;

",jtt., I, ddill(P,

-it U(I 1d161:'
S ':ttts l ddIt)2
Ptti' ldll,f -rsnt triddtf,'d1
'-tttd' ddl I.

pottl t* - ''"ttt1 dIl

S d(I s - 4epty output ljesjes u1

+' T .. - r 'jtin, to t. 4 to D cent.,erter
This rs'jti vo test th- A to D converter o the custom interface

board by lsading scmnes into memory via the DIA The fuection
- !lines of the DA are set t, Is to allow all 12 bits of the A to A

to he displayed It is assoined that start comnsrt and start
pachet signals are bemng applied to the interface board These
allot, clocking of the fli-floes for the function lines and Provide
cycle reqoest Pulses for tle D .

C'

- atodi~tt (

mnt *b,
thar c. , •
, =TTIBlF

atodinsO, IC not up instructions fomr A to D test cc
If Wait for continue symbol cret,'rn) or skip test (anything elsele/
,,hiIe(*stin.tatOv) send!, /* refresh ter-et message while waiting for charm*/
c= Cd &s 0177; /C remove party bits. if an; 41
ifs 'r (15) 1 / chect if not CR e/

addfeatt) I Put up additional eatures list 0!

retur;

'4 perform A o t lest *

• disable interpts ei

- b=C 0177677,
- set function lines to displas all 12 bits of A/D. eJ

-t.=& Ol0117l.
'4 display A to D output oq :creen in binari and decimal */
ttt ,'ld~ll. c IFULD line at top of screen 4/

- ',otttyl'adt.t. ' test label Cf

rttt l'n i tretI

'ittil home'
'4 repe fqdl call outine wh:ch gets sample from A to D *I

St~:tit 'vhile'Cstinst.atly) atod), /p wal. for some hind of break el

/ term,,ate test and reset Prooram. 4'

itta+l' '. '# call initialization rotine '

'4 AND - o-itine to actiall read as.s disria, sample from A to A
Thio oJtine is ,ill-' tr Koth the A to D test and the PDS test

-B25-

C50 the A ts D test, the tfunction lines are set to display all
12 hit be foe Calling while for the the PDS test. the function
inesare cycled through the ",arson 'aloen

4'

n'.odf
* chaIr eb,

'* set ,cp [MA tm lad ink I '",-d try. interface *f

d=C SR.
*11=1 0'I I hit Iso bit 4'

'tel. if WM Jtoe loading i" word o
t~cnfkR.
.. hiletW''5

loyt tlt atydbyt On ncfees *1
'nwert word from binar., , ascii reoreseutatiiyn it binary 4

A, Qnl 12 its of The 16 bit. 'curd are displayed *

- o4tdbsuilnishift 1 005 + 60.O

- ,"rrtrt hinar, word to a- i reeo-esenktatisn o decimal ''aloe e
a'rder~atodbvtatdoct).
/'4 dny'la' binary end decimal ersions Of word on screen *
pq't tty, I' i Nori

'st!tolti

O~~ dtbutters *

- pIt v 1 e ikt 1*+ e/ dil '.0 all"' terminal Syer es

ATr1[11. - c sotise to di;' 14. instructison frame for A to D tent.
A hrief descitin of the A to Bs test is disela-,ed on the

- -itt -

- tes', C *4 ho" tor torte' messages 0/
alarmS!. 54 'ill bo ,th cosroccate message *I

nend') 5. -W, not o'tt l-o-iC? 4'

se P[KTSTr - routine ti tost. tne Prosranoble digital shift logic
$ Thin routine testy the P~t. logic ciicuitry by displaying its

- ouitput on the screen 'mia a Wtf tranofer The function linen

-826-

-re r truled Lrgh the varzous Possible combinations and the

-eprr wely1, shifted versitn of the output of the A to D are
'li t ed 'r the .ree, in both binary and decimal This routine

is vw similar tn the A to D test routine except for the feature
of cvclin9 throuoh the fsction line values.

eds¢tst(' (

itn. b, fin. i
- har c, #4

d=TTlBti.
tIsinso ' Prut lip -l instructions . */

/ east for continue csmbl 4return) or skip test (anything else) */

qhl letl'stntO. =At>01 rend. '4 etpt output queues to dtselac taroet Cl
c'= *d X 177.
- i 19 ' 19' * cho"k I* not CRef

ddftat.) '* rut , additional features list e/

'or , n.

"rer'rm P-is test 4'

'a d.ale in'.orUpt: C'

*b!. O17677

'C set functs'n lines initially to tre C/

- fln=b.

0=1l fin;
/4 label screen C5

Putttyl(ddlll,

rutttyl (pdsdlsl)

rutttl' pdsdis2

-'-ttylIhixtret),

rtttvl' hoses.

. initialize buffer used to display value of function lines on tty/
*lInos[l 1 f z nest2J=zflines(3]=4Q

fli Inest5.]--O

tetit atod(, /* actuall. us t routine which disrlars output Of PS 4.

'4 display function lines C'

flipes[0]= ''fln & 02Y)OI b61(,,
flines[41= M(fin 1 4),'2+Q4'.'.

i epstttYl'(flolycr
''5t ty tfh nes00

' r delar in charnin3 f lines #/

fin
+
2 I change (ur,tion lines #'

iflf[nt' I n:
1
) C0 '# oc to se i .'.lid combination if

'- rend out. i'e
t
unctiO, li''c *'

eb=* 0177"71

NV' fin

' - mf' t:'..,rt'.e ,':. s '.=1 i4 lO for break ss: nal 41

,- ott-;t rnd ,r;y cran C,

S. . i'' 'C I . :s.: ~:a+.,'r, routine C/

S'C* Dllfc I - ' .otono 's is r' I tot inr.,'tion

s'itir, :t:' a I, ' r i t+ the tet of

- B27 -

I'

V _ -.

i-l
: ~too~ Prr imlle .1igif4i > lojic cOl ircuitry.

J I F i ' A

(., 1.lr l

- '. . --4 2
S 14

. iso ttr'et tit4'
'.lv" /* ;]'o -- , i" ,ctO .a-o'riate 4rz.s4 4'

- "'E"SiTeT - .',:,s- to tet the 4024 terminal and .erial interface

Thi routine test- the 4024 terminal and serial intr's4 to the

POP 11-03 in three stages l) Bv Performin the standard 4024
terminal test routine (2) Bv sendigs a unique character Pattern
to the monitor area of the terminal '3) B sendin' a uniue
haracter Pattern to the ,workcace area of the teritnal

termt.ti) C
It ebk
char v.44,

j=TTIBtIf.
t.erifln'), ;, nut up terminal test instruction, 4'

'# wait tr continue symbol (return) or chip test (an, other' v
hilelestinstat '-) send'l. /# refresh taroet me-.4sen vhile waiting 4
- *d R, 0177,

,(,)15) , hevk it not CR *!
addteat). /p rut Up ald~ tional features lint *I
return,

'edre+ actual intyterm tort: 4/

'4 sable inte-unts 4

'4 '(t torm:nal Wa:.h rtsnlarl 4024'4025 tevt 4!
',i'ttl. ' tesU.i

.1 .nd' ' 4 -m.n vytrut -toewe -~ test in e ecuted 4

-it 4a- ''sit for 4 '5,!s Ic
* 'w v s-) N .')*

i
r'

1
v s"?''.ix" iovPMm '. l

Syr v t ii El -h , '-- ter isor t -Pe.t-! disl Is vn screen 4,

f(('4$) 'r "')' ',}rhjl [:i.'+

1 ,+'r zi -'"'l '4 -, :; 4,24 csai'd :harastv.m-r ':' ,4

f' - 828-

14

W4* wi t ted1 A Sn tennar d entry Pt

-.I! ge-nt'" screeon vqith PI character ines ,

qtttvTwlSkon). '4 mate screen all monster crtee*
whle(4esti nstt:){ cherf. cent)l interface status e

Putttvl(unhln), As Put A-riPs on output lueue 4
sen1di). 14 empts otrut ieuees no string is displayed 4

-- trth0, K5e110. k++) It east a while So terinal tan catch up it

cC*d,
I*J till wcrhsrece with SI character lines. 4
PuMttsmesrl /* mae screen all wurkscace (except list line) 4

ehil(~stnnta>'0)C ' check serial interface staten *i
- utttsl 1nk0n0. '4 vs5. string on, output queue V/

sendd / empty output queue so string is disrla 44 45
tsnkthV500,kt).'4wait a while for terminal to catch up 0/

c= #d;
'reset romune and ret.sce 4?

- initial, 1, /4 v to initialization rnutine 4/

'TEAIIINS - rs-une for lispIarieg toeminterface test iretructssnr
- A hrset deccriptsos of the 4024 termiinal and serial interface test

rotswe is displaced op tho screent

- nrminivI5

n'ttl443 ii

- pct .t'I ser"),

I'Mttt ser4?'
P'stttYl nera.

Putti serf),
pittv ser7 P

- rttt.,Perhs .

rt.tI -sir'

vuttts I erl)l

t- & daw bo, for target info V5
ailarew /# fill he- with ippropriate message .

- end)). I# empt" outpot queules #

PRk)TI!1-'tn to -erif PRQl checks's:,
- (heciis ace compujted tor all ot the lower

* 4 k words ot PAM aid meet t the urper 4k' words ot
PRiOM The Froper ''clues ft both of these checknaes ace

- tored in two words it, th, upper #k cectise These

two wards ire net used in ..,tuall, somPutin, the checksas
"Iut are ori-, used for s:mf t i sen Purposes Actual and

*1 Yo.eI "ulues on cheshs'rns use dioP1ased for both the lower
and -uper 41t word soctin-

-829-

armar'" ,9it oP prom teat a nstricti sf0 S
'wait *or ckontInTue ;a lr e turn) or e nd teastianythan, else) *1

wfile(Ortin~. '-w-O) aendi 14 refresh target mssanne I/

Ifc ' la '4cekanI R #1
addet f 4 n. on additional features list 4

',etyro.

. re~oe toalt-st
there wail) be one check;'s for each 4U Prom board

- 4disatle interacts 4

, W. f, '7tif77

F ro
5
t! I nrwadi s21,

a e'41.~ erti output soe:- 4'

-4 'omnotp actual checksuns 4:

1,-SILfI ' et Pointr to addreso of star
t. Ifltwer 4, #1

if)oall '4 cear chdWks accmulat~r *1
- 'ilta b = ENVLFV tchkfpirn lb++, if crotte I-oer All, checksum Ca

'. h i-s now left Poantant at. start, of innper U4,
chksm200) if clear urper 40 checksus aiccanulatvr*

- nileib =ENDUR~ a chkom2re *h++, /4 compoite uper 4k checkoam t
'b h a now eFosatan to loaton ere tarot expected
checta V to annoa"

o-tli 4!1 IirsIPM4

-,set Prom, error 043F;
sI oer'0.I

*ptare actual with enee'.dl checkoutms 4'
af(chkoaul P-eckol ckoler~l.

- f(chkom2' ev ckot cka2eril.
* ia ola, acttal aol te~ted chpcktoaa *
'4 'o''rt t" asci anctaia

it-0rt''f'm2 4k2)

* wS1In-' in ''itut t'ie'ie #'

- ~~ B30~.

Wle t

iftioler ' Of eutttvl(ckerinDl,
* if'chs2er ' 0) PutttYliclerln2),

P-AttY hI tF tr
puttt1.'home),
Otufdi), Ite pt., outnyt ceues 4:
' 4 wait for hoe-ak 41

:nial'} 1 /* 9' to initialization routine 41

* P$ OMIN - r,-jtine fo- di;plains PROW test instruction,
A brief des'rintsos of the PROM checkisum test is dssnlaied
on the screen

rotttoldll
F :1ST. - r I p M I

-Aittyl' proa2:

- ttt 'I rom3l

oittt1.olf httotf,

- to-. ' draw box for target messae!#1
a lvin' . /4 fill bo' "ith appropriate message '
'afni(), (ia empty output luu-S #I

, RAMT$T - rrItIne to tort RAM iote.rI'tY
Each ,ord of RAM is tested for its red/wtite capabilities
by writing a univqe bit Pattern in and attempting to read
the word back If an -rr(,. iz detected, the routine stops
and displays the locatinn of the error in octal The user
Ray then continue the test or he may, terminate it nemitrel'
with appropriate keyboard entriex Upon leaving the test routine.
the accumulated error count is displayed on the screen in
decimal Altersaitety.; a no error meosage is fii'a~ed if there
were no R,W errors detertd durin the text

ramt.t(

hit , , .er-fq, ert. r too
ro iter int *rl r2 el / d'tino 11-03 reqiterS 4,

&.~'i' p'' lia. RAM te:- i'n:trutvn 4

*I - w ,wai. *r ,otkinuelrt,,'r) r skip te-st 'an. other key) e/
1-f: e :tt- t0':endS '. revrieh tar ret essasfe while waiting 4'

+ (= 'dI ,Ill+

'~~~~h' I
' "

' q *.e f t+ "'P #

-8B31

Ii

-83!-
4 . . .2

'. yoU4 Val display headings el
*uttt 'l.d).

,.t,l rael).

Tend., It emptt, Ut queues C/

r ertrernt-. (Ci et error ties and error count to 0ii
rl" STRTRM, /* load starting address of RA9 in resister it
ehiletr t: ENDRM) 4. /# 9o till end of RAN */

r3062125- '# load in OlOlOlOlOlOlOlOl bit Pattern #/
r2= *rl, 1# Put location in buffer C/
rl' r3. fA ut bit eattern into location ei

r3= rl; /4 read location back ino.o register 4/
(r: r2 o* restore location i/

sifT 052525) soto error; i* check for error 4/
r2= en; * nut location in buffer */
r3--0!25252, f# set up 10101010101C.10 Pattern U
'rI' rl3, i load Patter' into locAtion o/
r3= Ott, /4 ra loca,.'on back into resister *i
or= r2; /- restore locati.n */

ifir? == '1l?5252) oto ne't, / check if no error i'
. d1iS! error in #ormaton (location' 4/
error et'l ;l.

ern. ++ / increment error count r
erlocrl to read error location back from resiser

to* conert error location to ascii (octal) Of
atooct(erloc, errlekni
I* Put error location strn on outrut queue 0/

Puttt I (ramer)
nutttYl (orrlok),
rott.vl rtceh)i
sendi '. /* emptr output queues so error message is displayed i/

I# ,ait for continue(return) or test teniminte #/
hIle(#stin'tat =O),
c= *1 & 0177,

sfIc zt01$) wol'o nest. 'i check of CR e
'C conetert and display the er-or count lde iml) 0/
atodec(errnt. wrcnt),
to PUt error count on outUt iUe '

PutttlI rrcont).

senod' /* art, output queues so error count is displayed t
- for'S3"), S k') forl=O, 7O C O0, i++); ft delay so enroot aY be seentl

initial). fi so to ini.ialization routine v.
return.

ne" t :1++, '4 3o to next word to RAN e

'4 lsla enI of ,es. Me t .age, i
if)erent --= O uttt)ltntm' /* no error mes ae */
'4 contort and displa; total error count (decimal) of
else

i to dect ercrt. n n tt.
* ' rstttvl 'rascot);

(,~uttt'l'Ihtsttr

rend' i, '* empty output ueues to Messages are sent to terminal I

*e ea It for an sObol to brek I
hle#s.ctsnstat>:O

I nitial'), I# so Utitslhatson routine #I

- B32

I

.e RaMI. -routine to display, RAM test instructions
A rilef description of the RAM test is displayed on

the screen

- raminsOl (
egtttyl'dII)

- W'alsramin2l.
rutttyl ralkin?,"rM It ' r4a. no

r,ittt ratnco.- ':'ttyl 'ron rim).

t- , i drac. hr for target messages */
* /* fill box with appropriate message */

. '~ / opV WYOutput qoReS V

, 4,TOEICr - vtine to corpor t word to ascii representation of decimal value.

This -ostisn takes a 16 ',it integer binary word and converts it

to o ascii string which contains the decimal representation of

this word Leadin 2ron are blanked and the string is left

lustified

I n

char asc(71,

fsr(t ((6,io+l ¢asdil=040; / fill string with blanks C/
asc(61--

4
/ add eol char at end of string a/

to huO for negativt mber *f

if(numKO) (

nAm= -ns, /C make cositive a/

asc(Olz 45. /0 add negative sign to string V

d:vide=lO000,

1# rheel for largest Power of V) which is less than nos /

,hs I p0 divi d. ov) divide:: 10.

h "hile'dide C4 l s go till ones Pelce in converted o/
asc(i1:0's/divide. / Full off current decimal eace value C/
nusa- asCiletdivide, /C remove this cart from no C/
asc<tio W, to "",Ort nAber to ascii of

i ", / increment decimal elace counter CI

dsvde=/ 10, /# go to next cower of ten

if(i==l) asct1]=060, /# make sure at least on digit is displayed vhen n'm= eI

* 1

I - SeATOP:! - rootine to convert word to audii ropresntatinn of octal value.
This routine takes a 16 bit integer binary word and conv.erts it to
a string of as ii characters which represent its octal value

Leadi ng 2 ros are not btkedi, t .6 digits are disclayed at all

9 -833-

4j-e~3

IA

times Numbers are considered to be Wo's cmpliment, hower,
the routine is never called with negative numbers in this
'roralk

Ol

1tooct(flum, asci
int no,
char asct7J;
it I

a;.c[6--O. te add eol character it
o(ri'5, 10i i--

) (Ie convert 5 digiti to octal 0/
ascilm(num & 07) + 060, /o mask off bits and convert to ascii e/
nanue>)3; t shift in ext octal digit to 3 lnst significant bits e/

a* [i]=(nm & 01) + 00; to mask off and convert last bit (sign) i/

,4 ALARi - routine t.) update status box' on screen
This routine displays one of three messages
(1) Alarm Disabled
(2) Target Detected

4 (3) No Target Detected
- The routine is only called if it is determined that the box

needs changing or when the entire screen is changed to a new
frame in which case the old message is repeated

C,

alarm))
seitchlalmflg) C
case 0 puttty2laldsl), / put alarm disabled message in output queue V,

break,
cane I outtt2tta l); /* Put target detected message in output queue 0/

-break

case 2 P'jttty2)notarl), /t Put no taret detected message in output queuse /
br e4,k

,* IRCOvT - rsutne to determine if target message heeds updating
This routiie is called at the end of the computations and
determnec if the message in the status box is different fro
the ,ne at the end of the oreiojs Picket This saves time by
'nt having to chan.e the screen every racket The audible alert
Is :,jnded 'rom this routine every time a target is detected
, fslesn the audalrm flag is set Ifrom selection of feature I)us

mroot)

Int 1,
- mffaldisb XI' (almflrO I check it alarm is disabled it

ald4nab--. /e decrement alarm disable counter V

else iffter ' 0) almfly-l, /e set flat to indicate target detected ej
else almflg'2, /, set flag to indicate no target detected it
is send audible alarm if Proper et

- ifilmfln=zl && audalrm.0) PutttY2)bell);
,* check if screen should be ,sdated t
Ifilflmfl" ol dafg) (

S oldalfralmfln, to store new screen status for future use in updating O/

-34-

'i

I4

/4 updtee screen. o/
Ilrli / this routine updates the status box 0/

-)

1o HELP - routine to indicate calculations are lagoins behind

This routine seds 4 message to the screen if the system is

heins run faster than the computations can keep up with The

Purpose is mostl' to examine just hew fast one can Push the
computations Erterd from Place in computational routine

that checks if nw sot of calculations are being started

before the current set is done Routine should set lost

shortly after this message is displayed due to use of stack

in computations
0/

help) (

pottty'lihelpl);
sendo, / empty output queues *O

/i BOX - routine to daw status box in workspace.

This routine constructs the box at the bottom of the

workspace area that is used to highlight important info

about the current status of the detector such as if

the alarm is disabled or if a target his or hasn't
been detected

C,

boxi) C

pjtttyl(hoxll

;rJtttYo'soar21)'

Attryli{bo2),

,' .t,1t.ir2),

putttl(5star2);

Pt LI I (bo4l)

is IIIAT - routine to test oeration of DNA board.
-- Th:; routine is used to enter an assembly language

,')ut;lq ohich atually does the testing of the A.

aTr. t io-ne n separate testF which are Performed

i, a a--ambly lasguage ro tise

I ,*inuVO+lI C

S"t,ir , 44,

*t-T
T
!MIF

1',)r fM.os , I* to to routine which sets up for call to assembly ced0/

- hileeStinstat)O), to wait for repeat cheracter C

soto looc, /# uo hack and perform WA test akin o/

035-

-85

L

It 14ATS - routine t*o Prepare for and Call assils language BM test reutine
Thi5 routine initializes A few flits which are used to interface
between tht aswbly Language code and here and also Provides
for the dlselay Of test results on the Saere, The assembly language
routine tss seven functions of I eperatin.

- (1) R/Iof WCP
(2) R/W :f BAR
(3) R/M of DOP
(41 Fuectin-sfAtus linesi

(53) Response to but IIT signal
(6) Generation of interrupt request
17' Transfuring of data into swory
It is asssaed that the user has inserted the OW matenance
cable between tht e oOM Parts. This Provides the feedback betwen

- several lints that is lieccessary for proper execution of several
of the testn.

0At) C
int oh,
It nort era actual W test, V
/0 disable dia interopts. 41

0h4 0177677.
/0 label scroen O

rotttyl~ddll),

Putttvl~hitrep),
send(), fn arty output lueues e
io set error flags toO0 These will ho $et to A I duing the
assembly language test routine if en ertor is detected C

eerercIr~vrRST-erfCT*0
due) /# so to assably language SW test roUtine c

/display results~ #f
tfeiI~ Putttyl MCmer) / error In RIM of MCR el

else CUtttvitf01411)(A no error in R/M of WCR #/
- if'erBARW)0) Putttsl(BiMer). /# error in RIM of BAR of

else Puttt'olinoSw). 10 no error io RIM of SW of
iffer)0) outttsll)Der); it error in RIM of Dlp #/
else Auty~sR ~ 1 no error in R/M Of DIP#,I
iferRT)) outttsllRqTer), /# improper response to INIT v/
else po'ttol(noRRT). 10 Proper response to IltY of

- fierFCTV) n'stttyl(WCwer. (# error in fuinction-status lines if
else P-jtttollnsFCT), /# nc. error in furecti on- status lines of
if'orINTMO P-Attl(INTeri, /# no interrupt detected f

- k pIo uttMt,(noIfT). /# no interrupt detnytedl of
if'erT(CO) Pitttl(T~rN, 't errr in data transfer 0

else utttyt(n*Tf*). /# no error in data transfer #/
sed)). /U top ty output iquus no a ror mesam appear on screen C

'e SIMS - toutine to display SW test instructions
This routine1 displays a brief description of the SWA test
routine and, seet ihotructl Ons ofthmf to Peform the otest
I I he execution of te SWA test requires the insertiono h

SWDr maintenance sailt.

- 36-

eutttv Id,4)

putttyl (&2).,

Putttylr f").

Puttt(l dub),
putMyliO),

po:ttty tl 4)
puttUhithlit),

bhM, 'C draw box for statuso mssages V1
alarmfI- /* flI boy with Current status message 41
putttpIhme) , i reosnition cursor /
600.) /11 "Pty output qUeUts #/

- BSS - routine to Place 'Type L to see list of.' line on screen

This routine elears the bottom of the screen (monitor) and sends

the Type L to see list of additional feures. ' Ite. The mas
Purpose of this routine is to save From spice bn avoidine

repeated subroutine calls whef this function is neede.
Tree fir the rice of one

bss() (

Putttyliblik),

Puttyl(seelst);

entttyt(sk2l).

-o BOS - routine to Place 'lt lid Paraeter r omand. l ine on screen

This routine clears the bottom of the screen (monitor) and sends
the novalid Parameter value line to the screen The reasoning
behind this routine is identical to the ISS routine - namey to

save space in PROM
0/

bds() (
eutttyl(blok),

Putttylldaterr),
putttyl(sk2l)B

t1

,1

-i n7

*oe **** ***e444**4O404~tetttt4*seensntne ntue eteuoHnn

* 4 4

+* * SEPIKY LANL ITINE'-10. - 4.
1 4* This section of :ode containrs all assembly lasosiae rotinec ft

- used in the IRCCD tntruton 4eector rm r s. , ioee 40

I 4 include 44

I44 W~ 'C' rutin st'n) routines 4
/t (2' Other routines that C calls H

I4 (3) Interurt service routines 04
44 (4) Cooutatonal routine to actually smlemen' 41 'elt 44

to 5) DIAm test routine so
e* (6) Routine for coeutntg threshold tAble 44

I4 17) Routine to execute 'HALT' instruction from 'C' I.

D efine instructions that are norially not in the acpmtlr: *:ocabular

- rti = 000002

non = 000240

- reset 0O04
tnu IO44
halt 0

C runtie startoff roe'tsneo

olord -o,,il
olsbl 'sans

- lob! -end

ol 'edata4 otl -start

'-1e. '4a , Program to 2''., octal

- ' -000)
71,1 t. mns' 14106 r' 'seet "'ector area ith halts.,
I slr -(ro))

-' *I. ro -(rot

tst ro
bne lb

',9, $,at. r,v 'clear -so area luninstialh:ed ,ata'

c r , Fo,$1end
be' 3f

cLrb *rO!+
br 2b

11, $ I , PAM

. 0'' 'r r")

tt rO

-838-

r .

d
I-- I

'SI' PC. 'tlflIf

as'' r~hll spI

c re.ste ;ave and restore version 1 4

(il' at St n ~t1 'ruie

s r4,-,
oA r.-, r5

, id -in
Mv (rQ,

'h'' r5,rl
Mm. -(rl) r4

-R" - rI) r2

tF~' -l t '';, ':s , . : '.V . Fl 1. wu I r', at endJ 09 1 dat Packet
This's r o I r oc the Di

reset I n anlt;cti W !,)' t t e -.t N . et V 11 1.!.e 1: +! dr.-3ud e

,norut4tiol~l rou~tine is entered '-hi: r,1-.,le al. c let!.rmine

where the neyt, Pac ket, of ddtr4 is to b e r tit th)e OPJftr.tatvm

vrt getting behind. and Ails the T¢ rouJtine that. 4isi,| ,; the
Proper rtSt message

is"dp Inr'5e tg,5e

, @MW r1.-(') -v ,' ,e g -e 1ter I

Check if falling behind

beq ;<ettdl

P to Ps

- - gw, 1-1

i~nN " '39

I snaje ttto,3 lne to stof start cogasrt fqIs

hiS 1 112414

- so' ,i'O'*1.1'~4 I ~i ~r reoister vith -56

i set go bit fmr ne, loadl

D btermnsre lohi'h buffer tW I %ad nevt Packet into

tot 'bu~r-s

bra .hf2

Si'Ntnji

S-, tb',2 *I1-,~I '4lo 1 d W4
- nv, Sctutl I vr se pister t, eirr :1. butter

br cept

$- t." F ti *IVL d S.'-

so' $'rhl2- tQ F iOt-' k! jrror;'. 'to

- (4e6 if rmautAationrm diIt ao flra~'r

eapt tot -intflo

in, 'Cidi s~t. di ' al irm p,,' it lea t 'ne Packet

br not.rn

fill w tsutain al r oit m ujct

cmn sr r, mtn

'ill c. r 're "'Mt 'irat !A tsb- .1~t "reen

Urfn Psr PC, -it c"0

,tr -f1i, 1r flag u'ed in letern::s, 11 %.I-jltiols zion

Restore ml janl rO

'or). 'A

isgenerated by the 9A ' ti a t j t ni''.
Ijtermoct does not signal the end "ta dat r&'' we:- Vi.

1rou.tine semiysnets the intarrupt Feto mniti'' %hbe ENDS'
Iroutine and thus rre',,ents -oterin4 the -ortt 'o be'

-B40-

S,.i ,ja ,(Lta r-u.cve
T.
', reseele

- IRAw. I-" $'ondp u'IS) :0

'et i ritial ',aloes ,
,

fun-ti'n lIc":

515. -tref. f$l7Oi1

rti

1
5
5CE, tr.::; , n E1e,. tnr lar c"PutAtional r'utine

'RMN - I RCD intruon dteor alarm coFp'tatirnal v'lTs~es

This routine is the heart ,# the detector It perorn all
computations and deci s- nn litated by the nrioio91 it ss thf

The routine is divided into, three main Fe(tion:
(I) Computation of backuround spatial aterage and :i L'..

stare time changes.
(2) Computation of background time average
(3) Threshold comparison and target - no taroet dei;ion
Through out this routine there are many strange ti It,

quantities which were initialized elsewhere in some "
routines The Purpose of these intermediate variables is
to save time in this critical section of code These will
be enplained as they are used

I There are several main vectors that are refered to in the

cpeutational routine These are
(I) r' - this vector costains the Past N Packets of data

samples I Pth of these samples are spdated ea.h iteration

through the calculations The 'ector is set up a: a ,ircnllr

queue of length 256*14 where the last element i, .. h~hl.
I oe as heing imediately followed by the first This enables

one Pointer to access both the icoatiecs of -h o'ies entry
and th- oldest entry "optr' so this Pointer ai :- 'ft
Pointing to the locatirn ot the oldet data sample after each

Puss through the routine
(2) m - this vector contains several different quantities The

I first 256 elements contain the ln, order word of the accuulated
/ doble Preocision sn nf Past (and c'jrrent) data oamples The

* second 2% words contain the bacground tine ,era.e o i diided
"erosso of the first 25, elements of p , The tnhi, 2.,

words contain the de isstn threshold -rrepond~r- .,, tr'

background time average stored in the second - ,)rd, The

last 25. words ,ntain the hioh order co:rd of t~e ac. uulated

double Presocision sum of past (and Present) data samples
S / This strange structure is Present to allow for f ster

crstationo
() a - this is a vector cc 2.r 'ords that contain: the pas

t
.

history of threshold ,inlation'o Each eord corr esPondse t..,
a cell of the IRCCi arrao while 'rin- bits crreseond to

the Past hintory of threshold 'iolatior, The :-Ad bit ot
each word represents the threshold vniolation insormaticon
of the current Packet, the third bit cnrre pond t", one pasI'et

into the Past. the forth bit corre.ppnn to t,, nacie.: into
",, 5 the Pa;t, etc This format reatly sinpli'o- thr v- ,.t-"' tane,

decisico rocess

- 41 -

4,

L - -. ...

*crunch
Yr rS, C', I call register save r)utiry

"frt r5,tmp2 / s.e r5

background spatial arage. i e 25. di,'wj ei I-

Nov ntbk u',. ,O

otrj pojp'irig ti -tjrt -4 Ioti ta1'oter
Ypt' was ret in ENR, int* rust ":r "jte

as'. 'opt' rI

Thb.d 15 ecual t' 2 I " , J ed t7 I , .,n'. ,''

adtess, it mu't be multiplied bY two to a 'count 'o(
bytes to a ord

moll -tbpd r4
- Ir ri

elr r2
IonPa add (rl).r3 a sample into acumulaLo"

adc r2 I add carry to cOerute doublo Pre-ciio suonm

add r4irl / oet rl to point to neit [0th word
sob rooa / so back till all terms are in accumulator

SDiide su by D to omute background spatial averase
Since all Possible I values are eoers of 2, dv'isicn o- done
by shifting the accumulated double Presciioon oem dshV 't
tells ho m ny places to shift for the cl-rent D "alue

-aohc +dhft.r2

Y Round off result after di,,de Ishiftl

adc r3

Backgrotnd ;Patia'. -i- r,,- is n

(it',hec sh-uld test for "'- tone lan

Stare time change should onif be rhetled i' dm400,,qe 0,45

not Performed the Previous time fstat keeps t',o'
of this stat-is

beq rkst / -n to check tor :tare time change
cdr +fsIt

to date / in ,ot check for stare time Oarie

Check for stare time change
I Set rO Pointing to start nt C.2 ,alue table

* kst mo' $occ2.r

/ Choose element in table ,v-epondin to stAre tife that --ia: in,

I use when current dta PaI'et Nas formed 'sldtref" contailr: ts
/ information

I, -842-

+V

i *o1tref. rO

rneci r ta . t e tame decr-4:e

sit tn,

- eNcree ?re time it r, e

. ftit , .- t. la
4

indicating :tire time change

Ietl af stare time crg he I-rea-od am, further

t-t . tre f

beq date if not, do not chirje
5ub $2 'tref i (hane tret tnot et out 'eto

15,) tc ^ode which sends oat sew stare tame u-i-k functvi, lines t 2

-o m Update

Check for stare time ancreo;e

htoc mr 11rl Pi st i, Fnlitisy tf Itt t 0 11 thresh,i table

I Choose element which correcronds ts :taro time iasol 0an ,jrrreft

packet was f e d

add *oldtret. r0
5

cup r3. IrO) ch-*k for inrease

bt date

r,+rec
- ,

tire time if r o:ble

i s f t set flag to Indlaste stare .Me khane

cof $6 xe 'to chock if trof' at manamsv aqlum
bel date ' do no

t
change if at ma-ime

add $2, tref I increase stare time

/ Send updated staire time to outside world

Set function I and . lines to nely coeputed value

These lines are accessed -,i two bits in the CSR of the OW

sedate bis 6, $172414

his + 0ref,$172414

- / Uedate east history of stare times Must keep track

a two Packets into the Past

date en, tretml, +nidtref~Mott -"Lre , o-re fil]

* "mataior' ash rysud tune aerans
/ The sopstations for- the hbIaround time a"erae are divided

* eP so that. roughlo I Pth y0 the come'tatson are done each

t time Thore are three Parameters computed in [which determine

exactif how these cemputations are diided ue These are
/ 'co ', 'rlaat', and nI

T
here are enorm calculations

I. -B43-

II

V

4: - --........1,

F rori L 01 -1 Iterations and c'ai l naicuilation, Performed
the ,I I tea atin there are no cakt <lation; Pertor'td the
last F- op iterations

Increment counter t- keep track of which Ft*h of -4lt 'Hti,o; n ro

btvi ine +pont

- C heC' to see If wp around on clrrulhr jeate toer in? Ft ;aSie ,aji

mnov xuptr, J)
sUb $*, ri
Cap rO, ,raP
hit nowan
ot, %+ X, + (tr

noetrap mO .yptr, rO I set rO Pointing to <tart of curent Pai,
1

et

add YincrlrO / increment to Proper Pth ct Packet
NOV 'xorrlI S net rI Pointing tO r

l "
er Pth Of Past sufiFieS

Nov +emtr r2 set r2 Pointing to roper Pth of accu, ,<m

/ 'Determine if 'nll P-th of backsround time aerage

(li P -cr, t. -nl

/ ,) to -ects~n of code that Performs 'Plast' calculations

bel last

Go to auction of code that Perf mk; 05 ca'n'satinr s

- i ' secti,)n of (ode thr.t ter'orm: pnwm ,:lcuatisf

F'-rfnm],.-t 4e'~, '+ .'A! l t ,n

-las't , P:a. :t I su t ,' t' Fi.:t a

/ Subtract oldeot Pact aIea cren -.i",ismultod doilda qre-,i s^n fun

loor cub cr-).)r2)
obe 300I1 r) make doub1e Pre I I sr a J 1 oP

Replace Pact oample in 'x aith carrent camnle

m m'' (r)), tr11e

* ' Add <'crrent 4mple into ar- snlgatl djble noesc i ' m'c

add (to)., 'r2c
i* adc 300,2) make double Preociinn ;um

/ Moe double erescision sum into r4. r5 iC Preparation for divide

-No v 000lr2c.r4
*nma.' Ir2fr5

K
S- 'Divide s's Ik N to get bafiround time average

-844-

Vi

I

Is t ini gnr4

f, :r :,1 ' e hi-d" rdi,, is set in C r"

cur r, *rdti r
bit n rd
ins r"4 ' r ns H

I Store hro'snd timei average sn sevn It 'wls o a

nord M,' r4, 776(r25

The barSooun tim 'e cca oiI nsw be ised to I9o0 'if the
arrpriate threshold in a table (Vab') which is nnintod to.
by botr This table csntin, threshold: correstondzn tc

backerouod time aferages of between (- and 1023 This is .lr: ht

I for the two longest stare time- but when operating at the tent

/ shortest stare times the 'aljes may go as high as 401A Thus;.'-hen
I using the two shortest stare times, the thresholds are losed

I up by first dividing the background time average b tour. looklino

S I up in the table, and then multiplning this result by two This

/ eroceedere works since the thresholds are Proportionat to the
/ smare root of the background time average.

$ Check whether using one of two longest or too shortest :are time;

cAr oldtref,$3

bat noshl / using ne of two lonest stare times

SUsing one of two shortest stare times At this Point the result

/ is only divided b two (instead of 4) since it will be ,used to

Isloo o an element in a word table (most increment two b'tes for
each word) This Is equivalent to looking up the ",ale cnrrec.onding

to the background time average divided bi nor

anr r4

bic $l,r4 I make sre even address
add bstrr4 I set r4 Pointing to correct element in tarli

moo, (r4),r5 I move threshold into r5
asl r5 / multiply threshold by 2 'since di',ded by 4 befm a

mO. rS, 1776(r25l move threshold into third 2.,& wcrds vf m

hr retrol f so Wack for next iteration

Lonk op threshnId for lonest two stare times

noshil asl r4 / molt b. two to make ,,ord ad&r'-

add b;tr,r4 ' set r4 Pointing to Proper element in table

mo,, fr4,1
7
76(r25 ' move threshold into third :5 elements of f

retrnl sob r lonec ' go Wark for net t ite.'a'.sn

Reset Paintern

to'' rI,'-Fptr

" It e mptr
it ',ncr

- / er if Pth itocton

- chi't ste rrt, bi 3o

bne dd 5 0'. to Pnsle on -'tinn

- B45 -

I.

I

-1 . ,f ,mcrm :e ment I 'f cal':.ulA tijon s

lhee calculaition' art tjssortitl l ientical to thset If, thej
Plast section of cede The "ode is reeoato %, ir'croest speed

/For comments, see 445t' sec
t
lz~n

ad Iob sb 'IrD)r'1
nbc V#'00(rZ)

Mo.' rO. r4

-W- me r2),r5
di" 'hi or4
cmr r5,erdtrlh

-I it nored
inc(r4

nv'd Mo., rt.7lbsr2C

bit nosh12
icr r4

-bic *lr4
add Obotrr4

aol r5
mot, r6.1776Cr?)
br retrn2

D OWbf2 asl r4
add "bstrr4

Ow Cr4), ll7bsr2
- retrn2 sob r Iooeb

IReset Pointers

n'" r.-'rtr

moo r.'nptr

- add *trnorm.ossssor

Iof -a ''ectee'

derM :.6"d 's

* Son 't,2 'r2 Points to "urrWs. :imole -'aje
go'' $40),r0 / r3 is counter to heen track cirtia 'ct

* -sov. *e'a,r4 / r4 Points to 'ak' "aector
Olr r5
no,- SP. 'tOPI 'save star'k Pointe"
O r -tair / clear tar-cet flat

:--r *a' ' rA~r I rut backgroond time a,-era'pe into nO
sob Cr2C+.rO ' ;btrart cWrest sam6ple ''also

-846-

t' the: absl-te val1ue of di ttereonce

bp

:1hi. Ii is i, i. mle ,c,', for ctredt threhold ilation

sn , rmait: in

* l>~e~t'Se 'tr4j W !n Sl'J'A 'lloe Of dlietl Of 0* cioent sample
- and tack0round tke a''_0re

11P 'bIr) ru

bit nobi: ' tezt i i no thre.hold iolai,

Set oecond bit to indiate threshold -iolatio at cw-i*'ol, ine instant

hi' $2. *r
4
)

I KafV o44 n diitedei b, 3 most reent thresholId 4ectsonss
Smi-k' is set in '" rmit e

- nehis5 bin '%sk r4'

M-' hi 'e.r into r.

My 'r41- r',

Nite r)int tn -istaion in t.nle tdb that ctls.sen

/ whirh eqtAls the total oumher (threshold 'ilatiino :n t~
past n di-ded hi 3 most recent rackets

add tab, r')
M ' - e, move thas nuber .n to stack

I r5 contains the sum of the total number of threshold !iolations

In the ast n divided by 3 packets of the tt(patillv

Previous cells of the IRCCD array

add isri,r5 I add ,olitions n Present spatial cell

Do not make target decisien for first teo cells

NO, 1376,r3

bit Init

(spare t to the suy oE the nuber of threshold ,iolatiny in the

I three Spatially adjacent sells which ha,,e occured dursong the last
i i1 divIded by 3 Packets

I

'eF * sat rS

bet tarn / skip cettinq target detected Elan

MW $1,ir f set tarqet detected flag

/ Subtract nber of ttreshold ,iolations in the IRCCD cell

two Positions away from the current (ell

Arr ysqb 4'lypr5
.int sob r3,loopd ' n tn n"t , all, adacent cell In arra

-B47-

-I-

here o, 't , ' retore A0I
o.- .tmp2,r! rotetre r5t
jr t o I 00 to r.9ioter restore ro-tine

THRESH - routix, for set.ing J thres- hol, table

This routin ,omrutes the thr¢liold aihle thAt is used in the

target calculations Th- algor the for (cputino iuare rots

is a NeWtons method trpe scheme using a tedious it"r ot

I fixed point ar itfetic The fad(or dependent on N was found b,

Sable lookup in a 'C' routine lsin) The d Parameter i . assl

to be in a nnno nnnnn brar format 07 binars Placto.
The iterative Portion is used to compute ; wta) where . orresF,)nds

to the background time average

1 10l -thresh

tet
'thresh ocr r5, cS

as- 1200.0r5 'no of elements in tabl'
, r r4

:

- looe mov 6
7
7776,r3 1r3 contains initial ne,; for,

ash 14,r4 'r4 contains shifted value of a

me' S0.,r2 !set no. of iterations for N R.

loor2 may r3,rO
mu) r3.rO /rOrl contains s*2
sub r4,rO IrO,rl contains fix)

di,, r3,rO trG contains f() over t,

Inc rO 'round

asr ri) /Set b P to match

-sub r rS3 'r3 contains neqw x value
sob r, Iooe2

ash $-3.r4 r4 contains 20a

SNo moust multiplr three terms together to got threshold

mu) n r3,rO
I(, .5 qN , rs)

ahe 61rO

mel 'sd, r0
ashc grd'6

inc ro
asr rO rk how contains desired thresh
m. 'bstr, rl

add r4,rl set address in table
asr r4 'return a to normal
Inc r4

f " rH, Irl) 'out entry in table
- ob r5, loopt

6¢r -blAb

mol' - tAe3, r5
top cret

I DMA - r-jtin- t, act4l 1 r ,' the t-'t qn the ["A oird

/ This routine is entered from the I routine MT. T-t result
2

s

! are retrned t. 'C' by settin error flags There are D,. TMA

548

un. t in;s11 whi1'h are teted

i I -W on WRp
I -W --fBAF

/(3k R-W 't DER
/ 14; Rese. nse to Hi INIT sii ,ai
S(5 FUfCtt ast.i linen

1 (6) Enld of t'.in-ftr w'etr --,r *i(1ni7 Data transfer capailitle,

te,.t

*da sr rS, cso

me, $200,r4
ntr' 'disable ststem onterurts

Test r-w of various registers

M-1, $172
4
10,,c1 'load WCR addess

me $ 52525-rl 'lad test Pattern
an rl, 01O) /rite lest Patlers into WSR

. moo, (rO),r2 /read WCR hack

cop ri r2 /check if error
be ICRoki
Inc eeriER /set error flag

WCRokI co ,' /trs new Pattern
mo., rl,(eO) Aw'ite into c k
mok, (rO)+,r2 /read WC back
coo rl,r2 /test if error

'e, WCRok2
Inc eeriER /set error flan

iERnh2 mo, rl,(io) 'test BA
monl (rO),r2 /read back frog BAR
bit h lr2 /inore first bit (ltas reads as a 1)
cOP rl-r2 /test of error

, be- BARokI
in, *erBM /set error flan

OARokI co rl /try new bit Pattern
o. rl, (re} t'rite into BA

moo' (mO)+-.r2 'read from 3M
ce rlr2 /test if error

, bel BAoR2

inc *erAW 'set error flag
WWnIh bis $l,rl 'test DIR

Inc roi /make rf) Point to DBR
Inc ro
me, rl.(rO) write bit Pattern into DOR
W. IrO),r2 /read bit Pattern from DBR
cmt rlr2 /test it error
I/en DORok
Inc erDIR /set error fln

- wokl D ' " rl IrTs new bit Pattern
sy, rl,(rO) teite bit pattern into D9R
a,. O),r2 'read bt epattern back from DBI
cool rl~r2 Itest if error

bel DBok2
In "' erDBR /set error fla.

"DRo- so" $172410,o ,test if reset clears approrriate bits
clr rl

i~~ ~~~~~ Se -ll m1P ib~lle bit.s in ''r++;r~Ye

- B49 -

4
g

o. $171'1). ri) :4t '' inting tn WCR

Test if proper bits Are cloared in ''ariw;F registers

Mo. Ir)+ - 'Fe,91
i; IIA'estec

cop 1200 *estc
line Kiecr

be; RSlok
RSee in(*erRST /fet error flag

CI ; Ic~t. unetion - Wta.us lines b% 'endino 'ot all Fvcsit'

cmiitofof function "ie-aloes nddetermining :
I Proper values are read back Is status lintn.

OSTOk mu' 97000. -eorec 'set up eyreeteIsutatun line '-aloe;
-mol' lib.rO Iset initial value: of function lines

MN- $172414. r2 set r.2 tn Point to CSR
FCT sO.k rO 1r21 /snd out function lines

mu.. Cr2), *tapl 'read CSR
lie $110777.*tael 'mask off status- bits
cop eAPI.ipXpec !tent if error

Inc +crfC1 (ni. error, flag
FC(ok nub 1l1000'*espr

-sub $2,rO
bin (CT 191- to nedt net of f line ",aloe;

I 5Test WA data transfers and end o0 load interonts

mn'. 9-1000, #117,1411) (set uon(
-Mu', $-hlnfl,e$1724l2, ;et upR

Pot something interestin, in obufl

ma,. $-slufl,r0

moe' $400 rlI
- lead go. r r)+

sIr C r014

sub rl. l oad
1 0, $.4maiot. 0912-4 (load 'it scevase address
c r -flag

- E nable *vstem soterorto

'!r r4
stre

a,1
-B50-

C',. flI * 14
b:s 1".'I'2t14 b it d nf:

Co into .,ait 1-r

*alte in 0*1VCOe
boe wate

Test hw* tbinr- -ent

/Check foe', i vteruel I

i nce -triNT 'set error tlan
*INtok tw - t4-ntusl,n'

to'' $4'00,r1I
TRN t' (rol+,r 2

MPn r: Ird lest if Pn ope' wi trinao'feod into nemlr

line TRt~er
s sob rl.TRN
hr IRNok

TRer wn *eriR" fset datui transfer error elan
- TR~ok reset

ste cret

* EI~iNT - interriet service rouitine used to fe flag imd atire

- interrupt receved dins testiog of IN9 boarl

9lob! *Seint

4 "taint to", fl1+f ito et Itln
r ti

- HALT - r'stio' t, be >allo'l s to exe'ute a halt

intu Ts i nlin n used U tolo tlhe eroccosor when it is
I Jestred to eoter the tWM teit routine The halt al Iows One

- f to insert the LWA mintenance (able

s lob! *halt
- tedt

*halt halt

IB5

/ Checka Test Routine

o' $'.& r".C clt*r checksu ar-s in RM

so., $1500), r I
O,,,a cr (t1*

zoo' rO loa

to'" *200..r3 'load start of PRM addre-
o'ad ztart at chec;um 4 de

o.- S1OI ,'load number of V w oedc counter
loath moV $2000r-o /load nuber o$ bytes counter
loope movb (r3),r4 /get low order byte

ad4 r4.'tr2' !capute lw order checkse
Inc r 19c to high order byte
mot,b (r3),r4 'et high order byte
a4d4 i4,21-2i ieoutt high order etehon

ine r3 I0 to neyt wor
'ob rO, Ioopc

add %4.r2 ,'move Pointor to store e It checksus
) halt

852i

*1

'4

I
f-552

W-

02155W01 9Woki 024662t L20018 041642t L20127 025270t L283

0215t 6'Wok2 025006t L200.0 042360t L20128 025314. L286

0216b2 MiAIt 025134t. L2002 042404t L20129 025374t L287

021630t DPW2 02 .1024 042430t L20130 0.5512. L292

021752t FCT 025326t L20026 042454t L20131 0255O't L293

0220021t fCTok 02532. L20028 042500' 110132 057750 L300

022126'. I141k 025310'. 10029 042524' 110133 026660'. 1300

057744d L 026076t L20032 04250t L20134 025640t 130

- 0577706 LO 026152t 120034 023044' L202 025670t L302

022240t 1U0000 026226t L20036 0230541 L203 02604't L303

057646d LIO002 026302t L20038 0230641 L204 025700'. L305

0576724 10004 02635' L20040 023074t 1205 026062t 1301

023702t 1100 026456t L20042 023104t L206 025752t L308

0236A72t L1006 025bOOt L20045 023114t L207 026016t L314

0241641 L007 030562t L20047 023124t L208 026050t L316

0241341 L1000 03106' L20547 02314 1209 026512' L318

024332' L1009 031172 L20051 023164t L210 02636 1319

- 030174t L10010 031232. L20053 023214'. L213 026110t L323

031o42t 110011 031444t L20055 023314t 1217 0,6212t L325

S032112't L10012 031616t L20060 023320t L219 026164t L329

0323t L'.10013 031666' L20062 023336t L220 026266t L331

03222t L10014 0316741 204 023426t L222 026240t L335

O32636t L10015 031742t 120066 023436. L223 026342t L337

033026t L10016 032146t L20(8 O23402t L225 026314' L34'

03330D4t 10017 032374t L10170 023534. L231 026416t L343

057720d L10019 0326'2% L20072 023644'. 1233 026370t L347

057736d L10021 002' 20074 0236101 1234 026476t L350

057772d 111 03314.t L20076 023640'. L236 026464t L353

0577744 L2 03334t L20078 02371Ot L238 026644t L357

0577764 L13 033420' 12008 023742t L240 026740t L361

22212t LI15 033642t L2002 023366. L242 027002t L365

022444t L179 034020t L20083 02404t L243 02151Ot L370

022450t LI0 035020' L2'0W8 0252121. 124 030534t L397

022574t L184 03515't L20097 024214' L247 030540't L39

022652t L185 035310t L20 024210. L24? 030602 1399

62267tt7t '194 035446t, LO2 t 024100t L250 057752d L4

022r04t L19 035606t L20(0'3 0241141t L251 030670t L402

022712t LI
O 036416t L2045 02412' L2 030676t L403

027201. 116 036524t L 1 2 7 024250t L254 031010t L406

022726.t 1092 036520't L.0'09 024274%1 1255 031014'. L407

022734t L11 3 023034t L201 0247421, 1256 031076t L408

022-4 L194 036566'. L20101 024516t L259 031210t L411

022754 L145 0372176' L20103 024504' L260 031416t L419

022764t Llb 037440t L20105 02450Ot L261 031422t L420

022714t 1161 03747.t L20107 024626 L263 031464t L421

0571466 L2 04046t L120108 0246,34 L264 031640t L425

023024. L200 0452t L20110 0246221 L265 031712t L427

022206t L20001 00640t L20112 024616t L266 032126' L435

022344'. L2003 040634'. Ut14 024702t 1269 032132t L436

022374t 120005 0410bt L120115 025044. L272 032166t L437

022334'. L206 040400t L20117 0250261 L273 32346' L442
' 023314t 12000 040752t L20118 0250701. 1276 032352 L443

023472t L20010 041156t 120120 025110' L277 032414' 1444

- 0240.%t L20012 041262t L20122 0251261 L278 03530t L447

024400t L2('014 041312t L20124 025156t L279 032652'. L450

024532t 120016 041504t L20126 02521bt L282 032656t. L45'

IB

03,'1.t L452 040320t L595 041612T *alarm 044462) c21st
0330421. L457 040676t 1596 0620106 *,14h sab 0327741 +c2srv

033461. L450 0404441. L598 051664D aldsl 1436706 4c2str

033102t L459 040672t L599 1440308 +almfls 0620 +ccl
033,3201. L467 057756d L6 1432640 *aptr 062026B cc2
0333241. L46 040341t L600 024014T 41scto 143742B +chkml

0333601 L469 0407201. L600 143714B +a1.dbtn 143744B 4ohks&2

0336141. L477 040772t L610 143704 4a1.doct 1437468 *ckl

033610t L478 041454t L617 035200T 4atod 0504300 teklioc
0335721. L480 0412441. L621 052700D 4atodl 1437568 +k2

03',6201.t L481 0413001. L622 052746D 'atod2 0504400 4ck21oc
033626t L482 0414241. L624 0530 atod3 0505440 *ckorinl
0336334t L483 0416461. L1635 1437409 +atodbYt 050630)0 dcksin2
0336461. L484 0416361. L638 041142T +atodec 051362D *elscr.n

0337041. L486 0416521. L639 0354T +t1.odins 0433020 +aidno
0337121. L40 041660t L640 034774T rode1.ts 0433360 4oads

011721. L489 042010.t L643 041460T a1.ooct 1436006 cmand
033726t L4) 0417141. L644 143604B audilre 143 'crf1
0340141. L494 0417401 L645 040T +bds 0203341 crwwh

051754d L5 0417321t L646 0434760 +bell 0434420 *oUl
03174t 504 0417661. L648 14356B Obfell 0434600 *clrx
0350241. L505 0422061. L659 143564B +bf1.2 1435768 *4a1tare

03064t L507 042212t L660 1'3566B 'bfvpotl 046532 Ga1.wr
0351541. L509 042354t L665 1435706 4bfptoL' 046442D *Eter

0352621. L514 042400t L667 1436068 *bled 1436208 'Eatetrn

0361721. L527 0424241. L669 1436343 'bisdstr 0446340 4ddll
035612t L5,0 042450t L671 1320706 *bisn 0454260 +ddllO
0356521. L530 0424741. L673 1436406 +btntstr 0455268 +dd112
036 2t L53 04'520t L675 1360768 'bits 0456500 *44114
036152t L532 0425441. L677 1436449 -bistsr 0457700 +d4116
036161. L533 0577604 17 0476560 +binloc 0461100 +ddll8

0370621. 159 057763d L8 043504) +bksP 042300 +dd119
0364221. L540 057766d LQ 0433721) +blank 0447268 +ddl2

0164641. 1542 0217301. Re 046422D +blnk 0447340 +ddl3

036631. L551 0217341. R Tok 042040T +box 0450060 +ddl4
036624t 1552 022136t TRN 0514000 +boxl 045124D +ddl5

036676t L54 022150t TRNer 0514200 +box2 0451660 +ddl6

0367221. L556 022154t TRNo 0514300 +box3 0453 +4418
- 037661. L557 0215121. WCRokI 0514400 *box4 0301521 +ddlist

036750t L55 0215301. 1ok2 0514500 'box5 0435100 +4dloc
0370041. L561 052034D .9A~er 0427401 bss 0437760 +ddlst
037090t L52 057642D +'CK.01 132074B bstr 030472T +ddsmv
0371)32t L56 057644D +CKSI2 1371228 'blab 023452T +decode

040116t L57t 052110D 'DBer 143572B +ben1.1l 046244D -diso2

037302t L572 0517400 +I 11 1435749 +Wbn1.2 046604 +dssp3
037344 L574 0567360 +Err 1440348 +buy 040t70D 'disf3b
03744. L575 0523401) FCTer 0600029 +bufum 034530T 'disla,

03750v6t L577 0524440 +INTer 143612B +'c 030270T 'dlss1.
037W81. L57Q 056706D *Nor 0304401 cl$ist 043612 'dloc
0376041. 1539 052164D -RqTer 0437460 +elloc 0442220 +dlst

*H 0 16t L581 0526040 +TRNer 04450 clls1. 021454T 4ba
640052t L5A2 0517600 +10er 033252T clsrv 054010 diml
0 034t . 043056T clonu 141676B 'eIst 0540541D 'Eaa2
04,071. 50 1361049 +4 1436148 t2 054152 '4&3

0410121. L592 033734T 'addlft 030406T +c2lhst 054206D -dm&4

040'61. L593 047704D *ad1.;t 043716D +c2loc 054310D +iNm5

-854-

* 1

0543620 ab6 0471405 ',ln2 050072D *e dAi:2 0571560 orwer

054430D th 7 4)47216D ehne3 0(o2176T -pdn 1'7126[*t
0545020 -'ta8 047,74D *lne4 0355621 *.p4 t ('15(60 -stAr2

042564T -ains 047322D In5 132066B *Plat 0514600 *tar2l
0211621T +daint 0473520 'Int6 1361O0 *rnora 020000T -start
042230T *dmats 0474020 'Iine7 030236T *tpli.st 143272B +sttnsta
0421701 atst 0474460 line8 0435640 eploc 043060D rtoinq
1432709 **voor 046760D tlino9 044136D 'Pplst 043202D *ab
062022B *dshft 033530T +]5r, 0313541T 'psrv 137106B +tar

032066T +drv 1320768 Ia 0502360 +4ndis 0515340 +tarl

020310T +da? 022174T 'kain 050264D +rdis2 062020B hubd
0600000 'edata 137110B 'mask 0503200 *ormdis3 037066T 'tvrins
144046B +end 050202D 'maon 040122T 'Prmins 036372T 'temtot

020122T endpk 0501500 '3kwow 0552260 'oroml 0501400 +test
143124B erBR 1320628 'etr 0552740 -'rom2 021316T *thresh

1431260 +erDBR 1320640 'nl 05370D 'prom) 0310)354T 'lhit
1431349 +erFCT 030322T 'niust 055444D trom4 04370 -tloc

1431360 'erINT 0436420 -nloc 0504700 'Prooi 044400D 't]st

1431320 +erRST 0443100 nlt 037252T Prnotst 1371040 +tart

143140B 'rT0 030204T 'nnlist 034256T 'tutdspl 062014B 'tmp2
143122 'erWR 0435360 tnnloc 026702T +Putttil 1371140 +tm3

1440168 errcnt 0440540 nnlst 026744T 'Pnttty2 136102B tpnorm
1440060 terrlok 030746T +nnr, 0511460 traml 062012B +tref

05500 +exlloc 052062D -noBAR 0510620 frarnt 0620500 +trefml
0504600 +ex2loc 0522360 +noOBR 0507140 +samer 032600T +tsrv

1437660 'eycki 0524020 'noFCT 0545520 Iramuil 1432760 ttibu
143776B e'rck2 052526D noINT 0546200 .ramo2 1433148 'ttcnt
043040T +exit 0522520 +noRT 0547060 -ramnQ 1433100 tttirtrs

143130B texpec 052642D InoTN 0550120 lramo4 143312B 'ttirtro

0434240 +(10 0520060 'nob.R 0550620 '-ramjn5 1432740 +ttostat
0414060 +fQ 0 1 2000 -noram 055I16 ramm 02,1246T +ttyin
060(K00 +fhts 0516100 'notarl 041016T 'ramtns 0467240 'work

1437329 'flines 1432669 top 040226T 'ramLtM 120560 wraP

0477740 "flnloc 0430620 nfl 132072B rdLtrsh 16256B +,

062,1248 fctat 032254T +ors 0507660 'rtceh %2054F -x"Ftr
022172T +halt 062016B *ntbksra 046336D 'seelst 0610048 tybufl

042014T -help 0476740 toctloc 025546T -send 060004B 'Ybu2
0475640 +helpl 1440260 toldalfs 555400 Isrl 1320608 yincr

0567620 +hothlt 1436020 +oldpomn .6M 0 terlO 0620040 +Yptr
057050D 'hitree 0620360 'oldtref 0556220 "er2 000006* tsc
0512660 +htret 1433168 +outstkl 057220 ser3 0000064 asc
0571340 +hitrl 1434400 'outstk2 0557700 -oer4 177770a b

051316D thitrt2 0232521 'par-e 0560700 'ses5 17777N b
070760 -hitstr 062052B 'pent 0561620 'set6 17770a b

0566100 'hittst 0%31160 Pl&I 0562420 'ser7 177770 b

1447320 *holdrha 0537340 -rdsIO 0563440 +sr 177770a b
1436128 'holdnt 053762 'odcIt 0564460 'ser 177770 b

- 147'14P +hnae 0532140 -d-2 0465761 sk2l 17'770a b
027"%1 'nitial 05332160 .pl 0I 470401 -skio 0205461. Ktam'
062iN6B lontfl 05340 01 -d 4 1371208 -sad 177760a bytecnt

- 041.6,t5 ,,ut MA35,0 F.is5 1436508 -smlstt 177752a
* 05Aht0 * -,.A 053500 "0ds6 143616P "asl 177762a

W14142 -',okln 036240 rPd.. 143610B cen 177770a c
046736D Ila4rn 053660o i's 1436640 'smnstr 177754a c
0470540 'uhnel 037060 Pdso 137112B -set 177742a c
0471060 tlnelb 05M48 'edsdl 146600 "ltstr 177770a c

8
I. -055 -

0'

I7777ti c 177766 1777604 shift 032600t.-tsrv

I 7'
7
62a c 177764 1 17775& stakp ('22246. ttyin

177754a c 177770a i 020460t stLice
1
7
7
7
66a c 177770& 1 021270t tar

177744a Cary 177756a i 020516t update
002(772t chlst 177770a i 022106. tate

177762a eksler 021274. init 020232t Ybf2

17
77
60a ek2er 022174a irccd o 033734t -ad-Ie-0

020420t e6st. 000000a irced-in 0416121. -alirm
020252t pt 177770a s 024014t -aseon
1
7 77

70,e cntr 177766a., 035200t -atod
020104T cret 177764a s 041142t -atodes
02026tr cr) 177770a 035466?t ,atodi n
0200661 csv 177764& k 034774t ,atodts. V
043040N cueit. o 177

7
64a 1 041460t -atwoct

t777.00 . 177762a 043000. -bds
177760a d 177766& k 042040t -box

1777524 d 1
77
764a k 04274Rt -bs.

1717%6a d 0206341. 1a t. 030440t. -clli.
177'664 d 17

7
752a im 03252t l-r,

177764a 4 022042 load 030406 -c2lst
1
777

66a d Ow0a 10c 032774 -c2.s,,
1

7
7

7
66. d 000004a loc 030152t -ddlist

1
777

52a d 021334t loopi 030472 -ddsr-,
1
7
7
7
70 d 021350t looe2 023452t -decode

1
7
7794a d 020364t loopa 034530. -di svla

020532 date 021014 locob 0311270 -dhst
021146 deed 020640 loopc 042564 dmains
177756a dflq 021204t loopd 042230. -dmats
177766a dm,. ide 1

77
760a a 042170. -datst

1
7
7

7
62a divide 177764a m 032066t -d.-.'

1
777

60a erent I 06404a meps 042014t -help
1
7
7
7
54a erfIq 177762a n 027006t -initial

177762a erfls 021230t not-r 041666t -irout

1
77
756a erloc 020272 nou.n 033530. -l sr,

177766a ecksl 000240N nop 022174t -main
1
7

7764a excks2 020700?. nord 030322?. nlist
000661a eit 021010. norm 036204t -nnlist
0

430661 fa cu o 021054t norno 03746 -nnsrv
1
777

66a fln 020740 noshfl 032254 -nsr',
1777500 fray 021114t noshf2 023252t -Par.e
- ()00

0
a halt 020576. nowrar 036176t -Pdsin.

021302t here 0004a nm 035562 -Pdstst
177

7
7% 1 000004a num '330236 -oplist

1777o4a 021214t Po. 011".t -pr'
1777704 177746a pow 040122t.-Prmis
177

7
7Ta i 177750a pin 037252 -pr at.

177
7
70a i 177746a Pt'otu 03425? -PuLd.pl

177770a 1 00004a rl 026702t -outtto t
17
7
7701 0000,3a r2 026744t -puttte2

177766-6 000002 r3 041016t -ramin.
177770i 0000054 reset 0402261. -ramtst.
1

77
7704 i 020752 retrnl 025546. -send

1
1
770a I 021126 rettr2 037066 -teruin5

177766a O00M2a, r 036372 -temt. t.
1
77
741 020140 setflq 030354 -tilt

- B56 -

1 4,

........

Ap. -

~~ME

Rmm Air Deveifopme*i Cn*r
&WV ptam otd exemut4 J4e #A# dvtysnt, 404
,&e.ected a=qo!Attton pkogkms6u r4ioCus
cowunwat.iom aed'!nteWgnew Win r wt" t_
u.itd £N9Aneeting 4appoJt wthbt amuo *ehgt 4WI~
4A pptovided to ESP R'wg*~w 0 .01 1 (M6 4a4,6~t
eeenM. The pJUmi4ML te h A"ZL4Loeg M£#* S

wmma&Wom, eg tt o44&r- gto 4#d '60

c.*ecan oww~ hand,Aap~ bje4
W4M nd twop94.it ~Udti- skito sgu ip" R,

.-.
I

_Ile

1P~

-DA

FILM

