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ABSTRACT

A one-dimensional version of a theory of composite materials modeled
as intevpenetrating solid continua ic applied in the analysis of acceleration
waves ir compusites corntaining two identifiable constituents. As expected,
two distinct acceleration waves always propagate except when one of the con-
stituents consists of a chopped fiber, The influence of viscous type damping
is included in only the volumetric interaction betwecen the constituents in
portions of the treatment, Bguations are derived both for the propagatien
velocities and the varying amplitudes of the disturbance as a function of
the state of the material immediately ahead of the wavefront. These rather
general results are specialized to the case of a homogeneous steady-state
ahead of the fast wave, The various types of behavior possinle and the
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1. }ntroduction

i
i Recently, a continuum theory of finitely deformable, heat conducting
z composite materials was developed by medeling W identifiable constituents
j ac interpenctrating solig continual. In deriving the general system of
nonlinear eguations governing the behavior, the motion of a point of the

combined continuum was permitted to be finite while the relative wmotion of

the individual constituents was constrained to be infinitesimal in order

that the solid composite not rupture, The trestriction imponsed in Ref.1l which

demands that the relative motion of the constituents be infinitcrimal is

. - P . . 2-8
; one of the features that distinguishes this theory from other work on

composites. Another important feature distinguishing the description in

2-8
Ref,1 from that of thes other work @ is that ro enexrgy of interaction be~
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In this parer we spccialize the theory developed in Ref.l and consider
the one-dimensional moticon of a two constituent composite material whose
identifiable constituents are elastic, as is the interaction between the

constituents with the exception of the volumetric part. We examine the

- 1 e =

behavior of one-dimensional acceleration waves in such media on the assump-

tion that thermodynamic influences may ke ignored, In particular we seek
to determine how the behavior of such waves is influenced by (i) the mechan-—
; ical properties of the mecan (center of mass) behavior of the combined com-
posite, (ii) the mechanical properties associated with the relative motion

] of the individual constituents, (iii) the coupling between these two motions,

(iv) the relative mass densities of the individual components of the composite,
and, finally, (v) the dynamical conditions prevailing ahcad ot the wavefront;
and in certain interesting simplified special cases hy (vi) the mechanical

properties of the individual constituents of the composite and (vii) the
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coupling offects arising from the volumectric interaction between the elements
of the composite,
Section 2 of this paper is devoted (o a brief review of the e¢quations

which govern the one-dimensional motion of two constituent composites,

After recording the global forms of the agquations which gevern the balance
of lincar momentum, we state the constitutive equations which govern the
one-dimensional motions of clastic composites which are made up of two
identifiable clastic media, Secticns 3 and 4 are devoted to the study of
the propagaticn of acceleration waves. In Section 3 we show that the
balance laws and constitutive equations set forth in Section 2 imply the
existence, in general, of two distinct types of acceleration waves, the
fast one of which is associated with the mean elasticity of the combined
composite and the slow one with the elasticity associated with the relative
motion 2f the individual constituents. When the effects of coupling
between the center of mass motion of the combined composite and the rela-
tive motion of the constituents is small, one wave propagates with a velocity
which is close to that of the ordinary elagtic wave speed of the combined
composite while the speed of propagation of the second wave is close to
that of the wave of the relative motion of the constituents. The behavior
of waves in a number of highly restrictive special types of composite is
examined in Scction 4. It is shown, in particular, that when one of the
components is a chopped fiber, only one acceleration wave may exist in the
composite and when the interaction between the constituents is purely
volumetric, the two acccleration waves propagdate with the regpective speeds
of those in the individual constituents.

The manner in which the amplitudes of acceleration waves vary as they

traverse the composite is examined in Scctions 5 and 6. A standard analysis
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is employced in Section 5 to show that the amplitude of an acceleration wave
satisfics an cquation of Bernoulli tvpe. The varicus types of behavior
possible in a number of situations, including the possibility of shock
formation, are discussed in Section 6. 1In the general case where two waves
may exist in the material the behavior of both the “fast" and “"slow" waves
is discussed, It is noted that while the medium ahcad of the fast wave may
be in a stcady state before the arrival of the wave, this condition will
be unlikely to prevail ahead of the “slow" wave because of the motion
induced ahcad of this wave by the passage of the precursor. The propaga-
tion of a "fast" wave in a composite which is initially at rest in an
arbitrary permissiple state of deformation is examined in detail and it is
shown that the behavior of the amplitude of such a wave is the same as that
of an acceleration wave propagating in a single phase elastic material which
is in a state of nonhomogeneous defoirmation ahead of the wave, A similar
situation prevails when the center of mass deformation is homogeneous but
the deformation fields of the two continua which make up the composite
are not, If the material ahead of the wave is in its natural stress-free
state then it is found that, as Far as "fast" waves dre concerned, the
material behaves in the same way as would a single phase thermoelastic
medium.

The behavior of the amplitudes of acceleration waves in the highly
spacial cases treated in Scction 4,as well as the higber order discontin-
uities induced by some acceleration waves,is also examined in Section 6,

Thus, when the composite is such that the interaction betwcen the consti-

b

tuents is purcly volumetric ard depends only on the relative displacement
of the constituents, the composite bchaves, as far as acceleration waves

arc concerned, as an elastic material composed solely of one of the

b - e il 3 e et il ﬁ“_._du
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component. continua, In this particuilar situation, the accecleration of
only one of thc components suffers a discontinuity at either of the
waves which may exist and the acceleration of thoe points of the second
continuum arc continuous along with the first order time derivative, bhut

the second order time derivative of the acceleration of the second con-

tinuum suffers a jump discontinuity at the wavefront. Finally, we examine

the behavior of an acceleration wave propagating in a composite one of

whose component continua is made up of chopped fibers. Only one accel-
eration wave may exist in such a material and the acceleration of the

chopped fiber continuum is continuous at the wavefront, The order of

—n

the discontinuity in the motion of the chopped fiber continuum depends

on the nature of the composite and the conditions prevailing ahead of

the wave. In general, the first derivative of the acceleration of the

chopped fiber continuum suffers a jump discontinuity across the wave-
front. On the other hand, if the composite is centrosymmetric and is in

a state of eguilibrium ahead of the wave then the first derivative of

e — L

the accelecration of the chopped fiber continuum is continuous everywhere

and for all time while the second derivative suffers a jump discontinuity

at the acceleration wave,

2, Basic Equations for One-Dimensional Motionsg

-

We are interested here in studying the motion in one dimension of

a composite consisting of two interpenetrating eolid continua, Initially,

the two continua occupy the same region of space and hence the location

T W B e 0 ittt ¢ TN T e e i 1l e <

of the identifiable components of the composite may be specified by a

-

] b - single reference coordinate X, It should be noted that X specifies the

! position of a point of each of the interpenetrating continua at some




fixed time t=0, say. The subsegquent motion of the compogite is described

hy specifying two functions

1 2 2)
y( )=y(D(X,th y( )=y(’(x,t), (2.1)

which give the positions at time t of the peints of the two interpenetrating
continua which were simultaneously located at the point X at time t=0,

We denote the mass density of the ith constituent in the reference con-

figuration by oél) and in the current configuration by p(l). The center

of mass, at time t, of the particles of the continua which simultaneocusly

occuplied the point X at time t=0,is given by

(1)_(1) 12) _(2)
- ey Tty 4p Ty T X t)
y=y(X,t) = p’(l) +p(2) (2.2)

Clearly, Egs. (2.1) may be written in the form

1 2 2
L e L N € e (2.3)

(i . .
where w‘l)(x,t) ige the displacement of the point X of the jith continuum
relative to the center of mass of the points originally at X at time t=0.

As in Ref,1, we place no restriction on the magnitude of y, but the rela-
(1) (2)
vr

5 are taken to be infinitesimal. The deforma-

tive displacen.ats w

tion gradients at the peint X are

F=F(X,t) =3,y X,t), F(l) =F(l) (X, t) = axy(l) (X, t) =F+F(l) (2.4)
where
FY oy v x 0 . (2.5)

X

In (2.4) F is the dcformation gradient of the center of mass, FY ois the

deformation gradient of the point of the ith constituent which was located

at the point X at t=0 and F(l) is the relative deformation gradient of
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thig point., Since w( )(X,t) is an infinitesimal displacement field,

(i) : ! .
IF I << IFI and, since mass is conserved separately for each constituent,

we have
pc(,i)=p(i) (F+F(i))ﬁvp(i)F, (2.6)
so that we may write
p=pm+n(2), pF=p, , (2.7)

where o is the total reference mass density of the composite.
Since y(X,t) is the position at timec t of the center of mass of the
points of the constitucnt continua which were at X at t=0, it follows

from (2.2), (2.3), (2.6) and (2.7) that

P ew® oo, (2.8)

{1

2y 9 . . :
where r==pO /pé ' is assumed to be constant . At this point it should

1 2 -
be noted that pé ) and pé ) do not represent the actual mass densities

of each of the constituents in the composite, but only represent those
quantities in each of the interpenetrating coantimua, which occupy the
same region ot spacec and, respectively, represent each const

model. Suppose that at time t=0, the ith constituent occupies a fraciion

Xi of the volume of the constituent so that pél)==KiBél),where 5;1) is

the mass density which a body composed solely of the ith constituent

would have. It follows from (2,7) that

=) ()
—lloo +X200

-(1) (2 .
while r==Rxl/X2, where Rﬁ=p; )/pé ) represents the constant ratio of the

p ,kl+X2=l, (2.9)

O

actual mass densities of the consgtituents,

e

e b,

oot 20 el bk b 1 L k.

k.
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The one-dimensional wersion of the integral forms of the cquations E

of balance of the composite follows from Egs, (6.1) and (6.2) of Ref.l in i
i
the form
X
d §
T I P YK = K(XB’t) ~ K(XQ,,'C) s (2.10)
X
X
B XE
d o A1) \ .
It PrXW AX = .B(XB,t) -'B(X(Y’t) + | FdX, (2.11)
X X
o o

where XQ, X, are two arbitrary points in the reference configuration of

B

the composite and

k= 2 (2.12)
S=rP i@ (2.13)
F=(l+r) P2, (2.14)

In (2.12) - (2.14) K,05 represent the total stress and the relative stress

(1) {2)

for the combined continuum, respectively, T and T are the stresses

for each of the interpenetrating continua, while LFlz is the force
exerted by continuum 2 on continuum 1., 1In Egs. (2.19), (2,11) and in what

difforentiation: G=2dG(¥ t)/a4.

tollows a superposed dot denctes w
In addition to the foregoing we have the relevant congtitutive

equationslo, which we take in the form

(2.15)

~
~

and we assume that the functions 'i((.,.,.), S,.,0), F.,.,.) angd &(.,,,.;.)
2)

are C(” functions of their arguments. For future reference, we note that

it has been shown in Ref.l that Ii(, D and ¥ are related to the stored
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energy density Z==§(F,F(l),w(l))by the formulae
a ~ 1
k=p S, r G -3=POBF(‘1)Z(F:F( Lty
§=-p o (i@ rP oY) (2.16)
o'W

S

For a positive rate of entropy production ﬁ(.,.,.;h
(1)

’

1
( )) must be an odd

function of W i.e.,

~

A . . (1
L T S I (2.17)

and the condition (2.17) implies that @(—) hag the representation

2. (L), (1 .
F=a0.,., . 5w he® (2.18)
[ . . (1) . . L1
where g is an even functicn of W which must be strictly negative .

Undexr certain circumstances it turns out to be convenient for internretive

purpcses to take the stored energy T in the equivalent form 2==§(§%l),

—(2 9
F(“), w‘l)), then it follews from Egs. (2.4}, (2.8), (2,12), (2.13) and

(2.16) that

=P aR(LZ, ¢2=poa§(2)§. (2.19)

It is clear that the stored energy density may be written in the form

_, =(1)=(1) =(1) _(2)=(2) =(2)
b Z=MB, T (F 4B e (E)

+ Ak 5(12)(5(1)’5(2;;w\1)

A2 ), (2.20)

where f(i)(F(i)) iz the energy density which the body would have at the
point X if it were composed solely of the ith constituent, The third
term on the right-hand side of (2.20) may be called the interaction energy
density of the constituent continua and it is the presence of thig term

which causes coupling between the deformation fields of the constituent

R |




continua which make up the composite, This term is frequently neglected
in the study of composites6 but has been taken into account in the recent
work of McNiven and Mengill in their study of two-phase composites with
lincar response,

Egquations (2.19) and (2.20) togcther imply that

_ . ={12) . It
Ty F AT P AAEEIZT, i=1,2, 2.21)
where
Ti:ﬁc()l)aE (i)f(l)(ﬁ(l)), i=1,2, (2.22)

are the stresses which would arise at the point X ia a single phase

medium composed sclely of the ith continuum.

3, Propagation of Acceleration Waves

In one dimension, the motion of a nonmaterial surface of discon-

tinuity with respect to the reference coordinates is given by

7= 7(t), (3.1)
where Z({t) decnotes the position of the surface in the reference configu-
ration at time t. The intrinsgic velocity U of the surface of discontin-

uity is given by

dz (t)

U = =g¢

>0, (3.2)

and this gunantity is a measure of thc speced of propagation of the dig-~
continuity surface with respect to the reference coordinates of material
points,

We use the standard notation to dencte the jump in the magnitude

cf a quantity across the propagating surface of discontinuity; thus, if

P D




i e S —— A i " | e

-

SRPEEN B o o e S

e e et i

S rrslieln . -

e mpp—

10.

p{X,t) is a quantity which suffers a jump discontimuity at the su.face
Z=%(t) but is a continuous function of (X,t) jointly elsecwhere, we
define the jump in ¢ at time t across the propagating surface of discon-

tinuity to be

9] = I9p) (t) =@ - (3.3)
where
—+ .
¢ = lim _, X, t) . (3.4)
X7 (t)

Since U(t) > 0, ¢~ and q;+, respectively, denote the limiting values of ¢

immediately bchind and just in front of the propagating surface. Of

course [¢] must also cobey the kinematical condition of compatibilitylz,

adz ~q,\l= Erpl+U'f_P;xcp._lv. (3.5)
Furthermore, we note the formula
+ +
[oyl = (¥l + ¢ o] + £co] 1yl . (3.6)

A propagating nommaterial surface of discontinuity is called an

acceleration wave if y(X,t) and w\l) (X,t) or, equivalently, y(l) (X, t)

(2) , W(l)

and v X operties that while v(.,.},

(1)

(), ¥,

=
~

(1) (2)

w '{.,.), P(.,,.) and F' "' (.,.) or, equivalently, v T (.,.), ¥ (.,.),
i,(l)(..,_), ?(2) {(oy.), —1-?‘-(1) (.,.) and "F-(z) (.,.) are continuous everywhere,

the second and higher order partial derivatives of the fieclds y(.,.)

1 1 2
(1) y() (2)

and w ' (.,.) or, equivalently, (.,.) and y ' (.,.) suffer jump dis-

continuitics across the propagating surface Z=2Z(t), but arc continuous
functions of X and t everywhecre else, Thus, at an accelecration wave, we
have

(1) (1) (L

191 = [iv ) = [F] = [F .].".[.i’ lgp(

2)1___“['--F(l)']“= [-F-(Z)

~

.]..=,.[.F(2)
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The integral forms (2.10), (2.11) of the cguations of wotion imply
that for all X # Z(t) we have
3K=0.Y 5 (3.8)

{1
Bx3+3=rpow(),

while acro~s the surface of discontinuity we nave

IK] 40 UL#1 =0,

(3.9)

L8] +rpDU’£v'v(l)l=0=

Tt follows from (2,15), (3.7) and the assumed continuity of the responsec
functions that Egs. (3.9) arsc satisfied identically at an acceleration

wave,

Waen the jumpc across the wavefront in Eqs. (3.8) are evaluated we

have

'[“BXK]_'= po.gy:!-’

(3.10)
o {1)
1 = .
BB = w1
It follows from (2.16) that
- L (1)
dyK= alaxF tad F 7 +agF s
(3.11)

_ (1) (1)
axﬁ- OIZBXF + BzaxF + 53F ,

where

-~ 2n
o) = BFK(F,F(l),w(l) =p s w,r Y vy

= AE) FAE A, (e H 28, 43,00,

(1), e, (1) (L)
).._panaF(l)b(E,F Vv )

a, = aF(l)'f((F,F(l),w”;) =280, 7

= 3yFy = TAE, 4 MA ey, + (1-na,-ra ],

1
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_ S (D) A1) Q) . 1 a
ay=3,mEEEF D W) scaFm e WM g aa 1yEe,rt WD)

= Mhalayztasg),
- 4 (1) (W 2 ¢ (1 (D
By= BF(]_).B(F,F ¥ ) =p Bp(T(E,F T, w ) (3.12)
2 2
= )\lEl+)\2r E,+Mh, (@), - 2ra12+1 a22) ’
_ S (1) (1) o (1) (1) N 1) 1)
By = 3, (LI (EF 7w ™) =-3 ()F(F,F ' ,w )=pan(1)(-w(1,i<p,F W)
= )‘1)‘2(312“ ra23)
with
B'I'i
F, = —=—, nosumon i, (3.13)
i Fd)
and
2=(12) .
g = '—E’(lz)-:'-{‘;_ (F(I)SF(z)”‘,(l)) ’ i,3=1,2, (3.14)
1 F Mot

which appear in the last line of cach eguation in (3.12) are in terms
of the aforcmentioned fully equivalent alternate rcpresentation, Sirce
the coefficients in (2,12) are continuous functions for all X and t, it

follows from (3.11) with the aid of (3.7) that

+ + (1)
{ =
Dokl = oy I F] vy T F 0 s
(3.5}
_+ + (1)
[Pl =op [y FL + By 1P 1
: e . (1) (1) . . :
If we put =%, F, w and F succegsively in (3.5), we find that
.. . 2,
as= [yl ~-UlF) =V (3%,
.. (1 . 2 ]
O R IR R I C S L (3.16)

We call a(t) = [¥] the mean amplitude of the acceleration wave and say that

the wave is compressive if a > 0, expansive if a < Q, Furthermore, from
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(2,3), (2.8) and (3,16) we note that

l=a+b, [¥ “'1=a-rb (3.17)

are the amplitudes of tlie waves experienced by the two identifiable

continua which make up the composite,

The substitution of (3,15) and (3.16) into (3,10) results in the

pair of coupled eguations

+

2+ -1+ 2
(pOU -al)a—azb—o, - a2a-r(pOU

—r—lB;)b=0, (3.18)

which admit a nontrivial solution in which a;fo, b7# 0 provided U2 is a

root of the equation

4 2 2,2 2.2 . -
U-—&1+CyU +(%F2—B)—o, (3.19)
where
o[-+- 8+
2 1 1 ~o+ 2 2 1
€] === R, G =T oo Gpad
o o o o
(3.20)
1 + 2 1l + 2
B = 5 (az) = *5—'(8 ) = 5 (BF(l)K ),
p.xr p.r r
[o] o ©

and we assumc that Cl > 02. The roots ot (3.19) are

2
v o=

D=

{(cf+c§) i/(ci—c,j)2+4s} (3.21)

and, since it is clear from (3,20), that B > 0, both of the roots (3.21)

will be real. Furthermore,if we assume that

cic2 >8 , (3.22)

[

. . 13
then (3,19) implies the existence of two types of acceleration waves

whose speeds of propagation UF’ US are given by

o
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z 1 2 2 2 22

U, =3 {(c1+c2) +ﬂcl-c2) +483, (3.23)
and

2 1 2 2 [ 2 22

Uy =3 {eey+ey) - /el -cn” +4p3, (3.24)

respectively. Since Cl > Cz,it follows at once from (3.22) - (3,24) that

at any point X and time t

P
UF C1 and USSCZ’ (3.,25)

with the equalities holding when B=0. The term C1 is the speed one would

calculate from the initial slope of the K-F curve, ¢., and thus (3.23)

l)
suggests that the "fast" wave is predominantly associated with the mean

LRI,

b I P -~ Al
elasciCicy Or

the composite. Tae fact that UF may cuceed C1 iz a direct
consequence of the nonlinear coupling efifects which arise when B does
not vanish, On the other hand, the "slow" wave always propagates into
a deforming composite ‘behind the "fast" wave and, since B is the slope
of the f-r curve, the "slow" wave is associated with the relative
motion of the constituents,

e s e, G160

1T nas peen polnted oult Py NULidato and wWalsu 4, i a sSvwewnat
different context, that the inequality (3.22) is capable of misrepresecnta-
tion. 1In order that the physical significance of the inequality may be

more fully appreciated we note from Egs. (2,12), (2.13), (2.16), (2.i9) -

(2.22) and (3.20) that

A
2 r 2 1 2 1
R v W prr i —~ay {8+ 28,421, (3.26)
(L+x)p
o]
and
A
2 1.2 r 2 2
' —— - 2
I T s e T —{D {all 2ra ,+r azz}’ (3.27)
(l+r)p0

e e o s E sy E a4 i s et e
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where
vi-al_ s Vim e e 3o (2T 3,28
1 -y FDT BT oy 5@ Ty (3.28)
pO pO

are the intrinsic velocities which acceleratiorn waves would have in
bodies composed solely of either of the interpenetrating continus which
make up the composite.

It follows from (3.18) and (3.20) that

b=Ha, {3.29)
where
2 2
2 UG
H = ) > 3 (3-30)
(U -C?)r

and it is to be noted that in the "fast" wave, (for which U=0p),
H=HF and sgn HF= sgn Q‘; while in the case of the "slow" wvave, (for

+
and sgn H_=-sgnd.. Equations (3.17) and (3.29)

which U=US), H=H 5 )

S
togethey imply that

Lv(l)l=a(l+H) s
19(2)1 =a(l-xH), (3.31)
so that we have
(1 w{(2)
« >0~ |I¥ )1F| > 151l
AR AN (3.32)
while
.. (2
ay <o = Pl < (5,
gl > [Pl (3.33)
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4, Acceleration Waves in Some Particular Media

We now examine the propagation properties of acceleration waves in
a number of special situations.
First, let us consider the situation which arises when the expres-

sion (2.29) reduces to

_, =)= Z () =(2)=(2) =Z(2), . . =(12), (1)
pOZ-—klpo z (F )-+x2po Z F ") fllkpoE (w ), (4.1)

and we note that any stresses T(l) in each of the constituents of such a

composite depend only on the state of deformation of that constituent and
are independent of the state of deformation of the other constituent. 2Bny
coupling that may take place between the motion of the constituents

occurs because of the existence of the relative body force F. It follows

from (3.26) and (3,27) that in a composite of this type

2 _ r 2 1 2 2 _ 1 2 r 2
QT T2 QT T V2 (4.2)
while
r 2 2 12
B={1+rV1'V2’I - (4.3)

When (4.2) and (4.3) are used in (3.23) and (3,.24), it is found that two
waves with intrinsic velocities UF==Vl and US==V2, respectively, may

propagate. Furthermore, it is easily verified that in these waves

N[y(z’lfo, ' =o. (4.4)

This is precisely the situation which will always arige in theories of
the type developed by Bedford and Stern6’7.

Finally, let us turn our attention to the case of a fiber reinforced
composite in which the fiber is not continuous (i.e., chopped fiber),
Suppose that continuum 2 represents the chopped fiber continuum. For a

composite of this natuxe T2==0 and consequently Eg.(2.19)2 implies that
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FexE® ), (4.5)

which, with (2,12) and (2.19)1 yields

(1 1
2

K=p 3z (L)L(F ). (4.6)

Under this restrictive circumstance Eq, (4.6), with (2,12), (2.13) and

(3.20), leads to the relations

2 2 =(1) (1)
Cl=1xC, =3 1)K(F W),
1 22
B == (a~(1)1<> €5 (4.7)
px
50 that Eq. (3,19) has only one root
2_.2,.2_1l+xr 2_
UT=Cl+Cy = 3 1 (1+r)c (4.8)

Thus, in this restrictive case only one wave propagates and, since H=1/r

2
for this wave, from (3,31) [y( )]

~

=0, so that the acceleration of the

chopped fiber is continucus at the wavefront.

5. Variation of the Amplitudes of Acceleration Waves

In this scction we derive the egquations which govern the evolu-
tionary behavior of the amplitudes of acceleration waves as they propa-
gate in two-constituent composite materials modeled as interpenetrating
solid continua. We shall suppose that at each instant both "fast" and
"slow" acceleration waves may exisgt in the body. For the moment there
is no nced for us to distinguish between the two types of acceleration
waves nor do we need to prescribe in detail the conditions which prevail

ahead of the waves, =
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The jumps in the material time derivatives of Egs. (3.8) across the

acceleration wave yield 1
X1 .

I3,X1 =0 Y1,

b+ 1 =, L] 6.

On setting o=V, F, W and i:‘(l), successively, in (3.5) we obtain the

relations 3
da 4 e 2 .
2 iy (mMa + n['y"]v—u .[.axl‘l’
db _ 4 ey 20 2 (3)
- UL A LSS A Y (5.2

the substitution of which in (5.1) yields

da 4a 1 . 2 .
2 2= = =% (fnWa+ — [0, K] -U [3,F], i
us uc Po ~ A~ ~ A e :
(5.3) !
db _ d 1l . - 2 - (1) |
2 3% = aE (0P ¢ o= () + (B 0T E
i
which represent a set of coupled differential eguations for a(t) and b(t) ]

which hold for each admissible propagating acceleration wave.
In order to further simplify Eqs, (5.3) we ne=sd to evaluate the
3 ¥, 13,9 and [(¥]. Differentiating Egs. (3.11) with respect

to time and cvaluating the jumps across the wavefront, with the aid of

(3.6), (3.12) and (3.16), we obtain i

- E i
. + s +,. s (1) 1 1 _+ o+ !
X] = F] + F + — a4+~ - b !
F[‘Bxl algaxl aa{ax 1 5 a+ o (Ez af3)
1 .+ 2 _ 4+ + .2 :
- =5 {o,2 + 20 ab +, b (5.4) i
U < !
and
+

;
i
H
1
i
i
i
i
H
i
El

. . g ,
B =0y a1 +E3 00 F M) v f a4 g - ge

1 + 2 + + 2
"3 {og2” + 20,58 + 3, 0%, (5.5)

b e e it e g At - anenl e m
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where
51 ="{°f11(axF - %)*“12(BXF(1) - F'(ﬁl_)—> +0{13(?(1) - E'(ui)“» ’
(5.6)
gy ='{C'lz(axF B §>+022(BXF(1) - i‘;l))’”“zs(F(l) - y_?__)}
and
V2 ='{°’22(3xF h §>+B22(BXF(1) - f;l))+823<F(l) 7 w—(ull>} (5.7
with
oy, = B;lk(F,F(l) ,w(l)) = poB;%(F,F(l) ,w(l))
=M E) +hE, # gk, (ay ) #3254 38055 +agys)
2% aFBF(l)R‘F:F(l) W = 903’52'53(1)3(5',1‘“ W,
=hE mmE A, (e + @-Dayp+ (Lo 2602y, mray,,)
013=3Fawk‘F:F(1)’“(l)’ } poa;aw(l)i‘(F,F(l),w(l))
=hyhp a3+ 28 53 v ass3)
ay, = Bi(l)i(F,F(l),w(l)) = 003:.(1) sz, w ) (5.8)
=nEp * rz"z%z tMhplag H(1-20)ay ) —x(Z T3yt rzazzz) ’
0ys =301 EEF N w20 3 3 wade,r e
=Mhy eyt (1=TIay5-T2)049)
Byo= af, (1)3(F,F(1),w(1)) = poa;(l)'f(F,F(l),w(l))
= )"lﬁl - r3k2E2 + 7\1)\2(&111 - Bz-al:L2 + 3::2a122 - r3a222) y
Pog= BF(l)Bw(l)b(F,F(l),w(l)) = pOB; (1)Bw(1)§(F,F(1),w(l))
=Ahpfay 3= 2ra st rzazzs) ’
while azT'
’ﬁi = -—:-('jz" » (no sum on i} , (5.9)

oF
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(12)
- a z =(1) =(2) (1) Coa
aijk aF(l)aF<j) = (F ,F % ), i j,k=1,2 (5.10)
aai.
aij3 = _L(l) s (5,11)
ow

which appear in the last line of each equation in (5.8) are in terms
of the fully eguivalent alternate representation. It follows from
Egs. (2.15) ., (2.16)3 and (2.18) together with the definitions in (3.12)
that we have

c (1) e o L (1) sy (D) 5
—(a3-w OpIF = (By =W "2 (HAF T+ (B (1)F

(l)a (1)0)"«7( )+ (g+w( )B- (1)23)65(1) s (5.12)

the jump in which, with the aid of (3.16), yields

+ (1) ~+ a + (13 ~+ b A+ (1) ~t
Bl =, - %7 73,6) g+ By-% "2 (1)9) g+ (9 +w '3 (1)9 /b.

(5.13)
When the expressions (5,4), (5.5) and (5.13) are substituted in

Egs. (5.3) we arrive at the coupled differential equations

+

- g
Q 1 1 + + 2
2 EE {dt (2rU) +~——p 5 a+-——p 5 (§2 ay)b - 3 {all
o o p U
+ + .2 22 . w2 - (1)
+ 20 ,8b+a, b 1+ (C, -U") [3,F] + o IogFr 71, (5.14)

and

ab _ fa 1L o Dy mah)
2 3t {dt (nU) + I‘FJOU (\’72 3@(1)9 ) + (g +w 3‘-”(1)9 1t b

o (D) + 2,
+ rp P—— {52 oy - 39 - 3 {B b +2a22ab+a12a H
. pU
22 ke vt pp D) 5.15)
rpo ~aX ~ 2 ~ X ~. ( *
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Of course, b ané a are related through Eq. (3.22) and the intrinsic
velocity U is a root of Eq. (3.19)., These facts enable us to combine

(3.29) with Egs. (5.14) and (5.15) in order tec obtain a single first order
differential equation which governs the amplitude a(t) of each admissible
acceleration wave, BAfter some tedious algebra, we find that the amplitude
of an admissible type of acceleration wave in a two-component composite

medium satisfies the equation

da 2
:iT:..}.ua_ga =0_’ (5.16)

where

.2 o 2, 4 2 a8 + + .2+
2(1+ryH )u () =-{ (1 +rH") T (fnU) +2rH" (0nH) + (§ + 2HE, +H'V,) /p U

N (1 ~ A 2 A . A
- Hi' )(BF9+-FHBF(1)9+)/pOU-‘rH (g+5+w(1)a&(1)g+)} (5.17)
-E
L) = T, (5.18)
2p U

v

and

2.~ . 2 3 ~ 3 ~
2(L+rH)E= {a11+3lia12+31{ Upp +H ool = (L+E)AE, + (1= rH) "\ F,

+3(1+H)2(l—rH)a +3(l+H)(l—rH)2al

22

3
+ klxz[(u H)"a, 112

11
o oema ) (5.19)

is the effective second order elastic modulus of the composite for the
particular wave under consideration, and where the expression after the
second equals sign is in terms of the fully eguivalent alternate repre-

sentation.

Equation {5,16) is a differential equation of Bernoulli type. As
one might expect. it is similar to the equation recently derived by

. 16 . . .
Nunziato and Walsh in their study of the propagation of acceleration

"

b



waves in granular media. However, a cursory examinaticn of the coeffi-

e = = cakan o ————— o
o]
[ ]

cients p (t) and [(t) shows that the similarity is somewhat superficial,
The coefficients p(t) and {(t) are determined by the particular typc of

wave under study, the mechanical properties of the composite and by the

conditions prevailing ahead of the wave. We shall study the properties

of the solutions of Eq. (5.16) in a number of particular gituations in

the following section,

6, The Behavior of Some Particular Acceleration Waves

In this secticn we study the evolutionaxy bchavior of the ampli-

tudes of some particular acceleration waves. In general, at a given

e s ———

instant of time, two acceleration waves will propagate in the body.

' Suppose that the "fast" wave is located at the poin X==ZF(t) while the

“"slow" wave is at X==Zs(t) where ZF(t) > Zs(t). In order to simplify

matters we shall assume that the material ahead of the “fast" wave is in

a steady state of equilibrium, Even though the deformeotion #ield behind

# last acceleration wave may be such that Us(t) > UF(t). the "slow" wave
. 20 . . 16

can never pass through the “fast" wave (cf, Nunziato and Waish ),

Thus, at all points X :» zw(t) the ficlds y(X) and w(l)(x), or alternatively,

[ y(l) (X) and y(z) (X) do not depend on t, i.e., i
y:y(x), w(l) ww(l) (X)’ ¥ > Zw(t) 5
2 2
y(l)_y(l)(x)’ v =Jy( )(x), X > 7 (1) (6.1)

Since the fields (6.1) must satisfy the cquations of equilibrium, at all ;

A D R e ——— ¢ P 6

points X > ZF(t) we have

1) . (1)

(
\ 0 RF + ) BT aF =0,

(1 (1) _ 5

dzaxF + BZBXF + B3F =-3, (6.2)
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From (5.16) we see that the eguation satisfied by the amplitude aF(t)
of a "fast" wave propagating into a region which is in a steady state of
equilibrium is

d o tp (E) (t)aZ=0 6.3
3t 2pTho(B1ap (B3 =0, -3)
vhere, from (5.17), with (5.6), (5.7) and the fact that from (3.20) and

{3,23) now U(X) is independent of t, we have

2(l+rH;)p,o () =--(l+r]-l;')axU 1H U EXH +cpla r

(1) (1) (0)
+ QPZBXF + (PBF + rH.Fg , (6.,4)
with
0) . (0) 2 (0)
) = oy + 2" FHRo ") /0 Up
W80 10) L2a00 6 5
P, = (o ¥, + nFazz '+EFB22 )/pO P’ 6.5)
L (0) (0) (0,
Py = (o4 +2H x4 +H B23 /08g
_ 2 (0) )
HI" = (pOUF ) /o 2 ,

and go(t) is still given by (5.18). The superscript 0 occurring in g(o)

and on the right-hard sides of the expressions in (6.5) denote that these
quantities arc evaluated for the steady-statc deformation fields described
by (6.1) and, comseguently, these quantities arc functions of X only and
do not depend on t, Equation (6.3) has the samc form as that which
governs the evolutionary behavior of the amplitude of onc-dimensional
acceleration vaves in a single phase clastic material vhich is in a state
of nonhonsgeneous deformation ahead of the wave (see, c.g., Chcnlz,
Coleman, Grecnberg and Gurtinzl).

If the material ahead of the "fast" wave is at rest in its natural

stress—free gtate so that

hoc oo

-~
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v=x, w0, x> z,(t),

oxr

= = "
yl(X) yz(x) X, X> ZF(t), 6.
and it follows from (6.4) that
= il (0) 2, ,
p,o(t)—r%g /2(1+xip) =w , say, (6.8)
for such a wave so that aF(t) obeys the differential equation

da

2
——— = + d .
Fr SR S ©.9)
which admits the solution
lo
it =T 3 ©.100
-1l)e + 1
(am) >°
F
where
w p rU3H2
] o]
A o=l e =0 EL O (6.11)

o
° Ly 1+nmdDF

L N

(0) .
and a ) is the value of the mean amplitude of the acceleration wave at

time t=0, Eguation (6.10) indicates that thec behavior of a " fast"
acceleration wave propagating into a two-comprnent composite in its
natural state is the same as that of an accelcration wave propagating
into a homogeneously dcformed material with memory22 or a piezoelectric
semiconductor which is in a steady state ahead of the wavc2 .

The properties of the solution (f .10) are well documented (see,
e,g., Refs,12 and 23) and it is not our intention to study them in detail
here, The critical mcan amplitude for acceleration waves, Ko’ plays a

fundamental role in detexrmining whether the amplitude of an acceleration

R A DUy P TR
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wave will grow or decay as the wave traverses the matcrial, 1In particular,
the sign of KO plays a critical yole in determining whether the mean
amplitude will grow or decay. Since 9(0) > 0, by assumption, it follows
from (6.8) that w, > 0 so that sgn O‘o) = - sgn (E) and it is clear from
(5.8) and (5.19) that E may Qiffer in sign from either E, or E,. Notice

1 2
that (6.10) implies that

(1) 1f |ag(@] <), then a, (t) = 0 monotonically as t—w=,
(ii) If sgn (a (0)) =sgn)_ and laF(C) | > |xol, then a_(t) ~®
monotonically within a finite time

1 .
te =~ ;D: - 0 /apon}, (6.12)

and this is usually taken to indicate shock formation,
Next, let us consider an acceleration wave propagating into a com-
posite material in which F is independent of w( ) so that g(0) =0,

Equation (6.9) now reduces to

2
at T =0, ©.13)
po F
which admits the sclution
25 (0)
aF(t) = —. (6.14)
aF(O)E
1+ 3
.
g,_DOUF

If sgn(aF (0)§) <0, then the solution (6.14) becomes unbounded after a

time

———, (6.15)
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and, of course, this is precisely what happens in a perfectliy elastic
. . 24
single phase continuum (see, e,g., Green ).
If the material ahead of the fast wave is at rest such that the

center of mass y is in a state of homogeneous strain, we have
¥Y=AX, A=constant, X>Z,(t). (6.16)

Since F=), a constant, in this case it follows from Egs, (6.2) that at

(1)

all points X>-ZF(t) the relative displacement w (X) must satisfy the

nonlinear first-order differential equation

dw(l) .
(4B, = B32,) % C % (6,17)

and it is to be noted that both o, and the coefficients cccurring in (6.17)

1) (1)

. . (
are {for fixed =)}, functionc of dw ' /3¥ and w

1
It is to be

1) %y wity

expected thzt, cven if g+(0)==0, the solution of (6.17) for w
lead to a nonvanishing expression for po(t) when substituted into (6.4).
Thus, the coefficienc uo(t) will be a conseguence of the inhomogeneities

in the deformation fieids of the two continua which make up the composite,

+ . .
as well as the coefficient g (0). The solution of Egq. (6.3) in this

aF(O)exp{- I uo(s)dé}
o

aF(t) = . (6.18)

t s
1-—aF(0) J Co(s)exp{-j po(g)dg ds
(o] (o)

The properties of the solution have been discussed in detail by a number

case 1s

25 16
of authors (Bailey cnd Chen =, Nunziato and Walsh ) and we refer the
reader to these works for details,
The behavior of "s8low" waves is always more complicated than that

of "fast" wavecs since "slow" waves propagate into regions which are not

ey
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in equilibrium, Thus, in the case of the "slow" wave the coefficients
pw(t) and {(t) will contain derivatives with respect to both X and t.
The amplitude of the "slow" wave is given by an expression similar

to (6.18).

In Section 4 we examined the propagation of waves in a number of
special situations. Let us now congider the evolutionary behavior of
the amplitudes of these waves.

We saw in Section 4 that in the restrictive case when the internal
energy is given by (4,1) two waves may propagate with intrinsic veloci-

ties UF=V and US=V

1 respectively. The equations satisfied by the

2)
amplitudes .f these waves may be deduced from the results of Section 5,
but the properties of the waves in the special highly simplified cases
considered here become more transparent when it is noted that, with the

aid of (2.3), (2.8), (2.9), (2.12), (2.13), (2.21) and (2.22), Eqgs.(3.8)

may be transformed to

=(1),..(1)

S W RN
Oy Ty - ')“'T%Tﬁ' 3=5<§2)§(2) . (6.19)
z
It follows from (2.16)3 and (4.1) that
§=-p A3, WEH W™ 6.20)

~

A . (1 . .
and we further assume that 3==gw( ), vhere g is a negative constant. If

2
ve write [y V) =3 @y 2@

and [V , then an elementary calculation

leads to the growth equationsg

2

{i) . . s .
da 7 u(1)3(1) _ A a(1) =

ac ¢ 0, i=1,2, (6,21)
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where
1 { a )_~ (1) =), 2 z}
" "2(1) iat B (F ViagF ) /Y= g/h (14 1)
(6.22)
(i)_'v (1_) _ .
g —Ei/po i? Elnaf‘-(i)Tj_’ 1_112'
It follows from (6.19)2, that at the "fast" wave we have
Vzg
3 (2 3
13 y# /3t Ip = = 1 > 2 5(1)’ (6.23)
AP, (L+1) vi)

. . . . 2 .
so that *he third and higher order derivatives of y( )(X,t) suffer jump

discontinuities across the "fast" wave, Likewise at a "slow" wave

1 . . . . . . .
y( )(X,t) and its first and second partial derivatives will be continuous

for all X,t, but

Vg
3 _@
ooy e’y = 2 34 6.24)

~5 ={1) 2
Xl o 11»r) V V2)

on the other hand, in materials in which g=90, the right-hand sides of

the expressions (6,23), (6,.24) vanish and the fourth order time deriva-

(2) and y(1)

tives of y , respectively, suffer jumps across the wavefronts

which are given by the expressions

2 "
Vid, (1F
[a4y(2)/\t ~F = (2) E(l), (6.23a)
P (l+r)(V —V)
and
vza )§
4 (1), .4 2%, 2
'y ety = — 1:’ . vz)a‘ r, (6.242)
AP, (L4 r) (V- V]

The importance of the foregoing is that in a composite of the type

characterized by the restrictive expression (4.1) for the internal energy

PRI

J S U o

0 e 2l B o i ik P e i i




i

I PRSI S—. Y

e L B i h oL s RN b W -

i Al ST

29.

per unit mass, a “fast" wave, moving into a material which is initially
at rest in an equilibrium configuration, will induce a motion in both
constituents of the composite, WNotice from (6,22) that the evolutionary
behavior of a particular wave is influenced only by the properties of
one of the constituents and the state of this constituent ahead of the
wavefront. Thus we note that, in particular, the behavior of a "fast"
wave propagating into a composite which is at rest in a homogeneous state
before the arrival of the wavefront is qualitatively the same as that of
a wave propagating into an equilibrium configuration in a single phase
thermoelastic medium, On the other hand the second constituent of the
composite will be set in meotion through the coupling caused by ﬁ because

2
of the passage of the "fast" wave and conseguently p( )

will generally
be nonzero even when g=0,

The expressions (6.23), (6.24), (6.23a), (6,24a) are also interest-
ing in that, when the internal energy is given by (4.1), it is evident
that the higher order discontinuity induced in the motion of one com-
ponent of the composite because of a discontinuity in the acceleration
of the second component across the wavefront is the result of coupling
2ffects caused by the relative body force 3.

To complete our study we return to the case of a composite in which
onc of the components is a chopped fiber, The internal cnergy density is
now given by (4.5) and only one wave, across which jy(l)lgfo, l§(2)1:=0,
may propagate in the composite. When Egs. (2,3), (2.8), (2,12), (%,13)

and (3.8) arc combined, it follows that the motion of the.chopped fiber

(i,e,, component 2 of the composite) is given by the formula

p09(2)=—3, (6.25)

et et mu_m.m,m,..nnmd
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with

(1) (1)

~o 1 .
F =-poaw(1)Z(F ,w( ))-Fgw s (6.26)

and once again we assume that g is a positive constant. It follows from

(6.25) and (6.20) that

3 (2 3
'y ey - -

1 b l ~
= 3] = —5 fez)yF-gula, 6.27)
P =~ PST .
2 2
where a=1[3 y(l)/Bt ].
The cne-dimensional behavior of a centrosymmetric medium of the
+voe under study is characterized by an internirl energy density function

i(l)(g(l),w(l)) which is an even functicn of w(l), i,e.,

ED WDy 3FD, -, (6.28)

11
-

1)y 4
W

P— {
so that the relative bedy force F(F' )) is an odd function of w'

It follows that aE(l)ﬁ(E(l),O)F(l)=l = 0 so that if the material ahead

of the wave is in equilibrium in its natural stress-free state then

3 3
'y ® /o) = gaso r (6.29)

3 3
while if g=0, 3 y(z)/at is continuous for all X,t but

4.(2), 48 5
[E ARV 1=3 ¥/ _r. (6.30)

Finally, let us consider the behavior of the amplitude of an accel-
eration wave which is propagating into a composite in which one of the
components is a chopped fiber and which is in a steady natural stress-
free state before the arrival of the wave, It follows from Section 5

that the amplitude of the wavefront is goverred by Eqg. (5.16) with

-—

i g T2 2 o
b= 2arn & g = - =3 1+ 1/0)7 (0 E; +0,3,07) 6.31)
o

1 271117
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so that at anytime t the amplitude of the wave is given by

by
)

a(t) = Y ’ (6.32)

o _ gt
(a(O) l)" +1

. Thus, in a chopped fiker composite the behavior of

where lo =/

iy ]

the acceleration wave is qualitatively the same as that in a single

phase heat conducting elastic wmedium. Notice in particular that the
wave will be undamped if g = 0, in which case (6.32) reduccs to the

expression

ate) = —20Q (6.33)

1+7a(0)t

The influence of the chopped fiber on the behavior of the amplitude is

evident from the manner in which the parameters r, A, and g influence

2

the coefficients i and (.
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