ALTERATIONS IN FFA, GLUCOSE AND LACTATE METABOLISM IN SHOCK.
1. Alterations in FFA, glucose and lactate metabolism in shock.

2. Louisiana State University Medical Center
1542 Tulane Ave., New Orleans, LA 70112

3. Report No. 5

4. Title (and Subtitle)
Alterations in FFA, glucose and lactate metabolism in shock.

5. Author(s)
John J. Spitzer, M.D.

6. Type of Report & Period Covered
Final report, 9/1/75-4/3/80

7. Performing Organization Name and Address
Louisiana State University Medical Center
1542 Tulane Ave., New Orleans, LA 70112

8. Report Date
Oct. 27, 1980

9. Contract or Grant Number(s)
MO11-76-C-0132

10. Summary

11. Controlling Office Name and Address
ONR
Arlington, VA 22217

12. Number of Pages
6

13. Distribution Statement (of this Report)
This document has been approved for public release; distribution unlimited.

14. Monitoring Agency Name and Address
ONR
536 South Clark
Chicago, IL 60605

15. Security Classification (of this report)
Unclassified

16. Key Words
Shock, trauma, metabolism, heart, endotoxin, glucose, lactate, fatty acids

17. Distribution Statement (of the abstract entered in Block 20, if different from Report)
This document has been approved for public release; distribution unlimited.

18. Supplementary Notes
Information on report published in references cited.

19. Abstract
The major accomplishments in the course of the last 5 years have been to clarify the metabolic alterations that accompany endotoxin shock, primarily with regard to glucose turnover and gluconeogenesis from lactate and alanine. Also, the alterations in myocardial substrate utilization have been identified, and the significance of substrate preference characterized following endotoxin administration. Furthermore, a useful and physiologically sound isolated myocardial cell preparation has been developed which...
Report No. 5

Alterations in FFA glucose and lactate metabolism in shock.

John J. Spitzer, M.D.

Louisiana State University Medical Center
1542 Tulane Avenue, New Orleans, LA 70112

Final Report, 9/1/75-4/30/76

N0014-76-C-0132

Security Classification of this Report (When Data Entered)

Security Classification of this Page (When Data Entered)
enables us to further investigate the sub-cellular effects of both cardiac depressant factors and also cardiotonic agents. Although much has been accomplished, it is quite clear that many features of the exact sub-cellular defects caused by endotoxin administration, or any other form of shock, still remain to be learned.
Although a number of seemingly different studies have been performed under this contract during the last 5 years, the major theme of investigation was aimed at a better understanding of cellular and sub-cellular damage in the myocardium and other tissues during shock. The following is a summary of the progress in the various areas of investigation:

1.) The majority of the progress during the last 5 years has been in the area of the deleterious effects of shock on myocardial metabolism. The studies have been conducted on various levels of organization: on the cellular and sub-cellular levels, as well as on the level of the whole organism. The results revealed that in the course of shock (whether produced by the administration of endotoxin, or by excessive hemorrhage) a major alteration in substrate utilization by the myocardium is produced consisting of a decreased oxidation of fatty acids and an increased utilization of lactate. These changes can be reproduced not only under in vivo conditions, but also in vitro, by the addition of varying concentrations of E. Coli endotoxin. Although we have not been able to determine the exact molecular mechanism of this derangement as yet, we have been able to ascertain the fact that changes in substrate utilization are not due to either the altered transport of fatty acids or glucose following endotoxin administration.

Thus the translocation of these metabolites is unaffected by shock and, therefore, the cytosolic or mitochondrial locations are the two sites to be investigated next. In order to study the sub-cellular damage of myocardial metabolism, however, it is necessary to develop a single cell preparation in which this problem can be investigated relatively easily. Therefore, we turned our attention to the development of an isolated myocardial cell preparation, which would behave in a physiologic manner and, in which the effect of various cardiac depressant and cardiac stimulant agents could be investigated. Therefore, we have developed a myocardial cell preparation which is reproducible, gives us a good yield, is
viable over the necessary period of time, and is also tolerant to the presence of physiologic concentration of calcium ions. These cells are expected to serve as excellent tools in further studies. We consider the achievement of obtaining these useful myocytes a major progress in our studies and are now utilizing this cell preparation for investigation such noxious agents as hypoxia and ischemia, as well as such potentially useful compounds as PGBX.

2.) Participation of the changes in insulin secretion and inactivation as well as glucagon secretion in the metabolic response to injury. We and other investigators have ascertained that following trauma, injury, or during shock, the plasma concentration of glucagon is greatly elevated while that of insulin may not be altered or is slightly increased. Therefore, it was of interest to further investigate the effects of shock on the secretion of these hormones by the pancreas. In these studies we have found that endotoxin administration sensitizes the pancreas to the physiologic stimulus of insulin secretion, i.e. glucose. Thus, following glucose administration in the endotoxin treated animals, the pancreas responded with a greatly elevated insulin release. We also studied the inactivation of insulin under these conditions and found that both under in vivo and in vitro conditions, the rate of inactivation of insulin was not altered. Thus, the hyperinsulinemia following glucose administration in endotoxicosis is a phenomenon due to alteration of pancreatic β-cells to the physiologic signal, glucose.

3.) Changes in glucose turnover following endotoxin administration. Glucose turnover is increased initially and remains at, or above normal level for several hours following endotoxin administration. This finding indicates that gluconeogenesis is able to keep pace with the increased peripheral utilization of this metabolite and represents a remarkable adaptation by the organism to the
altered demands imposed by the pathologic insult. On the other hand, we have also observed, that preterminally the gluconeogenic ability of the organism fails and thus, glucose turnover decreases resulting in pathologically low glucose concentrations (15-20 mg/dl). Such low plasma glucose concentrations are not able to supply the central nervous system with the minimum requirements of this metabolite.

4.) Changes in the contribution of lactate and alanine to gluconeogenesis during shock. In the animal in shock, gluconeogenesis is primarily maintained from lactate, a metabolite which is released from the periphery in greater than normal quantities under these conditions. The major site of gluconeogenesis under these conditions is the liver. Alanine also contributes to this process but in a quantitatively lesser degree. We have found that the turnover of lactate was greatly elevated following endotoxin administration, which is not only of potential survival value as a supplier of gluconeogenic substrate, but also serves as an alternative oxidative substrate for the myocardium under these conditions (see Item No. 1 of this report). This is another example of physiologic adaptation to adverse conditions. As long as the adaptive mechanisms are operative, useful compensation takes place. Whenever the adaptive mechanisms fail, irreversible damage is inflicted. Thus, a better understanding of the above-discussed responses are important, if we hope to prevent shock and trauma to cause irreversible damage.

5.) Alterations in myocardial metabolism in diabetic animals during shock. A preliminary has also been undertaken to investigate the alterations of myocardial metabolism in diabetic animals. We have found both under in vivo conditions and also in vitro, in myocardial homogenates, that the heart of diabetic animals is not readily able to utilize lactate as a major metabolite for its metabolic needs. This may have practical implications, as the organism which is in shock
abounds in lactate, which under normal conditions is able to replace fatty acids as the major substrates for myocardial metabolism. This, however, is not the case in the diabetics and therefore, a major defect in myocardial function may arise from the inability of the heart to oxidize lactate.

In conclusion, the major accomplishments in the course of the last 5 years have been to clarify the metabolic alterations that accompany endotoxin shock, primarily with regard to glucose turnover and gluconeogenesis from lactate and alanine. Also, the alterations in myocardial substrate utilization have been identified, and the significance of substrate preference characterized following endotoxin administration. Furthermore, a useful and physiologically sound isolated myocardial cell preparation has been developed which enables us to further investigate the sub-cellular effects of both cardiac depressant factors and also cardiotonic agents. Although much has been accomplished, it is quite clear that many features of the exact sub-cellular defects caused by endotoxin administration, or any other form of shock, still remain to be learned.

Further details of our research accomplishments may be obtained through the perusal of the following list of publications that resulted from the last 5 years of ONR support:


17.) Fritschka, E., Ferguson, J.L., Spitzer, J.J., Total and regional cerebral blood flow during perfusion from the lateral ventricle to the cisterna magna in the conscious dog, Circ. Shock, 1, 333-342, 1980.


The following is an index of technical reports issued under this contract:

1.) Fatty Acid and Lactate Metabolism by Heart Homogenates from Alloxan-Diabetic dogs by M.S. Liu and J.J. Spitzer.

2.) Oxidation of Palmitate and Lactate by Beating Myocytes Isolated from Adult Dog Heart by M.S. Liu and J.J. Spitzer.

3.) Gluconeogenesis from Alanine in Endotoxin-Treated Dogs by R.E. Kuttner and J.J. Spitzer.

4.) Effect of Moderate Hemorrhagic Hypotension on Cerebral Metabolism During Ventriculocisternal Perfusion in the Conscious Dog by E. Fritschka, J.L. Ferguson and J.J. Spitzer.

5.) Lipid Metabolism in Endotoxic Shock by J.J. Spitzer.

6.) Increased Fatty Acid Turnover in CSF During Hypotension in Dogs by E. Fritschka, J.L. Ferguson, and J.J. Spitzer.