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he sectionalized Fourier Transform of a bandlimited signal (defined as a Fourier Transform
which is computed over incremented temporal sections of the function) is equivalent to base-
banding, filtering, and sampling the signal in the time domain. Spectral windowing is employed,
through appropriately summing a sequence of the Fourier Transform bins, to control the passband
and leakage characteristics of the resulting filter. This in turn controls the distortion of the signal

. induced as a result of the transform process. The use of the sectionalized Fourier Transform is
exploited to conveniently and rapidly map the cross-correlation envelope of narrowband signals 4 E
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over the time-register Doppler-ratio (ambiguity) plane. By using the ambiguity kernel exp(i @fl)
as an approximation of signal time compression (or expansion), the coherence between transformed
signals (along the Doppler-ratio axis) may further be expedited through use of the discrete Fourier
Transform. The resulting error is negligible when the time-bandwidth product of the process is

less than the inverse of the maximum Doppler ratio employed. The resulting algorithms have
proved advantageous in underwater acoustic applications. It is concluded that the sectionalized
Fourier Transform has many applications in time-domain signal processing using modern array
digital computers. ‘\
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ROLE OF THE SECTIONALIZED FOURIER TRANSFORM
IN HIGH-SPEED COHERENCE PROCESSING

INTRODUCTION

With the advent of the Fast Fourier Transform (FFT) algorithm in the mid-1960°s [1-3] and the
corresponding advances in digital computer architecture (in particular, in array processors), giant strides
have been made in the rapid computation of complex functions which earlier were considered impracti-
cal. More recently, interest has evolved in techniques for estimating the magnitude-squared coherence
(MSC) function [4-16), and in means for rapidly mapping this estimate over the two-dimensional ambi-
guity plane ([17-20}). These techniques invariably involve computing the Fourier Transform of the
relevant temporal functions in a piecewise or sectionalized manner, and algorithms for computing MSC
estimates (using the FFT and modern array processors) have proven highly successful. Unfortunately,
knowledge of these techniques (in their entirety) has not been widely disseminated. Nor has the role
of the sectionalized Fourier Transform in signal processing applications been thoroughly understood by
the user community. This report is therefore devoted to developing the fundamental role that the sec-
tionalized Fourier Transform plays in temporal signal processing, and to developing a high-speed algo-
rithm for estimating the normalized correlation envelope (NCE) function over the two-dimensional
ambiguity surface.

SIGNAL TRANSFORMATION

Two approaches will be taken to demonstrate the role of the sectionalized Fourier Transform
(SFT) in temporal signal processing. In either approach it is shown that the SFT can serve to simply
baseband, filter, and sample a narrowband signal. Due to the filtering action, however, some degree of
signal distortion is inevitable unless the signal is a constant frequency sinusoid. - Reducing the distortion
to a tolerable level is achieved through spectral windowing; i.e., to appropriately shape and flatten (or
level) the filter response. In the first approach attention is given to the nature and characteristics of the
signal distortion function. The trade-off between the signal and SFT parameters is defined to limit the
expected degradation to a tolerable level. In the revisited approach to signal transformation, the basic
problem of signal distortion will be evaded by assuming that the spectral power of the signal is bounded
within a finite section of the signal spectrum. The two approaches complement one another and yield
an insight into the temporal characteristics of the transformation algorithms.

Signal Description and Representation

Over an extended analysis time (approximately T seconds) a narrowband signal may be
represented as

u(r) = A(2)e'?” (1a)

where the phase function ¥ (¢) takes the form

4
V() = 2nlft +  v(x)dx] + 4. av)
The instantaneous frequenci (or inverse wave-period) of the signal is defined as

3%-‘!"(:) - £ + (1), (1¢)

Manuscript submitted June 20, 1980.
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A. A. GERLACH

where /, is the mean frequency and v (¢) is the zero-mean frequency fluctuation over the analysis inter-
val. (A "dot" over the variable is used to denote the time derivative.)

In the analyses to follow, two subintervals of time T and T, are to be employed such that T, < T,
and T, is much much less than the extended analysis time.

Letting /. T, = kg + 3. (I8.] < 1/2) and letting r = T,/T,, the time series #(mT,;) becomes

u(mT) = 4 (mTl)em"T') - eiz'"'k"l'uo(mT|) (2a)
where
uo(mT)) = A(mT,)e'™ ™/ 2lmTO+edl (2b)
and
T t
g0 =3+ X [ (0. (20)

The sampled time series uo(mT,) represents the baseband of the time series u(mT,) referenced
to the frequency ko/T,, and the variable go(mT,) is a running-time average (taken at mT)) of the
instantaneous frequency deviation (relative to baseband) measured in units of 1/T,. (The merit of this
form of notation will become evident when we consider the sectionalized Fourier Transform of the sig-
nal u(1).)

Sectionalized Fourier Transform

Over the time interval T, centered at mT,, the Sectionalized Fourier Transform (SFT) of u(r) is
defined as

1 pmT*T? ~idm kgt /T
Unlko+n) = 5 Inror2 u 0 dr
T2 i -alt/
- uo(mﬂ)e"‘z""""'f_T’:,2 A,,,(t)e'z'l"'m T2y T, (3a)
where
A,,,(l) - A(mT|+t)/A (MT|) (3b)
and
T t
gn(0) =8 + =2 [y (mT, + x)ax. (30)

(Care must be exercised in the interpretation and use of Eq. (3b). The amplitude function A4, (r) is
antificial in the sense that 4 (mT),) is inserted in the denominator in order to factor out ug(m7}) in Eq.
(3a). It is possible therefore for 4 (mT,) to be zero, in which case A4,(r) makes no sense. However,
in this event ug(mT,) is zero, and the factor A, (r) should rightfully equal only the numerator term.
For many practical applications, 4 (m7T,+ () will be essentially constant over the time interval T,
avoiding the possibility of singularities.)

The form of Eq. (3a) reveals that the SFT of u(r) yields the product of the sampled baseband sig-
nal uy(mT,) and a distortion factor. The distortion factor is a function of the spectral selectivity of the
SFT and the static and dynamic characteristics of the signal. Our object will therefore be to process the
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SFT to achieve an output transform which approaches uo(mT),) over a specified signal center-frequency
and bandwidth. x B
Spectral Windowing 6
; § A study of Eq. (3) suggests the use of a spectral window comprised of J sequential frequency bins
i n, approximately centered at the frequency ko/T,. Therefore let 4
% ¥
| J=ng-t L4
Vulkd) = 3 e2™07Y, (ko+ n) i
1 Il-—no ‘t:
2
;
= uo(mT) D, (g;J), (4a) :
where }
: Dolgmid) = [ 7 Ane™ " 3 Ty T, (4b)
% n=—ngy
is the resulting distortion function and where J and n, are chosen to essentially constrain the signal ‘
power within the spectral window. The summation within the above integral may be recognized as the R
Dirichlet kernel [21,22]. The sum reduces to [23] 3
=1 :
2 sin (w JI/ Tz) ;
+ - ; ’
1+2 "§ cos(2mmt/ Ty sin Gre/T) (when J is odd) . B
i
or Y
1 :
/T, & ; sin (wJt/ T,) ;
2 tinl/T, -1 - tm!/T,__— . ) . 4
e ”g cosle(2n—1t/Tyl=e sin et/ T) (when J is even)
(The exponential factor, when J is even, results from the spectral window being centered midway ;
between two spectral bins of the SFT. The sign of the exponent depends on whether the center of the ¥
» window is located one-half bin-width below or above the spectral bin k,.)
Using the Dirichlet kernel in Eq. (4b), the distortion function becomes
: T2 sin (wJt/ ) iawg (20T, ;
; Datenid) = fL1. 400 GGy @ @l T ®
i provided that + 1/2 is added to the parameter 3. (in Eq. (3c)) when Jis even. (Assuming that »(r) is g N
symmetrically distributed, the value 1/2 is subtracted when 8, is positive and added when 8, is nega- A s
tive. This procedure is required if the spectral window is to most efficiently span the spectral bandwidth 3
of the signal.) é
Properties of the Distortion Function 3
’ In addition to the window parameter J, the distortion function is dependent on the spectral ~=‘
characteristics of the signal #(s). When the signal dynamic characteristics are sufficiently slowly vary- s 3
ing, such that 4(r) and »(r) are essentially constant over time intervals of T, seconds, the distortion 4 j
function is real and equal to the spectral window function W,(x,). That is, _‘
, ! sin (wJi/2) 2 3
Dy (xpy:J) = W;(x,) o sin(mt/2) cos (wx,,1)dt, (6a) 4 7
3

p A
L R T T 2R i



A. A. GERLACH

where x,, = 8. + Tw(m7T\) when Jis odd or 8. ¥ 0.5 + T,w(mT,) when Jis even. By expressing
the Dirichlet kernel by its equivalent trigonometric series and carrying out the integration prior to sum-
ming, W,(x) may be shown to be

4=l
2 .
W - sinw(x—n)
= T eGw
-1
sinwx 2 R
el R A i e (6b)
when Jis odd, or
sd-n e
W - sinw(x~n
4(x) ”_21 w(x—n)
2 & n—05
- =cosw(xx0.5) ¥ (-1 6c
L §. (x £ 0.5)%~ (n —0.5)? (6c)
when Jis even. (The shift of 1/2 in the latter relation is due to the fact that the center of the spectral

window is + one-half bin-width from the k¢th bin.) A plot of W;(x) as a function of the normalized
frequency is displayed in Figs. 1 and 2 for selected odd and even values of J, respectively. The filter
characteristics are somewhat smoother over the filter passband J/ T, when Jis odd. However, as J gets
larger, the difference in the odd vs even passband characteristics becomes proportionately smaller.

2 L L L4 L Ls Ls L '
i J=3 \ ]
0 ~4
- -
Jsl
-z - -
s 4=t
g 3 T e y
° Wyl = z sin w(x—n)
< -4} sy WOx-R) <
= RS - e
= -5 -
x s fT, -~k
-6 2% i ;
-r | nsk-— ko -1 ?
¥
8, = J/1T. 3
-8 J 2 -
A
-9 1
-1Q N A P VR U YR T Y ] ' K
Q.1 0.2 03 04085 07 1.0 1.5
i¢ - ko/Tz'
B8y/2
Fig. 1| —~ Passband characteristics of the spectral window function + .3

W, (x) for J odd
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__ET__
Fig. 2 — Passband characteristics of the spectral window [unction
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1.0

In addition to the static window characteristics, the signal distortion is also a function of the signal
dynamics. The expected value of the distortion function may be shown to approach one when J is large
and the spectral bandwidth of the signal is essentially bound within the filter passband (see Appendix).
Since the expected value of the distortion function was computed using ensemble averages, it will prove ;
informative to compute this function over the time interval T, for a representative case. Consider then ;
that over the relevant T, time interval, the amplitude factor A4,(¢) is constant and the frequency

fluctuation v (1) can be represented by the truncated Taylor series ¢

v(mT +x) =v(mT)) +v(mT))x. (7a)

From Eq. (3c) and the definition of x,, (following Eq. (6a))
8m () = x,, + 0.54x,,t/T, (Tb)

where

Axy = v(mT) TS (7c)

(In the normalized units of 1/ 7T, Hz, the discrete variable x,, is a measure of the instantaneous fre-
quency deviation from the window center-frequency, and Ax,, is a measure of the change in instantane-
ous frequency over the SFT interval T,.) From Eq. (5) then, the distortion function becomes

U iRasat? sin (wJif2)

D,(gn.J) = “; e -’m/T)— cos (wx,, t)dt. 8)
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Except when Ax,, is zero (in which case the distortion function reduces to the spectral window
function), the distortion will be a complex number, resulting in both amplitude and phase distortion.
To provide an indication of the degree of distortion that can exist, Eq. (8) has been computed as a
function of Ax, (with x, = 0) for various values of the parameter J. The results are tabulated in
Table 1. (The ratio Ax,/J is the fraction of the spectral window over which the instantaneous fre-
quency varies in the time interval T,. Thus when x,, is zero, the frequency will be constrained within
the spectral window for Ax,/J less than one.) The data in Table 1 indicate that the distortion will be
relatively minor under the stipulated conditions. The distortion has been computed for values of x,,
other than zero and found to be no more serious than that shown in the table, as long as the instan-
taneous frequency is constrained to fall within the bounds of the spectral window. In the particular case
where J = 1 and x,, = O, the distortion reduces to

D,(gy.1) = - ’m (C /TAx, 172 + isG/TAx,172)) 9)

where S(---) and C(--*) are the Fresnel sine and cosine integrals of the indicated argument [24].

Table 1 — Magnitude and Phase of D,,(g,.J) as a Function of
Ax,,/J for the Indicated Values of J (x,, = 0)

Ax,,
0 Magnitude 1.000 1.000 1.000 1.000 1.000
Phase (Deg.) 0.00 0.00 0.00 0.00 0.00
+ 02 Magnitude 0.999 1.013 0.985 1.016 0.986
Phase (Deg.) +3.00 ¥1.81 +1.04 F0.50 +0.16
+ 0.4 Magnitude 0.996 1.051 0.949 1.035 0.988
Phase (Deg.) +5.99 ¥2.91 +0.49 +1.04 ¥1.67
+ 0.6 Magnitude 0.990 1.105 0.924 1.009 1.044
Phase (Deg.) +8.98 F2.85 ¥2.56 +3.90 ¥2.00
+ 0.8 Magnitude 0.983 1.165 0.945 0.924 1.085
Phase (Deg.) +11.96 F1.53 F1.17 +4.85 +2.42
+ 1.0 Magnitude 0.973 1.224 1.026 0.832 1.010
Phase (Deg.) +14.92 +0.94 ¥10.71 ¥0.25 +8.61

SIGNAL TRANSFORMATION REVISITED

Fourler Series Representation

To obtain a deeper insight into the sectionalized Fourier Transform method of signal filtering,
basebanding, and sampling, a second approach will be taken which is more macroscopic in content.
Utilizing the results of sampling theory [25,26], it has been shown that over the time span of
mT, — T/2 € t € mT; + T,/2, the function u(¢) may be expressed by the Fourier series

u() = 3 Un(k)e T, (10)
k=0

where U, (k) is the sectionalized Fourier Transform of u(s) (Eq. (3)) taken over the indicated time
interval. Although the value of U, (k) will (in general) be nonzero over all k, it is common practice to
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set bounds on the range of k over which |U, (k)| is significant for certain classes of signals.® If then
u () is a bandlimited signal whose significant spectral energy can be said to be bounded within a con-
tiguous sequence of J spectral bins centered at approximately k = ko, a suitable approximation of w(7)
over the indicated temporal span would be
ko + J—np—~1
0= ¥ Uk

k- ko"ﬁo

- ng-1
20 U,,,(ko +n)e

J
- 'eiztknl/ TZ IZI‘I"/T)

(11a)

or
. ~i2mkgt/ Ty,
fig(t) = e """ 2 (0}

J=ng—1

= 3 U,(ko+ nde

ll-‘—llo
Consequently, from Egs. (4a) and (11b),
ﬁo(mTl) - Vm(ko;-’) - UO(MT|)D,,(8M'.J). (12)

ilwnllfz‘ (11b)

The above relation demonstrates that the sectionalized Fourier Transform can serve to baseband,
filter, and sample a bandlimited function without basically changing the temporal characteristics of the
function. In addition, the relative simplicity of the FFT algorithm permits these processing operations
to be performed with ease on modern digital computers. The factor D, (g,:/), given in Eq. (5), pro-
vides a measure of the distortion induced by the process, so that some basis is available for the selec-
tion of the parameters T, and J. The criterion for the selection of the sampling rate 1/7), is also well
defined. To avoid undersampling, the sampling rate should be equal to or greater than the (two-sided)
filter bandwidth B; = J/T,, or T, should be equal to or less than the Nyquist interval To/J [27).

Equivalent Temporal Window

The temporal counterpart of spectral filtering (or windowing) in harmonic analysis is to shade or
to weight the function u (r) over the time window mT, — Ty/2 € ¢t € mT, + T/2 [28,29). The tem-
poral window function, equivalent to the spectral window W;(x), is simply the inverse Fourier
Transform of W,(fT,). Therefore, from Eqs. (6b) and (6c)

w;(t) = Tzf_: W,(fT)e>'df

-1
2
=1+4+2Y cosQQunt/Ty
n=)
sin (wJ1/T,)

- m (Il € Ty2) (13a)

*Although a signal cannot be both band- and time-limited in a pure theoretical sense, this concept has proven quite useful in
practical applications. An excellent discussion of the problem is found in Ref. 21, pp. 121-132.
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for J odd, and

] . 412
‘ wi (1) = e*™"T12F coslm (2n— 1)1/ T))

n=1

et,‘"[/rz sin (‘WJ[/ Tz)

S /T (el € Ty2). (13b)

for Jeven. (The complex exponential factor for J even is a consequence of the spectral window being
centered midway between two spectral bins.) A plot of the temporal window function for various
values of Jis shown in Fig. 3. For J = 1, the weighting is constant. For J = 2, the weighting magni-
tude is a simple cosine function. As J becomes larger, the temporal window (Dirichlet kernel) more
closely approaches a (sin x)/x function over the interval T,.

J=i
WL
406
2 y 89 .,
102
-0.5 -0.3 4 0l 03 05
$-0.2
—t/T.
l.0a 2
1o !
ost sin{wdt/T,)
wlt) = sin(n1/T3)
osl
B“ 3 J/Tz
2 04}
3 o2} ) °
o IS ﬁ\ 3 1

05 23 N\ 4
-0.2r 7T —=gh
i 3

Fig. 3 — Temporal window function w;{r) for selected vatues of J

If now, over the time interval mT, — Ty/2 € t € mT, + T2, one defines a new function v(z),
where

v(r) = w)(t — mT)Du(e), (14)
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its sectionalized Fourier Transform can readily be shown to be

mre T —idw
%fmrll_r;: w[(l - mTI)u(')e 2 kl/T:d‘
2
l—no—l

= ¥ ey (k +n)=V,(kJ),

ne—ng

mT +Ty/2 —itm
Surirge e M (15b)

1
U,(k) = Tz

and where ng is (/- 1)/2 when Jis odd, and J/2 or J/2 — | when Jis even (depending on the sign of
the exponent in Eq. (13b)). Equation (15a) is identical to Eq. (4a), except that here the spectral bin k
is general and need not be restricted to fitting any particular center frequency. Thus the spectral win-
dow may be incremented across the frequency band in steps of one to J bin-widths. Computationally, it
is more economical to implement the window function in the spectral domain when only one or a few
spectral bands need be examined for signals. There is also merit in the fact that & may be indexed in
less than J increments to smooth or effectively eliminate any "picket-fence" or "scallop” effect between
windows [28].

A study of the temporal window function (Fig. 3) reveals that the significance of 4 (¢}, in the for-
mation of its Fourier Transform, decreases rapidly as ¢ deviates from + T,/2J. That is, as |7| becomes
greater than 1/2B,, the weight given to u(¢) becomes appreciably reduced, so that its significance in the
construction of the resulting Fourier Transform U, (k) is reduced. This is why the value of Ax,, in
the distortion function D, (g.;/), can become proportionally larger with J without seriously altering the
transform characteristics (see Table 1). The restrictions on the rate of change in the amplitude function
A (1) is also proportionally reduced. Another way of looking at it is that as J becomes larger, the
bandwidth of the spectral window increases (assuming 7T, remains fixed). And consequently the signal
dynamics can be correspondingly more rapid (spreading the power spectral density of the signal) to fill
the wider window, without seriously degrading the transformed output.

Doppler-Induced Distortion

When a signal source is in motion in a transmission medium, the spectral energy of the signal
suffers a Doppler shift. The effect of the Doppler shift is to compress (or expand) the time scale of the
original signal [30). Thus, the signal u(¢) is transformed into u{(l + ag)t} where ay (ag << 1) is
known as the time scale-factor shift or Doppler ratio. From Eqs. (1) and (2) it is easy to show that

e ot 43t LTI o0 W gt -5 Y TSR I ) 0 Y L

i2n‘maolfc+v2(mrl)'7'|
L

uo‘(l + ao)mT|| = szmllo(MT|)e (l&)

where uo{(1 + ag)mT,} and uo(mT,) are the respective band-shifted signals (relative to ko/ T, Hz), and
where

Aym= Al + ag)mT\}/A(mT) (16b)
and

vo(mT)) = »{(1 + ay/2)mT,}. (16¢)

When a is sufficiently small so that mag € r/J, A, will be close to unity. (The amplitude distortion
factor 4, , is due to the time compression of the Doppler-ghifted signal.) For the purposes of this
paper, A(¢) is considered to vary sufficiently slowly so that insignificant error will result in assuming
that 4;, = 1.
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Since the effect of the time compression is to slightly shift the spectral power of the signal 4 (¢)
into a new band, it may be desirable to translate the Fourier Transform sequence (spectral window) to
accommodate this Doppler shift. To optimumly accomplish this, let

agf.Ty=n, +¢, (where—1/2 < € < 1/2). (17a)

Following the procedure given in Eq. (11), it may be verified that

e ol (1 + agdmT} = Vy ko + noid)
J=np—1
= X e ™l (ko + 0, + n)

=~ l.lo(mrl)eihmll/rﬂ:oTlvz(mT,)l. 17b)

where U, , (k) is the sectionalized Fourier Transform of u{(1 + ag)¢}. The translation of the Fourier
Transform sequence by n, has the effect of centering the spectral window on the Doppler-translated
signal spectrum to minimize the output signal distortion. (If the spectral window is sufficiently broad to
adequately encompass the Doppler shift, this step would be unnecessary.) Another way of looking at it
is that the far left-hand side of Eq. (17b) is the baseband for the Doppler-shifted signal. Although a
frequency translation of ko/ T, represents baseband for the signal u(r), a frequency translation of
(ko + n,)/ T, is required to represent baseband for the Doppler-shifted signal «{(1 + ag)r).

For our purposes we shall assume that the bandwidth of the spectral window is sufficient to ignore
the Fourier Transform distortion factor (permitting us to drop the "tilde” from the functional relations).
And we shall assume that ma is sufficiently small to ignore the amplitude distortion factor 4,,,. (We
shall later develop the restrictions on ay and the analysis time to permit this realization.) The
significant relations relative to Doppler-shifted signals are then

upl(1 + agdmT)} = Vs, (kgJ) = "™ ¥, (ko + ngid)
- ethma.,f,T. v, (ko;l)eihnmorluz(mﬂ). A (18)

The first exponential factor in the right-hand side of Eg. (18) reveals that a Doppler shift produces a
linearly varying phase rotation on the original signal. The rate of phase rotation is proportional to the
product of «, and the mean signal frequency /.. (For a cw signal this will be the only phase distortion.)
However, the zero-mean fluctuating frequency v {¢) introduces a nonlinear phase-shift which must also
be taken into consideration. The degradation effect of this latter factor will be addressed in a ldtter sec-
tion of the paper.

Effect of Time Shifts

Consider now the effect of a simple time translation 7, on the signal u(r). Letting r, =
(mo+e€,) T, where —1/2 € €, < 1/2, it is easy to show that

ug(mT) + 19) = A\ L uol(m + my) T,len""r‘”'“m"“’r'”r'. (19a)

where ug(mT, + 1¢) and ug{(m + my) T} are the respective basebanded signals, and where
Ay m= AmT  + 1)/ A{(m + m)T)) =1 (19b)

and

V|(MT|) - vl(m + ¢|/2) Tll- (19¢)
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(Since the amplitude functions in Eq. (19b) differ in time by less than 1/2T), negligible error will result
in assuming that 4, , = 1)

Again, following the procedure given in Eq. (11), it may be verified that
J-ng=1

dg(mTy+79) = V| . (ko:J) = 2 en""'/'U wlko+n)
n=—ngy
thl,lf +vl(m+mg TIT, Vm”"o(ko;")' 20)

where U, (k) is the sectionalized Fourier Transform of u(r + 7).

Assuming that the bandwidth of the spectral window is sufficient to ignore the Fourier Transform
distortion factor (Eq. (12)), the "tilde” may be dropped from the above relation. Consequently, the
effect of the residual parameter e, is to cause a fixed phase-shift (2mwe,/. 7)) and a fluctuating phase-
shift (due to the fluctuating frequency »(¢)) on a signal that would be delayed an even multiple of T,
seconds.

DESIGN CONSIDERATIONS

Noise Power Output

Since the signal channel will generally be contaminated by broadband noise, it will be of interest
to determine the noise output of the filter W(/T;) inherent in the sectionalized Fourier Transform.
Assuming a broadband noise power spectral density of N, watts per Hz, the accumulated noise power
over the spectral window is (employing Parseval’s theorem; see Ref. 25, p. 65)

oo 2N o
Py=Nof _ WIUTHdf = T;’ J, wioa

2No 2 2Ny V2 sm’(w.h)
f w(oldr j; sm’(m)

- Noj/rz - NOBIr (21)

where B, = J/T, is the bandwidth of the spectral window (see Figs. 1 and 2). (It is also the equivalent
noise bandwidth of the window [28].)

Output Signal-to-Noise Ratio

If p. (/) is the signal power spectral density function and f is frequency, measured relative to the
center of the spectral window, the output signal power will be

P, = f__: ) W](.’TZ)df (22)

When the signal power is uniformly distributed over the band f, to f,, the output signal power

becomes

Z,(0) = Z,(y))
Ya=n

P, = <u¥(n> (23a)
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where y = 2//B, and where
2,0) = [ Wix/Dax (23b)

The function Z,(y) is tabulated in Table 2 for values of y lying within the main lobe of the spectral
window. From Eqgs. (21) and (23) then, the output signal-to-noise power ratio becomes

<u¥()> Z,(0) — Z,(y) .
N, B, Y2—n

And, if the signal power spectral density is symmetrically located within the filter window, the relation
reduces to

P/Py= (242)

<ui()> Z,»)

Pul Py = NoB, y

(24b)

For a properly designed system, B, should be chosen to efficiently contain the signal power
without significant excess or spillover. Ideally, y should be one to avoid an excess of unwanted noise
and interference. From Table 2 (and y = 1), it is seen that for J greater than one the output signal-
to-noise ratio is very nearly ideal. Even for J equal to one, the loss in signzal-to-noise ratio is only
slightly in excess of one decibel. Consequently, from the standpoint of signal-to-noise ratio, there is no
strong motivation for choosing a value of J greater than one.

Table 2 — Integral of the Square of the Spectral Window Function
W,(Jx/2) over the Limits 0 to y (see Eq. (23b))

J 1 2 3 4 5 6 7 8 9 10
y éL

0.10 {1 0.0997 | 0.1611 | 0.1005 | 0.0737 | 0.0994 ] 0.1186 | 0.1006 | 0.0885 | 0.0995 | 0.1082
0.15 |1 0.1491 | 0.2398 | 0.1517 | 0.1135 | 0.1482 | 0.1727 | 0.1516 ] 0.1385 | 0.1486 | 0.1559
0.20 1 0.1978 ) 0.3163 | 0.2040 | 0.1567 { 0.1962 | 0.2219 | 0.2031 | 0.1933 | 0.1979 { 0.2002
0.25 | 0.2458 | 0.3900 | 0.2575 | 0.2043 | 0.2436 | 0.2664 | 0.2543 | 0.2513 | 0.2480 | 0.2444

0.30 || 0.2927 | 0.4602 | 0.3123 | 0.2569 | 0.2909 | 0.3075 | 0.3046 | 0.3095 | 0.2994 | 0.2919
0.35]0.3385 | 0.5266 | 0.3684 | 0.3146 | 0.3387 | 0.3468 | 0.3533 | 0.3646 | 0.3518 | 0.3446
0.40 11 0.3830 | 0.5886 | 0.4255 [ 0.3774 | 0.3877 | 0.3866 | 0.4003 | 0.4146 | 0.4042 | 0.4014
0.45 1 0.4260 | 0.6459 | 0.4832 | 0.4443 | 0.4389 | 0.4290 | 0.4461 | 0.4593 [ 0.4551 | 0.4585

0.50 || 0.4674 | 0.6984 | 0.5409 | 0.5140 | 0.4927 | 0.4761 | 0.4918 | 0.5005 | 0.5034 | 0.5115
0.55 ]| 0.5070 | 0.7459 1 0.5978 | 0.5848 | 0.5494 | 0.5294 | 0.5390 | 0.5411 | 0.5492 | 0.5584
0.60 ]| 0.5448 | 0.7884 | 0.6531 | 0.6546 | 0.6086 | 0.5892 | 0.5893 | 0.5849 | 0.5941 | 0.6004
0.65 [| 0.5807 | 0.8259 | 0.7059 | 0.7210 | 0.6694 | 0.6546 | 0.6440 | 0.6350 | 0.6406 | 0.6419

0.70 || 0.6145 | 0.8586 | 0.7552 | 0.7821 | 0.7300 | 0.7229 | 0.7030 | 0.6931 | 0.6916 | 0.6879
0.75 |1 0.6463 | 0.8867 | 0.8003 | 0.8361 | 0.7881 | 0.7901 | 0.7649 | 0.7581 | 0.7487 | 0.7428
0.80 || 0.6760 | 0.9106 | 0.8403 | 0.8818 | 0.8414 | 0.8516 | 0.8261 | 0.8254 | 0.8107 | 0.8065
0.85 |1 0.7036 | 0.9305 | 0.8749 | 0.9187 | 0.8874 | 0.9034 | 0.8820 | 0.8874 | 0.8723 | 0.8729

0.90 | 0.7291 | 0.9467 | 0.9038 | 0.9470 | 0.9245 | 0.9430 | 0.9278 | 0.9373 | 0.9257 | 0.9307
0.95 |} 0.7524 | 0.9598 | 0.9269 | 0.9673 { 0.9520 | 0.9700 | 0.9605 | 0.9708 | 0.9640 | 0.9707
1.00 || 0.7737 | 0.9701 | 0.9447 | 0.9808 | 0.9703 | 0.9859 | 0.9801 | 0.9888 | 0.9851 | 0.9908

1+1/] |10.9028 | 0.9949 | 0.9762 | 0.9959 | 0.9876 | 0.9967 | 0.9919 | 0.9972 | 0.9941 | 0.9976
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Spectral Leakage

An important facet in the design of the spectral window (selection of the parameter J ) is the
spectral leakage resulting from the window sidelobes [28]. These sidelobes will cause signals remote
from the window bandwidth to appear at the filter output, even though they are attenuated. And if the
remote signals are sufficiently strong, they can seriously interfere with those signals falling within the
filter window. Consequently, it is important that the filter window reject those signals whose spectral
energy falls outside of the spectral window to the degree that is practical.

From Eq. (6), the magnitude of the spectral window sidelobes is closely approximated by
it

J 2 2 n___J+2m)?
PW)(G +m)l = gyl +2 ;‘ =D (J+2m)2-(2n)2| (25a)
when Jis odd, or
4
J+1 4,3 27 =1
w + - — —-1)” 25b
| Wit m wl,z:,(” (J+2m)2—(2n—1)zl (250)

when Jis even, where m = 1,2, ... is the sidelobe index along the frequency axis.

For large values of m (J << m),
2 8,

J — -
] W,(2 +m)| = pary g e iy (for J odd) (26a)
and
B2
Iw Lty —2 o ¥ (for J even), (26b)

2 "N T R v m? T mp

where fis frequency measured relative to the center of the spectral window. For B, constant, it is seen
that the magnitude of the remote filter sidelobes is inversely proportional to J. A more interesting fact
is that the magnitude of the sidelobes decays at a rate of 12 dB per octave of frequency when Jis even,
and only 6 dB per octave of frequency when Jis odd. Thus, from the standpoint of interference rejec-
tion it will be more productive to make J even.

Plots of the spectral window characteristics for J odd and even are shown in Figs. 4 and 5. The
frequency axis of the curves is scaled in units of the window bandwidth in each case for comparison
purposes. The advantage of making J even in lieu of odd is quite apparent. Further, since the side-
lobe density is J lobes per window bandwidth, interferring signals whose spectral power is spread over
one or more sidelobes will be attenuated approximately 4 dB below the indicated sidelobe envelope.

CORRELATION PROCESSING

Magnitude-Squared Coherence

The magnitude-squared coherence function (MSC) of two signais s,(r) and s,(r) is defined as
181,(N1?

IRLCITIO0) 7
$u(NS»(N 2n

T(f) =

where S,,(/) and S§,,(f) are the power spectral densities of 5,(r) and s,(1) respectively, and §,,(f) is
the cross-power spectral density (Fourier Transform of the cross-correlation function). Note that the
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S owe

MSC will range between zero and one depending upon the magnitude of the cross-power spectral den-
sity.

Perhaps the most unique property of the MSC is its invariance under linear operations. That is, if
vi(1) and v,(1) are the result of linear time-invariant operations on s,(s) and s,(r), then the MSC of
vi(2) and v,(¢) will be identical to the MSC of s5,(r) and s,(¢} [4). This will be true even though the
correlation coefficient between v,(s) and v,(+) may differ radically from the correlation coefficient
between s,(¢) and s,(s). Thus, the square root of the MSC and the correlation coefficient, although
somewhat related, are truly different concepts.

MSC Estimate

The magnitude-squared coherence estimate has been defined as [4]
| < Sy mlk)Symk) > |2
< IS) P> < IS,k >

(k) = , (28)

where the indicated average is computed over a given analysis interval, and S, (k) is the sectionalized
Fourier Transform of the relevant temporal function computed over time T,. (The asterisk denotes the
complex conjugate.) In the notation above, the time index is m (1 = mT,<mT,) and the frequency
index is k (f, = k/T;). The numerator in the above equation forms the estimate of the cross-power
spectral density between the two relevant signals s,(¢) and s5,(1).

R T,

The MSC estimate has received considerable attention in the literature as a sample test statistic
for coherence estimates [4-16]. However, depending upon the length of the analysis interval and
several other factors, the estimate may not be a good estimate of the MSC. One can readily perceive ‘
that the estimate is no longer invariant with linear operations on the two signals, but can vary appreci- ’
ably depending on the nature of these operations. In fact (as shall be subsequently shown), when the i
spectral power of the two temporal signals is essentially bounded within the spectral bin-width of the
Fourier Transform, the square root of the MSC estimate closely approximates the normalized envelope
correlation function of the two signals.

Bty e i et e g

Normalized Correlation Envelope

Consider now that s,(r) and s,(s) are two real narrowband signals present at two sensors. The g
normalized two-dimensional correlation function (NC) of the signals (over an extended analysis inter- :
val) is defined as [31)

< 5;(t = 1)sy(t + at) >

(r,a) = , (29)
yir.a V<stt—-1> <silt +an >

where the indicated averaging is carried out over the analysis interval. The resulting NC can generally

be written as the product of a slowly varying correlation envelope (NCE) function x(r,a), and a N
sinusoidal carrier function C(r,a) [31]. By repeating the NC with 7 shifted by one-quarter of a cycle .
] of the carrier frequency, the resulting NC will be in quadrature with the original NC. (The minute shift

in 7 will not significantly change the value of the correlation envelope function.) Thus, the NCE may

readily be computed as the square root of the sum of the squares of the NC and the quadrature NC.

The indicated procedure for determining the NCE is computationally awkward and inefficient.
Further, since the desired signals are generally contaminated by noise and interfering signals, some )
form of filtering is desired around the relevant signals to improve their signal-to-background ratio prior .

calodead bt oo e 0 e i —an i
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to correlation. The technique of basebanding and low-pass-filtering the relevant signals prior to correla-
tion is a suitable alternative, but this is computationally unattractive if carried out in the normal step-
wise fashion. However, the carlier analyses have shown that basebanding and spectral filtering may be
accomplished quite readily through the use of the sectionalized Fourier Transform. This suggests that
the following algorithm may serve as a convenient estimate of the NCE.
imLy .
l<e M Vimm (ki) V3 (ki) >|

X ra) s —m———m —m - (30a)
Xk ,/<|V._,,,_,,,,(k;JiI’><|V,_,.,(k;J)|’>
where the symbology
1 M/2-1
<()> implies — ¥ () (30b)
M m=—M/2

and where m, (an integer) reflects the time displacement (tau variable), and ¢ (an integer) reflects the
time scale-factor shift or Doppler ratio (alpha variable) between the two signals. The transforms in the
relation are defined by Eq. (15), with subscripts added to denote the signals within the two k-bin chan-
nels being processed. The exponential factor in the numerator of the above relation serves as the
ambiguity kernel exp(i2mafr) [32] to Doppler-shift the transform V., (k;J). This is suggested from
Eq. (18) as a method of (approximately) compensating for any time scale-factor shift between the sig-
nals in the two channels.t

The optimum choice for T, in the NCE estimate is the Nyquist interval To/J = 1/B,
(r = Ty/ T, = J). With this choice, the total analysis time is MT, and the correlation integration time
is

T=(M-1DT, = (M-1)/B (31a)
or
M= BT +1 (1b)

An explicit expression for the r variable is, of course,
t=mT =m,/B,, (32)

however, the explicit Doppler ratio for a given signal will depend on the mean frequency of that signal
over the processor analysis interval (Eq. (16a)). A suitable estimate of the Doppler ratio is given by

s _9_ 33
&= < 7.7 (33a)
where f, = k/T,is the approximate center-frequency of the spectral window. When k is optimum for

a given signal (viz., when the spectral window is most nearly centered about the signal spectrum), the
error in the estimate will be

I& - ' - |8¢‘| s BJ
a k 2-’]*
where 3, (18| € 1/2) is the difference between f. and the nearest harmonic k/T,. The choice of the

index g to vary the Doppler ratio in increments of approximately 1/2/.T was made to limit the "picket-
fence” or "scallop” loss in the a-dimension to less than 1 dB [28].

(33b)

$+R.D. Trueblood of the Naval Ocean Sysiems Center (NOSC) employed this technique in cc ion with the magnitude-
squared coherence (MSC) estimate in the early 1970's. The results of his (and subsequently other’s) investigations indicated that
the compensation was adequate for the signals and parameters used in the MSC estimate.
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Computation of NCE Estimate

Computing the two-dimensional NCE estimate must certainly be considered a formidable task as a
result of the variables m, and ¢ over which a correlation surface is mapped. In practice, the number of
points required to satisfactorily map the surface can range from several thousand to the tens of
thousands. However, the present state-of-the-art in computer technology (using modern array proces-
sors) is such that adequate computational speed is available, providing the processing algorithms are
suitably matched to the computer architecture. In the case of the transforms V,,{(k.J), these are ideally
suited for array processing using conventional DFT (discrete Fourier Transform) formats. One may
also perceive that the numerator of the NCE estimate (Eq. (30)) has the form of a DFT relative to the
Doppler-ratio variable q. This considerably reduces the required programming and the computational
time in the realization of a NCE surface.

The variation in the r-dimension, although not as expedient to reproduce, involves incremental
transiations of the one transform V,(k:J) relative to the other. When the equivalent bandwidth of the
desired signal spectral power is greater than one-half the width of the spectral window, the scallop loss
(due to discrete sampling in the 7-dimension) can exceed 1 dB and may approach 4 dB (when the
equivalent bandwidth is equal to the width of the spectral window). Under these circumstances, the
scallop loss can be reduced by computing a second series of V,,(k:J) (for one of the signals), which is
temporally interlaced with the original set. This is equivalent to choosing T, to be 1/2B, for the one
signal, and then sequentially interlacing the odd and even sets of resulting sectionalized Fourier
Transforms in computing the NCE estimate.

3 Although somewhat complicated, the indicated techniques (or modified versions thereof) for
3 computing rather extensive ambiguity surfaces have been accomplished with relative ease on suitable
array processors within the past decade {18-20,31].

Validation of the NCE Estimate

The algorithm for estimating the NCE (given by Eq. (30)) can be applied in two ways. First, it
can be used to study the ambiguity surface features for a broad class of temporal functions. And
second, it can be used to detect (and estimate the parameters for) common signals which differ in time
alignment and/or Doppler ratio.

In the first application, V, ,(k;J) = V,,(k.J) and the parameters ¢ and m, are used to map the
autocorrelation envelope over the ra-plane. Letting the spectral window be centered on (and encom-
[ pass) the spectral energy of the signal u(r), it is seen that Eq. (30) closely approximates (from Egs.
‘ (18) and (20))

| <ug(mTy = hug (1 — @)mT )e "™ 2T/ oy |

‘ X, e —— - (34a) :
.u . %o V<Tug(mT, = DIF> < lugl(1 + a)mT,*> 5
f where o
T=m/B, and a = —qB,/2MS.. (34b) 3
When both m, and ¢ are zero, the NCE estimate equals unity. Further, along the r axis (@ = 0), the 5 '
estimate of the NCE is essentially precise. However, when o is nonzero, the estimate is degraded as a ?
consequence of the nonlinear phase-disiortion factor. (The degree that this factor influences the NCE [
estimate will be determined shortly.) 3
LR
In the second application, consider that the common signat is «(¢) (see Eq. (1)) and that s,(¢) = ; X

§ ' u(t + 7o) and $;(¢) = u(zr + agt). In this application, the parameters 7, and ag are unknown and will
* need to be estimated from the NCE function topology. (The NCE estimate is expected 10 peak at the
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point where r and a compensate for the parameters r, and aq respectively.) In practice, m, and q are
systematically sequenced over a set of values which will encompass the anticipated range of 7, and ay.
Since the intent of the processing is to compensate for time and Doppler differences in the received sig-
nals, it will be advantageous to shift the spectral window periodically as discussed in relation to Eq.
(17).” (The shift in the spectral window function is to ensure that the two speciral windows span
approximately the same portion of the signal spectrum in the common signal.)

An algorithm for determining the bin-shift parameter is developed as follows. With M (see Eq.
(30b)) chosen so that M/Jis an integer, let ¢’ be a modulo integer defined as

q' = (g — jM/J) Mod (2;M/[J) — jM/|J (35a)

where j (j € J) is the desired number of Fourier Transform bins to be translated with each modulo

sequence. (When J is small, it may be expedient 10 make j = 1; however, when J is large, computa-

tion time can be saved by translating the spectral window in larger increments without seriously degrad-
ing the sensitivity of the correlation processor.) The shift parameter n, is then

n, = (g — ¢")J/2M, (35b)
or, in terms of n,, the value of gis

q= #nﬁq: (35¢)

From Eqs. (12), (18), and (20) then, it may be verified (with a littie algebraic maniputation) that
|< e"'”'""/”VL,,,-,,,,(ko;J) V;_,.(ko + na;J) > l

X (T,d) bl . e —————
Xko N /< | Vim-m (kiJ) 7> <[Vymlko + nnd) 17>

- | Y
|<llo(MT| _ T')Mo.((] + a,)mrlle 2emlagy(mT avz(mTl)l/B,>|

) (36a)
V<lug(mT, = 112> <[ugl(1 + aYmT }*>
where
T'=1—10=m,/B,— 1, (36b)
a'=ay—a=ay— qgB,/2Mf. (36¢)
vo(mT)) = o{(1 + a2 mT,) (36d)
and
vy(mT)) = v{(1 + a’/2)mT)). (36e)

The above relation verifies that the NCE estimate is an accurate representation of the NCE,
except for the nonlinear phase-distortion factor in the numerator. Of course, when a = 0 (¢ = 0and
a’ = ag) the estimate is precise, provided the spectral energy of both signals falls within the spectral
window. (This results from the fact that no Doppler compensation has been employed. The nonlinear
phase-distortion is due solely to the convenient method chosen for Doppler compensation.) When
m,/B~1y is equal to —¢,/B; (~1/2 € ¢ < 1/2) and ag—gB,/2Mf, is equal to B,/ 2M/,
(=1/2 € ¢€; < 1/2), the estimate will maximize and equals
vi{mT)) vy(mTy)

1 » -
bl 77 . MY, iwmao=3n

x, (r.a) = I<R,e
[}

>| (37)
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where
Ry = lug(mTD Y <|ug(mT)|*> = AX(mT)/ <A mT)> (37b)
r=10— /By -1/2<€ ¢, < 1/2) (37c)
a=aq— €,8,/]2Mf, -1/2< e < 1/2) (37d)
vi(mT) = v{(m + €/2)T)) 37¢)
and
vy(mT) = v{(l + ag/2)mT}}. (37f)

Except for the three exponential degradation factors, the above estimate is equal to one (the
desired value). The first two exponential factors degrade the estimate as a consequence of sampling the
NCE function at discrete points along the r and a axis of the ambiguity plane. This results in a two-
dimensional scallop loss (in the estimate) over the ra-plane. When €, and ¢, are zero, these factors
reduce to one. The third exponential factor degrades the estimaie as a consequence of the imperfect
method of compensating for time scale-factor compression (or expansion) in the algorithm. The design

considerations which may be employed to limit the degradation of the NCE estimate will now be
addressed.

Expected Degradation of the NCE Estimate

The NCE estimate given by Eq. (37) is a function of the variables ¢, €, ay, v, and A, and the
design parameters M and B,. The variables ¢,, ¢,, and v are zero-mean random processes, while A4 is
either constant or is comprised of a mean value with a random component (over the analysis interval).
For purpose of the analysis to follow, it will be reasonable to assume that the random processes are all
ergodic and statistically independent.

A study of Egs. (36) and (37) reveals that the amplitude function 4 (mT,) can significantly
influence the NCE estimate if this function is highly unstationary. For example, suppose that 4 (mT),)
for a particular m is much greater than M times the value for the remainder of the set of m. In this
event, the value of the NCE estimate given by Eq. (36) will approximately equal one regardless of the
phase variation over m. This is a nontrivial problem and has occurred in practice in connection with
transient signals of short duration (comparable to the sample period T,). It can readily be perceived
that the effect of relatively high-level transient bursts in the amplitude level is to shorten the effective
(or useful) integration time of the NCE estimate. This in turn reduces (rather than increases) the
degradation effects under consideration. Consequently, to obtain a useful measure of the degradation
effects of the phase parameters under consideration, the amplitude parameter R,, will be considered as
constant over the integration time. This procedure will maximize the phase misalignment degradation
effects of the NCE estimate, which is of primary concern in this paper. Therefore letting R,, = 1, the
expected degradation will be determined for each of the three factors in Eq. (37) separately.

Degradation Due 10 Sampling Error €,

Consider first that ¢, and ag are both zero. The value of the NCE estimate due to the error ¢,
becomes (23]

M-l B,
%, (o ~eBf2Mf) = L Vg U
*o M me—-M/2

sin (e;w/2) _ sin (wey2) ‘.
T Msin ew/2M) | wey2 < 7 un (w/4) = 0.90. (382)

20

g e e e

T AU Tyt Wl 3, KNI

PR

i BB RO R

= e

mr ey

¥
13
4
¥



NRL REPORT 8438

Thus, the expected degradation due to imperfect o alignment will be less than about 0.91 dB. Further,

since the probability density function for ¢, will be constant over the range —1/2 € €, < 1/2, the
expected degradation (averaging over €,) will be

172 sin (mwe,/2) Si(w/4)
f T e

) de; = /4 = 0.96 (—0.33 dB). (38b)

Thus, the increment sample size along the a dimension appears to be suitably chosen for practical
applications.

Degradation Due to Sampling Error €,

Consider next that ¢, and ag are both zero. Assuming that 1 << M, the NCE estimate may be
closely approximated as

- 1 M20' eey (mT B
% (.0) = l__ 2 e: mew (mTy Jl
ko M . Sy

T/2
1 i2new )/ B
= l--T—-r—r/zel T arl

1 127) et
-3 ‘f—m cos [2mew (1)) Bj)dt + :f_msm [27ew(1)/B))ar]. (39a)

Since v (1) is a zero-mean function over the analysis interval, the imaginary term of the NCE estimate
will be near zero and the real term can be expected to dominate over the permissible range of €, and
v(t). Although the expected value of the imaginary term will be zero, it does not follow that the
expected value of the NCE estimate will be determined by the real term alone. However, it does follow
that a lower bound on the expected value of the estimate can be determined by using only the real

term. And as long as the real term does not become small compared to one, it will closely approximate
the true expected value of the estimate. Thus,

x (r,0) > I-!-fm cos [2 (1)/B,ldt| (39b)
Xko ’ = T -1 S TE W 7] .

And letting p, (v) be the probability density function of v and assuming that p,(—v) = p,(»), the lower
bound on the expected value of the NCE estimate (when ¢ is given) is

E(iko(r.o)l 2 2_‘;“01;(0)008 Qnew/B))dv = zj;mp“(g)coso d0 (39¢)

where 0 = 2"([!’/8} and pp(O) - (BJ/21TE|)p,(Bﬂ/2ﬂ’¢|).

The above relation has been solved for three probability density functions, and the results are
tabulated in Table 3. The first probability density is the case where » is uniformly distributed over a
dbandwidth B,. The second is a Gaussian function whose standard deviation is limited to a maximum of
B)/4. (The bandwidth B, is the information bandwidth of the signal (see Ref. 30, pp 229-236).) The
probability density for the third case is realized when » is a sinusoidal fluctuation whose peak-to-peak
frequency excursion is uniformly distributed over the bandwidth B, [33).*

*The three probability density functions considered here. as well as a number of other distributions, may be found in Ref. 33.

This earlier work demonstrates that the coherence degradation will depend essentially on the standard deviation of the # variable
(and be relatively independent of the probability density function) when , is less than one.
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Table 3—Probability Density and Expected NCE Estimates
Relating to the Sampling Error ¢,

PROB. DENSITY p,(») o,/B, El)}ko(r.O)]

| /B, 1123 sin (we,B,/B))

() < B,/2) B, < B meiB./B,

%—e""” 82 VN
2 v e—.u,a,/p,)’

(Iv! < B,/2) B, < Vn/8 B,

B +\’ ! i BJ ne,B /8,
75, "= LI I o AT
3
”2
(vl € B,/2) B, < B, = e—ﬁ(qa,/a,)’

From the table one can observe that the expected degradation will depend on B, and the distribu-
tion of » over B, as well as the sampling error €,. For |e,| = 1/2 and B, at its maximum permitted
value, the lower bound of the expected degradation in each case will be: 0.637 (-3.92 dB) in case 1,
0.735 (-2.68 dB) in case 2, and 0.814 (-1.79 dB) in case 3. Since the error €, will be uniformly distri-
buted over the range -1/2 < €; < 1/2, the expected degradation due to this cause in each case (averag-
ing over ¢;) will be limited to

Si(mB,/2B)) Si(w/2)
7B./2B, < w/2 0.873 (-1.18 dB),
and
.\/-B’ (~Z= —)sz-\/_ f( o) = 093 (<059 dB),
erf 4‘/. er,
where the error function erf (z) is defined as (Ref. 24, pp. 295-300) -

erf (2) = % J;:e"z

This amount of degradation appears tolerable for practical application. However, the expected
degradation can be further reduced by sampling the one channel at twice the Nyquist interval and inter-
lacing the sample sets in Eq. (30) as described earlier. In this event, Table 3 will still be applicable with
the understanding that ¢, is limited to = 1/4.
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Degradation Due 1o Imperfect Doppler Compensation

Finally, consider that €, and ¢, are both zero. Assuming 1 << M, the NCE estimate in this
situation may be written

- 1 M/2-1 —idnagmT wy(mT;)

¢ ag) = | — amlywyimly
% xko('ro ag) = | M, Z, |

- T2 T/2
g = lrlf_mcos Rragv()]dr + if_msin 2magty (1))dr]
L
X /2

% > I-!T-_f_mcos Quragw ()del, (40)

where T = (M—-1)T = (M —1)/B,. Again, letting p,(v) be the probability density of » and assum-
ing that p,(—v) = p,(v), the lower bound on the expected value of the NCE estimate becomes

- ™
E{iko(ro.ao)] 2 iTj:) py(v)lj; cos 2nag tv)dt|dy

sin (wrayTv)

- !

-21; ».0)| way Ty ldv ;

;

in ( Tv) f

o v :

>2f p0) f";—::';v—a» g

1 )

-fn j; p, ) cos (raoTvx)dvldx. (1)

i
i

One may recognize that the inner integral in Eq. (41) is identical in form to Eq. (39c). Conse-
quently, the results given in Table 3 will be applicable to this case provided aoB8, Tx/2 is substituted for
€,B,/B;. The lower bound on the expected values of the NCE estimate (for the three given probability
densities) may therefore be computed as

Si(mragB, T/2)
magB, T/2 ° (42a)

TP 3 o R SRR T I,

erf(\maoB,T/2)
@B, T . (42b)

and

erf (waoB, T/4/3) )
JraoB, T/IN3 ¢ '

Since the above expectations are derived from ensemble averages for the random variable » (1), it
will be informative to determine the error in the NCE estimate for specific examples of »(¢) for com-

parison purposes. Two examples are chosen which produce rather severe degradation on the estimate.
In the first example let

THITVINt WA

v()=xB/T (-T/2€ 1€ T/2) (43a)
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and in the second example let
+BJ/2 (Hor0<t£T/2

In the first example, the frequency varies linearly from ¥ B,/2 to + B,/2 over the integration period T.
This is representative of what can occur in practice. However, it is a severe example in that » (¢) is per-
fectly correlated with the integration variable ¢ (which will maximize the degradation due to the linear
frequency slide). In the second example, the frequency »(r) remains fixed at + B,/2 for one-half the
integration time and then flips to the negative value for the remainder of the integration period. This is
an extreme case which will be approached infrequently in practice. However, it will provide a suitable
upper bound on the expected NCE degradation.

Employing the two specific examples in Eq. (40) and carrying out the integration gives
C (road) ClaolB,T)
To, - e
x"o 00 JVIa B, T

for the first example, where C(-) is the Fresnel cosine integral of the indicated argument (Ref. 24, pD.

300-304), and
. sin (rayB, T/2)
xko(‘ro. ao) - WaoB, T/2 ' (“b)

for the second example. Graphs of these functions along with those given in Eq. (42) are shown in
Fig. 6.

(44a)

The curves (Fig. 6) illustrate that the value of ayB, T should be limited to about one if excessive
degradation due to imperfect Doppler compensation is to be avoided. Since all of the curves are above
-1 dB for aoB,T equal to (or less) than 0.5, this value would represent a conservative choice for
agB,T.* Therefore, a reasonable upper bound on the integration parameter M is (from Eq. (31))

1 B
M < m B, +1, (45a)

And since the Doppler ratio ag is Avy/c, where Avg is the difference in source speed along the propaga-
tion paths to the two signal sensors and ¢ is the signal propagation speed in the transmission medium
(30}, ’

M<—L£’—+l>

Tavel B, (45b)

C
-— 4 1.
|Avo|

In the case of underwater acoustic applications, c¢ is approximately 2880 knots. Assuming a source-
speed differential of 10 knots, a suitable bound for M is less than or equal to 288 B,/ B,.

SUMMARY AND CONCLUSIONS

Although the Fourier Transform of a temporal function is normally used to decompose the func-
tion into its complex spectral components, the sectionalized Fourier Transform (SFT) may be employed

*W.H. Marsh {19] has recommended that agB, T be limited to less than 0.25 in connection with the MSC estimate. However this
appears to be uitra-conservative in light of the results displayed in Fig. 6.
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Fig. 6 — Coherence degradation due to imperfect Doppler compensation
as a function of a,B,7T. (Curves labeled 1, 2, and 3 result from assuming
the corresponding probability densities given in Table 3)

in a manner which preserves the temporal properties of the original signal. It has been demonstrated
that when a contiguous sequence of J SFT spectral bins is appropriately summed (J typically being a
small number), the resulting transform of a bandlimited signal is equivalent to basebanding, filtering,
and sampling the signal in the time domain. The value of J may be chosen to control the passband and
leakage characteristics of the filter (see Figs. 1-4).

With the advent of the FFT algorithm and modern array processors, use of the SFT to baseband,
filter, and sample signals considerably simplifies the programming of multidimensional correlation pro-
cessors in practical applications. Further, using the ambiguity kernel as an approximation of signal time
compression (or expansion), the FFT algorithm is applicable to correlation mapping along the Doppler-
ratio axis of the ambiguity plane. The resulting error has been shown to be negligible when the product
of the signal bandwidth and the correlator integration time is less than the inverse of the maximum
Doppler ratio being employed. Using the techniques described in this paper (and modification thereof),
two-dimensional correlation mapping of low-frequency acoustical signals over long integration intervals
has been implemented for the NCE estimate (or the MSC estimate) well in excess of real time.

It may be concluded that the sectionalized Fourier Transform has many applications as an alter-

nate (and convenient) method of time-domain processing using modern array digital computers. Its
application is limited only by the sample rate which can be processed in the digital computer employed.
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Appendix
EXPECTED VALUE OF THE DISTORTION FUNCTION

From Eqgs. (3) and (5), the distortion function may be written in the form

Dp(gm.J) = -;—2 f_rr’:fz AnF ()T Tagy (Ala)
where
A = A, (mTy+ 0/ A,(mT)), (A1b)
Fmm L [ mT 4 0ax, (Alc)
I'4 0
and
F(t) = sin (wJt/Ty)/ sin (wt/ T,), (Ald)

and with the additional provisions that 4, (mT\) > 0 and + 1/2 is added to 8. when Jis even (as
described in the text following Eq. (5)).

The function F(r) is deterministic, while the functions A4,, and v ,, are comprised of sample func-
tions (4; and »,) drawn from ensembles (or sets) with common statistical characteristics. To
emphasize this fact, Eq. (Ala) is rewritten as

T2 i’n =
Doy = -%2- Jorp AmF 0O TEm Ty (A2)

where the subscripts jand k have been attached to the sample function 4, and v, to imply that a sam-
ple member from each ensemble {4} and {»,} is chosen in the computation of the distortion function.

The expected value of the above distortion function is obtained by computing the integral aver-
aged over the double ensemble of sample functions. In computing the ensemble averages it will be
assumed that the two sample sets are independent, and the sample functions A, and », from each
ensemble are both ergodic and stationary over the integration interval T,. (The condition of stationary
does not apply to the functions 4,,; and ¥,, which are constructed from A, and »,.) Restrictions on
the properties of 4; and », to qualify as a member of each ensemble will be determined as we proceed
with the analysis. (Basically, the members of each ensemble must be such that their interrelated power
spectral density is confined to fall essentially within the spectral window of J/T, Hz.) Under the stipu-
lated conditions, the expected value of the distortion function becomes

E\D,) = <Dp;> (averaged over j.k)

1 T BTy 12wt
- -Ef‘rﬂ<,4,,,,>f'(c)e Tl i oM™ s dr (Ala)

Letting p\(4,,1) and p,(¥,,.1) denote the time-variable probability densities of 4,, and ¥, respectively,
the respective ensemble averages can be written

<Au> = [ Aup\(4p.) A, (A3b)
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o ene e SOV

<‘1213,“I> - f_“pz(i.,..!)em;"'dv.. (A3c)

At this point it is important to realize that the restrictions on the member functions of the two
independent ensembles are interrelated. The functions (A,,;) are amplitude modulations of the carrier
functions exp{i2mw[8./T,+7,,)t). A member of this carrier set is exp{i2w [6./ T, +v )1}, where v is
the extreme limit of a slowly varying fluctuation frequency. Therefore, since any dynamic variation in
the sample function A4,; will produce equal sidebands of power on either side of the carrier frequency
8./T, + vy." the carrier frequency must be restricted to lie sufficiently well within the spectral window
to accomodate the amplitude modulation sidebands. On this basis it is evident that when J is one and
1 8. = 1/2, A, must be essentially constant over T, if the distortion function is not to become exces-
sive. On the other hand, when Jis large, the parameter 3, will not play a significant role in restricting
the members of the ensembles. Consequently for 1 << J, the spectral window need be only
sufficiently broad to accomodate both the maximum deviation in the frequency fluctuation »(r) and the
spectral sidebands introduced as a consequence of the amplitude modulation (if significant distortion of
the resulting transformed signal is to be avoided).

R e T e R

‘ ', Since the two ensembles of sample functions are assumed independent, it will be convenient and
1 appropriate to treat the amplitude and frequency fluctuation problems separately.

Expected Distortion Due to Frequency Fluctuations

Eor iR e

N

, Consider first that the functions {4,(mT, + 1)} are essentially constant over time increments of T,
3 seconds such that the ensemble {4, is unity. Considering then the broad class of ensemble functions
i ¥ i, it is reasonable to assume that for every member function there exists a member function which
has its negative time characteristics. This is equivalent to assuming that p,(v,,, — 1) = p,(¥,.1). With
these considerations, Eq. (Ala) reduces to

2 TY? poo - sin (wJt/Ty) - _
E\D,) T j; I__ Pr(¥ 1) m cos (27w (8, + Tw )1/ T))dv ,di (A4)

VTP e S URP AW R o s

It is well to note that the maximum time we need be concerned with is T5/2. However, the mag-
nitude of the Dirichlet kernel decays rapidly for ¢ greater than T,/2J = T,/2. Consequently, the
significance of p,(» ,.1) becomes increasingly less beyond ¢ = T/2.

e e

Since ¥, is the running-time average of v, (mT, + ¢), its probability density function wil' depend
on the dynamic characteristics (or power spectrum) of v(¢) as well as on the smoothing time ¢ It -
should also be apparent that the peak magnitude of ¥,, cannot exceed the peak magnitude of
vi(mT+1) (that is, [v] € lv,(mTy+¢)]). When ¢ is sufficiently small so that v, (mT;+1) is
approximately equal to v, (mT,) + »,(mT,) ¢t over all members of the ensembie, the probability density
of v, will approximate the probability density of ». On the other hand, when ¢ is large, the probability
density of ¥, will be compressed relative to the probability density of ». This is evident since the aver-
age of a rapidly varying zero-mean function approaches zero over relatively long time intervals.

To exemplify the above consideration, let
vi(mT + 1) = yysin Q2mpt + ¢,')

wighies

*M. Schwartz, W.R. Bennett, and S. Stein, Communications Svstems and Techniques, McGraw-Hill Book Co.. N Y., 1966, pp. 173-
176.
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where » )y, is the frequency deviation (v, € B,/2 = J/2T,) and p is the modulating frequency. Then

- 1 r' i .
Vi (1) = TJ; vi(mT, + x)dx = vy, &ﬂaﬂ sin (wpt + ¢,,)

- S“'T:F vo(mTy + 1 = 1/2).

Thus, ¥ . is a delayed (by the amount ¢/2) and compressed version of the function v, (mT, + ¢). The
ratio » 4/p is known as the frequency modulation index of the process, and the resulting signal spectral
energy can be expressed in terms of Bessel functions.® To prevent significant spectral energy of the sig-
nal from exceeding the passband of the spectral window, this ratio should be no greater than /2.t
This places an upper bound on the modulating frequency p of 2v /7w € B,)/w.

Using the upper bound for p, the function v, becomes
sin (2» mt )
vyt

Vo (1) = vi(mT, + ¢ = t/2),

and for |¢| less than or equal to T,/Z, the compression factor is
sin (2w ) sinvy T,
1Y Ml) vuT,

< 2sin (1/2) = 0.96.

e T v O TR

Thus, in the extreme case (for p maximum allowable), the probability density for ¥, will be approxi-
mately the same as the probability density for », within the primary lobe of the Dirichlet kernel. The
maximum rate of change of v, (mT, + 1) is 2wpvy < v} < B} = J¥ T} This rate limits the change
in v, (mT, + 1) over the period of T, seconds to less than the spectral window width of B, Hertz (or
equivalently, » T < 1). Little error will therefore result in assuming that the probability density of &,
is the same as the probability density of v over T,.

[T

IR o 1 TR, * T e, Xy T

As a consequence of the above analysis, Eq. (A4) will closely approximate (using Eq. (6a))

E(D,} = f 2w )f ss':; ((”'?//22)) cos (w8, + Tyw)tldidy

= [T IW)6, + Tadav, (AS)

where p, (v) is the probability density function for » and W,(---) is the spectral window function for the
indicated argument.

The expected value of the distortion function is therefore the weighted value of the magnitude of
the spectral window function (see Figs. 1 and 2 of main text). The weighting functior.is the probability
density function for the fluctuating frequency ». When J > > 1, W,(x) is approximately equal to one
over the spectral window passband. Therefore if p,(v) is zero for lv] > B,/2, the expected value of
the distortion function is essentially unity.

ap cit., pp. 225-228
op cit., pp. 120-121
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Expected Distortion Due to Amplitude Fluctuations

To study the expected distortion due to amplitude modulation we shall consider that v (mT, + 1)
is constant over —Ty/2 € t € T2, and let x,, = 8. + Tw(mT,). The ensemble average will be
taken only over j holding k fixed, so that Eq. (A3a) becomes

E(D,) = <D,;> (averaged over j)

_1 f Ty? <d,> sin (wdt/ Ty o 2mt! T2 gy
T, J-T)2 "7 sin (w1 Ty)

To proceed, it will prove convenient to perform the ensemble averaging in steps. First, it may be
assumed that for every member function A, there exists a complement member function with nega-
tive time characteristics. Thus, the average of the member and its complement is an even function of
time. As a consequence, the expected value of the distortion will be real and we need carry the averag-
ing process only over even functions of time. The symbology 4,,; will henceforth be used to represent

an even function of time, with the understanding that the first step of ensemble averaging has been
effected.

(A6)

Next, let 4;(mT, + 1) be written as Ag;[1 + a,;(1)], where Ay, is the mean value over the time
interval T, and q; is a zero-mean function greater than —1 over this interval. Then 4, takes the form
(1 + a,())/[1 + a;(0)]. Over the time interval T, a,(1) may be expanded into the Fourier series

P
ai(t) = Y b, cos Qmwpt/T,)
where o=t

P
ai(O)- 2 bjp > -1

p=1

Since no significant spectral energy will be permitted to fall outside of the spectral window, the

ensemble of functions a; to be considered will be limited to those whose upper limit P is restricted by
the relation

P S J/2— lXM|

where {xy/| is the maximum excursion of the frequency fluctuation x,,. This informs us that when Jis
either less than 2 or x| is J/2, no significant amplitude modulation can be permitted without serious
distortion of the resulting transformed signal. If one-half of the spectral window is reserved for fre-
quency modulation, P will be limited to values less than J/4.

With the above considerations then, Eq. (A6) reduces to

P
1+ Y b, cos (wpt)

! p=1 sin (wJi/2)
EiD,) = < J; 1+ a0 sin (r1/2) cos (wx,)dt >
i P
- < | 2 bllplwl(xm +p) 2 bijp1 >, (A7)
p=-P po—P

where b,y = 2 and W,(--) is the spectral window function (defined in Eq. (6)) for the indicated argu-
ment.

The above relation shows that the expected signal distortion due to amplitude fluctuations will be
dependent on the flatness of the spectral window over the passband. Thus, when J is sufficiently large
so that the spectral window can be assumed to be unity over the passband, Eq. (A7) reduces to one.

® 0.8.G.P.0, 720-363/1302-25
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