AN EXTENDED SEMANTIC DEFINITION OF PASCAL FOR PROVING THE ABSENCE-ETC(U)
LEVEL
AN EXTENDED SEMANTIC DEFINITION OF PASCAL FOR PROVING
THE ABSENCE OF COMMON RUNTIME ERRORS

by
Steven M. German

Research sponsored by
Advanced Research Projects Agency
and
Rome Air Development Center

COMPUTER SCIENCE DEPARTMENT
Stanford University
Report Title: An Extended Semantic Definition of Pascal for Proving the Absence of Common Runtime Errors

Type of Report & Period Covered: Technical, June 1980

Performing Organization Name and Address:
Department of Computer Science
Stanford University
Stanford, California 94305 USA

Controlled Office Name and Address:
Defense Advanced Research Projects Agency
Information Processing Techniques Office
1400 Wilson Avenue, Arlington, Virginia 22209

Distribution Statement:
Approved for public release; distribution unlimited.

Abstract: (see other side)
We present an axiomatic definition of Pascal which is the logical basis of the Runcheck system, a working verifier for proving the absence of runtime errors such as arithmetic overflow, array subscripting out range, and accessing an uninitialized variable. Such errors cannot be detected at compile time by most compilers. Because the occurrence of a runtime error may depend on the values of data supplied to a program, techniques for assuring the absence of errors must be based on program specifications. Runcheck accepts Pascal programs documented with assertions, and proves that the specifications are consistent with the program and that no runtime errors can occur. Our axiomatic definition is similar to Hoare's axiom system, but it takes into account certain restrictions that have not been considered in previous definitions. For instance, our definition accurately models uninitialized variables, and requires a variable to have a well defined value before it can be accessed. The logical problems of introducing the concept of uninitialized variables are discussed. Our definition of expression evaluation deals more fully with function calls than previous axiomatic definitions.

Some generalizations of our semantics are presented, including a new method for verifying programs with procedure and function parameters. Our semantics can be easily adopted to similar languages, such as ADA.

One of the main potential problems for the user of a verifier is the need to write detailed, repetitious assertions. We develop some simple logical properties of our definition which are exploited by Runcheck to reduce the need for such detailed assertions.
An Extended Semantic Definition of Pascal
for Proving the Absence of Common Runtime Errors

by Steven M. German

We present an axiomatic definition of Pascal which is the logical basis of the Runcheck system, a working verifier for proving the absence of runtime errors such as arithmetic overflow, array subscripting out range, and accessing an uninitialized variable. Such errors cannot be detected at compile time by most compilers. Because the occurrence of a runtime error may depend on the values of data supplied to a program, techniques for assuring the absence of errors must be based on program specifications. Runcheck accepts Pascal programs documented with assertions, and proves that the specifications are consistent with the program and that no runtime errors can occur. Our axiomatic definition is similar to Hoare's axiom system, but it takes into account certain restrictions that have not been considered in previous definitions. For instance, our definition accurately models uninitialized variables, and requires a variable to have a well defined value before it can be accessed. The logical problems of introducing the concept of uninitialized variables are discussed. Our definition of expression evaluation deals more fully with function calls than previous axiomatic definitions.

Some generalizations of our semantics are presented, including a new method for verifying programs with procedure and function parameters. Our semantics can be easily adopted to similar languages, such as ADA.

One of the main potential problems for the user of a verifier is the need to write detailed, repetitious assertions. We develop some simple logical properties of our definition which are exploited by Runcheck to reduce the need for such detailed assertions.

This research was supported by the Defense Advanced Research Projects Agency under contract MDA903-80-C-0159 and by the Rome Air Development Center under contract F30602-80-C-0022.
1. Introduction

In most programming languages, there are various undefined conditions and illegal
operations such as arithmetic overflow and array subscripting out of range. We call
these conditions runtime errors because they are violations of language or
implementation imposed restrictions on program execution. Current compilers do not
attempt to detect runtime errors during compilation, though they commonly insert
special code to test for certain errors during execution. This approach is costly in
execution time and compiled program size, and of course gives no assurance that a
program will run to completion.

The occurrence of a runtime error may depend on the values of data supplied to a
program. For this reason, any technique for assuring the absence of runtime errors must
be based on some method for specifying programs. Showing the absence of runtime
errors is thus a natural problem in program verification.

We have been developing an automatic verifier for proving the absence of runtime
errors in the language Pascal. The Runcheck system takes as input a Pascal program
with entry, exit and optional invariant assertions, and proves that the specifications are
consistent with the program and that no runtime errors can occur. Invariant assertions
are not required in many cases because the system is able to generate simple invariants
automatically, but more subtle invariants must be supplied by the user. The system
currently checks for the following kinds of errors: accessing a variable that has not been
assigned a value, array subscripting out of range, subrange type error, dereferencing a
NIL pointer, arithmetic overflow, division by zero, control stack overflow, exceeding
heap storage bounds, and UNION type selection errors. The verifier and our semantic
definition of Pascal do not yet include REAL or SET types, but pointers are permitted.

Obviously, the notion of runtime error does not include every kind of programming

\[1\] The language accepted by the verifier includes verifiable UNION types instead of Pascal's variant records. Refer to [3] for a
discussion of the problems of variants and the details of our UNION types.
error. The runtime errors for a language are the conditions under which programs cannot continue to execute or continued execution would give undetermined results. For a program to be useful, one needs to know more about it than that it does not have runtime errors. Consider a program which is intended to copy a list made of pointers and records; it can have an error which causes it to produce the wrong result without any runtime errors in the sense we are using. Runcheck makes it possible to verify such a program at several levels of detail. For the least detailed verification, the program is submitted to Runcheck without additional specifications related to list copying. In this case, Runcheck attempts to prove only that the program is free from runtime errors. In general, it may be necessary for the user to supply some specifications and invariants even at this level of detail. For instance, the program may have a control stack overflow unless the input is acyclic. User supplied invariants would be needed in case the simple invariants generated automatically by the system are not sufficient to prove absence of runtime errors. A more detailed verification could be obtained by adding specifications saying that the result of the program is a copy of the input. An even more detailed verification could establish bounds on the performance of the program, such as the maximum number of times each statement is executed as a function of the input [10].

The purpose of Runcheck is to automate the routine aspects of the least detailed verifications, while still allowing the user to supply additional information for more detailed verifications. Thus although Runcheck is primarily used to perform shallow verifications, it provides a general logical framework for proving detailed properties. Every program verified by Runcheck is assured to have, as a minimum, the property that no runtime errors can occur if the entry assertion is satisfied.

This paper is concerned with an extended axiomatic definition of Pascal, which is the logical basis of Runcheck. The extended definition is similar to the familiar Hoare axiom system [6], but it takes into account certain restrictions on the computation that have not been considered in previous axiomatic language definitions.
Although the details of our semantic definition refer specifically to Pascal, most of the ideas are broadly applicable. The runtime errors which exist in Pascal are also present in many other languages, and the ideas in our semantic definition can be adopted to other languages with additional kinds of errors. ADA [7] is an especially interesting case; it should be possible to define much of the language by generalizing our definition of Pascal. For instance, the problem of generalizing our definition to allow dynamic subrange types is discussed briefly in section 8.1.

Our axiomatic definition of Pascal consists of some first order theories plus axioms and inference rules for reasoning about programs. One of the first order theories concerns a predicate, DEF(x), which is true of expressions having a well defined value. The other first order theories are familiar ones such as arithmetic. Runcheck is more than a direct implementation of these logical components; a practical program verifier should provide as much assistance as possible, e.g., in generating inductive assertions. All of the example programs discussed in this paper have been handled completely automatically by the system.

Practical results with Runcheck have been reported in [2]. An earlier approach to formalizing the extended semantics is presented in collaboration with D. Luckham and D. Oppen in [4].

The theorems in the Hoare axiom system are of the form, $P(A) \rightarrow Q$. Intuitively, this formula states that if P holds before executing a program A, then if and when A terminates, Q will hold. In [5,6] and elsewhere, the relation $P(A) \rightarrow Q$ is taken to be true if there is a runtime error in executing A. Hoare chose to make the interpretation that if an error occurred, the effect of the program would be "undefined," as if the program had failed to terminate.

In our extended semantics, $P \parallel[A] \rightarrow Q$, is defined to mean that if P holds, then A executes without runtime errors, and if A terminates Q will hold. Since virtually all programs are intended to execute without runtime errors, a proof of $P \parallel[A] \rightarrow Q$ is much more useful
than one of $P \{A\} Q$, from a practical point of view. If it is possible to verify the absence of runtime errors in a program, the implementation can omit the usual runtime error checking code — an increase of efficiency without loss of reliability. Also, the extended semantics is a convenient system for showing the absence of certain errors in programs that are not intended to terminate.

Our proof system is general purpose in that any partial correctness specification can be expressed by choosing P and Q. Absence of runtime errors is proven together with other properties. There are other possible formulations; one could develop a proof system based on statements of the form $\text{SAFE}[P, A]$, meaning that if P holds beforehand, then A executes without runtime error. The disadvantage of such a system is that proofs of the absence of runtime errors often require lemmas about more general properties of the program.

For example, consider a simple program which searches in an array A for an element equal to KEY. The elements are stored in $A[1], \ldots, A[N-1]$. The fast linear search stores the key in the last position of the array A before searching, so that the search loop does not have to test whether the index has become greater than N. The result of the search is returned in the variable I.

Example 1: Fast Linear Table Search.

```plaintext
VAR N:INTEGER;
TYPE ARR=ARRAY[1..N] OF INTEGER;

PROCEDURE SEARCH(KEY:INTEGER; A:ARR; VAR I:INTEGER);
GLOBAL (N);
ENTRY DEF(N) & 1\leq N \leq \text{MAXINT};

BEGIN
   A[N]:=KEY;
   I:=1;
   WHILE A[I]=KEY DO I:=I+1;
END;
```

2 There are cases where the difficulty of proving absence of all runtime errors outweighs the additional benefit. A practical approach in such cases is to leave some errors unchecked.
This program depends on the fact that \(A[N] \) has the value KEY throughout execution of the loop. Otherwise, if the key was not found in \(A \), the loop would continue and attempt to access \(A[N+1] \), causing a subscripting error. It is necessary to prove that \(A[N] = \text{KEY} \) is an invariant of the loop, and in our extended semantics, such lemmas can be proven together in one step with the proof of absence of runtime errors.

The procedure SEARCH is presented to the Runcheck system with an ENTRY assertion stating that \(N \) has a value between 1 and MAXINT, the largest integer. The system is able in this case to verify absence of subscripting errors, arithmetic overflow, and uninitialized variable errors (the use of the value of a variable before it has been assigned a value), automatically, given only the ENTRY assertion and program text as shown in Example 1. In particular, the necessary loop invariants including \(A[N] = \text{KEY} \) are generated automatically without any effort on the part of the user. The reader is warned not to form an opinion of the system's capabilities on the basis of this small introductory example alone; a variety of more interesting programs have been handled by the system. Some of them can be found in section 7 of this paper and in [2].

This paper is divided into nine sections and two appendices. Section 2 contains important definitions, particularly the definitions of the language and notation of the extended semantics. Section 3 is mainly concerned with the predicate DEF, which is true of expressions having a well defined value. Section 4 presents some of the basic inference rules of the extended semantics. Section 5 presents a precise axiomatic definition of the evaluation of expressions in Pascal. In section 6, the definition of expression evaluation is used as the basis of a definition of Pascal statements, functions, and procedures. Section 7 develops some properties of the extended definition that are valuable when verifying actual programs. Section 8 discusses some generalizations of the extended definition, including a new method of verifying programs with procedure parameters. Following this is a discussion of our general conclusions. Finally, Appendix A gives details of the implementation of the extended semantics in Runcheck, based on the principles developed in section 7, and Appendix
B discusses the details of a definition of simultaneous substitution for disjoint Pascal variables.

2. Preliminaries

2.1 General definitions

\mathcal{T} reference class (see [11]), used to represent the set of values of a dereferenced pointer of type \mathcal{T}.

$\mathcal{T} \leftarrow \mathcal{P}$ value of the variable \mathcal{P} where \mathcal{P} has type \mathcal{T}. Throughout this paper, first order language terms of the form $\mathcal{R} \leftarrow \mathcal{P}$ will denote Pascal expressions of the form \mathcal{R}.

Any Pascal expression involving pointers can be translated into this notation, provided that the types of the pointer variables have been specified. For further details, refer to [11].

POINTERSTO(\mathcal{T}) set of all pointer values of type \mathcal{T}.

$<\mathcal{A}, [I], \mathcal{E}>$ value of the array \mathcal{A} after assigning the value \mathcal{E} in the Ith position.

$<\mathcal{R}, [F], \mathcal{E}>$ value of \mathcal{R} after $\mathcal{R}.F := \mathcal{E}$.

$<\mathcal{T}, \mathcal{P}, \mathcal{E}>$ value of \mathcal{T} after $\mathcal{P} := \mathcal{E}$, where \mathcal{P} has type \mathcal{T}.

Functions mapping Pascal expressions into types:

type(\mathcal{E}) the type of an expression \mathcal{E}.

indextype(\mathcal{A}) value is R if \mathcal{A} has type ARRAY[R] OF S.

Phrases used in a special sense:

The phrase simple variable is synonymous with both variable identifier and declared variable.

A selected variable is a component of a variable identifier (e.g. $\mathcal{A}[I]$ is a selected variable).

A Pascal variable is either a variable identifier or a selected variable [9].
2.2 Notation for Substitution

Simultaneous Substitution for Identifiers.

If \(P(X, Y) \) is a formula where \(X = [x_1, \ldots, x_n] \) and \(Y = [y_1, \ldots, y_m] \) are ordered sets of free variable identifiers, then \(P(A, B) \), where \(A = [a_1, \ldots, a_n] \) and \(B = [b_1, \ldots, b_m] \) are ordered sets of terms, stands for the result of simultaneously substituting the \(a_i \) for the \(x_i \) and the \(b_j \) for the \(y_j \) in \(P \).

If the set \(X \) of free variable identifiers of a formula \(P(X) \) is partitioned into subsets \(X_1 \) and \(X_2 \), then \(P(X_1, X_2) \) stands for \(P(X) \), and \(P(A_1, A_2) \), where \(A_1 \) and \(A_2 \) are ordered sets of terms, stands for the result of simultaneously substituting in \(P \) the terms in \(A_1 \) for the variables \(X_1 \) and the terms in \(A_2 \) for the variables \(X_2 \).

Substitution for a Pascal Variable.

\[P|_t^v \text{ where } v \text{ is any term denoting a Pascal variable, is defined recursively as follows.} \]

\[P|_t^x \text{ where } x \text{ is an identifier, stands for } P \text{ with } t \text{ substituted for } x. \]

\[P|_t^{v[i]} = P|_{(v[i],t)}^v \]

\[P|_t^{v,f} = P|_{(v,f,t)}^v \]

\[P|_t^{v\triangleright a} = P|_{(v\triangleright a,t)}^v \]

2.3 Disjoint Pascal Variables

Intuitively, two Pascal variables are disjoint iff an assignment to one of them cannot affect the value of the other. It is obvious that in languages with array subscripting and pointers, disjointness is a dynamic property — it depends on the values of variables. For instance, \(A[i] \) and \(A[j] \) are disjoint iff \(i \neq j \).

If \(v_1, \ldots, v_n \) are disjoint Pascal variables, it is possible to define the simultaneous
Disjoint Pascal Variables

substitution

\[p_1^{v_1} \ldots v_n t_1 \ldots t_n \]

of \(n \) expressions for \(n \) Pascal variables, in terms of the sequential substitutions defined above in 2.2. This definition and the formal definition of disjointness are needed only for the procedure call rules; details are presented in Appendix B.

2.4 Formulas in the extended semantics

The syntax of formulas is ordinary, and is included here mainly for reference. A formula is a pure first order formula. The syntactic category of program statements includes all executable Pascal statements plus some additional statements which are used only at intermediate steps during proofs. The new statement types, known as evaluation statements and assume statements, do not initially appear in programs, but can be introduced by certain rules during the course of a proof. Evaluation statements correspond to the action of evaluating an expression or computing the location of a variable. Assume statements are used by some of the proof rules to record previously justified logical assumptions at points within the body of an executable program.

Implicitly associated with each formula is a set of declarations of constants, variables, types, and defined procedures and functions, corresponding to a static scope in a program. The syntactic distinction between declared and undeclared symbols is made with respect to the scope. It is assumed that all name conflicts in the scope are removed by renaming.

\[\langle \text{variable} \rangle ::= \langle \text{declared variable} \rangle \mid \langle \text{undeclared variable} \rangle \]

\[\langle \text{op} \rangle ::= \langle \text{Pascal built in function} \rangle \]

\[\mid \langle \text{declared function sign} \rangle \]

\[\mid \langle \text{undeclared function sign} \rangle \]

\[\langle \text{term} \rangle ::= \langle \text{op} \rangle (\langle \text{termlist} \rangle) \mid \langle \text{variable} \rangle \mid \langle \text{constant} \rangle \]
Throughout the paper, we will distinguish between the type of an expression and its sort in the many sorted first order language. By the type of an expression, we mean its Pascal type according to the scope. By the sort of an expression, we mean its sort in the first order language. Except for subranges, the sort of an expression is the same as its type. Integer and integer subrange expressions are of sort integer. Similarly, expressions whose type is a subrange of an enumerated type have the same sort as the enumeration. A sort will be said to cover both the type with the same name and all subranges of the type.
Formulas in the extended semantics

To be well formed, a statement must satisfy the syntax and type requirements of the programming language [9]. Because of the correspondence between types and sorts, an expression satisfies the type requirements of the programming language iff it is a well formed term according to the sorts. A formula is a first order formula which may contain free occurrences of declared and undeclared variables. Each term or atomic formula whose outer sign is declared or Pascal predefined, must also satisfy the type requirements of the programming language.

2.6 Notation for the extended semantics

The axioms and inference rules in the extended semantic definition are actually schemes, or infinite sets of axioms and rules. In this respect, our system is no different from previous axiomatic definitions. When a scheme is applied, information from the program scope must be substituted in certain places. To specify the information that is to be substituted, we use a meta notation. An expression involving a function or predicate sign in *Bold Italic* indicates a term or formula to be substituted. Instances of the axiom or rule are formed by evaluating the italicized meta expression to produce a term or formula. For example, the rule for assignment to a whole variable is:

\[
P \left[\text{Eval } y\right] \text{ Inrange}(y, \text{type}(x)) \land Q \left[\frac{x}{y}\right]
\]

\[
P \left[\text{\textit{x := y}}\right] Q
\]

Consider a typical context:

```
TYPE s=1..500;
VAR g:s; h:INTEGER;
...
g := h+4;
```

Since g is a subrange variable, the assignment statement will cause a subrange error unless h+4 is in the correct range. *Inrange*(y, *type*(x)) is the notation for a formula which asserts that the value of y is in the range of the variable x. In the example
Notation for the extended semantics

context, the desired instance of the rule is:

\[
P \left[\text{Eval } h+4 \right] 1 \leq h+4 \land h+4 \leq 500 \land \text{Q} \left[h+4 \right] \quad \text{Q} \left[g := h+4 \right]
\]

2.6 Formula Constructing Functions

Inrange\((<\text{expression}>, <\text{type}>)\)

Inrange is a function mapping \(<\text{expression}> \times <\text{type}> \rightarrow <\text{formula}>\). The expression must be of a sort which covers the type.

if type is a subrange \(a..b\),

\[
\text{Inrange(expression, type)} \rightarrow a expression \land expression b.
\]

otherwise,

\[
\text{Inrange(expression, type)} \rightarrow \text{TRUE}.
\]

Disjoint\((<\text{Pascal variable}>, <\text{Pascal variable}>)\)

The function Disjoint maps a pair of Pascal variables into a formula \(I\) which is true iff the variables are disjoint. Refer to Appendix B for a detailed definition of Disjoint.

Disjoint-set\((<\text{set of Pascal variables}>))\)

For any finite set of Pascal variables, Disjoint-set constructs a formula \(I\) which is true iff all pairs of variables in the set are disjoint.

3. Theory of Definedness: The Predicate DEF

In order to introduce the possibility that a program variable can be uninitialized, we
assume the existence of an uninitialized scalar value, \(\Omega \). The value of a newly created program variable is unspecified. (This is explained more fully in section 6.3.) Before the program can use the value of a variable, it must assign the variable a fully initialized value: one such that none of its components is equal to \(\Omega \). The predicate DEF will be true only of these fully initialized values.

In the intended model of the first order theory of DEF, terms of a simple sort range over a universe of values including \(\Omega \). Values of compound sorts are built up by using the sets of simple values as components. For example, the possible values of a variable of sort ARRAY[a..b] OF INTEGER include arrays with some positions equal to \(\Omega \).

Axioms DEF1-DEF8 below describe the properties of DEF and of Pascal types.

DEF1) for every constant \(c \), DEF(c) is an axiom.

DEF2) if \(e \) is of an enumerated sort \((c_1, \ldots, c_n)\),
\[
\text{DEF}(e) \equiv e = c_1 \vee \ldots \vee e = c_n.
\]

DEF3a) if \(x \) is an expression of sort ARRAY[a..b] OF t,
\[
\text{DEF}(x) = (\forall i \in s \cap t \rightarrow \text{DEF}(x[i])).
\]

DEF3b) if \(r \) is of a Pascal record sort, and \(f_1, \ldots, f_n \) are the record field names,
\[
\text{DEF}(r) = \text{DEF}(r.f_1) \wedge \ldots \wedge \text{DEF}(r.f_n).
\]

DEF3c) if \(*t \) is of a reference class sort,
\[
\text{DEF}(*t) = (\forall p \in \text{POINTERSTO(*t)} \rightarrow (p=\text{NIL} \supset \text{DEF}(p=\text{NIL}))).
\]

DEF4)
\[
\text{DEF}(a) \land \text{DEF}(b) \supset \text{DEF}(a \circ b)
\]
where \(\circ \) is an operator in \{+, -, *, =, \neq, \leq, \geq, \land, \lor, \lnot\}

DEF5)
\[
\text{DEF}(a) \land \text{DEF}(b) \land b=0 \supset \text{DEF}(a/b) \land \text{DEF}(a \mod b).
\]

Axiom DEF6 defines equality for compound types:

DEF6a) if \(x \) and \(y \) are expressions of a record sort, and \(f_1, \ldots, f_n \) are the field names,
\[
x=y \equiv (x.f_1=y.f_1 \land \ldots \land x.f_n=y.f_n).
\]

DEF6b) if \(x \) and \(y \) are expressions of sort ARRAY[a..b] OF t,
\[
x=y \equiv (\forall i \in s \cap t \rightarrow x[i]=y[i]).
\]

The following two axioms are not normally needed for proving absence of runtime errors in programs, but are included for thoroughness:
The resulting theory of DEF is still not logically complete, e.g. because it does not say much about the undefined values. But we should not expect to find such details in a programming language definition. All of the properties needed for proving absence of errors in programs have been included.

3.1 Consistency of the theories of DEF and datatypes.

Each sort has some standard properties which must be included in the complete logical system. Proofs involving the integer sort appeal to the usual properties of integers etc. In the extended semantics, each sort ranges over a universe including some uninitialized values. This section is concerned with the question of how the presence of uninitialized values affects the theories of the sorts. One problem that could potentially arise is that the standard properties associated with a sort could imply that all its elements are DEF, contradicting axiom DEF7.

Consider the conjunction of axioms DEF1 and DEF7. Axiom DEF1 says that every constant symbol in the language corresponds to an initialized value. Axiom DEF7 asserts that there are values for which DEF is false. Obviously, these values cannot be named constants or terms built from constants. This raises the questions of consistency and of what the models of the sorts are like. In the extended semantics, each sort must

except for array sorts with no components, such as ARRAY[1..0] OF t.
have a theory whose models contain at least one unnamed element. This requirement is easily satisfied, but it must be taken into account in choosing axioms for each sort. For instance, axiom DEF2 permits the models of enumerated sorts to contain extra elements which are not DEF. Consequently, all finite simple and compound sorts have extra elements that are not DEF.

The extended semantics is intended to be used with a "standard" theory of the integers, and with standard theories of data structures with the selection and assignment operations [11]. Each of these theories has a standard model containing only the values for which DEF is true in the extended semantics. It would be possible to assure the consistency of the combined theories by restricting the axiomatization of data structures to values for which DEF is true. Under this approach, if $\forall x P(x)$, is a standard axiom for a certain sort, then $\forall x \text{DEF}(x) \Rightarrow P(x)$, would be chosen as the corresponding axiom in the extended semantics. The obvious disadvantages of this approach are that the axioms are more complicated and proofs would have to establish the truth of DEF for every term in order to apply sort axioms. We would like the extended semantics to have the same sort axioms as the ordinary system, so we choose to use the standard axioms of data structures and to take advantage of the existence of nonstandard models. For instance, since all of the standard integers have constant symbols, the models of our integer sort under the DEF axioms are the nonstandard models of arithmetic — models with extra elements. There is only one point that requires some care, and that is combining the theories of DEF and arithmetic. The "standard" theory of arithmetic must not contain the symbol DEF. If an axiom system for arithmetic is used, it must not contain DEF. For example, if the axiom system has an induction schema, instances involving DEF cannot be used. Without this precaution, the axioms would give a contradiction. Suppose that the induction scheme for integers is

$$\Phi(0) \land (\forall n \Phi(n) \Rightarrow \Phi(n-1) \land \Phi(n+1)) \Rightarrow (\forall x \Phi(x)).$$

(P)

Then from DEF(0) and DEF(n) \Rightarrow DEF(n-1)\landDEF(n+1) one could deduce $\forall x$ DEF(x), which contradicts axiom DEF7.
Consistency of the theories of DEF and datatypes.

Another approach is to use a special axiomatization of arithmetic that allows instances with DEF. One such scheme for induction on the integer sort is:

\[\Phi(0) \land (\forall n \Phi(n) \Rightarrow \Phi(n+1)) \Rightarrow (\forall x \text{DEF}(x) \Rightarrow \Phi(x)). \]

(8-P)

3.2 The relationship between DEF and Inrange

In Pascal, every subrange type is bounded by two constants, a..b. Thus according to the definition of Inrange, Inrange(x, s) implies DEF(x), if s is a subrange. This follows from the properties of the \(\leq \) ordering of the integers. For example, it is a theorem in the theories of integer ordering and DEF that

\[\forall x \,(1 \leq x \land x \leq 4) \Rightarrow \text{DEF}(x), \]

because the standard properties of integer ordering imply that

\[\forall x \,(1 \leq x \land x \leq 4) \Rightarrow (x=1 \lor x=2 \lor x=3 \lor x=4) \]

and each of these constants is DEF. Note, however, that

\[\forall x \forall y \forall z \,(\text{DEF}(x) \land \text{DEF}(z) \land x \leq y \land y \leq z) \Rightarrow \text{DEF}(y) \]

(3.1)

is not a theorem about DEF, because it cannot be proven from S-P, the special form of induction on the integers. Indeed, there are nonstandard interpretations of the theories of DEF and integers for which formula 3.1 is not satisfied.

Also note that it is not necessary for a variable to be Inrange if it is DEF: under the axioms of DEF, there can be a variable of a declared subrange type, whose value is both DEF and not Inrange. In the definition of \(P \llbracket A \rrbracket Q \), no program is permitted to assign a value to a subrange variable unless the value is Inrange. If \(P \llbracket A \rrbracket Q \) holds, a subrange variable can only be out of bounds before it has been assigned a value.

\[^4 \text{More flexible languages are discussed in section 8.} \]

The following two rules are included in both the unextended and extended definitions:

Concatenation of programs.
\[
\frac{P \{A\} Q, Q \{B\} R}{P \{A; B\} R} \quad \frac{P \{A\} Q, Q \{B\} R}{P \{A; B\} R}
\]

Consequence rule.
\[
\frac{P \{A\} Q, R, R \Rightarrow S}{P \{A\} S} \quad \frac{P \{A\} Q, R, R \Rightarrow S}{P \{A\} S}
\]

These rules will be used implicitly, beginning in the next section on the semantics of expression evaluation. Later, after \(P \{A\} Q\) has been defined, we will develop its logical relationship to \(P \{A\} Q\) in more detail.

5. Expression Evaluation.

This section introduces and defines *evaluation statements*. Evaluation statements have the forms

\[
\text{Eval} \langle \text{Pascal expression} \rangle \\
\text{Locate} \langle \text{Pascal variable} \rangle
\]

and in the extended semantics, they can be combined with Pascal statements and assertion statements to form the general statements which appear inside brackets in a formula \(P \{A\} Q\). Evaluation statements will be used in section 6 to define the conditions for error free execution of Pascal statements containing expressions and variables.

The statement \(\text{Eval} \, E\), corresponds to the action of evaluating the expression \(E\), which
Expression Evaluation.

may not have side effects. \(P [\text{Eval } E] Q \) is defined to mean that if \(P \) holds, then \(E \) evaluates without runtime error, and if \(E \) terminates then \(Q \) will hold. Since \(E \) does not have side effects, \(P \) and \(Q \) refer to states with the same values for variables. By having two assertions, it is possible to make partial correctness statements about function calls. For instance, if \(f \) is a (strictly) partial function,

\[
P(x) [\text{Eval } f(x)] Q(x, f(x))
\]

may be a provably true statement about the evaluation of \(f(x) \), while the pure first order statement

\[
P(x) \Rightarrow Q(x, f(x))
\]

would not be true since it does not account for divergence of \(f(x) \).

The other form of evaluation statement, Locate \(V \), corresponds to the action of computing the location of a variable. The difference between this and evaluating a variable is that to compute a location, all of the subscripts must be evaluated and all dereferenced pointers must be evaluated, but the variable itself need not have a value. For instance, to execute the assignment statement \(A[j] := e \), the subscript \(j \) must have a value in the correct range, but the left hand side \(A[j] \) is not required to have a value. The definition of \(A[j] := e \) is expressed in terms of Locate \(A[j] \), and Eval \(e \), since the right hand side must yield a value. The formula \(P [\text{Locate } V] Q \) is defined to mean that if \(P \) is true, then the location of \(V \) can be computed without execution errors, and if the computation terminates, \(Q \) will hold.

The exact meaning of expression evaluation is often a point of confusion in programming languages and definitions. The definitions presented here assume that sufficient restrictions are used to prevent side effects. Pascal [9] assumes a fixed order of evaluation within statements and expressions, so the final value of an expression is well determined even in the presence of side effects. It is a simple matter to replace a function definition which has side effects by an equivalent procedure definition, by adding a new VAR parameter to return the function value. Thus it is possible to
rewrite a Pascal program in which functions have side effects into an equivalent program in which function calls are replaced by procedure calls and all expressions are free of side effects. This transformation would convert the evaluation of an expression with side effects into a sequence of procedure calls involving some new variables to store temporary values. Since this transformation can be easily mechanized, our Pascal semantics are indirectly applicable even to programs with function side effects.

If runtime errors are not being considered, as in the original Hoare axiom system, function calls without side effects can be defined by the following rule,

\[I_f(X_1, \ldots, X_n, G) \{ \text{Function } f(X_1:t_1; \ldots; X_n:t_n):t_f; B \} \ O_f(X_1, \ldots, X_n, G), \]
\[P \{ \text{Eval } A_1; \ldots; \text{Eval } A_n \} I_f(A_1, \ldots, A_n, G) \land (O_f(A_1, \ldots, A_n, G) \Rightarrow Q) \]

\[\text{---------------------------------} \]
\[P \{ \text{Eval } f(A_1, \ldots, A_n) \} Q \]

which states that evaluation of \(f(A_1, \ldots, A_n) \) can be reduced to the evaluation of \(A_1, \ldots, A_n \) in order, followed by the application of \(f \), if \(I_f \) and \(O_f \) are shown to be valid entry and exit assertions for \(f \). \(G \) is the set of read only global variables, and \(B \) is the body of the function \(f \).

A fine point to be considered at the practical level is that some compilers change the order of evaluation within expressions if there are no side effects. If the evaluation of an expression terminates, it terminates with the same result under all orderings. Since the truth of \(P \{ \text{Eval } E \} Q \) depends only on whether evaluation of \(E \) terminates and the value of each subexpression, all orders of evaluation are equivalent with respect to \(P \{ \text{Eval } E \} Q \). The truth of \(P \{ \text{Eval } E \} Q \) can be determined by choosing any possible ordering and considering whether it is true for that ordering. Rule F1 above, depends on choosing one ordering. Thus F1 is correct even if there is reordering.

The situation is different when proving absence of runtime errors. Then, different possible orders of evaluation must be considered separately. For instance, an expression such as \(f(x) + a[i] \) might have a runtime error if \(i \) is out of range. If \(f(x) \) is evaluated first and does not terminate, the error cannot occur. But if the order is changed and \(a[i] \)
Expression Evaluation.

is evaluated first, the error could occur. Since different orders of evaluation can give different results, we define \(P \llbracket \text{Eval} \rrbracket Q \) to be true iff every order of execution is error free and \(Q \) will hold after every terminating execution.

Another complication is the possibility of short circuit evaluation in Boolean expressions. In evaluating an expression such as \(r \text{ AND} s \), when the value of \(r \) is False, Pascal permits compilers to omit the evaluation of \(s \). The expression \(r \text{ AND} s \) is assumed to have the value False because \(r \) is False. Observe that if \(s \) does not terminate or if it has a runtime error, the short circuit has a different partial correctness semantics from full evaluation. For example,

\[
P \llbracket \text{Eval} \ r \text{ AND} s \rrbracket \text{False}
\]

may be true for full evaluation but not for short circuit. Short circuit evaluation is really a form of branching within expressions. The axiomatic definition assumes that full evaluation is used. Some languages, such as ADA, permit short circuit evaluation in certain contexts but require the user to explicitly request it. This seems to be a cleaner approach, and we show below (rule E3S) how it can be formalized in the extended semantics.

In summary, our detailed semantic definition of Pascal statements will be based on partial correctness assertions about evaluation of expressions and variables. It is argued that even in the absence of side effects, the definition of expression evaluation should as a practical matter account for possible variations in the order of evaluation. We will give an axiomatic definition that does not assume any fixed ordering. On the other hand, function call rule F1 can be used if evaluation order is fixed, or if runtime errors are not considered.

The rules defining \(P \llbracket \text{Eval} \ e \rrbracket Q \) are as follows:
Expression Evaluation.

Expression evaluation.

\[
P \models \text{Locate } V \models \text{DEF}(V) \land Q
\]

\[
\text{(E1)}
\]

\[
P \models \text{Eval } V \models Q
\]

(V is any Pascal variable.)

\[
P \models \text{Eval } A \models Q
\]

\[
\text{(E2)}
\]

\[
P \models \text{Eval } (\@ A) \models Q
\]

(where \@ is one of the monadic operators, +, -, NOT)

The following rule for evaluation of an operator expression contains three conditions. The first two assert that \(A\) and \(B\) evaluate without runtime error if \(P\) holds. These conditions make the rule independent of any fixed order of evaluation, by requiring either operand to evaluate correctly if evaluated first. The third condition states that after both operands have been evaluated, \(Q\) must hold. Since there are no side effects and the first two conditions have established that the operands evaluate without errors, the order in the third condition is not significant. Notice, though, that the first condition is redundant because the third one also requires \(A\) to evaluate safely. In stating the rest of the rules, we will omit redundant conditions such as this.

\[
P \models \text{Eval } A \models \text{True},
\]

\[
P \models \text{Eval } B \models \text{True},
\]

\[
P \models \text{Eval } A; \text{Eval } B \models Q
\]

\[
\text{(E3)}
\]

\[
P \models \text{Eval } A @ B \models Q
\]

(where \@ is a relation sign or boolean connective.)

Rule E3 formalizes evaluation of ADA conditions. In ADA, the boolean conditions for controlling IF and WHILE statements etc. can have one of the forms

\[
<\text{expression}> \text{ AND THEN } <\text{expression}>
\]

\[
<\text{expression}> \text{ OR ELSE } <\text{expression}>
\]

which indicate that the left hand expression is to be evaluated first, after which the right hand expression will be evaluated only if its value is needed to determine the value of the condition. The following rule for evaluation of \(A \text{ AND THEN } B\) states that it
Expression Evaluation.

must always be possible to evaluate A, and that 1) if A is false, Q must hold, and 2) if A is true, it must be possible to evaluate B, after which Q must hold.

\[
P \{\text{Eval } A\} \rightarrow A \Rightarrow Q,
\]

\[
P \{\text{Eval } A; \text{ASSUME } A; \text{Eval } B\} Q
\]

(E3S)

\[
P \{\text{Eval } A \text{ AND THEN } B\} Q
\]

Maxint is an undeclared integer variable representing the range on which integer arithmetic operators do not overflow. The axiomatic definition makes no assumption about the values of Maxint. In order to prove absence of overflow, the user must supply assertions relating Maxint to the computations in the program.

\[
P \{\text{Eval } B\} \text{ True},
\]

\[
P \{\text{Eval } A; \text{Eval } B\} -\text{MAXINT} \leq A @ B \leq \text{MAXINT} \land Q
\]

(E4)

\[
P \{\text{Eval } A@B\} Q
\]

(\text{where } @ \text{ is one of the arithmetic operators, } +, -, *)

\[
P \{\text{Eval } B\} \text{ True},
\]

\[
P \{\text{Eval } A; \text{Eval } B\} B = 0 \land Q
\]

\[
\text{(where } @ \text{ is } \text{DIV, MOD, or } /)
\]

(E5)

Maxint can have any value such that integer arithmetic does not overflow in the range \(-\text{Maxint} \ldots \text{Maxint}\). Note that many computers use twos complement arithmetic, in which the smallest negative integer has an absolute value one greater than the largest positive integer. This situation (and other possible number systems with asymmetrical ranges) can be more accurately modeled by introducing a separate variable Minint to stand for the smallest integer, and making the obvious changes in rules E2, E4, and E5.

The following rule defines the evaluation of a function call \(f(A_1, \ldots, A_n) \), where each of the \(A_i \) is a value parameter and \(G \) is a list of read only global variables. For error free evaluation of the function call, each of the \(A_i \) must evaluate and yield a value in the proper range. The second the third premises of the rule state that if \(I_f \) and \(O_f \) are valid entry and exit assertions for \(f \), then they can be used to show \(P\{\text{Eval } f(A)\} \). If the
parameters A and G satisfy the entry condition I_f, then O_f will hold on exit. Also, $f(A,G)$ will be DEF and Inrange — these properties are assured by the declaration rule.

\[
\text{for } i=1, \ldots, n, \quad P[[\text{Eval } A_i]] \stackrel{\text{Inrange}(A_i, t_i)}{\Rightarrow} \quad P[[\text{Eval } A; \ldots; \text{Eval } A_n]] \stackrel{\text{Inrange}(f(A,G))}{\Rightarrow} \quad P[[\text{Eval } f(A, \ldots, A_n)]]
\]

\section*{Location Validity.}

\[
P[[\text{Locate } V]] P
\]

(this is an axiom for any declared variable identifier V)

\[
P[[\text{Locate } R]] Q
\]

\[
P[[\text{Locate } R.F]] Q
\]

(where R is of a record type with a .F field)

\[
P[[\text{Eval } Z]] Z=\text{NIL} \land Q
\]

\[
P[[\text{Locate } Z]] Q
\]

(where Z is of a pointer type)

\[
P[[\text{Eval } I]] \text{True},
\]

\[
P[[\text{Locate } A; \text{Eval } I]] \stackrel{\text{Inrange}(I, \text{indextype}(A))}{\Rightarrow} Q
\]

\[
P[[\text{Locate } A[I]] Q
\]

(where A is of an array type)

\section*{Example 2:}

Show $Q[[\text{Eval } a[i+p1]]$ True, where

\[
Q = \text{DEF}(i) \land 0 \leq i \leq 100 \land \text{DEF}(a[i]) \land 0 \leq a[i] \leq 25 \land \text{DEF}(p) \land p=\text{NIL} \land p1=6 \land 1000 \leq \text{MAXINT}
\]

with the variable declarations

\[
\text{VAR } a: \text{ARRAY}[0:100] \text{ OF INTEGER};
\]

\[
\text{VAR } i: \text{INTEGER};
\]

\[
\text{VAR } p: \text{INTEGER};
\]

By applying the inference rules in reverse, we can find simpler sufficient conditions for the formula to be true. We will continue to work backwards until we reach sufficient conditions that are obviously true. At this point, the formula will be proven, because it will be possible to construct a formal proof by starting with the final conditions and
Expression Evaluation.

applying the inference rules until the original formula is deduced. The first step is to use rule E4 in reverse, reducing the problem of proving a statement about Eval $a[i]+p$t to proving statements about Eval $a[i]$ and Eval pt.

$$Q \llbracket \text{Eval } p \rrbracket \text{ True,}$$

and $$Q \llbracket \text{Eval } a[i]; \text{ Eval } p \rrbracket \text{ } -\text{MAXINT } \leq a[i]+p \leq \text{ MAXINT.}$$ (6.1) (6.2)

Before finishing the example, we pause to mention a fact about the extended semantics which is helpful in removing redundancy from proofs. Since expressions do not have side effects, we can assume in proofs that the state does not change when an expression is evaluated. The following lemma states this fact in a useful form.

Lemma.

$$I \vdash P \llbracket \text{Eval } e \rrbracket \text{ True, } \text{ iff } I \vdash P \llbracket \text{Locate } e \rrbracket P.$$ $I \vdash P \llbracket \text{Locate } e \rrbracket \text{ True, } \text{ iff } I \vdash P \llbracket \text{Locate } e \rrbracket P.$

Another point about redundancy is that when applying the inference rules directly to prove $$P \llbracket \text{Eval } E \rrbracket Q$$, the proof of error free execution of some subexpressions may appear many times. A mechanical evaluator of the preconditions can easily take the repetition into account and only verify each subexpression once.

Continuing the example, show 5.1:

$$Q \llbracket \text{Eval } p \rrbracket \text{ True}$$

- $$Q \llbracket \text{Locate } p \rrbracket \text{ DEF } (p1) \text{ (by E1)}$$
- $$Q \llbracket \text{Eval } p \rrbracket \text{ p NIL } \land \text{ DEF } (p1) \text{ (by L3)}$$
- $$Q \llbracket \text{Locate } p \rrbracket \text{ DEF } (p) \land \text{ p NIL } \land \text{ DEF } (p1) \text{ (by E1)}$$
- $$Q \supset (\text{DEF } (p) \land \text{ p NIL } \land \text{ DEF } (p1)) \text{ (by L1 and CONSEQ)}$$
- $$\text{ True. } \text{ (by definition of } Q)$$

Next, show $$Q \llbracket \text{Eval } a[i] \rrbracket \text{ True}$$

- $$Q \llbracket \text{Locate } a[i] \rrbracket \text{ DEF } (a[i]) \text{ (by E1)}$$
- $$Q \llbracket \text{Eval } a[i] \rrbracket \text{ DEF } (a[i]),$$
 and $$Q \llbracket \text{Locate } A; \text{ Eval } a[i] \rrbracket \text{ Osis100 } \land \text{ DEF } (a[i]) \text{ (by L4)}$$
These last two formulas are trivially provable, since the assertion \(Q \) implies that \(i \) has a value, and the whole variable \(A \) is always a valid location by \(L_1 \). Having shown that both \(a[i] \) and \(p \) evaluate without any errors, we can use the CONCAT rule to infer that one can be evaluated after the other, i.e.

\[
Q \{ \text{Eval} \ a[i]; \ \text{Eval} \ p \} \ \text{True} \quad \text{(by CONCAT).} \quad (6.3)
\]

It only remains to show that there is no overflow, formula 5.2.

\[
Q \{ \text{Eval} \ a[i]; \ \text{Eval} \ p \} \ -\text{MAXINT} \leq a[i]+p \leq \text{MAXINT}
\]

\[
\rightarrow Q \Rightarrow -\text{MAXINT} \leq a[i]+p \leq \text{MAXINT}
\quad \text{(by CONSEQ and lemma applied to 6.3)}
\]

\[
\rightarrow \text{True.}
\]

Example 3: User defined partial functions in expressions.

```plaintext
VAR x: INTEGER;
VAR a: ARRAY[0:100] OF BOOLEAN;

FUNCTION sqrt(n: INTEGER): INTEGER;
ENTRY True;
EXIT Ossqrtsn
BEGIN
  % if \( n < 0 \), then loop forever without execution errors;
  otherwise, set \( \text{sqrt} \Rightarrow \text{integer part of square root } n. \)
  %
  ....
END;
```

Suppose the function \(\text{sqrt} \) has been defined to correctly return the integer square root of \(n \) unless \(n \) is negative, in which case it loops forever without runtime errors. Using the function declaration rule which will be given in section 6.3, it is possible to prove

\[
\text{True} \left[\text{Function} \ \text{sqrt}(n:\text{INTEGER}):\text{INTEGER}; \ \text{body} \right] \ \text{Osqrt}(n)sn. \quad (5.4)
\]

The entry and exit specifications of \(\text{sqrt} \) can then be used to show that if \(\text{sqrt} \) is called with an argument \(x \) whose value is less than 100, the location of the variable \(a[\text{sqrt}(x)] \) can be computed without runtime error.
Expression Evaluation.

\[\text{DEF}(x) \land x \leq 100 \iff \text{Locate a; Eval sqrt(x) \lra True} \]

\[= \text{DEF}(x) \land x \leq 100 \iff \text{Eval sqrt(x) \lra True}, \quad (5.5)\]

and \[\text{DEF}(x) \land x \leq 100 \iff \text{Locate a; Eval sqrt(x) \lra 0 \leq \sqrt{x} \leq 100} \quad \text{(by L4)} \quad (5.6)\]

Using the function call rule E6, the first part 5.6 reduces to

\[\text{DEF}(x) \land x \leq 100 \iff \text{Eval sqrt(x) \lra True} \]

\[= \text{DEF}(x) \land x \leq 100 \iff \text{Eval x \lra True}, \quad \text{and True \lra Function sqrt(n:INTEGER): INTEGER; body \lra 0 \leq \sqrt{x} \leq 100,} \]

and \[\text{DEF}(x) \land x \leq 100 \iff \text{Eval x \lra True} \land (0 \leq \sqrt{x} \leq 100 \land \text{DEF}(\sqrt{x}) \lra True)\]

which are all true.

The second part 6.6 can be simplified

\[\text{DEF}(x) \land x \leq 100 \iff \text{Locate a; Eval sqrt(x) \lra 0 \leq \sqrt{x} \leq 100} \]

\[= \text{DEF}(x) \land x \leq 100 \iff \text{Eval sqrt(x) \lra 0 \leq \sqrt{x} \leq 100} \quad \text{(by L1 and CONCAT)} \]

\[= \text{DEF}(x) \land x \leq 100 \iff \text{Eval x \lra (0 \leq \sqrt{x} \leq 100 \land \text{DEF}(\sqrt{x}) \lra 0 \leq \sqrt{x} \leq 100)} \quad \text{(by E6)} \]

\[= \text{DEF}(x) \land x \leq 100 \iff \text{Locate x \lra DEF(x) \land (0 \leq \sqrt{x} \leq 100 \land \text{DEF}(\sqrt{x}) \lra 0 \leq \sqrt{x} \leq 100)} \quad \text{(by E1)} \]

\[= \text{DEF}(x) \land x \leq 100 \iff \text{DEF(x) \land (0 \leq \sqrt{x} \leq 100 \land \text{DEF}(\sqrt{x}) \lra 0 \leq \sqrt{x} \leq 100)} \quad \text{(by L1 and CONSEQ)} \]

\[= \text{DEF(x) \land x \leq 100 \iff \text{DEF(x) \land (0 \leq \sqrt{x} \leq 100 \land \text{DEF}(\sqrt{x}) \lra 0 \leq \sqrt{x} \leq 100)} \quad \text{(by L1 and CONSEQ)} \]

\[= \text{True} \]

6. Extended axiomatic semantics of Pascal

6.1 Assume statements

The meaning of the statement \text{ASSUME} L, is that L can be assumed to be a true assertion.
Assume statements

at a certain point in a program. Assume statements do not initially appear in programs, but can be introduced during the course of a proof to record logical assumptions which hold at points within a program. For instance, the rule for IF statements reduces a formula involving IF L THEN S1 ELSE S2 to two formulas for the two cases of the condition L. In one formula, the statement ASSUME L records the assumption that L was true, and in the other formula, ASSUME ¬L records the assumption that L was false.

(P∧L) ⇒ Q
----------------- (ASSUME)
P [[ASSUME L]] Q

6.2 Executable statements

Assignment statements

The following rule applies to all assignment statements.

P [[Eval e]] True,
P [[Locate pv; Eval e]] Inrange(e, type(pv)) ∧ Q^{pv}
------------------------- (ASSIGN)
P [[pv := e]] Q

where pv is any Pascal variable

In order for P [[pv := e]] Q to hold, it is necessary for the assignment to execute without any runtime errors, and for Q to be true in the updated state. The rule requires the right hand side, e, to evaluate without runtime error and to yield an initialized value; the location calculation for left hand side pv is also required to be free from errors. If pv is a subrange variable, the Inrange clause requires the value of e to be in the correct range. The updated formula Q is formed by substituting e for the Pascal variable pv, using the definition of substitution given in section 2.2.
Executable statements

IF statements

\[
\begin{align*}
P \langle \text{Eval } L; \text{ Assume } L; \text{ S1} \rangle \text{ Q}, \\
P \langle \text{Eval } L; \text{ Assume } \neg L; \text{ S2} \rangle \text{ Q} \\
\end{align*}
\]

\[\text{P \langle IF L THEN S1 ELSE S2 \rangle Q}\]

CASE statements

\[
\begin{align*}
\text{for } i=1, \ldots, n, \ & P \langle \text{Eval } X; \text{ Assume } X=C_i; \text{ S1}_i \rangle \text{ Q}, \\
P \langle \text{Eval } X \rangle \text{ X} \{C_1, \ldots, C_n\} \\
\end{align*}
\]

\[\text{P \langle CASE } X \text{ OF } C_1:S_1; \ldots; C_n:S_n \rangle \text{ Q}\]

The \(C_i\) are lists of constants for each branch of the CASE statement. The second condition requires the CASE expression \(X\) to evaluate to one of the constants in one of the \(C_i\).

NEW procedure

The following axiom states that the effect of the Pascal statement \(\text{NEW}(x)\), where \(x\) is a variable identifier of a pointer type, is to change the value of \(x\) to a new pointer value \(x_0\), and to add the new value \(x_0\) to the reference class.

\[
\neg (x_0 \in \text{POINTERSTO}(\#T)) \land \text{DEF}(x_0) \land x_0=\text{NIL} \Rightarrow \begin{align*}
\frac{\#T \cup \{x_0\} \hat{x} \Rightarrow \#T}{\text{NEW(x)} \Rightarrow \text{POINTERSTO}(\#T) \cup \{x_0\} \hat{x}}
\end{align*}
\]

where \(x\) is an identifier of type \(T\) (pointer to object of type \(T\)),
\(x_0\) is a fresh identifier not appearing in \(Q\),
\(\#T\) is the reference class for type \(T\),
\(\#T \cup \{x_0\}\) stands for the reference class after adding an object pointed to by \(x_0\).

The antecedents on the left side of the rule state that 1) the value \(x_0\) generated by \(\text{NEW}\) is a new pointer, not a pointer to the reference class \(\#T\), 2) \(x_0\) has an initialized value, and 3) \(x_0\) is not the pointer NIL. The term \(\#T \cup \{x_0\}\) represents the new reference class after the dynamic variable \(x_0\) has been allocated. A more complete discussion of \(\text{POINTERSTO}\) and the operation of adding new elements to a reference class can be found in [11].
The following rule reduces a *NEW* statement involving a selected variable to a *NEW* statement with an argument which is an identifier.

\[
P \left[\text{NEW}(S_0); \ S := S_0 \right] \ Q
\]

\[
\text{-----------------------------}
\]

\[
P \left[\text{NEW}(S) \right] \ Q
\]

(NEW2)

where \(S_0 \) is a new identifier not appearing in the scope, \(P \), or \(Q \).

the declaration \(\text{VAR} \ S_0 : \text{type}(S) \) is added to the scope.

WHILE statements

\[
P = I,
I \left[\text{Eval} \ B; \ \text{ASSUME} \ B; \ S \right] I
I \left[\text{Eval} \ B \right] \sim B \ Q
\]

\[
\text{-----------------------------}
\]

\[
P \left[\text{INVAR}I \ \text{WHILE} \ B \ \text{DO} \ S \right] Q
\]

(WHILE1)

In this rule, the invariant is chosen to be true before each evaluation of the While test \(B \). The rule can be rearranged to correspond to other choices of invariants.

6.3 Functions and procedures

6.3.1 Function declaration

With the function declaration rule, one can infer that \(I \) and \(O \) are valid entry exit specifications for a function \(f \), if for inputs satisfying \(I \), the body of the function executes without runtime errors and assigns a final value to the function which satisfies the exit assertion \(O \).
The rule requires that the function have only value parameters X_1, \ldots, X_n and a set of read only globals G. The rule assumes that each of the value parameters has an initialized value in the correct range; this assumption is justified by the call rule, which checks the actual parameters. If global variables are accessed, the entry assertion must assert that they have been initialized.

In the exit assertion $O(f, X_1, \ldots, X_n)$, the variable f stands for the value returned by the function. The rule checks that the body assigns f a value in the correct range. As we will see in section 7.4, the condition $\text{Inrange}(f, t_f)$ appearing after execution of the body is redundant. Because the declaration rule requires f to be DEF after execution of the body, it is not necessary to require f to be Inrange.

6.3.2 Note on Global Variables

Runcheck requires the user to declare lists of all global variables that could potentially be accessed or altered by each subprogram. The system checks the lists by a syntactic examination of the subprogram body. For instance, a global variable g which is used in an assignment statement $g := e$, must be declared read write. Also, if the body of p contains calls to q, then all globals listed for q must be listed for p.

Reference classes are a special case of global variables which are implicitly accessed or altered although they do not appear explicitly in the executable program text. If a
Note on Global Variables

subprogram evaluates pt, this is considered an implicit access to a reference class. An assignment pt := e is considered an implicit write to the reference class. The system requires all reference classes which are used as globals of a subprogram to be explicitly listed by the user as global parameters.

The presence of a pointer formal parameter does not necessarily imply that a reference class will be accessed or altered by a subprogram. For instance, a procedure p with a VAR formal parameter x which is a pointer to an integer,

```pascal
TYPE ptr = 1INTEGER;
PROCEDURE p(VAR x: ptr);
BEGIN x := NIL END;
```

may assign to x without altering the reference class #INTEGER. No globals would be listed for this procedure, since it changes only the pointer x and not any of the integer variables pointed to.

On the other hand, in a procedure p2 which assigns to x1, it would be necessary to list the reference class #INTEGER as a read write global,

```pascal
TYPE ptr = tINTEGER;
PROCEDURE p2(VAR x: ptr);
GLOBAL (VAR #INTEGER);
BEGIN x1 := 0 END;
```

because an integer variable accessed by a pointer is changed.

Observe that depending on the actual argument, a call to the procedure p above could have the effect of changing a reference class, as in the call

```pascal
TYPE ptr = tINTEGER;
ptr2 = fptr;
VAR y: ptr2;

p(y1); % changes #ptr %
```
which changes the reference class \#ptr of variables of type ptr which are accessed by pointers. In this case \#ptr is not considered a global, although the call rules do account for the fact that part of \#ptr is altered by being passed as a VAR parameter. Which reference class is altered in this example depends on the call, not on the definition of p. For example, in the call

\[
\begin{align*}
\text{TYPE ptr} &= \text{1INTEGER;} \\
\text{ptrarray} &= \text{ARRAY[1..100] OF ptr;} \\
\text{ptrptrarray} &= \text{lptrarray;} \\
\text{VAR z: ptrptrarray;} \\
\text{p(z[50]);}
\end{align*}
\]

z is a pointer to variables of type ptrarray, z[is an array of pointer variables, and z[50] is a pointer to an integer, and hence the correct type to be an argument to procedure p. The variable which p changes in this case is an element of an array accessed by a pointer, and this causes a change to the reference class \#ptrarray.

The ability of a procedure with a VAR pointer parameter to change different reference classes depending on the actual parameter, is exactly analogous to the ability of a procedure with a VAR integer parameter to change components of different integer arrays.

\[
\begin{align*}
\text{PROCEDURE q(VAR x: INTEGER);} \\
\text{BEGIN x:= 0 END;} & \quad \% \text{no globals}\%
\end{align*}
\]

The first call in

\[
\begin{align*}
\text{TYPE arr} &= \text{ARRAY[1..500] OF INTEGER;} \\
\text{VAR v1, v2: arr;} \\
\text{q(v1[50]);} \\
\text{q(v2[50]);}
\end{align*}
\]

alters part of v1, but the second one alters part of v2.
6.3.3 Procedure declaration

\[I(X,Y,G) \land \text{DEF}(X_1) \land \ldots \land \text{DEF}(X_m) \land \text{Inrange}(X_1,t_1) \land \ldots \land \text{Inrange}(X_m,t_m) \]
\[\text{[B]} \quad O(X,Y,G) \]

\[I(X,Y,G) \quad \text{[Procedure p(X_1:t_1; \ldots ; X_m:t_m; \text{VAR} Y_1:u_1; \ldots ; \text{VAR} Y_n:u_n); B]} \quad O(X,Y,G) \]

where \(p \) has the procedure declaration

```
PROCEDURE p(X_1:t_1; \ldots ; X_m:t_m; \text{VAR} Y_1:u_1; \ldots ; \text{VAR} Y_n:u_n);
GLOBAL GR, VAR GW;
ENTRY I(X,Y,G);
EXIT O(X,Y,G);
B;
GR are the readonly global variables,
GW are the read write global variables,
G stands for the set of all global variables, GR \cup GW.
```

Like the function declaration rule, the procedure declaration rule assumes that the value parameters are initialized by each call with values in the correct range. On the other hand, there is nothing unusual about procedures that work correctly with uninitialized \text{VAR} parameters. Consider a simple procedure \(p \) which is called with an integer \(j \) and two array variables, \(x \) and \(y \), and assigns \(x[j] \) the value \(y[j] \).

```
TYPE s = 1..100;
TYPE arr = ARRAY[s] OF INTEGER;

PROCEDURE p(j: s; VAR x, y: arr);
BEGIN
  x[j] := y[j];
END;
```

Since the procedure does not test the range of \(j \) before executing the assignment, a call to \(p \) will produce a subscripting error unless \(j \) is between 1 and 100. Also, the actual variable supplied for \(y[j] \) must have been assigned a value before the call to \(p \). No other restrictions are needed to assure error free execution. In particular, \(p \) will work regardless of whether \(x \) has been initialized, and regardless of whether portions of \(y \) other than \(y[j] \) have been initialized. For instance, the following sequence executes without errors.
VAR a, b: arr;
VAR k: INTEGER;

BEGIN
 k := 50;
 b[k] := 1000;
 p(k, a, b);

% now a[50] = 1000 %
END;

The behavior of \textit{p} can be specified by providing it with entry and exit assertions.

\begin{verbatim}
TYPE s = 1..100;
TYPE arr = ARRAY[s] OF INTEGER;

PROCEDURE p(j: s; VAR x, y: arr);
 INITIAL y = yO;
 ENTRY DEF(y[j]);
 EXIT y = yO ∧ x[j] = y[j];
 BEGIN
 x[j] := y[j];
 END;
\end{verbatim}

The entry assertion states that \(y[j] \) has a value when \(p \) is called. \textit{Note that since} \(j \) is a value parameter with a subrange type, the declaration rule assumes that it will be supplied with a value in the correct range — this will be checked by the call rule. The Initial statement simply introduces a new name \(yO \) to stand for the initial value of \(y \) at the time of entry to the procedure. The exit assertion states that the value of \(y \) is unchanged, and that \(x[j] \) is equal to \(y[j] \).

To summarize the point of this example, all of the rules for subprograms assume that value parameters must be supplied with initialized values in the correct range. This is our interpretation of what it means to correctly call a subprogram with a value parameter. No such assumption can be made for \textit{VAR} parameters, and so it is necessary to describe the behavior of each one by means of entry and exit assertions.

It is of course possible for there to be implementations of Pascal, in which calls with value parameters will produce the desired results in some cases even if the actual parameter is not fully initialized. This is merely an artifact of certain possible
implementation techniques. Our definition attempts to capture what is meant by the language itself, and is intended to be sufficiently restrictive to be consistent with all possible implementations.

As was mentioned earlier, the initial value of local variables is not specified by the function or procedure declaration rules. Another approach, which seems reasonable at first glance, is to assert that every local is initially undefined. This is not needed in the extended semantics, because for $P \llbracket A \rrbracket Q$ to be valid, every variable must be assigned a value which is DEF before its value is used.

The declaration rules could be modified to specify an initial value for locals, but this would unnecessarily complicate the definition and lead to confusion in applying the extended semantics. It would be possible to introduce a new constant C_s for each sort to stand for the initial value. The axioms would be changed to state that for each of these constants, $\neg \text{DEF}(C_s)$, and also $\neg \text{DEF}(t)$ for terms t formed by selecting components of C_s. For each local L, $L = C_s$ would be added as a premiss in the declaration rule. But this is an unnecessary complication. Also, it does not accurately model the implementation of Pascal, in which initial values are left unspecified to reduce overhead. For this reason, it would give confusing results in practice. If a program, A, never used two variables of the same sort, x and y, and otherwise executed without errors, it would be possible to prove that the variables were equal after the program,

$$P(A) \ x=y.$$

Such a result differs from the implementation and probably conceals a programming error.

6.3.4 Procedure call

The procedure call rule requires each value parameter to evaluate without runtime
error, yielding a value in the correct range, and each VAR parameter to yield a location without runtime error.

for i=1,...,m, P[Eval Al] Inrange(Ai, ti),
for i=1,...,n, P[Locate Vi] True,
\[\text{for } (X,Y,G) \text{ if } P(X:1;\ldots;Xm:tm; \text{VAR } Y1:u1;\ldots; \text{VAR } Yn:un); B \text{ then } O(X,Y,G), \]
P [Eval A1;\ldots;Eval Am; Locate V1;\ldots;Locate Vn] Disjoint-set(V \cup G) \land I(A,V,G)

\[\land VZ,GW (O(A,Z,GR,GW) \Rightarrow Q \mid V1 \ldots Vn)\]

\[\text{---} \quad \text{PC1}\]

\[P[\text{p(A1,\ldots,Am,V1,\ldots,Vn)}] \Rightarrow Q\]

Each of the actual VAR parameters, Vi, must be a distinct Pascal variable not in GW. Note that this definition depends on the definition of substitution when Vi is not an identifier.

7. Metatheory of the extended definition

In this section, we discuss some properties of the extended definition which are helpful in reducing the complexity of program specifications and the length of proofs.

By itself, the extended semantics is not a complete solution to the problem of verifying the absence of common errors. In practice, there are two main kinds of difficulty in doing actual verifications. These practical difficulties were carefully considered in the design of the Runcheck system.

The problem of redundancy in proofs is solved in Runcheck by a special simplifier which efficiently eliminates redundant verification conditions.

A more serious problem is the need for lengthy, detailed specifications and inductive assertions in programs. Several distinct approaches are needed to deal with this problem. In Appendix A, we discuss the derived WHILE rule, which shows how the extended definition reduces the need for detailed documentation. The derived WHILE rule and other rules are logically justified by certain simple properties of the theory of
the extended definition, which are presented in the remainder of this section.

7.1 Ordinary Semantics Lemma

Any specification provable in the extended definition is also provable in the ordinary definition.

Lemma 7.1 If $\vdash P \textbf{[A]} Q$, then $\vdash P \{	ext{A}\} Q$.

The significance of this lemma is that all specifications, even those involving DEF, are theorems of the ordinary system. The extended definition only places more restrictions on the allowable computations. Consistency of the extended definition is a direct consequence of this lemma.

7.2 Specification lemma

When proving complicated specifications for a program, it is sometimes helpful to prove the specifications without considering possible runtime errors, and then prove separately that no errors occur. In this way, the details about runtime errors can be isolated in the proof. The next lemma says that proofs in the extended definition can always be factored in this manner.

Lemma 7.2 If $\vdash P \{	ext{A}\} Q$, and $\vdash P1 \textbf{[A]} Q1$, then $\vdash P \land P1 \textbf{[A]} Q \land Q1$.

The reason for this is that if both $P \{	ext{A}\} Q$, and $P1 \textbf{[A]} Q1$ can be proven separately, then it is always possible to combine the proofs to show $P \land P1 \textbf{[A]} Q \land Q1$.

The design of the automatic Documenter in Runcheck is based on this lemma. The

5 In the case of built-in procedures, it is necessary to choose slightly nonstandard definitions if the resulting system is to be complete with respect to specifications involving DEF. The "ordinary" system that we have in mind has axioms stating that the results of built-in procedures such as READ and NEW are DEF.
documenter constructs inductive assertions\(^6\) that are valid in the ordinary semantics. The assertions can then be assumed true in proofs in the extended semantics. Thus the documenter does not have to consider possible runtime errors while constructing the invariants.

7.3 LESSDEF lemma

One of the basic properties of the extended definition is that if \(P \triangleright Q\) holds, \(S\) cannot assign an uninitialized value to any variable. Over any sequence of statements that executes without runtime error, the extent of variable initialization cannot decrease.

LESSDEF\((x, y)\), a predicate for two terms of the same sort, is defined to be true if \(y\) is at least as completely initialized as \(x\).

- **LD1)** if \(x\) and \(y\) are of the same simple sort,\n \[
 \text{LESSDEF}(x, y) = \text{DEF}(x) \supseteq \text{DEF}(y).
 \]

- **LD2)** if \(x\) and \(y\) are of the same record sort, and the field names are \(f_1, \ldots, f_n\),\n \[
 \text{LESSDEF}(x, y) = \text{LESSDEF}(x.f_1, y.f_1) \wedge \ldots \wedge \text{LESSDEF}(x.f_n, y.f_n).
 \]

- **LD3)** if \(x\) and \(y\) are of sort \(\text{ARRAY}[a..b] \text{OF} t\),\n \[
 \text{LESSDEF}(x, y) = (\forall j s.t. b \geq j \exists x[j] \text{LESSDEF}(x[j], y[j])).
 \]

- **LD4)** if \(x\) and \(y\) are of sort \(\text{REFCLASS}(t)\) for some \(t\),\n \[
 \text{LESSDEF}(x, y) = (\forall x \in \text{POINTERSTO}(x) \text{LESSDEF}(x.c[t], y.c[t])).
 \]

The LESSDEF lemma says that for any variable in a program that executes without errors, the final value will be at least as fully initialized as the initial value.

Lemma 7.3 If \(\vdash P \triangleright [A]\) True, and \(v\) is a declared variable identifier then,

\[
\vdash P \wedge v' = v \triangleright [A] \text{LESSDEF}(v', v)
\]

where \(v'\) is a new identifier not appearing in \(P, A, a,\) or the scope.

\(^6\) Refer to [2] for details of the documenter.
In Runcheck, the lemma is used to reduce the need for detailed assertions on loops and procedures. If a variable is known to be DEF before entering a loop, it is not necessary to state in the invariant that it continues to be DEF. Similar assertions about VAR parameters can be omitted from procedure specifications.

Example 4: Merging two sorted arrays

This example shows how Runcheck uses the Lessdef lemma to reduce the need for repetitious, detailed assertions. The program takes as input previously sorted arrays A and B of length 100 and merges their contents into the array C, which has length 200. The user has supplied only an ENTRY assertion saying that A and B are fully initialized, and an EXIT assertion saying that C is fully initialized. The interesting aspect of this example is that the initialization of C takes place in two loops. The first loop partially initializes C, merging elements from A and B until either A or B has been completely transferred. Then the initialization of C continues in either the second loop or the third loop.

```pascal
TYPE INARR=ARRAY[1:100] OF INTEGER;
TYPE OUTARR=ARRAY[1:200] OF INTEGER;
VAR I,J,N:INTEGER;
VAR A,B:INARR; C:OUTARR;
ENTRY DEF(A)ADEF(B);
EXIT DEF(C);
BEGIN
N:=100;
I:=1;
J:=1;
INVARIANT DEFRANGE(1, I+J-2, C)
\land 1\leq I \land I+1 \leq J \land J+1 \leq N+1
WHILE (I\leq N) AND (J\leq N) DO
  BEGIN
    ELSE BEGIN C[I+J-1]:=B[J]; J:=J+1 END;
  END;
INVARIANT DEFRANGE(I+1, I+J-1, C) \land I\leq N \land I+J \leq N+1
WHILE I\leq N DO BEGIN C[I+N]:=A[I]; I:=I+1 END;
J:=J+1;
INVARIANT DEFRANGE(J+1, J+N-1, C) \land J\leq N \land J+N \leq N+1
WHILE J\leq N DO BEGIN C[J+N]:=B[J]; J:=J+1 END;
END
```
The system will verify

\[\text{DEF}(A) \land \text{DEF}(B) \land \text{body} \land \text{DEF}(C) \]

i.e., that the program does not have any execution errors and that no elements of \(C \) are missed. All of the other variables are initialized before the first loop. Still, it is necessary to prove that they are DEF each time they are accessed. In the case of a variable such as \(I \), Runcheck uses the Lessdef lemma to infer that it has a value everywhere in the program after the assignment \(I := 1 \). Even though \(I \) is changed on the first loop, it is not necessary to write \(\text{DEF}(I) \) (or \(A, B, J, N \)) as an invariant.

In many array programs, the arrays are either supplied as fully initialized parameters, or are initialized at the beginning. Without the Lessdef lemma, it would be necessary to have invariants repeating the fact that an array or other data structure is DEF at various points within a program.

Consider now the more complicated case of proving \(\text{DEF}(C) \). The system automatically generates the statements shown in **bold italics**. By examining the first loop, one can see that at any time, values have been assigned to the positions \(C[I], \ldots, C[I+J-2] \). This fact is discovered by the system and is expressed in the invariant as

\[\text{DEFRANGE}(1, I+J-2, C). \]

\(\text{DEFRANGE} \) is a special predicate used to express that a subrange of an array is DEF. Its definition is

\[\text{DEFRANGE}(x, y, a) = (\forall i \leq y \implies a[i] = \text{DEF}(a[i])). \]

The invariant for the second loop states that \(C[I'+N], \ldots, C[I+N-1] \) are DEF, where \(I' \) stands for the value of \(I \) before entering the second loop. Similarly, the assertion for the third loop states that \(C[J'+N], \ldots, C[J+N-1] \) have been assigned values. The system also produces the arithmetic inequalities shown on each loop.

To be able to prove the exit assertion, \(\text{DEF}(C) \), it is necessary to show that all of
C[1], ..., C[200] have values after the third loop. Notice that each invariant only describes the initializations done by its own loop. For instance, the third invariant only deals with the last part of C, and does not repeat the fact that the first part of C is initialized by the first loop. Runcheck uses the Lessdef lemma to infer that the first part of C continues to be DEF, even though that fact is not included in the later invariants. Thus the invariants shown are sufficient to prove that C is fully initialized on exit. The documenter's assertions are also sufficient to show that the program executes safely.

7.4 Inrange lemma

The Inrange lemma says that a program for which P [A] True holds cannot cause the value of a subrange variable to become out of range (when started in a state which satisfies P). If a subrange variable is known to always be DEF at some point in a program that executes without errors, then the variable must be Inrange at that point. To begin, we define Inranges, a formula constructor similar to Inrange. The difference between the two is that Inrange asserts that a subrange variable is in the correct range and is always true for other types, while Inranges asserts that every subrange variable contained as a component of its argument is in the correct range.

Definition. Inranges is a mapping <pascal variable> x <type> -> <formula>. For simple types, Inranges(v, t) is true if Inrange(v, t) is. Inranges(v, t) is true for a compound type if Inranges(c, type(c)) is true for every component c of v.

The idea of the Inrange lemma is a characterization of the possible sets of states of programs that always execute without runtime errors. Any actual execution must begin in the outermost block with all variables uninitialized. Data needed by the program is obtained by a READ procedure which always returns values that are DEF and Inrange. Given that the program always runs without errors, what do we know about the set of all possible states if it terminates? Variables that the program assigns to every time it is run will always be DEF and Inranges at the end. Variables that are never touched by the program will be completely unspecified at the end. Variables assigned to on some
Inrange lemma

runs but not on others can be \(-\text{DEF}\) at the end, or can have a value dependent on the values of the other variables. If the value is dependent on the other variables, it must be an \text{Inrange}* value. The essential point is: If a program determines the value of a variable, the value must be \text{Inrange}*. If a variable is always \text{DEF} at the end of a program, then it must always be \text{Inrange}*.

\textbf{Definition.} Let \(X\) be the set of simple components of the declared variables. For instance if \(v\) is declared

\begin{verbatim}
 VAR v: ARRAY [1..2] OF RECORD f:INTEGER; g:BOOLEAN END;
\end{verbatim}

then \(X\) will contain the variables \(v[1].f\), \(v[2].f\), \(v[1].g\), \(v[2].g\). Note that \(X\) is a set of variables, not a set of the values the variables. A state of a program is an assignment of values to each of the elements of \(X\). To refer conveniently to the value of a given variable \(y\in X\) and the overall state, we will use the notation that the \(y\)-form of a state is a pair \(\langle z, Z\rangle\), where \(z\) stands for the value of \(y\), and \(Z\) stands for the values of the variables in \(X\setminus\{y\}\).

A set \(S\) of states is \textbf{DEF-convex} for the variable \(y\) iff

\[
\text{for all } Z, \\
\left(\forall z \in S_y \Rightarrow \text{DEF}(z) \right) \implies \left(\forall w \in S, \exists z \in S_y \Rightarrow \text{Inrange}(w, \text{type}(y)) \right),
\]

where \(S_y\) is the set of states in \(S\), represented in \(y\)-form.

A set of states of \(X\) is \textbf{DEF-convex} iff it is \textbf{DEF-convex} for every variable in \(X\). A formula containing free occurrences of declared variables is \textbf{DEF-convex} iff it is satisfied by a \textbf{DEF-convex} set of states.

\textbf{Examples:} assume the declared variables are

\begin{verbatim}
 VAR x: INTEGER;
 VAR y: 1..10;
\end{verbatim}

\begin{tabular}{ll}
(7.1) & True, False \quad \text{both DEF-convex} \\
(7.2) & \(y=2\) \quad \text{DEF-convex} \\
(7.3) & \(y=40\) \quad \text{not DEF-convex} \\
(7.4) & \(y=40\) \quad \text{DEF-convex} \\
(7.5) & \text{DEF}(y) \quad \text{not DEF-convex}
\end{tabular}
If S is the set of final states of a program that does not have runtime errors, then S is DEF-convex. In the examples, a program can set y to 2, so 7.2 is DEF-convex, but 7.3 cannot be DEF-convex because 40 is out of range. Although $y=40$ is DEF-convex, it is not a possible set of final states — the DEF-convex sets include more than final states sets. To attempt to characterize only final states would require much more detail than we need here. Note that 7.5 is too weak to be a final set of states because it includes both 7.2 (a possible set) and 7.3 (an impossible set).

Lemma 7.4a If a program is started in a DEF-convex set of states and always executes without runtime error, then the final set of states will be DEF-convex.

It follows that if a program always leaves a variable `DEF` when it halts, the variable must be `InRange` at the end.

Lemma 7.4b If B is a Pascal statement, pv is a Pascal variable, P is a DEF-convex predicate, and $\vdash P \ [B] \text{DEF}(pv)$, then $\vdash P \ [B] \text{InRange}(pv, \text{type}(pv))$.

The restriction on P in this lemma is necessary. Recall that extended semantics does not specify the initial values of variables, and that subrange type variables have the same sort as the base type of the subrange. Consequently, there is nothing that says a subrange variable cannot be out of range if its value is not assigned by the program. The following formula is a a theorem, even if the variable S declared with a subrange of only 1..100.

$$\vdash S=500 \text{[empty]} \text{DEF}(S) \land S=500.$$

Of course, the extended definition checks that any program that uses the value of S first assigns it a value in the proper range.

Runcheck makes use of a restriction that the entry assertion for the outermost block of a

(7.6) \(x=1 \Rightarrow y=2\) \hspace{1cm} \text{DEF-convex}
(7.7) \(x=1 \Rightarrow y=40\) \hspace{1cm} \text{not DEF-convex}
Inrange lemma

program must be DEF-convex. With this assumption, Runcheck can infer bounds on the value of a subrange variable if it is known to be DEF. In some cases, this can permit lengthy assertions to be omitted. For instance, if a complex data structure contains subrange variables and the entire data structure is DEF, bounds for the subrange variables can be deduced without any additional assertions. By induction on the depth of procedure calls, the lemma can also be applied to formal parameters when reasoning about a procedure body. Since a value parameter \(v \) must be DEF on entry, \(\text{Inrange}(v,t) \) must be true initially. Variable parameters do not have to be DEF on entry, but if the value is used somewhere in a procedure body it must be possible to prove that the variable is DEF and the Inrange lemma applies at that point.

Example 5: Constructing a Spanning Tree.

The following program is a simple algorithm [12] for finding a spanning tree of an undirected loop-free graph with \(E \) edges and \(V \) vertices. If the graph is disconnected, it grows a spanning forest. The graph is entered as a table of edges in the arrays \(IA \) and \(JA \), so that the vertices of the \(k \)th edge are \(IA[k] \) and \(JA[k] \). The program stores the indices of the spanning tree's edges in \(T[1], \ldots, T[V-P] \), where \(P \) is set to the number of trees in the spanning forest.

This example illustrates the use of subranges and the Inrange lemma to strengthen the entry assertion of a procedure. Since \(IA \) and \(JA \) are tables of vertices, they have been declared as arrays of subrange values \(1:V \). It is typical in graph manipulating programs to use a value stored in one array to compute an index into another array. Here, the variable \(I \) is set to \(IA[K] \) and then \(VA[I] \) is accessed. For the latter access to be in the subscript range \(1:V \) of \(VA \) on every iteration, all elements of \(IA \) must have been in the

7 In an actual Pascal program, no assumptions can be made about the initial values of variables declared in an outermost block. To be strictly realistic, the verifier should not permit entry assertions there. They are permitted as a small convenience; a main block with an entry assertion is considered to be a shorthand for a procedure with globals. The significance of this is that the truth of the entry assertion must be assured by some calling program i.e. it is possible to declare a procedure with an entry assertion that is not DEF-convex, but its actual set of entry states is then a DEF-convex restriction of the declared entry condition.
Inrange lemma

range initially. Because IA and JA are value parameters, their initial values must be DEF, and by the inrange lemma, Runcheck can infer that the elements are in the correct range. Similar reasoning is required for other array accesses.

VAR E,V:INTEGER;

PROCEDURE SPANNING(IA,JA: ARRAY[1:E] OF 1:V;
 VAR P: INTEGER;
 VAR T: ARRAY[1:V-1] OF INTEGER);
ENTRY DEF(E) ∧ DEF(V) ∧ 1 ≤ E ∧ 2 ≤ V;
EXIT TRUE;
VAR I,J,K,C,N: INTEGER;
VAR VA: ARRAY[1:V] OF INTEGER;
BEGIN
 C:=0;
 N:=0;
FOR K:=1 TO V INVARIANT 1 ≤ K ∧ K ≤ V ∧ DEFRANGE(1,K-1,VA)
DO VA[K]:=0;
FOR K:=1 TO E INVARIANT 1 ≤ K ∧ K ≤ E ∧ 0 ≤ C ∧ C ≤ N ∧ 0 ≤ C ∧ C ≤ K ≤ V + N - 1
DO BEGIN
 IF K-N>V-1 THEN GOTO 1;
 I:=IA(K);
 J:=JA(K);
 IF VA[I]=0 THEN BEGIN
 T[K-N]:=K;
 IF VA[J]=0 THEN BEGIN
 C:=C+1;
 VA[J]:=C;
 VA[I]:=C;
 END
 ELSE VA[I]:=VA[J];
 END
 ELSE IF VA[J]=0 THEN BEGIN
 T[K-N]:=K; VA[J]:=VA[I];
 END
 ELSE IF VA[I]=VA[J] THEN BEGIN
 T[K-N]:=VA[I]; I:=VA[I]; J:=VA[J];
 FOR R:=1 TO V INVARIANT 1 ≤ R ∧ R ≤ V
DO IF VA[R]=J THEN VA[R]:=I;
 END
 ELSE N:=N+1
 END;
1: P:=V-E+N;
END;
Inrange lemma

Note that IA and JA could have been declared as arrays of INTEGER, and the restriction on the values could have been part of the entry assertion. Expressing the restriction would involve a quantified assertion such as

$$\forall x (1 \leq x \leq E \implies 1 \leq IA(x) \leq V).$$

This is both more difficult to write than the subrange type specification, and it causes difficulty in theorem proving.

8. Generalizations of the extended semantics

8.1 Dynamic subranges

There are programming languages more flexible than Pascal, which allow declaration of dynamic subranges. ADA, in particular, has flexible dynamic type declarations. A reasonable extension to Pascal is to permit subrange declarations involving expressions, e.g.

```pascal
TYPE s = 1..2*x;
```

The expressions for the bounds are evaluated each time the scope is entered, and the range of s is fixed for the duration. Dynamic arrays can be obtained by using a dynamic subrange as the index type for an array etc.

The extended semantics can be adopted to handle dynamic subranges by defining $\text{Inrange}(e,s)$ to refer to the values obtained when the expressions for the bounds on s are evaluated. The declaration rules for functions and procedures would be changed to check for error free evaluation of the expressions in the type declarations. Also, depending on the restrictions in the programming language, renaming would be needed to distinguish between the initial values of the variables appearing in the type declaration and the values assigned after the dynamic declaration was evaluated.
8.2 Bounds on depth of recursion and dynamic variable allocation

Like the bound for arithmetic overflow, bounds on recursion and heap storage are implementation dependent. In critical applications, the actual bounds may be set in advance, and one might want to verify that the available storage will be sufficient. In other cases, the particular bound is not important, but it might be useful to verify that a program does not attempt unlimited recursion etc.

To describe bounds on depth of calls, two new undeclared integer variables are introduced in the procedure call rule. The variable Stksize represents the maximum depth of calling; Stkptr represents the current depth. The procedure call rule is modified to enforce a restriction that Stkptr ≤ Stksize. Neither variable can be assigned to by the program. Stkptr is 0 on entry to a main program, and each level of function or procedure calling increases it by 1. With these additions, the procedure call rule is

\[
\text{for } i=1, \ldots, m, \ P [[\text{Eval } A_i]] \text{Inrange}(A_i, t_i), \\
\text{for } i=1, \ldots, n, \ P [[\text{Locate } V_i]] \text{True}, \\
I(X,Y,G,S) [[\text{Procedure } p(X_1:t_1; \ldots; X_m:t_m; \text{VAR } Y_1:u_1; \ldots; \text{VAR } Y_n:u_n); B]] O(X,Y,G,S); \\
P [[\text{Eval } A_1; \ldots; \text{Eval } A_m; \text{Locate } V_1; \ldots; \text{Locate } V_n]] \text{Disjoint-set}(V \cup G) \\
\land I(A,V,G,Stkptr+1,Stksize) \\
\land V(Z,GW (O(A,Z,GR,GW,Stkptr+1,Stksize) \Rightarrow Q[V_1 \ldots V_n]) \\
\land Stkptr+1 \leq Stksize
\]

\[
\text{PC2}
\]

\[
P [[p(A_1, \ldots, A_m,V_1, \ldots, V_n)] Q]
\]

where S stands for the set of variables \{Stkptr, Stksize\}. Note that in practical applications, it might be important to use some measure of the actual amount of stack space used by a program instead of just the depth of recursion. It would be simple to define a different function that depended e.g., on the number and types of variables in the procedure, for incrementing Stackptr. To measure the heap storage used, counters can be added to the rules for NEW statements.
Example 6: Recursive Tree Traversal.

Type PTR is defined to be a pointer to a record with A and B fields of type PTR. The recursive procedure WALK simply does a depth first walk on a tree P. To avoid stack overflow, P must not lead to any cyclic list structure and there must be enough room on the stack for DEPTH(P, #REC) procedure calls, so Stacksize must be greater than or equal to Stackptr+DEPTH(P, #REC). Stackptr and Stacksize are declared as VIRTUAL variables to indicate that they may appear in assertions, but may not be used in executable parts of the program. ACYCLIC and DEPTH are user defined symbols for documenting programs that operate on trees. The assertion DEF(#REC) states that every allocated record in the heap of type REC is fully initialized. This assures that WALK will not encounter uninitialized dynamic variables.

TYPE PTR=tREC;
 REC=RECORD A:PTR; B:PTR END;

VIRTUAL VAR Stackptr, Stacksize: INTEGER;

PROCEDURE WALK(P:PTR);
ENTRY ACYCLIC(P, *REC) A DEF(#REC) A Stacksize ≥ Stackptr+DEPTH(P, #REC);
EXIT TRUE;
BEGIN
IF P=NIL THEN BEGIN WALK(P.A); WALK(P.B) END;
END;

The proof depends on two lemmas about acyclic list structure. If p is a pointer to acyclic list structure in the reference class or, then pt.f points to acyclic list structure. If p points to acyclic list structure, then the depth of pt.f is less than the depth of p.

ACYCLIC(p, #r) ∧ p=NIL ⇒ ACYCLIC(p.f, #r)
ACYCLIC(p, #r) ∧ p=NIL ⇒ DEPTH(p.f, #r) ≤ DEPTH(p, #r)-1
(where .f is .A or .B)

The lemmas are provided by the user to the system in the form of inference rules [13] to be used by the theorem prover.
8.3 Procedure Parameters

Procedure (and function) formal parameters in Pascal have the weakness that the arguments of formal procedures are not declared. It is not possible to determine syntactically whether a procedure parameter is called with the right number and type of arguments. It is a simple matter to tighten the language by introducing more detailed declarations; if this is done, the usual syntactic checks can be performed for procedure parameters, and they can be included in the axiomatic definition. As an example of a program using more detailed declarations, Sum(a,b,f) computes the sum of f(x) when x ranges from a to b.

```pascal
FUNCTION Sum(a,b:INTEGER; f:FUNCTION(INTEGER):INTEGER): INTEGER;
VAR I,s:INTEGER;
BEGIN
  s:=0;
  FOR I:=a TO b DO s:=s+f(I);
  Sum:=s
END;
```

Clarke [1] shows that any sound and complete axiomatic definition of procedure parameters in a language with recursion, static scoping, read write global variables, and internal procedure declarations, must depend on some method of making assertions about the state of the runtime stack of local variables. Such an approach would greatly complicate both the semantic definition and the process of specifying and verifying programs. Instead, we will make the restriction that functions or procedures with globals may not be passed as parameters. With this restriction, procedure parameters can be introduced in a natural manner.

The specification method will be to declare an Entry and Exit assertion for each formal parameter; these will be used in the ordinary call rules when the formal is called. When a procedure parameter is passed, the call rules will check that the actual satisfies the declared specifications of the formal.

8 This section discusses extensions planned but not yet implemented in the verifier.
Nesting of procedure parameters is permitted to any finite depth. Thus a procedure can have a procedure parameter which takes another procedure as one of its parameters, but self application of procedures is not possible. The various possibilities are illustrated in the example below: a procedure \(p \) has value parameters \(U \), variable parameters \(V \), a function parameter \(s \), and a procedure parameter \(q \). The procedure \(q \) takes a function parameter \(r \).

The main specification given for \(p \) is a set of entry-exit assertions, \(Ip \) and \(Op \). An occurrence in the assertions of the formal function parameter \(s \) as a function sign stands for the value of the functional parameter, and not for a constant function. The assertions may be thought of as first order schemes, which the procedure call rule adopts to particular calls by substituting the actual function sign for the formal \(s \). To distinguish this kind of substitution from substitution for free variables, the following notation will be used.

Notation: \(Q[f](X) \) is a formula containing the function sign \(f \) and free variables \(X \). After a particular formula \(Q[f](X) \) has been introduced, we will write \(Q[g](Y) \) to stand for the result of replacing the function sign \(f \) by \(g \) and substituting \(Y \) for \(X \) in \(Q \).

Each formal procedure parameter has a declaration in \(p \) of its entry-exit assertions. The declarations are like ordinary procedure declarations, except that the reserved word \texttt{FORMAL} is used in place of the procedure body. Since the formal parameter \(q \) takes a function \(r \) as an argument, the declaration of \(q \) has a declaration for \(r \) nested inside it.
Declarations with procedure and function formals.

PROCEDURE p(U; VAR V;
 FUNCTION s(Y):t;
 PROCEDURE q(W; Function r(Y):t));

FUNCTION s(Y):t; % specifications of formal parameter s %
ENTRY Is(Y);
EXIT Os[s][Y,s];
FORMAL;

PROCEDURE q(W; Function r(Y):t); % specifications of q %
 Function r(Y):t; % specifications of formal parameter of q %
ENTRY Ir(Y);
EXIT Or[r,Y,r];
FORMAL;
 ENTRY Ir[r](W);
 EXIT Or[r](W);
FORMAL;

GLOBAL GR, VAR GW;
ENTRY Ip[s](U,V,G);
EXIT Op[s](U,V,G); % specifications of p %
BEGIN pbody END; % executable statements of p %

Notation: In the following rules, entry-exit assertions enclosed In brackets, <I,O>, are included in the procedure headers as an abbreviation for the full procedure declarations as shown above.

The idea of the declaration rule is to use the declared entry exit specifications of the formal parameters, in this case s and q, to prove the specifications for p. Then for calls to p, the call rule will check that the actual function and procedure parameters satisfy the specifications declared for s and q.

Example Procedure declaration.

\[
\{Is(Y) \mid \text{Function s(Y):t; FORMAL] Os[s][Y,s]}, \quad (8.1) \\
Ir[r](W) \mid \text{Procedure q(W; r:<Ir,Or>); FORMAL] Or[r](W)} \quad (8.2) \\
\vdash Ip[s](U,V,G) \land \text{DEF(U) \land Inrange(U,t)} \mid \text{[pbody] Op[s](U,V,G)} \quad (8.3)
\]

\[Ip[s](U,V,G) \mid \text{[Procedure p(U; V; s:<Is,Os>; q(W; r:<Ir,Or>);<Ir,Oq>); pbody] Op[s](U,V,G) } \]

--
Example Procedure call.

\[\text{for } i=1, \ldots, m, \ P [\text{Eval A}_i] \text{ Inrange}(A_i, ti), \]
\[\text{for } i=1, \ldots, n, \ P [\text{Locate B}_i] \text{ True}, \] (8.4) (8.5)

\[\text{Ip}[s](U,V,G) \]
\[\text{[Procedure } p(U; V; s: \langle Is, Os \rangle; q(W; r: \langle Ir, Or \rangle): \langle Iq, Oq \rangle); \ pbody] \text{ Op}[s](U,V,G), \] (8.6)

\[\text{Is}(Y) \text{ [Function } c(Y): t; \ cbody[Y]] \text{ Os}[c](Y,c), \] (8.7)

\[\text{Iq}[r](X) \text{ [Procedure } d(X; r: \langle Ir, Or \rangle); \ dbody[X;r]] \text{ Oq}[r](X), \] (8.8)

\[P \text{ [Eval A}_1; \ldots ;\text{Eval A}_m; \text{Locate B}_1; \ldots ;\text{Locate B}_n] \text{ Disjoint-set}(B \cup G) \]
\[\wedge \text{Ip}[c](A,B,G) \]
\[\wedge VZ,GW (\text{Op}[c](A,Z,GR,GW) \Rightarrow Q|^{B_1 \ldots B_n}) \]
\[\text{P } [p(A,B,c,d)] Q \] (8.9)

In the declaration rule, the specifications of the procedure parameters \(s\) and \(q\) are used as assumptions (8.1 and 8.2) for proving the entry-exit specifications of the main procedure \(p\). This rule can be justified by the type requirements, which do not permit self applications that could lead to circular proofs.

For the procedure call, conditions 8.4, 8.5 and 8.6 are as before. Condition 8.7 checks that the actual function parameter \(c\) satisfies the specifications of \(s\); 8.8 checks the entry-exit assertions for the actual procedure \(d\).

9. Discussion

Our definition of Pascal describes some important aspects of the language that have not been included in previous axiomatic definitions. We began by recalling that a proof of \(P \{A\} Q\) does not give any assurance that a program will be free from runtime errors, and argued that a stronger relation, \(P [A] Q\), is a better indicator of program reliability.

As part of our presentation of Pascal semantics, we have developed a precise and comprehensive definition of the evaluation of expressions and Pascal variables, using partial correctness statements to account for function calls within expressions. Previous
axiomatic definitions have not dealt fully with the semantics of function calls within expressions. We then used the definition of evaluation to define Pascal statements, procedures and functions. The complete definition is very concise, although it captures many complicated details of the language. One of the crucial advantages of our axiomatic technique is its simplicity; absent are the clouds of obscuring notation commonly found in denotational definitions. The clarity and simplicity of our approach are of greatest importance when the definition is actually used to verify programs; because program specifications and the proofs are also simple and understandable, the user is free to concentrate on the real issues surrounding a program and its correctness.

Our axiomatic definition has been part of a development with the goal of building a useful automatic verifier. This has influenced the definition in several ways. One important requirement for useful verification is to have convenient methods for specifying programs. In Runcheck, specifications are greatly simplified by having a single predicate, DEF, as the basis of all predicates referring to variable initialization. The Lessdef and Inrange lemmas also eliminate the need for certain kinds of detail in specifications. Although the idea of derived inference rules is by no means new, this technique is more useful in practice than has been previously realized.

Appendix A: Development of the WHILE Rule.

This section explains the actual While rule used in Runcheck. The rule of section 6.2,

\[P \Rightarrow I, \\
I \{[\text{Eval } B; \text{ASSUME } B; S]\} I, \\
I \{[\text{Eval } B]\} \neg B \Rightarrow Q \\
\]-----------------------
\[P \{\text{INVARIANT } I \text{ WHILE } B \text{ DO } S\} Q \] (WHILE1)

does not help to reduce the need for detailed invariants and is not convenient to use in practice. The implemented rule has four additional features:
Appendix A: Development of the WHILE Rule.

1) It adds an invariant referring to the evaluation of the While test, B. B is evaluated once on each iteration, and so it must be an invariant of the loop that B can evaluate safely.

2) It makes it unnecessary for the invariant to refer to variables which cannot be changed in the loop. This has been previously called a frame axiom [8,14].

3) It applies the Lessdef lemma, adding to the invariant the information that variables changed on the loop cannot become less fully initialized.

4) Runcheck's automatic documenter generates invariants which are valid in the unextended semantics. Because proofs in the extended semantics can be separated, with part done in the ordinary semantics (Specification lemma), the extended While rule can assume the validity of documenter invariants without reproving them.

We now discuss the implementation of these changes.

1) From the definition of $P \left[\text{Eval } e \right] Q$, one can write down a sufficient precondition for e to evaluate without error. This formula will be called $\text{PRE}\left[\text{Eval } e; \text{True} \right]$. As an example, if the test of a While loop is $f(a)+b \leq 0$ and f has the declaration

```
FUNCTION f(x: INTEGER): c:d;
ENTRY I(x);
EXIT O(x);
...
```

then the condition

$$\text{PRE}\left[\text{Eval } f(a)+b \leq 0; \text{True} \right]$$

- $\text{DEF}(a) \land \text{DEF}(b) \land I(a)$$
 \land (O(a) \land \text{DEF}(f(a)) \land c \leq f(a) \land d > -\text{MAXINT} \leq f(a) + b \leq \text{MAXINT})$

is added as an invariant of the loop.

2) The variable identifiers are divided into a subset X which are not changed in the body of the loop and a subset Y which may be changed. A set of new unique variables, Y', is introduced. The extended form of the frame rule is
Appendix A: Development of the WHILE Rule.

\[P(X,Y) \Rightarrow I(X,Y) \]
\[P(X,Y) \land I(X,Y) \land \text{Eval } B(X,Y') \land \text{Assume } B(X,Y') \land S(X,Y') \land I(X,Y') \]
\[P(X,Y) \land I(X,Y) \land \text{Eval } B(X,Y') \land \neg B(X,Y') \Rightarrow Q(X,Y') \]

\[\text{--} \]
\[P(X,Y) \land \text{Invariant } I(X,Y) \text{ While } B(X,Y) \text{ Do } S(X,Y) \land Q(X,Y) \]

where the \(Y \) variables stand for the values of variables before the loop and the \(Y' \) variables stand for the values of variables during or after the loop.

3) For each variable, \(y \), which can be changed in the body, \(\text{Lessdef}(y, y') \) can be assumed to be a valid invariant.

4) Documenter invariants \(D(X,Y,Y') \) can be assumed valid.

The final rule is:

\[P(X,Y) \Rightarrow I(X,Y) \land \text{PRE} \land \text{PRE} \land \text{Lessdef}(Y,Y') \land \neg B(X,Y') \Rightarrow Q(X,Y') \]

\[\text{--} \]
\[P(X,Y) \land \text{Invariant } I(X,Y) \text{ While } B(X,Y) \text{ Do } S(X,Y) \land Q(X,Y) \]

where \(\text{PRE} \) is \(\text{PRE}[\text{Eval } B; \text{TRUE}] \).

Appendix B: Simultaneous Substitution for Disjoint Variables

In this section, we present the definitions of disjointness for Pascal variables and simultaneous substitution for disjoint Pascal variables. To begin, we need to define the translation of a Pascal variable into a standard representation as a sequence consisting of a main variable identifier followed by zero or more selectors. In the following, \(<e_1, \ldots, e_n> \) denotes a sequence of \(n \) terms, and the operator \(\cdot \) stands for concatenation of finite sequences.
Appendix B: Simultaneous Substitution for Disjoint Variables

The function \(\text{Seq}(v) : \langle \text{Pascal variable} \rangle \rightarrow \langle \text{term sequence} \rangle \) is defined as follows:

\[
\begin{align*}
\text{Seq}(\text{id}) &= \langle \text{id} \rangle \quad \text{if id is an identifier} \\
\text{Seq}(v.f) &= \text{Seq}(v) \cdot \langle .f \rangle \\
\text{Seq}(v[i]) &= \text{Seq}(v) \cdot \langle [i] \rangle \\
\text{Seq}(v^t) &= \langle \#_t, v \rangle \quad \text{where } \#_t \text{ is the reference class}
\end{align*}
\]

Definition of Disjoint \((v, w) \)

Let \(v \) and \(w \) be Pascal variables and \(\text{Seq}(v) = \langle v_0, \ldots, v_n \rangle \), \(\text{Seq}(w) = \langle w_0, \ldots, w_m \rangle \), and assume \(m < n \). Then \(\text{Disjoint}(v, w) \) is the following formula:

\[
\begin{align*}
\text{If } v_0 \text{ and } w_0 \text{ are distinct identifiers, then } \text{Disjoint}(v, w) &\rightarrow \text{True}; \\
\text{otherwise, } \text{Disjoint}(v, w) &\rightarrow (v_1 = w_1 \; v \; \ldots \; v \; v_m = w_m)
\end{align*}
\]

The current implementation of Runcheck uses a much more restrictive definition of disjointness (it only compares \(v_0 \) and \(w_0 \)); this restriction is not essential and will be removed in a later version.

Simultaneous Substitution

We can now define a simultaneous substitution of \(n \) terms \(e_1, \ldots, e_n \) for disjoint \(v_1, \ldots, v_n \). Let \(\text{Seq}(v_i) = \langle v_{i0}, \ldots, v_{im_i} \rangle \) for \(i = 1, \ldots, n \). Let \(t_1, \ldots, t_n \) and \(d_{ij} \) for \(i = 1, \ldots, n \), \(j = 1, \ldots, m_i \), be new identifiers not appearing in \(P \), the \(v_i \) or the \(e_i \).

Define \(\text{Unseq} : \langle \text{term sequence} \rangle \rightarrow \langle \text{Pascal variable} \rangle \) to be the inverse of \(\text{Seq} \); \(\text{Unseq}(\text{Seq}(v)) = v \).
Then we can define

\[p_{\{v_1, \ldots, v_n\}} \]

\[= p_{\text{unseq}(\langle v_1, d_1, \ldots, d_{m_1} \rangle)_{t_1} \ldots \text{unseq}(\langle v_n, d_n, \ldots, d_{m_n} \rangle)_{t_n}} \]

\[= p_{t_1 \ldots t_n} | v_1 \ldots v_{m_1} \ldots v_n \ldots v_{m_n} \]

\[= p_{t_1 \ldots t_n} | v_1 \ldots v_{m_1} \ldots v_n \ldots v_{m_n} \]

Example B.1: Simultaneously swapping \(a[i] \) with \(a[j] \) and changing \(i \).

\[P(a,i,j) | a[i] a[j] | i+1 \]

\[= P(a,i,j) | a[i] a[j] | i+1 \]

\[= P(a,i,j) | a[i] a[j] | i+1 \]

Note that \(\langle a, [j], a[i] \rangle \) stands for the value of the array \(a \) after first assigning the value \(a[i] \) to the \(j \)th position, and assigning \(a[j] \) to the \(i \)th position.

Example B.2: Swapping two variables accessed by pointers.

Consider the effect of simultaneously interchanging \(x \) and \(y \), where \(x \) and \(y \) are pointer variables.
Appendix B: Simultaneous Substitution for Disjoint Variables

1

TYPE ptr = INTEGER;
VAR x, y: PTR;

\[P(x, y, \text{INTEGER}) | \text{INTEGER} < x, y > \]
\[\text{INTEGER} < y > \]
\[\text{INTEGER} < x > \]

\[= P(x, y, <<\text{INTEGER}, y >, \text{INTEGER} < x >, x >, \text{INTEGER} < y >>) \]

The final value of the reference class INTEGER is exactly analogous to the final value of the array a in example B.1.
References

11. Luckham, D. and N. Suzuki, Verification of Array, Record, and Pointer Operations in Pascal, ACM TOPLAS 1, 2 (October 1979), pp.226-244.

