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A
In this paper a new successive shortest path (SSP) algorithm for

ABSTRACT

solving the assignment problem is introduced. A computer implementation

of this algorithm has been developed and a discussion of the details of

this implementation is provided.

which show this implementation of SSP to be substantially more efficient

than several recently developed codes including the best primal simplex

code.

in the implementation of SSP, and it is shown that the algorithm has a

computational bound of 0(n3), where n is the number of origins.

Also, some new theoretical results are presented which are useful

Computational results are presented
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1. INTRODUCTION

Recently, there has been quite a lot of activity in the development

of new algorithms and computer codes for solving assignment problems (2],
[16], [19]. In this study, we compare these approaches to a successive
shortest path algorithm (SSP) which is a refinement of the Dinic-Kronrod
algorithm [7]. We have used SSP to develop a computer code which is very
efficient for solving large, sparse assignment problems, and we introduce

some new theoretical results which are useful in our impiementation.

Furthermore, it is shown that SSP has a computational bound of 0(n3), where
n is the number of origins. SSP goes through a series of modified
assignment problems in which some destinations are permitted to have demands

greater than one, while some demands are set to zero. The algorithm proceeds

from the optimal solution of one of these modified problems to the optimal
solution of the next via a related shortest path problem. The algorithm
terminates when the modified problem coincides with the original assignment

problem. This algorithm is closely related to those developed independently

by Hung and Rom [16] and Gribov [14].
Weintraub and Barahona [19] have based their work on the minimum cost
flow algorithm of Edmonds and Karp [9). Although this approach has some
similarities to SSP, it is evidently a different algorithm.
Barr, Glover, and Klingman [2] developed a new version of the primal
simplex algorithm called the AB algorithm which examines only certain bases
(called the alternating path bases) representing a given extreme point.

Even with this improvement to the primal simplex algorithm, over 90% of




the pivots are degenerate.

The algorithms tested, other than the AB algorithm, substitute a more
complicated procedure for the primal simplex pivot so that nondegenerate flow

change and progress toward optimality are guaranteed at each iteration.
2. BACKGROUND ON SHORTEST PATH PROBLEMS

Since our implementation of SSP is based on a label-setting approach
for solving the related shortest path problems we give a very general
outline of this approach. Further details may be found in (51, (8], or [10].
The type of shortest path problem we wish to solve involves a directed net-
work, a special node r (called the root) and a set of special nodes (called
abundant nodes) such that r is not abundant. It is desired to find the
shortest path from r to some abundant node.

The label setting algorithm begins with a shortest path tree consisting
only of r, and it assigns a distance of zero to r and a distance of infinity
to all other nodes in the shortest path network. Roughly speaking, at each
iteration, the node closest to the existing tree is adjoined to the tree
and the shortest distance from the root to that node is computed (when this

happens, the node is said to be permanently labelled). This process is

terminated when one of the abundant nodes is permanently labelled.

The solution of a shortest path problem is given in terms of the
rooted tree T of permanently labelled nodes. In dealing with such trees,
the predecessor 1ist is useful. The predecessor of a node v # r in the

tree is the starting node u of the single arc in the tree terminating at v.

We illustrate these ideas by giving an example of such a rooted tree in
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Figure 1. In this example, the arcs are labelled with their lengths as given

in the shortest path problem, and the root r equals 1.

Fig. 1. A shortest path tree.

\»\'
N
\/)1\’
) Node,i Predecessor,Pi Distance,Di
7 1 none 0
2 3 6
3 1 1
4 3 3
5 1 3
6 2 10
7 1 1
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In a shortest path tree, the unique sequence of nodes beginning with a node
v # r and leading to r is called the path from v to the root and is denoted
S(v). For our purposes, it is convenient to exclude r from S(v). Thu;, in
Figure 1, S(4) is 4,3. We note that S(v) may be generated by taking
successive predecessors.

The label-setting approach we employ is based on the Dijkstra algorithm
(6] and we use Dial's implementation [4] of that algorithm. ‘Dial's
implementation involves a modular sort 1ist which is used for obtaining the
node closest to the existing tree. Each position on this 1list represents a
distance (reduced by the modulus) from the root. The length of the sort Tist
(i.e., the modulus) is one greater than the maximum arc length for the
shortest path problem. A complication which arises in the implementation of
SSP is that the maximum arc length in the related shortest path problems
increases as the algorithm proceeds. This complication is resolved by
employing a single radix sort as described in [5]. For the single radix
sort, each position on the modular sort 1ist represents a range of distances
from the root, and the Tength of the sort list remains fixed for all related

shortest path problems in our implementation of SSP.

3. DESCRIPTION QF SSP

We begin this section with a review of some terminology. A directed
network, or for simplicity, a network, consists of a finite set of nodes and
a finite set of arcs. Each arc may be identified with an ordered pair of

distinct nodes. That is, we can visualize an arc as beginning at the first

node in the ordered pair and terminating at the second. The set of arcs
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emanating from a node u is called the forward star of u and is denoted FS(u).
Similarly, the set of arcs entering a node u is called the reverse star of u

and is denoted RS(u).

A statement of the nxn assignment problem follows.

Minimize C.. X,
(mEE 1§71

subject to

. =1, i€l

(i,j) € FS(d) x'iJ {1:293...,n}

xi: =1, jed = {1,2,3... ,n}

(i,j)ers(i) M

ﬁjzo,(hﬂfE

where I is the set of origin nodes, J is the set of destination nodes, E is
the set of arcs, and €3; is the cost of a unit flow on arc (i,j). That is,
Cij is the cost of assigning origin node i to destination node j. We define
C to be{cij: (i,j)eE}. The nodes IUJ together with the arcs E form the
assignment network.

In order to avoid difficulties with the definition of the assignment
problem, we will assume that FS(i) and RS(j) are not empty for i€l and jedJ.

Next, we introduce a concept which is central to the development of SSP.

Whenever a mapping A:1-»J is given, we say that A defines a tentative




assignment provided that (1.Ai)g E for i€l.
Since the assignment network will remain fixed in the following
discussion, we denote the assignment problem equipped with a tentative assignment

A by (C,A). We say that (C,A) is in standard form if cij;:O for a1l (i,j)€E

and Cij * 0 when j = Ai' We note that when (C,A) is in standard form and A
is one-to-one, then A determines an optimal solution of the assignment problem.
In the starting procedure for SSP a tentative assignment A is defined

as follows. First,

T (i rg;z Fs(i){cip}

must be determined for i€ 1. Next, for i€1, A,

i is defined to be some j

such that Cij = Ei. For this A, (C,A) may not be in standard form.

However, the forward star of each origin i may be scaled by setting
ip ip

for (i,p) €FS(i). The resulting (C,A) is in standard form. This technique
is also used in the starting procedure for SSP. Of course, such scaling does
not affect the solution of the original assignment problem.

For a given tentative assignment A, we let a; denote the numbér of

elements in {i: j = A;}.

The modified assignment problem relative to (C,A) is defined as follows:
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Minimize 2: Cis Xis
(i,jJeg I

subject to =1, i€l

HJ%%NHX”

s T A., jeJ
(Lﬂ§%U)MJ J

xij =0, (1,3)€E

We note that when (C,A) is in standard form, A provides an optimal
solution to the modified assignment problem relative to (C,A).

A destination node j is said to be abundant relative to A when
aj:>1. Likewise, j is said to be deficient relative to A when a; = 0.

Suppose that (C,A) is in standard form and d is some deficient node
with respect to A. Then the shortest path problem relative to (C,A) and d
is denoted SP(C,A,d) and is defined as follows. The network for SP(C,A,d),
which we refer to as the shortest path network, is derived from the
assignment network. We proceed by describing how this is done and how the
arc lengths for SP(C,A,d) are defined. The nodes of the shortest path
network can be identified with arcs (i,j) of the assignment network which

satisfy j = Aj. We denote such a shortest path node by (i—»A;j) or (i—>j)

where j = A;. Also, we refer to (i->Ai) as the ith shortest path node.




Clearly, there n such nodes. We introduce one more .node (n+l--d) for the
shortest path network and make this consistent with previous notation by
extending A so that A,y = d. For SP(C,A,d), the root node is (n+1-d)
while a node (i-=A;) is abundant provided A; is an abundant destination
relative to A. An arc exists in the shortest path network from (i®%A;) to

(pi>Ap) in case (p,Aj)€E. If this arc exists, its length is ¢ j where

p
Jj= A4

In order to fix ideas, we present an example showing how SP(C,A,d)

is defined in a particular case. Let the assignment problem be as shown in

Figure 2, where arc (i,j) is labelled with cost Cj We let A; = 1, Ay = 1,

j°
A3 = 2 and note that (C,A) is in standard form. Destination 3 is deficient
and we let d = 3. The network for SP(C,A,d) is shown in Figure 3 where a
shortest path node (%*-Ai) is shown as a node with an upper label (i) and a
lower 1abel (A;). The arcs of the shortest path network are labelled with

their lengths.

O




Fig. 3. An example of SP(C,A,d).

We remark that the arcs in the shortest path network are oppositely
directed from their counterparts in the assignment network. This is why, in
our implementation of SSP, the problem data for the assignment problem is
stored in reverse star form. That is, the data for the arcs is stored
consecutively in computer memory so that RS(j) appears immediately after the
data for RS(j-1), where j is a destination. A pointer list is employed
to indicate the entry position for the block of memory locations assigned

to each reverse star.
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The major steps of SSP will be listed after we set up some notation.

R; = node potential for the ith origin node

Kj = node potential for the jth destination node ’

D;j = distance of the ith shortest path node from the root ;

P; = predecessor of the ith shortest path node in the shortest i
path tree

We use R to denote the mapping whose value at i is Ri' The use of

K, D, and P is similar. When a shortest path problem is solved, we will
denote the first abundant node to be permanently labelled by v, and we will
denote the distance of v from the root by L. We let C0 = {c?j: (i,j)e E}

denote the costs for the original {unmodified) assignment probiem.

0. Define Al and transform 0 to ¢t by scaling as described above so that
(cl, Al) is in standard form. Set k = 1.

1. Choose a destination node dX which is deficient relative to AK. If no
deficient nodes exist, stop since Ak defines an optimal solution.

2. Solve SP(Ck,Ak,dk). The shortest path algorithm is terminated as soon
as an abundant shortest path node is permanently labelled. If the
shortest path algorithm fails to permanently label an abundant node,

stop since the assignment problem is infeasible. Otherwise, the
results of this step are Dk, Pk, vk and Lk.

3. For each permanently labelled shortest path node (i~—j) from step 2,

set R% = D§ - Lk and K§ =1k - D%. For any remaining origins i or

L
destinations j, set R? = Kg = 0.
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k+1 k k k -
4. Set Cij = Cij - Ri - Kj for (19J)€ E.

. k+1 k
5. Whenever the ith shortest path node is in s(vk), set Aj " = A, where

v = P5. For all other origins i, Af™ = AX. Set ke—k+1 and go to 1.

We claim that after the updates in steps 4 and 5, (Ck,Ak) is in standard

form. This is verified in section 4.

4. THEORETICAL RESULTS

In this section, certain theoretical properties of SSP are examined. ;
Theorem 1 is a convergence result, while Theorem 2 deals with the computational
complexity of SSP. Theorem 3 is useful in obtaining the optimal value of the
objective function, and Theorem 4 provides a verification of the infeasibility

criterion in step 2 of the algorithm.

A node p of the assignment network (either an origin or a destination)

is said to be on a shortest path tree T provided that p= i or p = j holds

for some node (i==j) of T.

An origin node i and a destination node j of the assignment network

are said to be adjacent on a shortest path tree T provided that either

(a) (i=»j) is a node of T

§ (b) (p==j) and(i-eQq) are nodes of T for som p and q and

there is an arc of T from (p=ej) to (i-eq).
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We will let TK denote the kth shortest path tree generated when
sP(ck,ak,dk) s solved in step 2 of SSP.

Next, we present three preliminary results.
(1.) Suppose that (Ck,Ak) is in standard form and that step 4 of the algorithm

has been completed. Then c';;l = 0 whenever i and j are adjacent on Tk,
k

Proof of (1.): In case (i=»j) is a node of Tk, cij = 0. Hence,

k+l _ k Kk k Ky =
cij = ‘(Di ’L ) - (L - Di) 0.

In the other case, there exist p and q such that (p-=j) is the predecessor

of (i==q) in T*, Hence, c',sj + D'; = D'i(. It follows that

k+1 _ k K _,ky _ 1k _ pky =
i3 'cij'(Di Lh) - (L Dp) 0.

(2.) Suppose that (Ck,Ak) is in standard form and that step 4 of the
algorithm has been completed. Then c';glzo for (i,j)eE.

Proof of (2.): We consider four cases based on whether i,j are on Tk,

(a) Both i and j are on 7K. If i and j are adjacent on %, result (1.)
applies and we are done. Otherwise, there exists £ # i such that (e==j) is

on T%. We have c:.(j + Dtan'i‘ by the way TK is constructed. It now follows

k+1>0

readily that Cij N

(b) Suppose i is on T* but j is not. Since K§ = 0, we have

kt1 &

k k
cij - cij - (Di - L

_ k k k
)'°1j+(L -D.i).
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Now, c:.(j?.o by hypothesis and Lk - D:.‘BO by the way Tk is constructed.

(c) Suppose that i is not on 7€ but Jj is. We have R? = 0 and there

exists 2 such that (z~j) is on Tk. Since the ith shortest path node is not
k_ k k k k cktl - ck _ vk

k : _

permanently labelled, cij + DRE:L . Since Kj =L - D2 » €53 i szzn.
(d) Neither i nor j is on TX. We have c?}l = cﬁjE:O.

(3.) Suppose (Ck,Ak) is in standard form. After the update of A in step 5

Ck+1,Ak+1) is in standard form.
Proof of (3.): By result (2.) above, c?}lzzo for (i,j)€E. Hence, we need

of the algorithm, (

only verify that j = A§+1 implies c?}l =0. Incase j= A§+1 = A?, we have
k+1

c§§1 = c§j =0. Ifj-= Ai # Af, it follows that i and j are adjacent on

k+l _
.ij = 0-
Theorem 1. If SSP does not stop because of the infeasibility test in step 2,

Tk, By result (1.), ¢

it reaches optimality in at most n-1 iterations.
Proof: We proceed by induction. We have that (Cl,Al) is in standard form
with at most n-1 deficient destinations. If we assume that (CK,AK) is in
standard form with q=1 deficient destinations, it follows (using result
(3.)) that (Ck+1,Ak+1) is in standard form with g-1 deficient destinations.
Theorem 2. SSP has a 0(n3) computational bound.

Proof: When the alaorithm does not indicate an infeasible assignment
problem, it requires at most n-1 iterations by Theorem 1. This result,
together with the O(nz) computational bound for the Dijkstra shortest path
algorithm, implies the 0(n3) bound in this case.

TR @ RIEWAATS

PRon St s ohdemtes el

S TR YT




14

On_the other hand, if the algorithm indicates an infeasible assign-
ment problem at some iteration m, then m=n-1 b;.;;éorem i; '%B;-ﬁijk;;;;;——
algorithm can be modified in an obvious way to detect a failure to
permanently label an abundant node, and the modified Dijkstra algorithm
will have an 0(n2) bound as before. Consequently, the 0(n3) bound holds
in this case as well.

Next, we introduce some notation which is needed for Theorem 3.
Rg = min {c?-}, iel
V(i) ers(i) Y

0 .

Kj = 0, Jed
n

LO _ RO
i=] 1

- m-1
R';‘-kzok';,iel

-m m=-1 k
K =g: K, , j€d
j =0 J

-m -m
We refer to R1 and Kj as the accumulated node potentials, where m is some

iteration of SSP.
Theorem 3. Assume that the conditions of Theorem 1 hold. Then the optimal

objective value for the modified assignment problem relative to (CO,Am) is

m-1
Lk,
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Proof: Since A" provides an optimal solution to the modified assignment
problem relative to (Cm,Am), it also provides an optimal solution to the

modified assignment problem relative to (CO,A™). This follows since C"

can be obtained from C0 by scaling using the accumulated node potentials.

The optimal objective value for the latter problem is therefore

0
255

j=A'%',i€ I

In the remainder of the proof "i € 1" will hold for all summations
involving i and will not be written in order to simplify the notation.

We will prove the following proposition by induction:

milLk=2 c0

k=0 5T i

The proposition is clearly true when m = 1,

We assume the proposition for a general m. Then,

i 0
- 2o co. +L
k=0 j=A3 13
= m ? + Zm C1 + Zm"’l (C,'j R‘;‘ - k?)
J=A1 J j=Ai J j=A'i

i€s(v™  ies(v™  ies(v"

15
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where the latter equality uses the definition of L™, Thus,

m
k _ 0 -m “m, 0 - =m - -m
kzsi) L = jg;\? C'ij + JE:A? (R'i + Kj' + JgA';H'l (ciJ Ri KJ)

iés(v™  ies(v™ i €s(v™

using preliminary result (1.). Hence,

m
k 0 0 “m °m
= 2 co, + 2, ..cast KN -K
k:b= joAy jeATL T3 e

i¢s(v™  ies(v™

where l'(': is the accumulated potential for the abundant destination a

such that (vie-a) is on T" and K" is the accumulated potential for d".

d
Clearly, R’: = R’; =0, Finally,

m k_ 0
&L -,PZATH Cij'

which is the proposition we wish to prove with m replaced by m+l.

-1
It follows from Theorem 3 that ? Lk is a Tower bound on the
=(
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optimal objective value for the original assignment problem for any iteration m.
Theorem 4. The original assignment problem is infeasible if and only if

the shortest path algorithm fails to permanently label an abundant node

of SP(Ck,Ak,dk) on some iteration k.

Proof: Half the proof follows from Theorem 1. Regarding the other

half, we note that whenever a path from the root to some abundant node

exists, the shortest path algorithm will eventually permanently label

an abundant node. We proceed by assuming that there is no path from

the root to an abundant node in SP(Ck,Ak,dk) and that the desired

conclusion--infeasibility of the assignment problem--does not hold.

Thus, there is a one-to-one mapping A:I=*J such that (i,Ai)e E for i€1.
Now, let 1'1 be chosen so that A:il*dk. Let Ak:il*jl. Since

dk is deficient relative to AK, iy ? d. Let i, be chosen so that

A:ig=>j1. Since A is one-to-one, i, # 1;. let Ak:i2-jz. Ve have

that j, # d as before. Also, j, # j; since otherwise (if*-jl) would j
be an abundant node for SP(CK,AK,dK) and there would be a path to this ;
abundant node from the root. This process may be repeated indefinitely so

that a sequence of distinct nodes of the assignment network--

the assignment network and the proof of the theorem is complete.

1

%

’j : dk.il.jl,iz.jz.... -- is created. This contradicts the finiteness of
|

i

i

i 5. COMPUTATIONAL ASPECTS

j We have developed a FORTRAN code called SPAN which is an implemen-
tation of SSP. In this section we will discuss some of the details of

this implementation.




1

18

The major steps of SSP listed in section 3 were formulated for

case of exposition and not for computational efficiency. For this

reason, there is a difference between steps 3 and 4 as listed and what

is done in the SPAN code. In step 3, node potentials are defined for

all nodes of the assignment network at each iteration, while in SPAN,

the accumulated node potentials introduced in section 4 are maintained.
Thus, at iteration k, only the accumulated node potentials corresponding to
assignment nodes on Tk need to be updated. In step 4, the cost data for
all arcs is updated; however, this is not done in SPAN. Instead, whenever
a cost cgj is needed in the solution of SP(CK,Ak,dK), it is computed

using the relation c§j = c?j - ﬁ% - Rg. Next, we describe how the

details of some SSP steps were handled in SPAN.

In the starting procedure Al is defined by setting A% equal to j
where c?j is minimal over all costs of arcs in FS(i). There may be more
than one j which could be chosen. We developed a heuristic for breaking
ties in such a way that the number of deficient destinations relative to
Al is decreased. However, on the basis of limited computational testing,
we concluded that our heuristic was of benefit only for assignment
problems in which the cost range is small. For this reason, we did not
include the heuristic in SPAN. In SPAN the smallest j such that c?j
is minimal over costs of arcs in FS(i) is chosen.

In step 1 of SSP, there may be more than one dk which could be
chosen. We did some experimentation but were unable to develop a more
efficient strategy than simply choosing the smallest j such that j is

deficient. This is the strategy used in SPAN.
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When shortest path problems are solved using the Dijkstra algorithm,
temporary distances from the root are assigned to all nodes not yet in the
tree. Several nodes with a common temporary distance may simultaneously
become eligible to be permanently labelled. In SPAN, such ties are broken
by examining the nodes in the opposite order from that in which they
received the common temporary distance. No other option was tested.

It is possible to develop an artificial start for SSP. This is done
by introducing artificial arcs with costs of negative infinity beginning
at each origin and terminating at an artificial destination. Then, SSP is
applied. After a limited amount of computational testing, we concluded
that the artificial start increased total solution times. We were
motivated to do this testing by the fact that a procedure equivalent to
the artificial start is included in the algorithm of Gribov [14].

We mentioned in the introduction that SSP is closely related to
the so-called relaxation algorithm of Hung and Rom [16]. One major
difference between SSP and the relaxation algorithm is that a basis for
the modified assignment problem is maintained in the relaxation algorithm
while we keep track of only the unit flow arcs in SSP., Maintaining a
basis opens up the possibility that more than one deficient destination

can receive an assignment on a given iteration. Of course, a certain
amount of extra work is required to maintain the basis. In the recent
computational study [5], a label correcting shortest path code was found
to be the most efficient on large, sparse shortest path problems. Since
the shortest path trees constructed by a label correcting must contain

all nodes of the shortest path network, it seems that maintaining a basis
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as in the relaxation algorithm and using a label correcting shortest path
code might be a good combination. We have begun an investigation of this
approach.

As mentioned in section 2, the length of the sort list employed in
solving the shortest path problem SP(Ck,Ak,dk) depends on the maximum arc
length in the problem. Making a complete pass through the arc data to
determine the maximum shortest path arc length at each iteration of SSP
would be very inefficient. In SPAN we simply maintain an upper bound on
the maximum shortest path arc length and use this upper bound in determining

the length of the sort list or the size of the radix. If we let

c = max c0 }
(i,j)€e "
and
RK = min {kk}
j€9 J
then the upper bound on arc lengths for SP(Ck,Ak,dk) is ¢ - ﬁk. That this
k

is an upper bound can be deduced readily using the fact that RiE:O. This

upper bound is easily updated along with the accumulated node potentials
kk.
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6. COMPARATIVE COMPUTATIONAL TESTS

We have tested SPAN against implementations of several other algorithms.

These include the codes of Weintraub and Barahona [19], Hung and Rom [16 ], and
Barr, Glover, and Klingman [2 ]. The first two codes we call DUAL and RELAX,
respectively. The third is known as AP-AB. The four codes tested are
written in FORTRAN. In SPAN, there is a single parameter called NBUC which
equals the length of the sort list. For all the tests reported in this
section, NBUC was set at 200. In DUAL, a parameter called NSQR was set,
as suggested in [19], to be aboutVn (we recall that n is the number of
origins). We did not set any other parameter values for the codes tested.
A1l computer runs were carried out on the CDC Dual Cyber 170/750 using
the FTN compiler during periods of comparable computer use. A1l solution
times reported are exclusive of input and output. The problems used in the
tests were randomly generated using NETGEN [18]. Each time reported in
Tables 1-4 is the average of times for three runs on a single problem. The

! actual run times varied from the time reported by as much as 14% for the
smallest problems tested, but such variation was generally much less.

Based on total solution times for the problems shown in Tables 1 and

2, SPAN is about 3 times faster than AP-AB and roughly 6 times faster than
RELAX. The closest competing code is DUAL; however, because DUAL did not
achieve optimality on some problems, we must be somewhat cautious with
regard to the solution times reported. It appears that there may be some
defect in the code, and this could cause solution times to increase when

it is corrected. Nevertheless, we have run SPAN and DUAL on some

additional problems with the results shown in Table 3. Based on the total
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solution time for all the probiems on which DUAL achieved optimality, we
conclude that SPAN is 25 to 30 percent faster than DUAL.

Although SPAN was much more efficient than RELAX for the tests on
sparse problems reported in Tables 1 and 2, it is important to point out that

RELAX was developed for totally dense problems. For this reason, we conducted
further tests with the results shown in Table 4. These results indicatémthat

RELAX is more efficient than SPAN on totally dense problems. Since assign-
ment problems encountered in practice are invariably sparse, the question
arises as to whether some new implementation of the relaxation algorithm
might be more efficient than SPAN on sparse problems. We note that the
feature of the relaxation algorithm which allows more than one deficient node
to receive an assignment on a given iteration may benefit from the topology
of dense problems. As we mentioned in section 5, work is underway to
develop a code based on the relaxation algorithm which is designed to solve
sparse problems.

Next, we compare the number and size of arrays required by the various
codes. SPAN uses 2 arc length and 10 n-length drrays along with the sort
list. DUAL requires 6 arc length arrays, 21 n-length arrays, and 3 arrays
for which we were unable to determine the length except that it must be more
than n. RELAX requires an nxn matrix and 9 n-length arrays. AP-AB requires
2 arc lenéth and 6 n-length arrays.

For sparse problems AP-AB uses the least array space with SPAN running
a close second. Both RELAX and DUAL use a lot of array space for sparse

problems; however, RELAX is considerably better off when it comes to dense

problems. When the arc density of a problem is about 50%, SPAN and RELAX
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require roughly the same amount of space. We remark that, as indicated by
the results in Table 4, SPAN is more efficient than RELAX on such 50% dense

problems.

TABLE 1.
SOLUTION TIMES IN SECONDS
Ei FOR 200 x 200 ASSIGNMENT
| PROBLEMS WITH COST RANGE 1-100

‘
| NUMBER OF ARCS
f CODE 1500 2250 3000 3750 4500
SPAN .085 .182 .159 .280 .187
3 did not
DUAL .178 achieve .272 .292 .342
optimality
1 )
? RELAX 1.364 1.459 1.117 1.053 1.154 ]
' |
I AP-AB 490 .604 .631 685 .921

e i 5> bl el

o
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TABLE 2.
SOLUTION TIMES IN SECONDS
FOR 200 x 200 ASSIGNMENT
PROBLEMS WITH COST RANGE 1-10000

NUMBER OF ARCS '

i
CODE 1500 2250 3000 3750 4500 ]
SPAN .126 .194 .191 .265 .383
did not did not
DUAL achieve 273 achieve 433 .450
optimality optimality
RELAX .882 1.152 1.027 1.148 1.353
AP-AB 513 .570 .630 .663 .945

e T i, LT
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TABLE 3.

SOLUTION TIMES IN SECONDS
FOR 300 x 300 ASSIGNMENT
PROBLEMS WITH COST RANGE 1-100

NUMBER OF ARCS
| CODE 3000 3500 4000 4500
SPAN .278 .279 .355 .314
DUAL .330 .342 .477 .448
TABLE 4. - t

SOLUTION TIMES IN SECONDS
FOR 100 x 100 ASSIGNMENT
PROBLEMS WITH COST RANGE 1-100

NUMBER OF ARCS

CODE 2500 5000 7500 10000

SPAN .083 .165 .216 .305

RELAX .238 .257 212 .258

AT
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7. SUMMARY AND CONCLUSIONS

Applications of minimal cost network flow problems are widespread [11],
[12], [17], and new solution algorithms and implementations have stimulated
further applications. A number of studies including [ 3], [13], and [15] have

concluded that implementations based on the primal simplex algorithm are the

most efficient for solving such problems. In this study, we have introduced a
successive shortest path algorithm--SSP--and an implementation of this
algorithm--SPAN. We have verified through computational testing that SPAN is
| substantially more efficient for solving assignment problems than AP-AB, which

is currently the best primal simplex code for this type of problem.

SPAN was also found to be more efficient than an implementation of the
Edmonds and Karp algorithm speicalized to assignment problems.

Our computational results raise the question of whether some extension

of successive shortest path methods will enjoy similar success on transportation

and transshipment problems. An extension of this type already exists [14],

and it seems that the question will ultimately be settled through computational

testing.

ph.aei

We have developed some new theoretical results specifically for SSP.

However, it would be of interest if a more general framework could be set up

which would relate our work and [7), [14], [16] to the family of simplex

B _=loted Ol e Sngangid

algorithms. Such a framework might follow along the lines of what Adolphson

[1] has done in providing a theoretical basis for his so-called nondegenerate

network simplex method.
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