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ABSTRACT

This report is primarily a review of the state-of-the-art of

software testing and verification with emphasis on techniques applicable

to JOVIAL J13 programs. Since the project con terns a JOVIAL J73

Automated Verification System, the need for such a tool, the capabil-

ities for the tool, and the high-level design of the tool are also

described. Future capabilities for the tool are identified.
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EVALUATION

The purpose of this contractual effort was to determine and specify the

required capabilities for an automated ttsting and verification system for

JOVIAL J73 software systems. The effort provided a significant review of

the state-of-the-art of software testing and verification, with emphasis

placed on techniques applicable to JOVIAL J73 programs. The resulting

capabilities were specified in two separate documents - a Functional

DescripLion and a System/Subsystem Specification, which will be utilized

during the implementation phase of the effort. The availability of an

automated testing and verification system for JOVIAL J73 is significant in

that it will enhance Air Force software development capability and result in

a more cost-effective and reliable product. This effort was responsive to

the objective of the RADC Technology Plan, TPO 4G4, "Higher Order Languages."

FRANK S. LAMONICA
Project Engineer
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1 -IN'TRODUCTION

General Research Corporation is under a two-phase contract with

Rome Air Development Center to develop and implement an automated tool

to assist in the testing, verification, and maintenance of JOVIAL J73

software. Phase I of this effort is the study of the state-of-the-art PTof software verification techniques and tools and the development of a

functional description and system/subsystem specification for the tool.

Phase 11 of this effort is the implementation, testing, and user

training period.

This report describes the need for such an Automated Verification

System (AVS), results of the state-of-the-art study, highlights of the

functional description and system/subsystem specification, and future

capabilities for consideration. Additional reports resulting from this

effort are the following:
I

Phase I

1. Functional Description

S. System/Subsystem Specification

J. Project Resource Document

Phase i1

4. User's ?-tanual

5. laintenance Manuai

O. Test Plan

7. Final Report: Implementation Phase

6 6. Program Specification

The implcmentation of the AVS, called J?3AVS, is expected to

cominence in May 196U. Figure 1.1 is a schedule of activities for both

phases oi this ettfort. Final delivery of J?3AVS is scheduled for

October i98. on the Itel AS/5 at Wright-Patterson AFB ana the DEC 20 at

Rone Air Deveiopment Center at Griffiss AFB.

1-1
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Each three months the developing system w~ll be benchrnarked; that

is, an execute document (absolute file) will be created containing theIcurrent tool. It is expected that tile tool will have the following

capabilities at each benchmark: A

Benchmark I - Coimand zinc control

Database management

Syntax analysis

= Benchmark 2 -Structural analysis

Instrumentation

Static analvsis

Reaching set generaItion

Benchmark j Report g'enerat ion

Path analysis

Post-execuition analysis

Test history processing

The incremental benchmarks are intendtd for our use of J73AVS to

analyze its own code, and for lii~tec use at Wrigit-Patterson by

Government personnel to give thle tool early exposure.

1ON-
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2 THE NEED FOR J73AVS

The need for this automated verification system is based upon the

emergence of a new JOVIAL language which will supersede the previously-

approved JOVIAL dialects; the characteristics of the language that make

it complex and error-prone; the type of applications expected to be

written in the language; and the standardization of certain testing

measures.

in an effort to prescribe a standard policy for using computer

programming languages and for r,sting computer progranming language

compilers, the Air Force issued AF Regulation 300-10 in 1976. Two

JOVIAL languages, J3 and J73/l, were specified as Air Force standard

high-order programming languages. Both JOVIAL languages are primarily

designed for command and control system programming. They are es-

pecially well suited to large systems requiring efficient processing of

a large volume of data with complex structure.

Another JOVIAL language, J3B, evolved from J3 for the purpose of

'developing computer programs for the Boeing B-I. Derivatives of J3B

have been widely used for avionics computer programming. however,

JOVIAL J3B is not a language approved by AF Regulation 300-10.

Therefore, a blend of J73/1 and J3B, plus additional features not in

either language, has been created to satisfy the programming needs of

both the avionics and systems communities. This language, JOVIAL J73,

is specified in MIL-STD-1589A and is being refined for a July 1, 1980

release. in the spring of 1980, AF Regulation 300-10 is expected to be

revised to cancel both J3 ana J73/ I languages, leaving J73 as the only

JOVIAL language.

It was the desire to improve sottware reliability that nrompted

the Air Force's request for an Automated Verific.tion System (AVS) to be

developed and made available a, soon as possible following release of

validated JOVIAL J7J compilets. Encouragement for an AVS and other

2-



SUp tools also came from the JOVIAL Users Group, a body ol inter-

ested management and technical people from inustry, Government., and the

Air Force.

r 2. 1 CHARACTERISTICS OF J73 PROGRAI.IS

As defined in MIL-STD-150iA, JOVIAL J73 permits the independent

processing of functional modules which communicate through compools and

argument transmission, J/3 permits both recursive and reentrant

procedures for effective multi-processing. The language provides a rich

variety of data types and supporting data manipulation functions, making

assembly code programming unnecessary for most applications. However,

except for ;I trace directive which supplies limited output facility,

there is no input/output capability in the language. Linkages to

assembly or alternate-language routines are required for input and

output.

Storage allocation tor data objects can be both automatic (in

which storage is released when control exits from the program unit) or

static (in which storage space is saved throughout the entire execution

of the program). Automatic allocation uses storage efficiently but

makes certain data-usage errors possible.

The DEFINE construct associates a name with a text string such

that whenever that name is referenced, the text string replaces it.

DEFINE statements can be nested and can be redefined based upon scope.
Thus, while the capability is extremely useful, it adds another di-

mension of complexity to JOVIAL programs.

i Unfortunately for advocates of structured programming, the control

statements in JOVIAL J73 are not confined to the "structured pro-

gramming" constructs of sequential flow, IF-TIIEN-ELSE, and WtliLE-loops.
The language does at least have these constructs, so that plogrammers

can write structured code if they desire. Hiowever, unstructured

2-2



staitemlents as CdS GOt, FALI.''Ium , EXII , and Ai6)RT are al so po rv) I ted. 'I'lle

COTO sta tement, al lows t rans fer f roml Lte outside o! an i F or CAS

con'mt rod into thle body of the IF or CA.SE. GO-.'( SLtomoter.- c.,1 ia, )

41directed to labels thait are external to aprolgram tini I or riodoIc , 1 ht-

labe I is passed as a pa raviete r Thle FALLTIIRU ,Latem,,ill I i IM hb c'o I io

to pass frott one CASE alternative to a11not1her -.w.0itlon lliking, Lte teO I

normaltiy requl rea at each CASE Opt ion. * ielkx, I.X11 :.n i .c~qpe

out of alfn i-mum i atelI y - e n Io s ing l oo p. Ilte ABO~i StLatement prov :dos

transfer o! -:ontrol Lo Lit, ilbet ;pe C i f 1 -1d it) tI., 1 :ostLl~ rcn t lV

ex ec uot ed , c ur rentLly active 1) roe cl tire hlaving ain ABORT' phrase * Thus

co0ntLr o LtLra ns fe r i s notL dVt el ed Lil eo\ :Ct ion 1 II tm.

TIhe un.,tr 1uctLured control SLltattLS pro-LVide ltexibililty afld

i e t ion-ti me ef fi ci enc y; but al. Ltt, saMe L.im:e they inc rease lhe clin"Cv

of Cot-mi itt.ing errors and make thle program inore di tfficulIt to uinderstand.

Since 6O4 of the total ICos t o f Software is general Ly attributed to

m~aintenance, source code scrutabil ity is important.

.173AVS will provide extensive staltic. an1d daitaj-1 ow anl~ysis to

detect a nd report possible errors regarding control traznsfers, d.;ta

content ion due to static allocation, Li i i~ -1i zed va r ia-b Les, s t ruc-

torally mireav liable code, poten t ial in 11 i 11 i te loops, etc. Programi

analysis reports can he generated onl coi-xnano by Lte user to describe

such detailed information as DEFINNE usage, la belI references, Sym"bol

properties, and globol data.

2. 2 CHARACTERISTICS OF APPLICATrION PRO(;RAMIS

The programs tim will be i-mplemente~j i n JOVMI AL./3 wi I I bt

s im ila 1r nat1Lu re t o t hose! w r ittnv1 i n the i se pa irateL .J V 1A 1. d ialIe c I: JJb3313, and .173/1. App icaz ionis Will be for nayi ga Li on , i n f ormi 1, t oil oan-~
agement. , f I iglt conl L ro; S , C omm till i cat ioils , etc.* The si)ft waire charl-

ac terist ics of thle applications art, varied. For I-Xamp e , f light cont ro:

software has thle following characteristics:

2-3
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synchroniza tion -

- istributea processing

- s true Lurally simple control statemients

- Simple data types

- real-time pr'ocessinlg

On the other hand, Ipplications Such as command and control systems have

very difterent characteristics such as:

- oach and interactive modes

- comnplex data structures

- comI~plex control structures

- large, monolithic modules

- non-real-time processing

Avionics applications are often destined for small on-board

computers. For those computers not having a JOVIAL .173 or J73-subset

compiler, the programs are developed on a host machine and cross-

conpiieo to the target machine. As is described in Appendix B, there

are no sottware checkout tools available on these small computers, so an

AVS operating on the host computer must /Supply as much assistance as

possible to detect errors in program per.' rmance and assure somec level

Of testing thoroughness before the program is cross-coinpiled.

4.Comm11-and and control systems, on the other hand, tend to be very

large (several hundred thousand lines of code). They also tend to

Aevolve as needs change. Therefore, not only is testing a --ajor problem,

but -ilso code modification and retesting only what is necessary are

difficult tasks. In the face of these problems, one of the most

va~ub~eassts o an sotwar supor too istheability to auto- 7Z
ma~iali prduceconisebuLhelpful prograin documentation.

2-4.-
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II J f~i I MASURI:

The problem~ of :'letermining wnen a program is vrror-i rve is a -onk,,

way~ from beiti.~ solved. htowever, there are tools availabli wiiien prov iac.

a beginninig toward measuring the, tlborouupmness of testinog. Rather tan

wait tor ai sC) 1 ut 10 to t he whole proD Len, Cjove rn:n.intana int-uscr t )siooLI

be encouraged to take advan tage of the-se te-st ing mneasures !ar' v n te

development of software. Thc- following testing techniques can Dte us--'d

ais test ing measures since they provide quantitative measures of vio-Hlations and other reported phenomena ksuch as statement, branch, or path
~ Iexecution coverage). Furthermore, they are reliable in the sense of

always producing the same result (not relying on interpretation):

1. Static analysis to detect couing errors or illegal pro-A

granin ing practices.

If2. Assertions to specify legal or allowable performance.

3. Statement, branch, or specified -pith coverage to mneasure

levels of execution.

Software verification without Cvfz1puter-,.siuea testing is extremely

expensive, It would be in the spirit of standardization t3imrv

reliability thlat the Air Force should reassess the testin- of Computer

programs, as described in Air Force Regulation 800-14. to requirie the i
use of AVS tools in testing.

~ell
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3 STUDY OF AUTOMATED TOOLS AND TECHNIQUES

This bection discusses the general problem of software testing,

describes existing methods and procedures for software verification,

provides a chart showingothe main characteristics of currently oper-

ational AVS tools, and analyzes techniques given in the literature which

influenced the design of the JOVIAL J73 tool, J73AVS.

i ~. 1 GENUEAL BACKGROUND,

3.1.1 Software Verification

Software system verification is a critical problem recognized by

developers, customers, and software researchers. The problem is 4

exceedingly r mplex for large systems. Software verification is a

process which analyzes requirements, specifications, and implementation.

In addition to determining or proving consistency between each phase of

the process, verification includes the problems of determining the

-reliability, validity, and completeness of the testing phase.

Since verification is such a monumental problem, the approach to

improving the situation has been to partition the total process.

Requirements, specification, and design language% have been developed to

address the early stages of software development, although they have not

yet reached a level of widespread acceptance. Compilers and static

- 1 analyzers attempt to verify semantic and other consistencies within the

implemented software. Dynamic and symbolic execution analyzers address

software testing more from a functional approach. Test data generation

assists with deriving complete test cases from both structural and

functional viewpointts. Proof-of-correctness techniques attempt to

validate software in a formal way. Even though the partitioning

approach has provided considerable progress in the state of software

certification, each partition nevertheless has not achieved a high level

of maturity or acceptability.

3-1



A

E 3.1.2 Software Testing

r The primary aim of testing is to demonstrate that a system has

acceptable performance in terms of its specification. Experience has

shown that the software's behavior must be considered over a broader

space than the specified functions if testing is to identify errors.

In Fig. 3.1, the universe of software behavior is partitioned in

two ways: the specified and unspecified, and the acceptable and

unacceptable. Experience with software development tells us that all

four of these forms of behavior will exist when software is declared

ready for testing, and all four will continue to exist after testing is

over, primarily because the testing process is usually confined to

examining expected points in the vector space of the input.

In a typical software testing activity, the testing group is

attempting to map these regions by probing with single-point test cases.

Their success depends on the total resources devoted to exploring the

universe of behavior, and on the effectiveness with which they apply

those resources in terms of selecting the "best" points for testing.

Effectiveness can be improved by the use of a well-designed testing

program supported by automated tools.

V.'.

Figure 3.1. Universe of Software Behavior

3-2



Software Errors

Since the goal of testing is the detection of errors, we must knowi |something about tihe characteristieg of software errors. Until recently,

there was very little data on the types and causes of errors in software

systers. Recent studies, however, form a basis of data from whicn we1-5

can state general characteristics of software errors. According to
these studies:

1. Most errors occur in program logiL or in data access, not in

computation.

2. Approximately half of all errors are due to errors in

I specification, and the other half are programing errors as
I such.

3. Programs do not usually fail catastrophically, but rather

errors degrade the program's performance.

4. The scope of errors is usually limited to the one module

containing the error.

M. J. Fries, Software Error Data Acquisition, Boeing Aerospace

Company RADC-TR-77-130, Seattle, Washington, April 1977.(A039916)
2 A. B. Endres, "An Analysis of Errors and Their Causcs in System

Programs," IEEE Transactions on Software Engineering, Vol. SE-I, No. 2
(June 1975) p. 140-149.

T. A. Thaye t al., Software Reliability Study, TRW Defense and Space
Systems Group 16-2266.1.9-5, Redondo Beach, California, August 1976.

R. W. Motley and U. D. Brooks, Statistical Prediction of Programming

Errors, IBM Corp., Federal Systems Division, RADC-TR- 77-175, -

Arlington, Virginia, May 1977. (A041106)

J. A. Dana and J. D. blizzard, Verification and Validation for

Terminal Defense Program Software: The Development of a Software Error
Theory to Classify and Detect Software Erfors, Logicon HR 74012, San
Pedro, California, Iay 31, 1974.

3-3



These are only broad generalizations that one must be careful in using;
there appear to be many confounding factors. For example, the choice of
categories for grouping errors can bias the results. Programs written
in high-level languages have different types of errors than programr:

written in assembly language. However, the observation that a mojority
of prograimning errors are due to improper sequencing implies that a

large amount of the testing effort should be aimed at discovering and
correcting these types of errors.

Sequencing in a program is established by the control statements

of the p rogram (referred to as the program's control structure). There-
fore, it seems natural to base the generation of test cases and test

data on techniques which analyze the program's control structure.
Severai studies and tool developments have pursued this approach, with

most of the efforts being applied to test data generation.

Functional Testing

The basic requirement of any system is that it perform its

intended function. Functional testing is the means by which the actual
behavior is identified; the consequences of this behavior must be

related to the intended function through criteria of acceptance derived
from the specification. (We ignore in this discussion the frequent

occurrence that the specification as interpreted does not represent the
intent of the designers). When testing resources are limited, they are

applied to testing presumably representative instances of the various
functional modes of the system. With more testing resources, functional

test cases are usually expanded in an ad hoc manner in an attempt to
exercise more of the alternatives that are recognized by the software.

Automation of functional testiig usually takes the form of

prov'ding a means to step through variations of a basic test case.

3-4
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Other candidates for automated assistance to functional testing

are:

1. Analysis of special representations of input space to assist

in the selection of functional test cases

2. Static analysis tools that recognize assertions concerning

functional behavior and check for consistency with the code

3. Automated conversion of functional assertions to executable

code for execution-time checking against actual results

4. Classification and storage of input data, with mechanisms

for generating specific cases j
5. Classification and storage of test results, with mechanisms

t for comparing test results between cases

b. Modification of the input data to map performance boundaries

In addition to the basic purpose of functional tests as a means of

demonstrating compliance with acceptance criteria, these tests define

the point of departure for extensions to structurally derived tests,

described in the next section.

Structure-Based Testing Z

As Fig. 3.1 suggested, it is the nature of compater-controlled

systems that they often display modes ot behavior that are not ex-

plicitly identified in the specification. The unspecified behavior may

result from many different causes, ranging from simple blunders in

programming to carefully designed logic that implements an erroneous -;

interpretation of the specification. Often unspecified behavior results

when the specification makes no provision for a particular input

condition and it is misinterpreted. These unspecified behaviors usually

go untested by functional testing.

3-5
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Structure-based testing is a means of deriving test cases directly

from the software with the intent of identifying program paths that are

not tested by functional tests, and deriving test data that will cause

those paths to be executed. Several test tools now exist which support

structure-based testing by detecting which program segments have been

executed by a particular test case. The general approach used with such

tools is described below.

A graph model of a program module is developed which comzprises an

input node, an output node, and a set of nodes which represent alt the

branch points in the module. The nodes are connected by links which

correspond to all tle straight-line code executed in the program between

branch points: tie "branches," .logical segments" or "cecision-to-

decision pnths."

Once the graph model is derived, data collection points are

automatically inserted in the links to record which links are exercised

by a particular test. Then the results of a set of tests are examined

to decide how testing of unexercised code should proceed. Most efforts

toward further automation of this process have relied on automating a

simple rule for test case selection (such as finding a test that reaches

a single unexercised target path), and then generating test data for

that case. Several tools have implemented approaches to this type of

automation (see Sec. 3.2).

3.1.3 Graph lodel Theory ,

This section describes the foundation of graph model theory. This 5

foundation is used as the basis for implementing data flow analysis (a

static testing procedure), e-.ecution coverage analysis (a dynamic

testing procedure), and some automatic test da1ta generation techniques.

1 J. P. Benson. et al., Software Verification: A State-of-tie-Art Re-

port, General Research Corporation CR-1-638, larch 1975.

3-6
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The use of directed graphs to represent programs is a natural

outgrowth of the flow charting practice. There are, however, major

|t differences between a graph and a flow chart: When going from a flow

chart to a graph model, some information about the program is unavoid-

ably suppressed. In a graph, attention is drawn to the fundamental

control structure of the program (the "paths" and "loops" in the

procedure) and not necessarily the calculation being performed.

Program graphs are generally represented in one of two ways. The

graph may be described in terms of basic blocks, where a basic block is

a linear sequence of program instructions having one entry point (the

first instruction executed) and one exit point (the last instruction

executed). For a JOVIAL program S consisting of statements

i SiS 2 ,...,Sn, a basic block b is a contiguous subset of the statements
of S[Sisi+l,...,Si+k;k > 01 having the property that no statement of b,
except perhaps S1 , is the destination of any transfer-of-control

statement anywhere in S. Alternatively, the graph may be described in

terms of branches (or decision-to-decision paths, DD-paths), where a

branch is the ordered sequence of statements the program performs as a

result of the outcome of a decision up until the evaluation of the

predicate in the next decision statement encountered. Figure 3.2

illustrates this definition.

Depending on whether the program graph is described in terms of

basic blocks or branches, its nodes and edges have different signif-

icance. When basic blocks are used, the blocks are graphed as the

nodes, and the transfers of control as the edges, of the graph. The

reason is as follows: basic blocks must be physically contiguous

statements in a program. They begin on a branching [e.g., GOTO <label>,

IF(<condition>)l or labeled statement, and they end on the statement

immediately preceding the nt-xt branching or labeled statement. Using

Za basic-block terminology, a path through a graph is described as a

sequence of nodes.

3-7
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J2
Alternatively, a graph nay be described in terms of brancbes, with H

the branches as the edges, and the decision statements [e.g., IF

<condition>j as the nodes. A branch may include one or more basic

blocks that are contiguous in terms of execution. For example, a branch

nay include an unconditional GOTO statement and the sequential state-

ments that follow its target (labeled statement). Using branch term-

inology, a path thruugh a graph is described as a sequence of edges.

The following sections describe various techniques which identify

processing flows fron the graph model of the program.

Depth-First Search

Depth-first search techniques have been applied to a wide variety
of practical problems which can be modeled as graphs. TarjanI describes

algorithms for implementing the depth-first search, and points out that

tx algorithms are linearly related to the number of nodes and edges in I
terms of computation time and storage space. Depth-first search

techniques can be used ao identify a -spanning tree- for a graph; that

is, a subgraph V.ich is a tree and which contains all the nodes of the

graph. Algorithms for traversing trees and visiting nodes of a tree

can then be applied to the spanning tree. Osterweil and Fosdick have

inplemented a syste= which performs data flow analysis using depth-first

search techniques. By analyzing a system of FORTRAN modules fron the Tt

bottom of the calling tree up, the system classifies input/output

variables at module interface boundaries. Depth-first search techniques

are applied to each module's program graph to determine the input/output

classification (i.e., set or used) for all coamon variables and argu- 7::Z

ments along all possible paths through the module. Several types of

data usage errors can be found while performing this analysis.

R. Tarjan, "Depth-First Search and Linear Graph Algorithms,- SIMN

Jour. Computation, Vol. I, No. 2, June 1972.

2 L. Osterweil and L. D. Fosdick, Automated Input/Output Variable

Classification as an Aid to Validation of FORTRAN Programs, Dept. of
Computer Science, University of Colorado, Boulder, Colorado, CU-CS-
037-74, January 197-.
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-- Components

Strongly Connected Components

Tarjan presents an algorithm using depth-tirst search rechniques

which identifies "strongly connected" components of a directed graph, in

computational time and storage space linearly reLated to the number of

nodes and edges in the graph. A strongly connected component of a

program graph identifies an iteration structure. Ranuamoorihy describes

a procedure similar to this which is to be implemented ir an Automated

Evaluation Validation System (AEVS).. By conceptually replacing ;trongly

connected subgraphs with a subroutine call and a subroutine which c'n-

tains the iteration structure, and thun applying the same procedure to

the program graphs of the resulting subroutines, it is possible to

abstract an internal calling tree from i single program graph. Rana-

moorthy suggests that this technique will be especially useful for large

modules with complex iteration structures. The result of abstracting

the internal calling tree is that validation analysis can be applied to

small non-iterative subgraphs (conceptual subro-itines) of Lhe original
program graph. The problem of relating this submodule analysis back to

the original module still remains unsolved.

Schemes

Sullivan presents a different approach for abstracting a con-

ceptual internal calling tree from the program graph of a module. lie

refers to a program graph as a scheme. A subscheme is a subgraph of the

program graph which has the property that it is a one-entry/one-exit

structure. An elementary subscheme is essentially a basic block or

DD-fath. The decomposition of a 9cheme by successive partitioning of

Tarjan, op. cit.

2 C. V. Ramamoorthy, R. C. Cheng, and K. If. Kim, Reliability and Integ-

rity of Large Computer Programs, University of California, Berkeley,
ERC-430, 12 March 1974.

3jJ. E. Sullivan, Measuring the Complexity of Computer Software, IIITRE
MTR-2648, 25 June 1973.
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its proper subschenes into further subschemes can be carried out untiX

all subscieemes are ele::encary. The partitioning process creates a

conceptual internal calling tree (in which all possible submodules are

identified). Sullivan has applied this representation of program

structure to the problem of measuring the complex-ity of computer

software.

Intervals

Compiler optimization teclhniques nave fruitfully employed another

approach to graphical analysis called interval analysis. Interval

analysis is similar to the techniques of identifying strongly connected

subgraphs and one-entry/one-exit subgraphs. An interval is a one-entry

subgraph which nay have one or more exits. Hecht and Ullman describe

an algorithm for identifying intervals. A conceptual internal calling

tree can be abstracted from program graphs using this algorithm.

Level-1 Paths
by A technique for identifying program flows explicitly is described

by Miller. The manner in which the branches (or DD-paths) described

previously can be combined in potentially legal ways in normal program

execution is described by objects called "level-i paths." A level-i

path is a sequence of DD-paths which lie on the ith iteration level

litn'in the program, i = 0, 1, 2,.... Because there can be an extremely

large number of distinct level-i paths in a program, it is important to

consider, instead, classes of level-i paths which lead from the same

. . Mien, "Control Flow Analysis," SlGPLAN Notes, July 1970.

M. S. Hiecht and J. D. Ullman, "Flow Graph Reducibility," SIAM Jour.
Co-mputation, Vol. 1, No. 2, June 1972.

E. F. Miller, Jr., A Hierarchy of Program Testing Measures, General
Resarch Corporation, Program Validation Project, February 1974.
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nodes and involve the same kind and manner of iteration. Thus, certain

forms of parallelism of DD-paths along level-i paths are removed as a I

means to reduce the combinatoric size of level-i path classes. The

result of this reduction is to capture the essentially different, program

flows in terms of a "principal level-i path" within each level-i path

class. I(f

For example, Fig. 5.3 shows a set of DD-paths which corresponds to

a program; each DD-path is labeled with a letter. For thi. particular

program graph, the following level-i paths and path classes result:

I
I. Level-6 path: ab

mI

2. Level-U path class: {cd e}m
i i=1

3. Level-i path: fgh

n

4. Level-2 path class: { ii=

The level-0 paths represent flow from tne input to the output (from the

entry to the exit) without iteration; the level-i paths represent ith

level iteration "over" constituent level-i paths. DD-paths d. ano k. I
represent instances of path parallelism. I

ENTRY

h

-M

fO\

EXIT

Figure 3.3. Sample Set of Level-i Paths
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3.1.4 Static Program Analysis

Enhancing the diagnostics reported, and providing information not

usually furnished, by a typical compiler leads to a series of software

quality enhancement methods which can be categorized as static analysis.

'i'hese methods scan the source text of a program for errors in syntax and

semantics which can be detected without running the program on a

computer, and provide consistency checking and documentation about the

definition, reference, and communication of data within the program,

Some examples of the supplementary information and error checking are:

Documentation

Cross Reference. A symbol cross reference for each program

including symbol type, definition, and use.

Local Storage Identification. All variables used as local storage

by a program are identified by their type and use.

Communication Space Analysis. All variables which participate in

the communication to other programs (parameters, global variables)

are identified according to their use and type.

Parameter Analysis. Variables used as formal parameters to the

program are identified and listed along with their use and type.

Identification of Control Variables. Variables which affect the

flow of control in a program and where they are referenced are

identified.

Consistency Checking

Array Subscript Check. Each subscripted variable reference is

checked against the array declaration.

Expression hodc Check. A check is made for expressions whose

arithmetic mode changes when they are assigned to a variable.

Local Nemory Check. All variables which have the possibility of

remaining defined over successive invocations of the program are

-777;



identified and their use specified (i.e.., JOVIAL static

variables).

Argument Check. Formal and actual parameters are checked for

inconsistencies in type, mode, number, dimensionality, and use.

In general, static analyzers are most useful in providing the programmer

with information which will help debug programs more quickly. They do

this by identifying prograpmming constructs which may be legal but risky

and providing global, organized information about the identifiers used

in this program.

3.1.5 Dynamic Program Analysis

Two bsic types of dynamic program analysis are described in this

section: analysis of statement-level behavior and analysis of execution

coverage. These two techniques are well-known, general-purpose testing

aids.

Statement-level Analysis

In statement-level dynamic analysis all program statements are

instrumented in order to obtain detailed information concerning the

program's internal behavior. This technique produces more detailed and

more source-program-oriented information than such earlier techniques

as hardware monitoring, sottware monitoring ("snapshots"), and sim-

ulation techniques. Typically, a statement-level preprocessor auto-

matically augments each source program statement with other constructed

statements or invocations of run-time subroutines which take measure-

ments while the program is running. These measurements usually incltde

the values of selected program variables and the number and types of _

branches taken. bxanples of the type of data which might be gathered

for a JOVIAL J73 program include:

I
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1. An execution count for all statements; i.e., the number of

! times each statement was encountered during execution

2. For assignment statements, the initial, final, minimum, and
maximuu values of the computed variable

3. For 'F statements, a count of the number of Limes the

IF-e).pression was true and the final value of the IF-
expression

4$. Branch counts on each CASE statement, along with the initial

and final values of the case selector

5. The initial and final values of the loop-control of FOR

sta tements

6. The number of times a FOR loop was exited "normally," i.e.,

after doing the specified maximum number of iterations

When the program terminates, summary reports are printed which

show the ranges of the program's intermediate variable values, which

bran,-hs were taken ana with what frequency, and which statements in the

program were not executed.

Execution Coverage Analysis

This technique attempts to gather information on the run-time

sequencing of a program and the flow of control among the various

programs comprising a programming system. This (-'.uencing information

can be represented at various levels of detail. At tne lowest level it

may be a trace of the statements executed by a program when run with a

particular testcase, or the sequence of branches executed by the

program. At a higher level, the actual program flows traversed by the

program may be collected or, at a still higher level, the dynamic

calling sequence of procedures ana subroutines in a programming system

may be monitored.

LWZ j-



The technique for implementing program ft w anlysis is the Same I
as that for statement-level analysis, that is, software probes art.
placed in the programs to be !.-onitorea at tile level =,t whlichl -t
monitoring iniformation is to be gatheredi. The instrunentat ion state-
.ents are simply invocations of rnt ie ti udit Cn pr itre h

recordI which procedure and which cont roi sequence! or StAtemoent is b"~i.TV
execuited at the time of thle zionittoring. A post-processor can then

rep~roduce the~ dynamic flaw of control through a single progran or a
group of programs tit whatever level. is desired. This infor-nation is
useful in determ-ining whicht control flows and procedures were exercisedj
by which test cases as a guide to what testing rem~ains to be dione.

3. 1.0 Automatic TeSL Case Generat ion

Ilowden describes a methodology for WCIdI L if V i nIg Somen o:I th1 !e tstL

cases for aI program automat ically. His method first partitions the low
of control in at progra:m- into standard ctassus ol- paths much in thle Same
way as Miller. Then, descriptions of the path classes by prediicates
and relations are constructed in the form of Isyst..m of inecua lit ies.

Ilowden notes, however, t hat it ;-nay not be poss ibi e to 'ler ye r.these

descriptions for arbitrary program-s COnltanIing loops. If these Ces-
criptions can be generated, the last phase Of the MOthOdOlogy is to
solve thle system of inequalities ana thereby aerive input values witch

will cause the program to execute a particular class of control flow.
The report by ilowden elaborates on thle techniques employt.d in each

phase of the methodology, and discusses problems Aiich arist. in fi-
plementing these techniques. Phases one adtwo have been partiall

implemented for analyzi ng. FORTRAN? programs.

W. Hlowden , Mlethodology for the Automatic Generat ion of Program Fest
Dat, Dpt.ofinformation and Cotmputer Sci. nce TH -41, Uivt-rsitv

t California, Irvine, 15 Febriiary 1974.

E - F. IMiller, Jr. and R. A. -Mel ton, (General Resea rch Corporation),
"Automated Generation ol T11est Case D~ata Sets,"* Proceedings 1975 Inter'-
national Conference onl Reliable Software, Los Ange~es, 21-23 April 1973.
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1
The SELIuCT system .ias been -mplemented by the Computer Science

G.roup at SRI to process an experimental languagc which resembles a

s'ibset of LISP. This system attempts to generate program test cases

automatically from the program's se:nantic and control structure. in

cont.-rst to Ilowden's approach, SEk.ECT does not initially identify

classes of program flow, but rather -executes- the program text sym-

bolicaliy, accunulating inf-rmation as it goes. When a decision is

encountered, SELECT keeps tran:k o all the branches resulting from the

decision ana tries to reto'J those branches which cannot be executed due
tO the outc.S!;:s of previos decisions. in this way, impossible paths

.ire ,izfinahtz a is they arise. Two key features of the SELECT system are

the %dding oi -pseudo- predicates and paths for array references and the

a;b'lity to append i Hoolean function to tie program under test which

returns true if the program satisfies its specification and false if it

does not. Su icr i attempts to derive a test case which makes this

function return a false value, thereby giving an input for which tie

progr, r w-;! fail.

gteneration for the purpose of extending
2

testing coverage is discussed by M.iller. In this method it is assumed

that -o,, testing has been done on the program and the goal is to derive

a test case for executing a previously untested segment of code. The

-' .irst step is to identify a sequence of branches which "reach" the

untested code segment. This sequence is identified by a flow analysis

-tigoritha ehich operates on the program graph model. rhe sequence of

Sibranches corresponds to the sequence of statements which must be

iR. S. Boyer, B. spas, and K. N. Levitt, "SELECT--A System for

Testing and Debugging Programs by Symbolic Execution," Proceedings 1975

international Conference on Reliable Software, Los Angeles, California,
April 1975.

F. M Niller, Jr., and R. A. 'lelton, op. cit.
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executed in order to reach the untested code segment. This statement

sequence is then "backtracked" (symbolically executed in reverse order)

in order to identify particular input conditions which will lead to the

execution of the untested code segment.

3.2 EXISTING METHODS AND PROCEDURES

There is a wealth of published information on software verif-

ication. No one, we are sure, has personally tried all the various

manual and automated techniques to evaluate them first hand. For the

most part, software verification is still a strictly-manual process.

Tools and techniques exist, but this area of software engineering is in

its infancy. Most of the tools and methodologies have severe restric-

tions or require highly-skilled persons to make their application

successful.

Some of the current processes that make up software verification

are listed below:

Requirements
L*

Requirements state what a computer system should do from the

user s viewpoint. Manual systems exist which decompose systems graph-

ically (SADT from SofTech and AXES from Higher Order Software) and which

tag requirements for later keying to design and code (THREADS from

Computer Sciences Corporation).

Specification

At least two languages and tools exist for stating detailed spec-

ifications (Requirements Specification Language - RSL - from TRW and

SPECIAL from SRI). Both provide a rigorous means of stating spec-

ifications which can be used to detect inconsistencies. Both require

considerable expertise to use and provide maximum benefit when applied

to large system developments.

3 -18
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HIPO (Hierarchy plus Input-Process-Output) charts are a manual I
means of stating software specifications in the context of program

strcThere are many design methodologies based upon decomposition,

structure, data relationships, top-down and bottom-up development.

There are also systems and languages such as Process Design System

(PDS - from the System Development Corporation) and Process Design

Language (PDL). PDL is a control-structure keyword recognizer.

Functional and Performance Testing

Manual functional and performance testing is assisted by deriving

data from HIPO charts, using simulations, obtaining execution-time

intermediate-value printout, and running stress or boundary tests by

choosing data sets from the specification. Tool-assisted functional and I
performance testing can be performed by using executable, logical

assertions which report inconsistencies between specified and actual

behavior; timing analysis where computer clock times are reported at

module entries, exits, or branch points; or adaptive testing (the

Adaptive Tester from General Research Corporation) where performance

boundaries are determined by automatically perturbing the input space.

Structure-based Testing

This testing concept has been very popular for providing a measure

for testing completeness, test data generation, error location, and

finding structural anomalies. There are a number of automated tools

which perform branch testing (RXVP, JAVS, FAVS, SQLAB, and TAP from GRC,

NODAL from TRW, PET from McDonnell Douglas, Test Coverage Analyzer from !

Boeing) or user-specified sequences of statements (SADAT from Kernfor-

schungszentrum Karlsruhe GmbH). Algorithms are being developed which

attempt to partition the impossible goal of testing all control paths in i
a program. Some of these techniques are (I) identifying strongly-

3-19
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connected components of a directed grapii (Tarjan, RanaM0oorty), k2)

partitioning the program graph into subschemes which are sinql. -o1ntryh_

single-exit structures (Sullivan), (3) identifying strongly-connected

subgraphs which are single-entry/multiple-exit, called intervals Olecht

and Ullman) and (4) partitioning the programn graph in terms of its

iteration level,.called level-i paths (Miller).

Manual s~ructure-based tetn a eassisted by acriving

decision tables (Goodenough and Gerhart' and choosing input Gata

accordingly.

Structural anomalies such as deau cone, potential infinite Loops,

and infeasible paths can be determiined by some current AVS tools (Ar!)G

'from TRW, SADAT, JAyS).

- j Consistency Checking

The most common techniques used to determine tihe -onsiStency of

variables and interfaces are adding assertions to state expecteu use

(SQLAB from CRC, ACES from (IC Berkeley); employing static analysis

(AMPIC from Logicon, DAVE from University of Colorado, FACES from UIC

Berkeley, RXVP, FAVS and SQLAB from CRC); using data flow analysis to

find uninitialized variables and interface inconsistencies (DAVE, RXVP,

SQLAB).

Test Data Generation

Agreat deal of research energy has been expennea on developing

test data generators. So far, the tools being developed to perform

automatic test data generation, -such as ATTEST at the University of

Massachusetts, are still research orientea and have had Lo bavk off fromn

original goals. other tools such as test hlarnesses or the Adaptive

Tester require input boundaries and invariances between variables to be

specified.

3-2,)
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For -aanuai test data generation, llowden suggests that input data

be chosen to reflect special values for the program. Ostrand and

WeyukLr suggest deriving data in two phases based upon likely errors for

the particular program's function and likely errors for the control

structures used in the program. The possible worthwhile approaches to

generating test data are too numerous to elaborate here.

Formal Verification

Automated formal verification systems (EFFIGY from BIM, PROGRAM

V!:RiFLER from USC/1SI, SID from the University of Texas at Au.;tin, SQLAB

from GRC, SELECT from SRI) take user-supplied assertirns (called

verification conditions) usually at each branch, and symbolically

execute them. The systems attempt to prove each VC as it is symboli-

cally executed. The process involves simplification of inequalities

and, in the case of interactive provers, the input of occasional rules

to aid simplification. Formal verification is still reserved for small

programs. Most of the implemented systems are LISP based.

Program ModificationF' Tools which utilize a database system and save interface descrip-

tions or other such system-wide information can be helpfui to support

program modifiration and maintenance activities. Valuable information

for these activities aie module interaction reports, detection of global

changes, and local updates. Some of the tools that provide this

assistance are the Boeing Support Software, SID, JAVS, FAVS, and SQLAB.

Documentation

Autonatically-generated reports which provide information about

program structure, calling hierarchy, local and global symbol usage, and

input and output statement location are very useful during program

development, testing, and matntenance. Most AVS tools provide some or

all of these reporting capabilities.

Ai--
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3.3 CURRENTLY iMPLMIENTED TEST TOOLS

This section presents a chart of current, operational tools for

testing, test case generation, proof of correctness, and coding stand-

ards checking. There are numerous other systems in various stages of

development, but this chart is restricted to tools that are of sub-

stantial value and operate at one or more computer installations.

-ZL
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VI

F 4 FUNCTIONAL DESCRIPTION OF J73AVS

This section presents a brief description of the capabilities of
J73AVS and describes in what phases of the software life cycle the

capabilities should be used. A thorough description is provided in the

Functional Description.

Our approach to the design of an AVS for JOVIAL J73 is to provide

artomated assistance for
- program development

- debugging

- testing

- retesting

The approach excludes

- verification of requiremeuts

- verification of specifications

- automated design aids

- formal program verification (proof of correctness)

The techniques for automating these processes are not developed well -Z
enough to be reliable for general-purpose, large software systems.

The specifications for the J73 dialect and compilers include

rigorous data-type checking and scope rules. The language allows,

however, constructs and control structures which demand caution in their

usage (such as recursive and reentrant procedures, jumps into certain

control structures, abnormal exits, etc.). Further, the language does
not contain a mechanism for specifying expected behavior or reportingI user-specified abnormalities (since there is no input/output facility).

I C. Gannon and N. B. Brooks, JOVIAL J73 Automated Verification System
Functional Description, General Research Corporation CR-I-947, March
S1980.
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J73AVS will not duplicate the static consistency checking of the

compiler, but, rather, provide the following set ot facilities to

support program development, debugging, testing, maintenance, anddocumentation of JOVIAL J73 programs:

1. Logical assertions and timing probes (see ACES, FAVS, JAVS,

RXVP8, SQLAB in Table 31)

2. Static and data flow analysis (see ACES, AMPIC, DAVE, FACES,

FAVS, PFORT, RXVP8O, SQLAB, STANDARDS AUDITOR, SURVAYOR)

3. Program structure ana characteristic reporting (see 'ACES,
FORTRAN ANALYZER, FACES, FAVS, JAVS, NODAL, PACE, PET,

PFORT, QUALI'FIER, RXVP8O, SADAT, SQLAB, SURVAYOR)

4. Statement performance dynamic analysis (see FORTRAN

ANALYZER, PACE, PET, QUALIFIER, TAP)

5. Branch, path, and program unit execution coverage analysis

(see FAVS, JAVS, NODAL, RXVP80, SADAT, SQLAB, TAP, TEST

COVERAGE ANALYZER)

6. Branch and program unit execution trace analysis (see JAVS,

NODAL)

7. Execution timing analysis (see JAVS)

8. Structural retesting assistance (see AMPIC, ATDG, ATTEST,

DISSECT, EFFIGY, FAVS, JAVS, RXVP8O, SQLAB, SELECT)

9. Test history reporting
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J73AVS will support interactive and batch facilities since the

various stages of program development through testing and maintenance

lend themselves to both modes of operation. The command language will

be similar for interactive and batch usage, except that the interactive

user will be prompted for information where necessary.

4.1 SUHIM',Y OF CAPABILiTiES

A summary of capabilities is provided as a flow diagram in Fig.

4.1. This diagram describes the primary functions supported by J73AVS

as well as the sequence in which they are performed. Figure 4.2 shows

the interaction between J73AVS and the user. The user can direct the

sequence of analysis activities, using information provided at each

stage of processing.

Although J73AVS will exist as a single program, it is best

considered as a collection of tools or facilities with which the user

interacts. Some of the facilities, such as automated documentation,

static error reporting, and instrumentation, are completely automated

and require only that the user initiate the tasks by command. Other

processes, such as execution-time data collection or retesting assis-

tance, require more information from the user like test data input and

test target selection.

J73AVS provides detailed information both statically and dynami-

cally about the program being analyzed. It is the role of the user to

direct the processing performed by J73AVS, to analyze the output

produced by J73AVS, and to determine subsequent action.

U The role of J73AVS in the software development cycle is to provide

automated assistance wherever possible during the program development

and maintenance, debugging, testing, ane retesting phases of the cycle.

The user of J73AVS plays an active part in the cycle as shown in Fig.

4.3. This figure partitions the phases of the development cycle and
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One or more modules of JOVIAL J73 source code
rJOVIAL J73 is input for processing and analysis. The

SOURCE source code may contain J73AVS logical

assertions and timing probes.

SOURCE TEXT J73 AVS generates a directed graph of the
ANAYSOU ET control structure. All syntax, semantics,
ANALYSIS, and structural information is stored on

- STRUCTURAL
STRUTURA a database. Additional or changed source code
ANALYSIS

causes an existing database to be updated.

STATIC t

Branch and ANALYSIS Possible errors, warnings, and dangerous
Path sequences DATA FLOW progranming practices are reported.
and test history ANALYSIS

are reported.

RETESTING PROGRAM ANALYSIS documentation, debugging,

ASSISTANCE REPORTING maintenance, testing and

_ _ _retesting are produced.

Software probes are automatically inserted

CORRECT STRUCTURAL & for dynamic analysis of execution coverage,
SOURCE ASSERTION tracing, and performance. Timing probes

INSTRUMENTATION and logical assertions are translated into
____I executable code.

YES TEST EXECUTION,
DYNAM1C DATA Program execution produces a data
COLLECTION cullection trace file for analysis by J73 AVS.

ERRORS NO

FOUNDExecution coverage and tracing, statement
EXECUTION performance, and execution timing are
ANALYSIS reported by testcase and by a set of

testcases.

NO TEST GOALS
ACHIEVED

YES

Figure 4.1. Overview of J73AVS
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Figure 4.2. J73AVS Interaction with User
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Figure 4.3. Role of J73AVS in the Software Development Cycle
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shows the Li-,w between the automated processing of J?3AVS and

user-supplied input or direction.

Using Fig. 4.3 as a basis, a typical sequence of J73AVS-supported

processing can be described as follows:

1. JOVIAL J73 source text is generated and provided to J73AVS

as one or more compilable modules.

2. J73AVS produces program analysis reports showing control

structure, symbol usage, calling hierarchy, etc., as well as

a static analysis report showing errors and dangerous

programing practices.

3. Using the reports as a guide, the source modules can be

modified or new modules added to the program.

4. J73AVS identifies the interaction of tile new or modified

modules with the rest of the program; this information, in

turn, is used as the basis for modifying other modules.

5. For dynamic debugging, tile program is instrumented by J73AVS

and executed with an initial test case supplied by the user.

6. J73AVS reports assertion violations, if any, and generates

an evaluation of statement and variable performance.

7. Using this evaluation, the user may choose to generate

additional test data to pinpoint errors or instrument other

modules for additional dynamic debugging.

8. The same procedures of test data generation, instrumen-

tation, and execution are performed for testing but for a

different goal: rather than detecting and locating errors,

testing aims to demonstrate the absence of errors. There-

fore, J73AVS produces execution analysis reports in terms of

the thoroughness of execution coverage.

4-6
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9. The user evaluates execution coverage and other program

performance output, along with the program's own execution

results and the program specification, to determine if
testing is complete.

10. J73AVS provides branch sequence information to retest

targets chosen by the user. A te ,t history of execution

coverage and assertion violations assists the user in

choosing targets for retesting.

Program Development and Maintenance

Executable assertions permit a programmer to specify expected

behavior. J73AVS supports the technique of embedding programmer-

specified assertions into the code through the use of the ASSERT keyword

followed by any legal logicai (Boolean) expression. Logical assertions

can be used for execution-time exception reporting, stress testing, test

data generation filtering, and (left as comments in the source code)

stating in-line specifications.

To assist with reliable system development, maintenance, and

documentation, J73AVS will provide substantial program analysis re-

porting on structural hierarchy, symbol usage, invocations, certain J73

constructs, and system characteristics. The user has control over

obtaining high- or low-level information through the command language.

The types of program analysis reporting include the following:

indented source listing with control structure identi-

fication

symbol cross reference with set-use information

compool symbol description

properties of all or specified symbols

declaratioi and reference of labels (statement names)

- aeclaration and reference of user-defined data types

4-7
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- declaration and reference of constants

- usage of external reference (REF) and definition (DEF)

declaration and reference of DEFINE text strings

description of program units on the database

Debugging

Normal compilation using JOVIAL J73 compilers will detect many

syntax and semantic errors. Additional errors such as uninitialized

variables, possible infinite loops, unreachable code, certain improper

constructs, and dangerous coding practices (like transferring into CASE

IF statements) will be reported by J73AVS. The user can command

different levels of static reporting.

Dynamic debugging will be supported by statement execution

performance and assertion exception reporting. Statement execution

performance provides execution counts of statements, values and ranges

of variables in assignments and loops, and the execution behavior of IF

statements. This debugging information appears adjacent to the source

statements themselves, which assists the task of code correction. 4L

The execution of timing probes (inserted by command) can be reported in

the debugging performance report at the user's request.

When the program's execution behavior deviates from the acceptable

logical behavior specified by the embedded assertions, it will be

reported during execution. The user-suppliea assertions remain rela-

tively transparent to the program until they are violated; at that time

the violation is reported along with the source statement number where

the violation occurred.

Testing =

When used in conjunction with static checking and statement-level

performance analysis, structure-based testing can wicover errors due to
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untested branches (where a branch is a control flow outcome due to a

decision s:a:ement) or improper sequences of branches. J73AVS will

provide execution tracing of program units and branches and execution

cove.rage analysis of program units, branches, and sequences of branches

(paths). Further, J73AVS will assemble the timing information from

program unit tracing and user-supplied timing probes into an execution

timing report.

Although an AVS can provide an objective measure of testing

thoroughness in terms of statement or branch execution coverage,

frequently errors in software are overlooked during testing because only

certain sequences of branches are ever executed. Obviously, it is

generally impossible to define all paths in programs because of loops.

Furthermore, the most likely subset of paths to test can best be

identified by a person familiar with the function of the program. The

most efficient role of an AVS in this regard is to identify the set of

control paths between two statements in a program unit (an invokable

unit of code) to which the human tester attaches importance. Of the set

of paths identified by the tool, the user can choose thuse that are to

be analyzed for coverage during execution. If the set of paths is too

large to enumerate, a descriptive message will be issued and the user

allowe- -, choose another pair of statements for path identification.

Retesting Assistance

:1 Retesting software is performed when analysis shows that prior

testing is inadequate (insufficient branch coverage, not all functions

demonstrated, etc.) or when program changes have taken place. The

proper approach to take in retesting is highly dependent upon the
characteristics of the program being tested as well as the measures i

being used to evaluate testing completeness. A detailed methodology for

testing and retesting software for the purpose of improving structural-

testing completeness will be given 4n the User's Manual.
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In order to determine the sequences of branches whico must be

executed in order to reach an untested branch or statement, the user can

request that the "reaching set- be computed between two specified

; i statements (or from the program unit's entry). The u. can also

request a list, in terms of branches, of all control paths between two

specified statements. If certain loop structures make this list impos-

sible, subsets of the paths will be identified.

With the control flows identified, the user can backtrack through

the program to the input space, using statement execution performance

reports, module interaction and invocation reports, and execution

coverage information for each testcase to assist in developing new test

data. Unfortunately, automatic test data generators which use symbolic

execution are not yet developed to the point of being general-purpose,

easy to use, or reliable.

The cumulative test coverage history maintained by J73AJS will be

useful in attaining testing goals and determining targets for retesting.

Program unit and branch coverage information will be saved in a concise

way on the database for each test case. The results of subsequent

execution runs can be added, providing a cumulative report of all tests.

Also saved in the history database table will be any assertion vio-

lations that occur. This will provide a mechanism for identifying which

input test case caused a violation.

Unfortunately there is no technique that can, in ieneral, echo

back to the user what the input for each testcase is. Paragraph 4.1.1.3 *

of the Statement of Work (PR No. B-9-3278) requested the identification

of input test data used for each testcase, but this can be done only in

trivial cases such as input on a single file. In complex programs, data

are input from a variety of external sources such as databases, sub-

routine parameters, and files. J73AVS distinguishes separate testcases

(as defined by the user) in its post-execution analysis reports but does

not print test data input used to drive each testcase.

4-10
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4.2 J73AVS OPERATION

J3AV will be impiementea to operate in both batch and inter-
active modes. This versatility provides the user with the ability to

custocize a debugging and testing strategy to his own software.

Depending upon the test object (program being tested) and testing goals,

the sequence or J7sAVS operations may be varied. Figure 4.1 showed a

typical flow of operations, beginning with analysis of previously
unanalyzed code and proLeeding until some testing goal is realized.

The functions of J73AVS will be driven by user command. The

command syntax will be similar for both batch and interactive modes of

operation. The command language is made up of specification and

operation commands. Specification cotmands consist of:

BATCH

to notify J73AVS of the mode of operation (the default - no command - is

iaterdctive 0ode) and the text specifieation corands:

MODUILES name,.... FOR MODULES = name,...

(Two or more commands)

ENID FOR

,, U,- =name,.... FOR UWITS = name,...

(Two or more commands)

END FOR

SybMIE FOR SYSTM~
(rwo or more commands)

END FOR

I J73AVS operation commands control six major functional capabilities:

read source text and build database, perform static and data flow

analysis, prepare program anaiysis reports, instrument the source text

for dynamic analysis, perform post-execution analysis, and provide
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retesting assistance. These commL ds will have the following syntax

(defaults are underlined):

1. Read JOVIAL J3 Source code -

Command: !rAD{, CHANGES)

2. Static and data flow analysis-

Command: STATIC {. LOCAL/GLOBAL,OFF =(ERRORS,

WARN INGS ,MESSAGES, SYMBOLS , SUMMARY /FIJLL }

3. Program analysis reporting

Commands: LIST

CROSS REF (,MATRIX,SETUSE,NAMES =name,...}

INVOCATIONS {,MATRIX, TREE, BANDS ,SOURCE)

'OC5MPOOL { .2REF, SOURCE)

SYMBOLS {, LIST,PROPERTIES,SOURCE,NAMES=name,...}

LABELo {,LIST,XEEF,SOURCE)

TYPE {,LIST,SOURCE}

CONSTANTS {, LIST, SOURCE)

REFDEF (,LIST,SOURCE)

DEFINE {,LIST,SOURCE}

DATABASE {,UNITS,DESCRIPTION)

4. Instrumentation for dynamic analysis -

Commands = INSTRUMENT { ASSERTIONS,STATEMENTS,

COVERAGE = BRANCH/ENTRY,TRACE=BRANCH/ENTRY)

TRACESET {UNIT=name,LOCAL/SUBORDINATES,)start smt, stop smt)}

NEWTEST,UNIT = name,smt.

ENDTEST, UNIT name, smt. '

STARTCLOCK, UNIT = name, smt.

STOPCLOCK, UNIT name, smt.

4-1Z
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5. Post-execution analysis -

Commands CuVEi AGE{, LNTRY ,BRANCr, SIATEMENTr,NO rhl'r,

$ nlTS=BRANCh/PATHs(path no.,path no.,...)}

TKALEIrEnRY /hi ANctoi

PEKFORMANCE { ,ASSERTLONS)

TIMING

6. Retesting assistance -

Commands = SETPATH, UNIT=name ,bRANChiLS=branch 1, branch2,

{,branch3,...)* {,RESE.}

i , .h;, UNli =xame , STAWi =snt. •, STOP=st•, LiM1T=number**

BRANCHLS. UNIT=name, START=smt., STOP=smt• {, ITERAT1VE)
" HiSiURY {(,RI'sET}y

lther are two additional commanas: HELP and SAVE. The HELP

command is for the interactive user to provide command syntax assis-

tance. The SAVE command is usee to save the current contents ot the

database. The function of each command is briefly described in lable

4.1. A thorough description ot each command, along with sample usage

and output, is pro rided in the Functional Description.

Figures 4.4 through 4.12 snow input-process-output for the major

functional capabilities. Figures 4.4 aid 4.5 illustrate the flow of

information for commands READ and STATIC. Figures 4.6 through 4.9

illustrate instrumentation and execution of instrumented modules.

Figures 4.10 and 4.11 illustrate po.s -execution analysis, and Fig. 4.12

shows program analysis reporting.

* Repetition of branch sequences is denoted by enclosing the branch

numbers in parentheses.

* Tie default number ot paths is 51).

Note: All connands can be abbreiated to the first four letters of
each keyworu.

V4
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TrABLE 4. 1

J73AVS COMAND LANGUAGE

Commrand Parameters ilm-t Ii oil

RE1X[ CHAMNGES Read It\'i.A!, -171 source. Biui I a
kiata basQ. * iot ;y c :i.ngec:

STATrIC LOCAL/GLOBAL , Pe r 'L-orm SAI ~. .eAnd dat.A I 10W
OFF= (ERRMORS , AN:xGs , an'i ys is.

M~SSA(;Eb ,SYMBOLS)
FULL / SUM: IAY

L TP rou ice I uden t ec ommc

L t -in1g.

CROSS REF ItAT.R LX, SETUSl:, NAlES= Irod 0cc qvm'bo cross, re forenc,
name,..

INVOCAT LONS M FR I X ~REB.NDS , sOURCI: Prou uce report s dose rib i g

Srga L n itC L U1 VO' Li

C041IPOOL XREF, SOURCE P~ruce reportS de.se r *.) g
Colnp I p do 1. is abo -

SYABOLS L[IST, PROPERZTII-s , SOURCI:', Producte reports cleseritingy
NAHES=Iiaime ,*.syMnbo tt Lr i buteS.

LABELS LI ST ,XREF,SOURCE Proaticv reports oes c r hi og

TYPE L! ST, SOURCE Produice reportS deSCIrib: og
usrdli ntd da'ta typCS.

CONSTAINTS LtT, ,SOURCE Produce reports desc rib in,,
00flStantL .Ilattpes.

REFDEF LIST, SOURCE Produce reports des r iing

instainces of REF .ind DEF
s pec i f icaIt ion.

1)11'F I NL 1. 1ST, SOUJRCE Produice reports describing
ias tances o. DEF ISi d c 1 a r. tion
anid rcreronc- .

DATABASE Pmsis unt; [Uro;.uic. reports (iesc ri ing Lw

Jprogran iii (Ii S sLorA in ( lit,
cuirret? (1.1 tahSe
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TABLE 4.1 Continued

Command Pa ramete rs Function

INSTRU>IENT ASSERT IONS, S- -MENTS, Lnserts software probes into
COVE RAGE=BRANCH /ENT RY, the source code to collect data
TRA.CE=BUM I~C/ E W-Y during xec ut ion. Translate

assertlons into executable
code.

'PRACESEX' tJNli=narne, Instrument each branch between
LOC.NL/SUIBORfL::XUrE, the specified statements,ifl-
(start sit, stop smt) ciuding branches in subordinate

program unlits.

NEvUHiST UN IT hn;ne ,sm t. 'Insert a testcase boundary at

the specified statement.
HN)E, USlTname stnt. Insert an end-of-all-testcases

probe at the specified

statement.

YPTARi'CLO(;CK r 1I1T=-Eame ,smt. Insert a "start" system clock -

probe at the specified
statement.

S'(JPCLOCK VNU1T.=nam ,,smt. Insert a "stop" system clock
probe at the specified
statement.

COVERAGE ENTRY, BA>NCH,S-rkf 1111N'T, Produce post-execution analysis
NOTH I C, reports describing statement,

diTBRACHP~TS~pthno,.) branch, or path coverage.

TRACL ENTRY 8R:\NCFi Produce a post-execution
tracing report for branches or
program unit entries and
returns.

PE.IWORANCE \SSrRTr:0NS Produce a post-execution
statement performance report,
including assertion violations.

T;11N2Produce an execution timing

analysis report.I SETPATUN I~T~name , R.\NCHE'S=.. Store the specified branch
RES i;' sequences in the database as

paths.

P-\TIIs U N TnaneSTARI'=st. Identify the paths between the
1STOPst., LLMI*Ahno. two specified statements.
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TASLE 4.1 Continued
Command Parameters Function

BRANCHES UNIT=name,START=smt., Generate a reaching set of
STOP=smt., ITERATLVE branches between the two

specified statoments.

HISTORY RESET Produce a execution coverage
report for all testcases.

Reset the database coverage
history table.

HELP Assist with command syntax.

SAVE Save the current database.

BATCH Indicate batch mode of
operation.

MODULES name,.... Specify one or more modules for
the following command

processing.

FOR MODULES name,... Specify one or more modules for
the following set of commands.

UNITS name,... Specify one or more program
units for the following
command.

FOR UNITS name,... Specify one or more program
units for the following set of
commands.

SYSTEM Specify all program units in
the database for the following
command.

FOR SYSTEM Specify all program units in

the database for the following
set of commands.

END FOR Conclude the set of commands.

END Conclude J73AVS processing.
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READ

" SOURCE TEXT ANALYSIS "

JOVIAL J73 DATABASE GENERATION , DATABASE
SOURCE* PROGRAM GRAPH DEVELOPMENT

I TRACESET

I NSTRUMENT
PROGRAM UNIT

IDEFINITION STATIC
AND SCOPE REPORT

COMMANDS

*WITH OR WITHOUT
ASSERTIONS

Figure 4.4. Initial Processinig

STATIC

STA'11C ANALYSIS
DATABASE DATA FLOW ANALYSIS

I TRACESET

, INSTRUMENT

ERRORS ] REPORT
WARNINGS I COMMANDS
MESSAGES I
SYMBOL INFO.1

Figire 4.5. Static and Data Flow Analysis
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NEWTEST STARTCLOCK
ENDTEST STOPCLOCK

TRACESET

INSTRUMENT
COVERAGE OR
TRACE

( (=. STRUCTURAL INST.

DATABASE TESTCASE DEFINITION\TIMING PROBES !

COMPTLAi ION

JOVIAL J73 (ISRMNE

COMPLIER SORC-TX

Figure 4.6. Structural Instrumentation
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INSTRUMENT,
ASSERTIONS

DATABASE ASSERTION-T-; CUAL

COMPILAT ION

JOVIAL J73 _ TIRANLTED
COMPILER SOL ;E TX

Figure 4.7. Assertion Instrumentation

I NSTRUMENT,
STATEMENTS

Lsn

STATEMENT
DATABSE - INSTRUMENTATION

COMPILATION

JOVIAL J73 INSTRUMENTED
COMPILER SOURCE TEXT

Figure 4.8. Statement Performance Instrumentation
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TRACE 0

COVERAGE
STRUCURAL ESTIN

(TRACC DATABASE

fDATA 
AAYI

REPORT COMMANDS

HISTORY
COVERAGE AND
TRACING AEA ~ EPT

LREPORTS BACZ

PATHS

Figure 4.10. Struct:'-ral Testing Analysis



REPORT
COMMAt:3S*

PROGRAM

DATABASE 
ANALYS I S~REPORT 

INGE-
I N S T R U M E N T 

-ETPATH
TRACESET

COMPOOL , SYMBOLS, LABELS, R P TSCOMMANDS-"
DEFINE, DATABASE

- i Figure 4. 2. Program aaalysis Reporting
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5 DESIGN OF J73AVS

J73AVS will be made up of a Nucleus and set of independent

function processor segments. Each of the segmcnts can correspond to an

overlay segment. The Nucleus can make up the core-resident root (or the

first level) of the overlaid program, although to minimize storage

requirements, some Nucleus routines will be loaded in secondary over-

lays. Each of the other functions makes up a second-level segment. The

following is a brief description of each functional segment:

Command Decoding and Control: Process user input commands, output

interactive response, and successively return each command to the

overlay controller.

Initialization nd Wrapup: Upon run initialization, open files,

initiate execution of the storage manager, and set various global

data; upon run termination, close files and (for batch mode)

-produce report index.

JOVIAL J73 Source Text Analysis: Read JOVIAL 173 source and

perform lexical scan, token recognition, symbol classification,

and structural pointer construction.

Structural Analysis: Build program graph, store branches, and

compute single-entry/single-exit reduction history used in data

flow analysis.

Supplementary Table Building: Build tables needed for module

dependence reporting and cross references.

Program Analysis Reporting: Produce selected reports at user

command.

Instrumentation: Insert probes at program unit entries, exits,

branches, and statements (depending upon type of instrumentation

selected); define new testcase or end of all testcases; expand

assertions into executable code.

]
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Structural Testing Analysis: Analyze run-time execution trace

file, produce coverage and trace reports, and update test history

table.

Statement Performance Analysis: Analyze run-time trace and

instrumentation statement descriptions and produce statement

performai. , reports.

Execution Timiii; Analysis: Analyze run-time execution trace and

produce timing repk.-t.

Path Generation: Determine the set of paths between specified

statements and store paths into database.

Branch Reaching Sets: Generate sets of branches that reach a

spe'-ified statement.

Test History: Generate a test coverage history report or reset

the history table.

Print Services: Print the contents of specified database tables.

Table 5.1 lists the functional processor segments along with the

associated user commands which invoke each segment. The Nucleus

consists primarily of database management facilities. The segments

loaded at a particular time during a run will depend upon the type of

processing requested by the user through commands.

}-M
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:: TABLE 5.1. J73AVS FUNCTFIO.AL PROCESSOR SEGMENTS

Command Keyword Segment No. Functional Processor Segment

All commands I Command Decoding and Control

All commands 2 Initialization and Wrapup

READ 3 JOVIAL J73 Source Text Analysis

READ 4 Structural Analysis

STATIC 5 Static and Data Flow Analysis

INVOCATIONSCROSSREF 6 Supplementary Table Building

Reports* 7 Program Analysis Reporting

NEWTEST

ENDTEST

STARTCLOCK

8 Instrumentation
STOPCLOCK

INSTRtJ1NT*

TRACES-T

COVEL'/'
9 Structural Testing Analysis

TRACE

PERFOR11ANCE 10 Statement Performance Analysis

T I.'1ING 11 Execution Timing Analysis

SETPATttS,PATHS 12 Path Generation

BRPNCHES 13 Branch Reaching Sets

HISTORY 14 Test History

LIST, PRIZT*** i Print Services

L * Commands CROSSREF, I VCAT IONS, CO.POOL, SY IBOLS,L-BLES, TYPE,CONSTANTS,
REFDEF, DEFINE, DATABASE

**Structural instrumentation (parameters COVERAGE and TRACE) and
statement performance instrumentation (parameter STATEMENTS) can be
sub-overlays.

***Database table print package, primarily for J73AVS development and

maintenance and for source listing reports.

5-3
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The design of J73AVS Lends itself to iLncorporato toil -hanging

requiremfents (such as J73*janguage revision) and upgrading capabil iti--s.

For example, anticipated changes In the JOVIAL J73 tIanguage specifi-

cation (scheduled to be resolved by July 1, 1980) are expected to affect

only the syntax analyzer. Upgrades, suen as adding a configuration

management capability or adding J target machine statement simulat1 or,

would be performed by -adding new function~al segments. Thle database is

designed so that new tables of information can be easily added, and the

database manager does not depend upon the type cf information stored in

the tables.
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6 FUTURE EFFORT

There are five techniques for software verification that should be

considered for future implementation in J73AVS. The two more important

areas are tesL data generation and instruction-level simulation. Test

data generation would be a valuable assistant for all applications to

JOVIAL J73. instruction-leveL simulation for the purpose of analyzing

size, accuracy, and timing for target machines would be beneficial for

real-time applications, such as avionics.

Additional, completely-automatable facilities are code auditing,

physical units consistency checking, and assertion translation using a

precompiler. Detection of certain "dangerous" coding practices is

included in the J73AVS static analyzer. It cannot be too strongly

stressed that such oractices should be retained only for compatibility

with existing coae; :.;e in new applications should be prohibited except

where extreme requirements exist for time and space efficiency. When

J73 becomes a familiar language, coding standards should be specified by

the JOVIAL User's Group (an Air-Force-sponsored group of interested

individuals from industry, Government, and the military) and included in

J73AVS. Units consistency checking is already performed in AVS tools

such as SQLAB. The addition of this facility to J73AVS would be a

small effort.

It has been the practice at GRC to design and develop automated

software tools using a top-down, modular approach. Our basic approach

is to isolate major functional blocks into software components that have

weli-defined interfaces. When new or more efficient techniques are

aeveloped, they are incorporated into the system as additional or

replacement components. Both test data generation and instruction-level

simulation can be incorporated into J73AVS as additional functional

components.
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6.1 TEST DATA G"Ei. ....

In order to implement i test aai genera t ion system, the f to w.1ing

functional components are required:

I. Syntax analvzor--breaks in1,co,:ing source texL into Lokons .n:

stores module, StatmIen1t, and sy.:mbol in forinati on into tlbles

for subsequent use.

2. Structural anaiyzer--generates a directed prograin grdph for

each module based on its cont roi st ruc ture ; saves the

control path information in the branch t.,ble for later Use.

3. Pseudo-path Cli.inator--this comnponent cont a ins two

techniques:

:a. Act ing on interact ive coim.iand I rolna Lhe liSer , i L

eliminates sequences of paths from tLe test Cast!

select ion process wnich are logically i.[possinloI or

"uninteresting"' during a particull-ar testing ACtivity.

b. Using backward symbolli: execut ion, automatica lv

determines and eliminates logically impossible path

sequences.

4. Reaching sequence generator--generates reaching ,equences

according to (1) interactive identification by the user of

starting and stopping branches or (2) algorithmic iden-

tification of the starting and stopping branches based on

execution coverage performance. Also generates individual

branch sequences.

5. Reaching sequence constraint genera tor--bui Ids an eXprssion

result ing from the backtracked re.wning sequ'ncev. Also

ania1lyzes individual nlranch sequences.
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6. Constraint simplifier--uses arithmetic, logical, and re-

lational simplification to reduce the path sequence con-

straint to a set of inequalities. This process shoula

utilize interactive assistance from the user in terms of

additional simplitication rules.

7. inequality solver--generates input data for subsequent

dynamic execution iccording to some automated or inter-

actively-supplied heuristics. If the ;;et of inequalities is

nonlinear, interactive assistance will be required to

determine solutions.

z. Instrumentor--(l) automatically stores software, "probes"

into the source code so that coverage information can be

recorded during dynamic execution, and (2) automatically

translates user-supplied assertion statements in the source

code into executable statements.

9. Execution analyzer--processes the trace file recorded during

execution of the instrumented source code to provide branch

and module execution coverage information.

I0. i'able builder--builds certain tables such as symbol cross

reference, module dependence, common symbols, etc. which

will be needed for documentation reports and backtracking

through the module hierarchy.

11. Report generator--produces a variety of user-specified

through the command language) reports about the char-

acteristics of the test program as a whole or with respect

to specified target branches.

6-3

- ON-

-v _- - '-'



Tie functional components briefly described above are included in

Fig. 6.1 which puts the manual, interactive, and automated capabilities

into perspective. Note that the insertion of assertions (described

briefly in Sec. 4 and in detail in the Functional Description) is shown

as the first activity. The power of assertions lies in their ability tu

provide 'unctional information about the program which both the test

tool and user can analyze to determine correctness of prograin behavior

and completeness in functional testing.

6.2 LNSTRUCriON-LEVEL StMULAT ION

With tle advent of MiL-STD-1750, the military standard instruction

set for airborne computers, it is not unreasonable to consider the

incorporation of target machine requirements into a general-purpose,

host-operational tool like J73AVS. Robert Glass at the Boeing Company

has stressed the value of testing software on the host computer (see

App. B). It is his contention that most errors in embedded systems can

be traced to faulty code in the host computer. Further, it is only on

the host system that computer and peripheral resources for extensive

testing are available.

Simulation of the 1750 instruction set can be a functional

component of J73AVS which contains default instruction size, precision,

and cycle times for a typical target machine. The user can lhange the

defaults through commands to represent actual processing requirements of

his target. User-requested reports will provide simulated operational

measurei,,ents for the target to determine if the software meets size,

accuracy, and timing requirements.

6.3 CODE AUDITING

Code auditors for assessing the compliance of programs with-

certain standards are common software support tools. Although dis

ciplined programming policies are encouraged, it is cliear from high

maintenance costs that such policies are not always followed. Computer
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I

Sciences Corporation and FRlW have used cod,- auditor-, onl botiz FORTRN ana

assembly languages and have reported a for-mal Cost reduction ol $37,ou

by using a FORTRAN code auditor on one pro-,cL alone. As soon as

JOVIAL J/73 has mnatured to a level where pro-,ramme.%x call specify coding

standards, they should be incorporated itL the static analyzer comn-

ponent of J73AVS. The user would have thle Opt ion to select the Code

auditing feature.

Typical, general coding standards incluide the following:

- Length of program units

- Nesting Level of loops

- Calling arguments are not expressions,

- In-line comments precede labeled statements, conditional

statements, and invocations

6.4 UNITS cousisTmixy

Requiring that each local variable and ceh global variable be

specif ied in terms of thle physical units it represents (if any) alIlows

comprehensive checking of thle consistency of unitb. ']his type of

checking is particularly relevant to technical software where manly

physical properties are represented Mnd there are many possibilit.es of

confusion over units. Units canl be checked onl a multi-module bai;is if

each module contains a description of thle units for each physical

variable ;-_ refers to. The fonn of tile description for JGVIAL might be:

UNITS ((variable-list-I> - utni ts-ex press ion-I >,I (variable-lis.-2> = <nits-expression-2',...)

K. F. Fischer, "Software Qutality Assur,,n-o Tools: Rec-cnt Exnerience
and Future Requirements," Software Qual ity and Assurance Workshop, S"n1,
Diego, November 197b.
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An in units is indicated if unlike units are added,

subtracted, or compared. The physical-units analysis compares the right

and left side of assignment statements, tile right and left side of

relational operations, and actual and formal parameters. Far con-

venience in stating UNiTS assertions, all constants are assur, ed to be

unitless, except for 7,ro, which will match any units expression. A

variable is declared tinitless by stating that its units expression is

the constant 1, as in UNIrs (Pi = 1).

This capability is already available in GRC's SQLAB AVS for

FORT;RN and Pascal. It is also recommnended for inclusion into the MUST

(Multipurpose User-Oriented Software Technology) program for HAL/S

software. This added static analysis could be incorporated economi-

cally by converting the existing method used in SQLAB. Violations of

consistency would appear within the current J73AVS static analysis

report (see the Functional Description).

6.5 EXECUTABLE ASSIrWHONS PRECOMPILIER

A minor effort to develop a JOVIAL J73 precompiler strictly for

the purpose of translating logical assertions into executable JOVIAL J73

code would have major benefits in producing more reliable programs early

in their development stage. The precompiler would exist as a JOVIAL J73

program that merely scans source code for ASSERT statements and trans-

lates them into several executable statements, including the TRACE

directive, to report assertion violations.

f An assertion precompiler would be more efficieit than translating

assertions to executable code by instrumentation, since the precompiler

does not require the syntax and structural analysis and the database

storage and manipulation needed by the multi-purpose J73AVS.

R. N. Taylor, Integrated Testing and Verification System for Research

Flight Software - Design Document, Boeing Computer Services Company,

Feb. 1979.
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APPENDIX B
REVIEW OF RELEVANT TECHNIQUES

JAVS Technical Report: Vol. 1 "User's Guide" 1975, 1976, 1978

JAVS Technical Report: Vol. 2 "Reference Manual" 1975, 1976, 1978

JAVS Technical Report: Vol. 3 "Methodology Report" 1976

Methodology for Comprehensive Software Testing 1975

JAVS Computer Program Documentation System Design and Implementation
Manual 1975, 1976, 1978

JAVS Final Report 1975, 1976, 1978

RK General Research Corporation
Santa Barbara, California

The JAVS (JOVIAL Automated Verification System) and testing

methodology were developed for the Air Force as a near-term solution to

the problem of testing JOVIAL J3 software. The requirements for the

tool were to provide an automated mechanism for measuring the thorough-

ness of testing and assisting with generating new test cases to increase

the level of testedness. The resulting tool has the following func-

tional capabilities:

1. Recognize JOYTAL J3 source text with very few language

restrictions and build a database for up to 250 invokable

modules with no limit on number of statements.

2. Using the database, identify potential structural infinite

loops and unreachable code, insert software probes at each

decision point, formulate software documentation reports

showing symbol, statement, control path, module, and

inter-module information.

3. When the instrumented modules are executed (with the

remainder of the program, if the entire program is not

instrumented), provide statement and branch coverage

information and module execution timing data.
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4. Provide lists of branches not executed by each test case and

the sequences of branches required to be executed in order

to reach the unexercised branches.

5. Provide an assertion language to assist code development and

testing whereby user-supplied assertion statements can be

converted to standard JOVIAL J3 by JAVS and supply execution

time information.

JAYS does not provide data flow analysis capabilities for con-

sistency checking, interface analysis, formal verification, or test data

generation. The 1976 published methodology report provides guidelines

for code development and testing which are keyed to the capabilities

provided by the JAVS tool. The resources required by JAVS on the HIS

6180 are suruarized below:

JAVS load size 53K words

Data collection routines load size = 4K words

Random and sequential files

*Compile size of instrumented source = 15% larger than

uninstrumented compile size

*Compilation time of instrumented source = 15% longer than for

uninstrumented source

*Execution time of instrumented source = 50% longer than execution

of uninstrumented source

*Coverage analysis time = 3-6 times execution time of instrumented

source

* These resource requirements are rough estimates which vary according

to the control structure of the program and coverage analysis options
requested.
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Integrated Testing and Verification System for Research Flight Software

- Design Document

Richard N. Taylor

Boeing Computer Services Company

Seattle, WA

NASA Report 159008, February 1979

This design document describes a variety of software support tools

to be included in the MUST (Multi-purpose User-Oriented Software

Technology) system for HAL/S software. The tools included in this

design operate from HALMAT, an intermediate representation of HALS.

Thus, the tools do not have to perform any parsing. The types of tools

are static analyzers, symbolic executors, and dynamic analyzers. There

is heavy emphasis on static and dynamic assertion usage and statistics

gathering.

The design recommendation is that sail, modular facilities be

combined in a variety of ways to accomplish program creation and

maintenance. Such modular facilities are:

local assertions

- regional assertions

- internal documentation

- answers about previously written code

- auditor

- units and scale checker

- cross-reference map generator

- data flow analysis

- execution-time monitoring

- instrumentor for run-time monitoring

Sample combinations of using these techniques are:
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I. Isolating an error - dynamic analysis with extensive

assertion usage on the suspect module.

2. Initia. verification of new code - both data-flow and

non-da:a-flo,, static analysis.

3. Broad-based verification with unlimited resources - static

analysis, symbolic execution, test coverage.

4. Isolation of functional error - symbolic execution of

appropriate paths, dynamic analysis.

5. Verification of previously verified modules - mulLi-purpose

data-flow analysis end static checking of integration

requirements, dynamic analysis of concurrent process

characteristics.

3 4
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Verification Techniques for Flight Control Software

E. R. Rang, J. M. Silverman, J. J. Gutmann

Systems and Reoearch Center, Honeywell

December 1978

This report describes several manual and computer-assisted

techniques for the verification of flight control software.

"Verification" as used in this report means that the resulting system

functions as intended. Therefore, the techniques described cover the

description of requirements, specifications, design, testing, and

assertion verification.

Flight control software has characteristics that distinguish it

fiom other types of software. Among these characteristics are syn-

chronization, distributed processing, assembly code, structurally simple

functions, and simple data types., The verification techniques recommen-

ded in this report reflect these characteristics.

The techniques described and recommended are:

1. HIPO (Hierarchy plus input-process-output) charts

C 2. Formal specification using SRI's SPECIAL

3. Petri nets

4. Decision tables (as defined by Goodenough and Gerhart)

5.- Symbolic execution

The HIPO charts provide a manual, disciplined method for stating

software requirements, defining a system design, and, when used with

decision tales, generating test data. HIPO charts allow for describing

the system and its individual functions and can be used as a basis for

design verification. Since the fabrication of HIPO charts is manual and

there are no enforced standards for thei thoroughness, their value is

completeJy dependent upon the generator of the charts.
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The use of HIPO charts facilitates drawing Petri nets, construct- £

ing decision tables, choosing test data, and performing manual symbolic

evaluation of logical functions. Petri nets can be used to represent

interacting concurrent processes, but they can become complicated very

quickly. The primary asset of Petri nets is their usefulness in

developing a preliminary design.

Decision tables consist of enumerating each decision (condition)

in a program (Cl, C2,...), followed by each action (Al, A2,...) to be

undertaken, and then a set of test data (Dl, D2,...) which will exercise

each combination of conditions and alternatives (collectively called

rules). Since HIPO charts include conditions and actions with the

"process" section, decision tables can be generated easily. Theo-

retically, this technique of manual test data generation will exercise

all sequences of conditions in a program. There are still two major

problems: (1) if loops are involved, there may be an infinite number of

condition sequences, and (2) if "moderate" data values are selected,

errors can still exist which might otherwise be found by stress testing.

As stated earlier, two of the characteristics of flight software are few

loops and elementary data structures (frequently just boolean struc-

tures). For this software, then, a tool which automated the development

of HIPO charts, translated them into decision tables, and generated the

test data would be very beneficial.

SRI's approach to verification, as described in this report, is to

formalize the software construction methodology, thus allowing machine-

dssisted verificaLion. In their formal language, SPECIAL, a system is

described before any considerations are included about implementation.

Modules are formulated as finite-state automata: primitive data struc-

tures ar, the states, opeLations are the stat~e transitions, and outputs

are computed from the inputs and final states. The SPECIAL system is

difficult to use, and the authors of this report were not convinced that

the results were worth the trouble.

B-6

-S^0

'1~ ONE-



°-!~

Symbolic execution is used along with user-supplied assertions toL formally verify assembly code in the PLOVER-80 tool. The verification

technique described in PLOVER-80 is similar to, but not quite as

extensive as, that in SQLAB, a verification tool for FORTRAN and IFTRAN.

PLOVER-80 accepts a set of assertion statements and the Intel 8080

assmbly code as iaput, internally generates inductive assertions with

new variable names, dnd produces verification conditions using symbolic

execution which must be manually proved to be correct.

The good feature of any assertion-based tester or verifier is that

it offers an additional means of stating specifications in a module-

readable form. We have found assertions to be extremely useful as

execution-time checks during software testing. The bad feature of

assertions is that they too can be erroneous, and if a proof of correct-

ness relies Folely on them, they had better be correct.
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Boeing Support Software for Embedded

Computer Systems - SCP

Purpose: 1. Generate loadable code

2. Support V & V

3. Support maintenance and configuration control

Capabilities:

I. Automated configuration management

2. JOVIAL/J3B compiler with multiple code generators

3. Generalized macro assembler with multiple targets

4. Generalized link editor supporting multiple targets

5. Specialized loaders supporting multiple target interfaces

6. Host computer statement level simulation

7. Multiple target computer instruction level simulations I

8. Software version comparison at source, object, load levels

9. Automatic cross reference and flow chart generation

Design Concept:

1. Open-ended processor structure

a. Table-driven common control program

b. Single interface to host computer

2. Processors utilize common system routines

3. Processors interface through common database format -o

a. Extensible data formats

b. Database management utilities

4. Machine-independent processor design

a. Preprocessors format machine-dependent tables

b. Special processing routines may be added
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5. Implementation in HOL

a. AED used

b. Machine dependenvies isolated and parameterized

Documentation Processors:

1. Global cross reference

a. Global data dictionary

b. Storagp allocation map

c. Data block descriptions

d. Procedure called-by/calls list

2. Flowchart

a. Macro-level JOVIAL/J3B

b. AP assembly language

Functional requirements for SCP are:

I. Modification of J3B cross-compiler to save descriptive and

set/used information for data variables

2. Modification of the assembler to process operational

software data and procedure coding conventions and to save

descriptive and set/used information for data variables

3. Integrate the saved descriptive and set/used information

with output of the linkage editor and source code comments

to provide appropriate formatted listings

4. Allow text editing of resultant formatted listings
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"Real Time Software Debugging and Testing: Proposed Solutions," Robert

L. Glasa, The Boeing Company, D180-25249-1, -2, -3, September 1979.

This report shows that most real-time software is tested in the

target, not the host, computer environment even though there are no

software checkout tools in the target environment. However, since more

than half of the 20 projects surveyed in this report used HOL and since

most errors are in the source code (not in generating the target's

object code or in the target's environment), the emphasis of the

proposed solutions is on the host computer environment. To check out

the source code in the host environment, both the language debug

facilities and a software environment simulator must be available on the

host.

For the purpose of designing the J73AVS, only the debug and test

proposed solutions (not those for an environment simulator) are cri-

tiqued. This set of recommendations can be summarized as follows:

1. Ti.ming analysis can identify critical areas which should be

recoded in assembly language.

2. Self-checking code, using conditional compilation, looks for
input data acceptability, data storage overflow, assertions

and range checking and provides for traces and dumps.

3. Data contention analysis can prevent timing errors due to

parallel processing.

4. Audit trails of data and logic traces should be recorded.

5. Fault tolerance mechanisims provide fcr defensive programs,
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6. A cross-reference listing should include structural rela-
tionships, data types, and set-used information. Both local
and system-level cross-reference lists are needed.

7. Anomaly checking such as inaccessible code, undefined var-

iables, type mismatching should be performed.

8. Structural testing should include logic branches, functions,

e and combinations of logic branches.

9. Data tracing, procedure tracing, and formatted snapshot

dumping should be performed such that data is displayed by

name, is properly formatted, and is tied to program structure.

10. Unsafe programming practices can be recognized, summarized,

and reported.

j a
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Sneak Software Analysis
Boeing Aerospace Co.
Houston, Texas

Sneak analysis is a set of manual and computer-aided techniques

for uncovering and predicting unplanned modes of operation. Given

software code, reference manuals, requirements and specification, module

descriptions, flow diagrams, data structure definitions, etc., as input,

a manual encoding of the input is made. Outputs from the Sneak Software

Analysis routines include: nodal set number report, variable name

report, label name report, and mnemonic report. Certain questionable

design practices are flagged such as unnecessary logic and unreferenced

labels or variables. Then a manual verification process is undergone

using the code, output reports, and specifications using a network tree

representation of data and logic flow.

Of interest to AVS's are the set of clues acc-amulated through case

histories:

Implemented in J73AVS?

1. Unused paths Yes - dynamic analysis

2. Inaccessible paths Proposed for future effort (see

Sec. 6.1)

3. Improper initialization Yes - static analysis

4. Lack of data storage usage Yes - performance analysis

synchronization

5. Bypass of desired paths Yes - dynamic analysis

6. Improper branch sequencing Yes- dynamic analysis

7. Potential undesirable loops Yes - performance analysis

8. Infinite looping Yes - static analysis

9. Unnecessary (redundant) Set-set-used detected

instructions

10. Unreferenced labels Yes - label report A

11. Bypassed vriable Yes - static analysis

initialization

B-12
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The Software Design and Verification System (SDVS)

TRW

SRedondo Beach, California

SDVS is an integrated set of non-realtime software to aid in the

development, coding, testing, and configuration management of avionics

software (primarily DAIS, the AFAL Digital Avionics Information System).

Its capabilities are: simulation of DAIS processors, automated configu-

ration management of mission software, automatic control of simulation

runs, editing and processing of data generated by the simulation, and a

JOVIAL-like command language.

The command language provides statements for driving the sim-

C ulation such as assigning values to variables, transferring control,

collecting data, evaluating logical expressions, interpreting post-

processing requests, formatting output, etc.

ISDVS requires a J73/I compatible JOVIAL compiler and a database

management system. It currently operates on a DEC-10.

The facilities for debugging and validating avionics software are:

1. Snapshot/rollback - during the course of a simulation, results

are saved for a subsequent restart.

1 2. Data recording - statement, transfer, register, instruction -

traces; module execution clock times; values of selected

variables traced; mod' data requested by user printed.

3. Post-simulation run processing - capabilities to sort, edit,

analyze, and output simulation data.
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Test Coverage Analyzer

Boeing Aerospace Corp.

Seattle, Washington

The JOVIAL J73/1 Test Coveraie Analyzer provides segment execution

coverage analysis as an extension to the J73/1 compiler. The extent of

instrumentation: (a) all branch points, (b) all branch points and FOR

F. loops, and (c) procedures only, is user-specified as a compiler control

card option. Post-test analysis is performed by support and system

routines, identified by the user at link time.

An example of the Test Coverage Analyzer's output is:

Procedure Name: APROC

Stat. No. Count Stat. No. Count Stint. No. Count

1 3 3 10 7 10

10 0 12 10 21 3

Procedure Name: DRIVER

Stut. No. Wount Stut. No. Count Stut. No. Count

1 1 4 0 7 500

12 500 17 20 !9 480

25 10 31i

The resource impact from using the Test Coverage Analyzer is:

1. Instrumented programs are 10-30% larger than uninstrumented

programs. For procedures only, the overhead in size is 0-52.

The execute-time library is 1100 words.

2. Execution time is 40-602 longer for branch point analysis,

75-00% for branch point and FOR-loop analysis, and 10-302 for -A

procedure analysis.

3. There is no significant size or time iml -.ct on the compiler.
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I The only limitation of the Test Coverage Analyzer is: no more than 1000
r__segments pt-. compilation unit may be analyzed. This limitation may be
I easily increased.

t
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A System for Incrementally Designing and Verifying Programs, Vol. 1
Mark S. Moriconi

University of Texas at Austin
and USC/Information Sciences Institute
NTIS Report ADA055501

This report, a doctoral thesis, presents a description and

usage-by-example interactive dialogue of a verification system which

differs from most other systems in two ways:

1. It supports software design and verification through

incremental stages with minimal reprocessing of changed

modules.

2. It provides a very friendly user interface with a respon-

sive, hierarchical command language.

The system, called SID, is LISP-based and runs on a PDP-10

computer. Most of SID is written in Reduce; the rest is written in

UCI-LISP.

The basic features of SID are to accept designs of modules in

terms of assertions, determine what the unresolved external references

are, and then automatically generate verification conditions (VC's).

The system generates VC's for paths that are completely defined,

igroring those that are not. Thus, programs can be a mixture of

specifications only, complete program text, or some in-between state of

development. Verification is performed by an interactive theorem

prover. Each VC is proved separately. When design changes are made,

the system determines what new VC's need to be generated and proves only

the new ones.

The aspects of SID that are interesting in the context of the

J73AVS development are the system's determination of what has been

changed in the software being analyzed and the conversational command

B-1 6
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language. The SID commands are: Add, Delete, Edit, Explain, Help,

Print, Prove, Restore, Save, Suggest, Translate, VCS, ?E,?,??. Most of

the commands have subsequent levels of detail, prompting the user for

more information as it is needed. As the Suggest and Explain comands

imply, SID is capable of providing a certain amount of guidance for

directing system ictivities and giving explanatory comments.
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