RADC-TR-80-261

Final Technical Report
August 1980

%

e
o | s
CT) JOVIAL J73 AUTOMATED VERIFICATION
' SYSTEM - STUDY PHASE
o Genera! Research Corporation
CD, Carolyn Gannon
rg‘j:
)
<C
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
['E
o
|
grs
bl
v |
€3 ROME AIR DEVELOPMENT CENTER
= Air Force Systems Command

Griffiss Air Force Base, New York 13441

)
2
)
‘-A_D
2

&
EORETE
k4
-~

i

RN AT,

&

L Ao L R

5
g

This report has been reviewed by the RADC Public Affairs Office (PA) and
is releasable to the National Technical Information Service (NTIS). At NTIS
iv will be releasable to the general public, including foreign natioms.

ety

RADC-TR-80-261 has been reviewed and is approved for publication.

A U 3 A bl SR Rt

APPROVED: ﬂa&é /J’ ;7{1/?7071;&&,

FRANK S. LAMONICA
Project Engineer

Rk

A

.
)

Fosdivdt st o

. -7
APPROVED: “ 7 [;
:5542;;“414{'cf;bzcx¢7knv~’

) 7'%
WENDALL C. BAUMAN, Colonel, USAF g
Chief, Information Sciences Division .

FOR THE COMMANDER: éz, ,é ﬂ ﬂ :

OHN P. HUSS
e Chlef, Plans Office

AL R TR c
If your address hs. . Ioi. . ~~ hp TEmOVes roFR - Rapg

mailing list, or if tie addreSSe is z 3
please notify RADC. @SIE) €rifiiaios AFS DY 1
maintaining a current mailing list.

Do not return this copy. Retaln 57 destroy.

. - A e JaMMA Ak A% v Mo S

UNCLASSIFLED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Fateced)

(/9) REPORT DOCUMENTATION PAGE R L,

1 REPORY NUMBER GOVTY ACCESSION NO 3’-5%(:!"[5'47'5 CATALOG NUMBER
P) AMW;,W 2
4. TITLE (and Suoutle)

Final fechnical Fepaet,
JOVIAL J73 AUlOMA’l ED VERIFICAI ION SYS'IEN —J ~

Sep 79 — Apr Sd)
SlUDY PhAbE}__"" L 6 PERFCRMING OG NIPORT NUMBER
i N/A

.
7 AUTHOR(s) 8 CONTRACT OR GRANT NUMBER(s)

/Carolyn/Cannon j % F3¢§p2—79—€-9265)ﬁ-

“aa

N] Py H & R 10 PROGRAM ELEMENT PROJECT TASK
9 ‘pLRFORMINC ORGANITATION NAML AND .AOD €55 T SRR Y Pty U A I
General Research Corporation

63728F]
P O Box 6770 v . ; -
Santa Barbara CA 93111 /1 ¢ Y|7532p206 '17‘ 4"'«;

11 CONTROLLING OF FICE NAME AND ADDRESS S~ 112, REPQRT DATE

[,/7—{ / Aug s 30 /

Rome Air Development Center 13 NUMBER OF PAGES
Griffiss AFB NY 13441 93

14 MONITORING AGENCY NAME & ADDRESS{f drfferent from ('muro“ln,. Oltice) 15 SECURITY CULASS (nf this report’
N2 A UNCLASSIFIED
Same 7 757 OECL ASHTTCATION DOWNGRADING]
, SCHEDULE
[N/A

16 DISTRIBUTION STATEMENT (af this Report)

Approved for public release; distribution unlimited.

17 DISTRIBUTION STATEMENT 7ot the ahsiract entere 21 . Riock 9, il d:flerent {rom Repor?)

Same

18 SUPPLEMENTARY NOTES

RADC Project Engineer: Frank S. LaMonica (IS1E)

19 XEY WORDS /Continupo on reverse srde 18 vecesvary and tdentils by bdlock number)

Computer Software Testing Computer Programs
Computer Software Verification Software

JOVIAL J73

So{tware Development Tool

20 ABSTRATTY (Continue on reverse side If necrrsary and 1deatily by dlock number)

7 This report presents the resulls of a study to specify the required
capabilities and high~level design of an automated tool to support the
testing and verification of JOVIAL J73 software systems. Included is
a state-of-the-art review of software testing and verification with
emphasis on techniques applicable to JOVIAL J73 programsil

DD ,552Y, 1473 coiion OF 1 wov 6513 oBsoLETE UNCLASS1FIED

SECURITY CLASSIFICAYION OF THIS PAGE (When Dete Fntered)

R ORI AT

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)}

B

FEEG

‘)
Ay,

e

B4

IR

TN

A ATh

TR

A TLRABAN iR

- b

e DT T TR

)
[M1

4\
T

g s

A,

UNCLASSIFIEDY

SECURITY CLASSIFICATION OF Yo' ~AGE

“UWhan Date bntered?

ot

TR e T R Tl

D EOSR R A R e s R

ABSTRACT

This report is primarily a review of the srate-of-the-art of
software testing and verification with emphasis on techniques applicable
to JOVIAL J73 programs. Since the project con:erns a JOVIAL J73
Automated Verification System, the need for such a tool, the capabil-
ities for the tool, and the high-level design of the tool are also

described. Future capabilities for the tool are identified.

o Iy g

iRy

%
a

5

e
B

-
s V;

[T

o7

)

PRALIR

i
bt

E

I N N

W

mr

SECTION

CONTENTS

APPENDIX

A

B

INTRODUCTION

THE NEED FOR J73AVS
2.1 Characteristics of J73 Programs
2.2 Characteristics of Application Programs

Tes1.ing Measures

OF AUTOMATED TOOLS AND TECHNIQUES
General Background
Existing Methods and Procedures

Currently Implemented Test Tools

FUNCTIONAL DESCR1PTION OF J73AVS
4.1 Summary of Capabilities

4.2 J13AVS Operation
DESIGN OF J73AVS

FULJRE EFFORT

6.1 Test Data Generation

6.2 Instruction-Level Simulation
6.3 Code Auditing

6.4 Units Consisteuncy

6.5 Executable Assertions Precompiler

LITERATURE SURVEYED FOR STUDY

REVIEW OF RELEVANT TECHNIQUES

PR

PRECEDING PAGE BLANK-NOT FILMED

LA PRRTR

—— gt o S ST T ST Sowy
N N e s

!
;
i
i
E |
¥
§
3

gy

SR S EISERETE R

FIGURES

PAGE
Schedule of Deliverables 1-3
Universe cf Software Behavior 3-2
Diagram of a Branch 3-6
Sample Set of Level-i Paths 3-12
Overview of J73AVS 4-4
J“3AVS Interaction with User 4-5
Role of J/3AVS in the Software Development Cycle 4-5
Initial Processing 4-17
Static and Data Flow Analysis 4-17
Structural lnstrumentation 4-18
Assertion Instrumentation 4-16
Statemen* Performance Instrumentation 4-19
Test Execution Processing 4-20
Structural Testing Analysis 4-21
Statement Performance Analysis 4-21
Program Analysis Reporting 4-22
Operation of a J73AVS Test Data Generator 6-5

37,

T T T a0 S AT e b A b Y A R

<!

R

I Yot ey

TR R0 ey TS R TR

— . x
B

DNk

AN PR

.
FL

2

e

5

Test Tool System lnformation (Uses Table 3-2)

£

Legend for Capabilities
J73AVS Command Language

J734AVS Functional Processor Segments

et

El
%
i
2
&

> Y R
A 5 X TS A WD LUPIAIIHENRG ot s 1~

EVALUATION

v

The purpose of this contractual effert was to determine and specify the

required capabilities for an automated testing and verification system for

¥
b,

BRI

JOVIAL J73 software systems. The effort provided a significant review of

the state~of-the-art of software testing and verification, with emphasis

placed on techniques applicable to JOVIAL J73 programs. The resulting

TATHER AT ISR

capabilities were specified in two separate documents - a Functional

Description and a System/Subsystem Specification, which will be utilized

during the implementation phase of the effort. The availability of an
automated testing and verification system for JOVIAL J73 is significant in
that it will enhance Air Force software development capability and result in

a more cost-effective and reliable product. This effort was responsive to

the objective of the RADC Technology Plan, TPO 4G4, "Higher Order Languages."

Ak A Follonin

FRANK S. LAMONICA
Project Engineer

N - et e 7 i b= - - oo A ke e e e 2D ==,
e - s I e SAETE, G T e
. - = S s .'ggn_:}:‘zfﬁ Yot T sies R e o T

—— = = P
R ks e aTg e e e

TR
DAL

TR

iy r
P it

24

=2

oy
(gl

1 - IRTRODUCTIOXN

General Rescarch Corporation is under a two-phase contract with

kome Air Development Center to develop and implement an automated tool

to assist in the testing, verification, and maintenance of JOVIAL J73
software. Phase ! of this effort is the study of the state-of-the-art
of software verification techniques and tools and the development of a
functional description and system/subsystem specification for the tool.
Phase I1 of this effort is the implementation, testing, and user

training period.

This report describes the need ifor such an Automated Verification
System (AVS), results of the state-of-the—-art study, highlights of the
functional description and system/subsystem specification, and future
capabilities for consideration. Additional reports resulting from this

eifort are the following:

Phase 1
1. Functional Description
2. System/Subsystem Specification
3. Project Resource Document
Phase il
4. User's Manual
3. Haintenance Hanual
0. Test Plan
7. Final Report: Implementation Phase
O Program Specification

The implivmentation of the AVS, cailed J73AVS, is expected to
commence in May 1950. Figure 1.1 is a schedule of activities for both
phases ot this eifort. Final delivery of J73AVS is scheduled for
October 198} on the Itel AS/5 at Wright-Patterson AFB ana the DEC 20 at

Rome Air Deveiopment Center at Griffiss AFB.

A ke A A T B AT S e
e e e R T e R T = TR AT SR AR O RS SRR Gt
AR T ARG A I AR T T IR e R TR ~

T e

e L LTS o
2

Each three =months the Jdeveloping system will be

benchmarked; that
is, an execute document (absolute file) will

=2

e created coataining the

current tool. It is expected that the tooi will have the following

capabilities at each benchmark:
Benchmark 1 - Cozamand ana control
Database managenment

Syntax analysis

Benchmark 2 - Structural analysis
Instrunentation
Static analysis

Reactiing seil generation

Benchmark 3 - Report zeneration

ESRIAT NI mwmmm&mmm;.mm;%&?a.ﬁ;’:m TGS

Py

Pati analvsis

Posi~execution analysis

n\

Test history processing

The incremental! benchmarks are intended for our use of J73AVS to

analyze 1its own code, and for

3
=
¥
=
=
2
=

iimitea use at Wwright-Patterson by
Government personnel to give the tool early

exposure.

T T e Ty T B SR VA o 4 K AT i

—
J
tw

e e
ey P e SR w e e Eg

TR AT B e

r

BOTARADAT D JO O[nupoydg '] 2anijy

UOISUdA (LUl «
HOESADA PP w (H112) SUIGWNK WILT INTT SI{TddNS OL H1 'Y SYIGWAN TVITLIHIN TNV

e i At

t
+ _ *23dS WVHOO0Ud (¢
;<_=uh<n wz-ﬂ~<q~ Ms
140434 WNIJ (£
vV v % . ARSI WY
NNV JINVRILNIVI (¢
WANYH 5. 4350 (L
l
L

2

S
<
P!
<G

SL404 Snivis (

)
)
)
!
M
S1M0dIY 11 ISVHY (L)

d
d
d
d
d
d
d
d
«
d
d
d
|
d
d
4
d

LYY Wl (¢
300 "SI 121r0Nd (2
"3dS CANS/WILSAS (2

e
¢
“

E
’
'
t
13
4

et
R

*2530 vNolLanng {
v v v Vi SINOd3Y Snivis (
; S1H04IY | 1SYHy (

nO1IVINIIYO (9
! AIAL VIO Wl (
d | EHTRFUIRT NS
02 3¢ 80 1591

02 230 N0 LSOK= {

TIEONO 1S |

4 AYIALTIO LN M
{

qdi

1-3

)
)
)
)
)
)

/ \ SAHVANIN T
\ \ TSR U TR RN
JVRLIOS = 11 ISYHd

)
9)
v
£)
£)
£)
9)
£)
£)

o e g - . NI B [PYIRSY PEPRINE R

/ oW 3G ALIAISYIS (

"$21dS vd1¥d (
..‘.,_c.uzauxaaj_za M
F
A

SRR SFY TR P TN B

)
)
}

i

| 40 3N
. ‘ ADOIOMND 1L MATA Y

|

{
{
|
|,
1)
AQNLES = 1 IsvHd (1)

Ljetltlott e sl b9 aelttlotfelgloalsivielelt :
¥ViA GHOJIS HVIA 1SHId

o
<
o
(334
-—

et B BRI PR

gl o R R R S T R e P S e it

2 THE NEED FOR J73AVS i

BT

The need for this automated verification system is based upon the

pxer
i

emergence of a new JOVIAL language which will supersede the previousiy-

RN
IR

approved JOVIAL dialects; the characteristics of the language that make

4L

T

2

it complex and error—-prone; the type of applications expected to be

P
XX

written in the language; and the standardization of certain testing

S

i)

o

measures.

-
N

In an effort to prescribe a standard policy for using computer
programing languages and for testing computer programming language
compilers, the Air Force issued AF Regulation 300-10 in 1Y76. Two
JOVIAL languages, J3 and J73/1, werc specified as Air Force standara
high-order programming languages. Both JOVIAL languages are primaraly
designed for command and control system programming. They are es-
pecially well suited to large systems requiring efficient processing of

a large volume of data with complex structure.

Another JOVIAL language, J3B, evolved from J3 {or the purpose of
“developing computer programs for the Boeing B-l. Derivatives of J3B
have been widely used for avionics computer programming. However,
JOVIAL J3B is not a language approved by AF Regulation 300-10.
Therefore, a blend of J73/1 and J3B, plus additional features not in

either language, has been created to satisfy the programming neceds of

both the avionics and systems communities. This language, JOVIAL J73,

7N

is specified in MIL-STD-1589A and is being refined for a July 1, 1980

release. In the spring of 198U, AF Regulation 30U-10 is expected to be

5
.

revised to cancel both J3 ang J73/1 languages, leaving J7/3 as the only

PR L N

JOVIAL language.

T de oy b ¥R

It was the desire to improve software reliability that prompted
the Air Force's request for an Automated Verification System (AVS) to be
deveioped and made available as soon as possible following release of

validated JOVIAL J73 compilers. Encouragement f{or an AVS and other

ooy o

. £t e
R T T R T R T R S Tk A XY S STt PN

e
i il o

o bi
1T
vl

‘l
)
3
o3
£
N T L PRI W N
3

3 f

Y s - = - A
st o e st I SRRE

PR T OB R A TGS B T T AP T
LR N A S M

et

NI
ERTIR

sup, -« tools also came from the JOVIAL Users Group, a body ot inter-
ested managenent and technical people from industry, Government, and the

Air Force.

gt AT S B

T
o

S

2.1 CHARACTERISTICS OF J73 PROGRAMS
As defined in MIL-STD-158Y9A, JOVIAL J73 permits the independent
processing of functional modules which communicate through compools and

argument transmission. J73 permits both recursive and reentrant

S TA RS TN RS O I,

procedures for effective multi-processing. The language provides a rich

variety of data types and supporting data manipulation functions, making
B assembly code programming unnecessary for most applications. llowever,

except for a trace directive which supplies limited output facility,

there is no input/output capability in the language. Linkages to
assembly or alternate-language routines are required for input and

output .

Storage allocation for data objects can be both automatic (in
which storage is released when control exits from the program unit) or
static (in which storage space is saved throughout the centire execution
of the program), Automatic allocation uses storage efficiently but

makes certain data-usage errors possible.

The DEFLNE construct associates a name with a text string such
that whenever that name is referenced, the text string replaces it.

DEFINE statements can be nested and can be redefined based upon scope.

Thus, while the capability is extremely useful, it adds another di-

mension of complexity to JOVIAL programs.

Unfortunately for advocates of structured programming, the control

statements in JOVIAL J73 are not confined to the “structured pro-
gramming” constructs of sequential flow, IF-THEN-ELSE, and WHILE-loops.
The language does at least have these constructs, so that programmers

can write structured code if they desire. However, unstructured

N
!
(3%

Y kA

(e = e

7 ‘. ,ﬂn‘w

4

v 1 wnmt

5
S
>
£
=3
=
2

statements as GUTU, FALLTHRU, LEXIT, and ASORY are atso permitted. The

GOTU statement allows transfer from the outside of an iF or CAsk

et

PR ¥ A T P SO TS W T ST S PTATI I

construct into the body of the IF or CASL. GUTEU statements ¢an aiso D

directed to labels that are external Lo a program unit or nodule, 1t the
iabel is passed as a parameter. The FALLTHRU statement iilows contro!
to pass from one CASE alternative Lo anothier without maning tiwe test
normally required at cach CASE option. The EXit statement atlows cicape
out of an immcaiately-enctosing ioop. The AB0RT statement provides
transfer of control to the label specitied in the most recently

executed, currently active procedure having an ABORT phrase, Thus,

control transfer is not detined until execution time.

The unstructured control statements provide tlexipnility and
eXecution-time efficiency; but at the same time they increase the chanev ‘B
of committing errvors and make the program more difficult to undecstands

Since 00% of the total cost of software is generally attributed to

maintenance, source code scrutability is important.

J73AVS will provide extensive static and data-tlow analysis to
detect and report possible errors regarding control transfers, data
contention due to static allocation, uninitialized variables, struc-
trurally unrecachable code, potential infinite loops, etc. Progran
analysis reports can be generated on comnand by the user to describe

such detailed information as DEFINL usage, label references, symbol

properties, and globel data.

2,2 CHARACTERILISTLICS OF APPLICATION PROGRAHS

The programs that will be iamplementea in JOVIAL J/3 will be o
similar nature to those written in the separate JOVIAL dialecis: U3,

J3B, and J73/1. Applications will be for navigation, information wan-

agement, tlight controis, communications, otce The software chare
acteristics of the applications are varied. For example, {lignht controd T

software has the following characteristics:

- *F Ca

[

I L P T

— ¢ o T T T A R
e T v e AT Sk el Pt S DR R L R R S e
P S e e f‘lf‘(}\ﬁé{:_,ijﬂp;fm B AR TS e k

- synchronization
- aistributea processing

- structuraily simple control ‘statements

- simple data types
- real=-time processing
On the other hand, applications such as commana and control systems have

very difrerent characteristics sucit as:

= batch and interactive modes

- complex data structures .

e

- camplex control structures

large, monolithic modules

- aon-real-time processing

Avionics appiications are often destined for small on-board
computers. For those computers not having a JOVIAL 473 or J73-subset
compiler, the programs are developed on a host machine and cross-

compitea to the target machine. As is described in Appendix B, there

are no sottwarce checkout tools available on these small computers, so an i
AVS operating on the host computer must ,Supply as much assistance as
possible to detect errors in program per.)rmance and assure some level ‘

of testing thoroughness before the program is cross—compiled.

Command and control systems, on the other hand, tend to be very
large (several hundred thousand lines of code). They also tend to
evolve as needs change. Therefore, not only is testing a major problem,

but also code modification and retesting only what is necessary are

. difficult tasks. In the face of these problems, one of the most

valuable assets of any software support tool is the ability to auto-

A AT

i
¥
t
'
;
maticaliv produce concise but helpful program documentation. i
:
H
3
]

i

4
I

oo, PERCIETRD

L Yy b

R S L A R T N N N T i g~ .
BRo - b ooy, SEF O, &gﬁ‘{é\ﬂ:,h@aﬁ‘fégﬁ IR 2

e

fi D bid

[ORRUTTIRUEP PRI VAP S A

-

ARPEE R R 1 v pant b, o

s 2 L £ o] o~

o3 TESTING MEASUREDS

The problem of deteramining wnen & program is crror-irece is a tong
wav from beiuz solved. However, there are tools cvailable whicn provias
a beginning toward measuring the, tioroughness of testing. Kather Lian
wait for a solution to tie whole problem, Covernment ang incustry should
be encouraged to take advantage of these testing measures carly in e
development of software. The following testing techniques can be usad
as testing measures since they provide quantitative measures of vio-
lations and other reported phenomena (such as statement, braach, or path
execution coverage). Furthermore, they are reliable in the sense of

always producing the same result (not reiying on interpretation):

1. Static analysis to detect coalng errors or illegal pro-

graming practices.

2. Assertions to specify iegal or allowable performance.

S Statement, brancih, or specified path coverage to measure

levels of execution.

Software veritication without cunpuler-aiced testing is extremely
expensive. 1t would be in the spirit of standardization to improve
reliability that the Air Force should reassess the testing of computer
programs, as described in Air Force Reguiation 800-14, to require the

use of AVS tools in testing.

e,

PN o

LA I

e Fitd Y

-,

P e

RN

PR AT

¥
S

eyt ks

IR
R

it

o hah e 1 ot e

LV i b5 d

= A
-k

Vit

RIS R mie, Saor o pRa

£

Bl T

3 STUDY OF AUTOMATED TOOLS AND TECHNIQUES

This section discusses the general problem of software testing,

describes existing methods and procedures for software verificationm,
provides a chart showing .the main characteristics of currently oper-
ational AVS tools, and analyzes techniques given in the literature which

influenced the design of the JOVIAL J73 tool, J73AVS.
3.1 GEHERAL BACKGROUXND

3.1.1 Software Verification

Software system verification is a critical problem recognized by
developers, customers, and software researchers. The problem is
exceedingly ¢ =plex for large systems. Software verification is a
process which analyzes requirements, specifications, and implementation.
In addition to determining or proving consistency between each phase of
the process, verificafion includes the probiems of determining the

reliability, validity, and completeness of the testing phase.

Since verification is such a monumental problem, the approach to
improving the situation has been to partition the total process.
Requirements, specification, and design language} have been developed to
address the early stages of software development, although they have not
yet reached a level of widespread acceptance. Compilers and static
analyzers attempt to verify semantic and other consistencies within the
implemented software. Dynamic and symbolic execution analyzers address
software testing more from a functional approach. Test data generation
assists with deriving complete test cases from both structural and
functional viewpointe. Proof-of~-correctness téchniques attempt to
validate software in a formal way. Even though the partitioning
approaci has provided considerable progress in the state of so’tware
certification, each partition nevertheless has not achieved a high level

of maturity or acceptability.

At B SRS WAL el

E
=)
EY
=N
e

#

)i

¥
i

k!

ST

B —,

o

e E——— ”
AN g SV S W W e
e ﬁ,}.f?ijgftﬂw'iﬁaﬁéégﬁﬁg TR

3.1.2 Software Testing

The primary aim of testing is to demonstrate that a system has
acceptable performance in terms of its specification. Experience has
shown that the software's behavior must be considered over a broader

space than the specified functions if testing is to identify errors.

In Fig. 3.1, the universe of software behavior is partitioned in
two ways: the specified and unspecified, and the acceptable and
unacceptable. Experience with software development tells us that all
four of these forms of behavior will exist when software is declared
ready for testing, and all four will continue to exist after testing is
over, primarily because the testing process is wusually confined to

examining expected points in the vector space of the input.

In a typical software testing activity, the testing group is
attenpting to map these regions by probing with single-point test cases.
Their success depends on the total resources devoted to exploring the
universe of behavior, and on the effectiveness with which they apply
those resources in terms of selécting the “best” points for testing.

Effectiveness can be improved by the use of a well-designed testing

program supported by automated tuols.

UNSPECIFIED
AND
ACCEPTABLE

UNSPECIFIED
AND
UNACCEPTABLE

SPECIFIED
AND
ACCEPTABLE

SPECIFIED
AND
UNACCEPTABLE

Figure 3.1. Universe of Software Behavior

AN-47214

RN
« ATl

O e L I

o

(R it AR
b]

TR

& i

s

-~

B AR

B S Ao a7y g i T T ~ S
THEARZGET NIaeEn a NS N e A NS TR R

e — .- - _

Software Errors

Since the goal of testing is the detection of errors, we must know

something about the characteristics of software errors. Until recently,

s

there was very little data on the types and causes of errors in software

systems. Recent studies, however, form a basis of data from which we
s s 1-5 .

can state general characteristics of software errors. According to

these studies:

l. Most errors occur in program logic or in data access, not in
computation.
2. Approximately half of all errors are due to errors in

specification, and the other half are programming exrors as

such.

3. Programs do not usually fail catastrophically, but rather

errors degrade the program's performance.

4, The scope of errors is usually limited to the one module

U AR

containing the error.

e J. Fries, Software Error Data Acquisition, Boeing Aerospace
Company RADC~TR-77-130, Seattle, Washington, April 1977.(A039916)

A. B. Endres, “"An Analysis of Errors and Their Causecs in System ;
Programs,” 1EEE Transsctions on Software Engineering, Vol. SE-1, No. 2 :
(June 1973) p. 140-149.

T. A. Thaye t al., Software Reliability Study, TRW Defense and Space
Systems Group 76-2266.1.9-5, Redondo Beach, California, August 1976.

[%]

R W. Motley and U. D. Brooks, Statistical Prediction of Programming ;ﬁ
Errors, 1BM Corp., Federal Systems Division, RADC-TR-77-175,
Arlington, Virginia, May 1977.(A041106)

Jo A. Dana and J. D. Blizzard, Verification and Validation for
Terminal Defense Program Software: The Development of a Software Error
Theory to Classify and Detect Software Errfors, Logicon HR 74012, San
Pedro, California, May 31, 1974.

R o L e

1 e b B R e et S 4 vm) e ks s Ry P

These are only broad generalizations that one must be careful in using;
there zppear to be many confounding factors. For exampie, the choice of
categories for grouping errors can bias the results. Programs written
in high-level 1languages have different types of errors than programs
written in assembly language. However, the observation that a Ma jority
of programming errors are due to improper sequencing implies that a
large amount of the testing effort should be aimed at discovering and

correcting these types of errors.

Sequencing in a program is established by the control statements
of the program (referred to as the program's control structure). There-
fore, it seems natural to base the generation of test cases and test
data on techniques which analyze the program's control structure.
Several studies and tool developments have pursued this approach, with

most of the efforts being applied to test data generation.

Functional Testing

The basic requirement of any system is that it perform its
intended function. Functional testing is the means by which the actual
behavior is identified; the consequences of this behavior must be
related to the intended funccion through criteria of acceptance derived
from the specification. (We ignore in this discussion the frequent
occurrence that the specification as interpreted does not represent the
intent of the designers). When testing resources are limited, they are
applied to testing presumably representative instances of the various
functional modes of the system. With more testing resources, functional
test cases are usually expanded in an ad hoc manner in an attempt to

exercise more of the alternatives that are recognized by the software.

Automation of functional testing usually takes the form of

providing a means to step through variations of a basic test case,

ey

¥

b
%

il

")

o

or g

R34 St

.
Yy

i

it s b b g g oo,

TN
P PPN O U, i ¥ SELI U bt

\

Lt |y

¥

S5 Sannn wrlaaben o |y k

s st b o' e)

0wy

e

DIt ey e

ORI T8, T e

'
b

i

Lt
B Sl

x’ﬁ}

N
{414 ar

b

&

5

A}
X

G

o

[}
'y

b e Bk e ot O L W

TTIL T L AT TR e g v Y ERpT R = . =
RS R e R e T G R B e

=5 AR RIS ORI AT o

Other candidates for automated assistance to functional testing

i« © Analysis of special representations of input space to assist
in the selection of functional test cases

2. Static analysis tools that recognize assertions concerning

functional behavior and check for consistency with the code

3e Auromated conversion of functional assertions to executable

code for execution-time checking against actual results

4 Classification and storage of input data, with mechanisms
for generating specific cases
5. Classification and storage of test results, with mechanisms

for comparing test results between cases

6. Modification of the input data to map performance boundaries

In addition to the basic purpose of functional tests as a means of
demonstrating compliance with acceptance criteria, these tests define
the point of departure for extensions to structurally derived tests,

described in the next section.

Structure-Based Testing

As Fig. 3.1 suggested, it is the nature of compater-controlled
systems that they often display modes ot behavior that are not ex—
plicitly identified in the specification. The unspecified behavior may
result from many different causes, ranging from simple blunders in
programming to carefully designed logic that implements an erroneous
interpretation of the specification. Often unspecified behavior results
when the specification makes no provision for a particular input
condition and it is misinterpreted. These unspecified behaviors usually

go untested by funcrional testing.

—

' R EPLOE W PEL

i

T

g s

L)
4
AT

i&”““

it

.

1
o
<

by,
gl

Y

Rk

S .
o s Sl v

T T, T m——— -
R

o e TR
RO SRR REIR T,

Structure-based testing is a means of deriving test cases directly
from the software with the intent of identifying program paths that are
not tested by functional tests, and deriving test data that will cause
those paths to be executed. Several test tools now exist which support
structure—based testing by detecting which program segments have been
executed by a particular test case. The general approach used with such

tools is described below.

. A graph nodel of a program module is developed which couprises an
input node, an output node, and a set of nodes which represent ail the
branch points in the module. The nodes are connected by links which
correspond to all the straight-line code executed in the program between

: branch points: the “branches,” "“logical segments” or “decision-to-

decision paths.”

Once the graph mnodel 1is derived, data collection points are
automatically inserted in the links to record which links are exercised

by a particular test. Then the results of a set of tests are examined

to decide how testing of unexercised code should proceeds Most efforts

t toward further automation of this process have relied on automating a

simple rule for test case selection (such as finding a test that reaches
a single unexercised target path), and then generating test data for
that case. Several tools have implemented approaches to this type of

automation (see Sec. 3.2).

3.1.3 Graph Model Theorxl

This section describes the foundation of graph model theory. This

foundation is used as the basis for implementing data flow analysis (a

static testing procedure), execution coverage analvsis (a dynamic

testing procedure), and some automatic test data generation techniques.

[P ——————— T

1 J. P. Benson, et al., Software Verification: A State-of-the-Art Re-

port, General Research Corporation CR-1-638, ilarch 1975,

. ™

- -

- Ed
3 o = L e el \éi‘?gg‘ s EE
R et PR SN A AT MENE KB PSR e e

£
-

o~

w—ere

[

-

Ry W e

AR e e -

The use of directed graphs to represant programs is a natural
outgrowth of the flow charting practice. There are, however, major
differences between a graph and a flow chart: . When going from a flow
chart to a graph model, some information about the program is unavoid-
ably suppresseds In a graph, attention is drawn to the fundamental
control structure of the program (the “paths” and “loops” in the

procedure) and not necessarily the calculation being performed.

Program graphs are generally represented in one of two ways. The
graph may be describea in terms of basic blocks, where a basic block is
a linear sequence of program instructions having one entry point (the
first instruction executed) and one exit point (the 1last instruction
executed). For a JOVIAL program 8 consisting of statements
31,32,...,Sn, a2 basic block b is a contiguous subset of the statements
of S[Si’si+1”"’si+k;k > 0] having the property that no statement of b,
except perhaps Si’ is the destination of any transfer-of-control
statement anywhere in S. Alternatively, the graph may be described in
terms of branches (or decision-to—decision paths, DD-paths), where a
branch is the ordered sequence of statements the program performs as a
result of the outcome of a decision up until the evaluation of the
predicate in the next decision statement encountered. Figure 3.2

illustrates this definition.

Depending on whether the program graph is described jin terms of
basic blocks or branches, its nodes and edges have different signif-
icance. When basic blocks are used, the blocks are graphed as the
nodes, and the transfers of control as the edges, of the graph. The
reason is as follows: basic blocks must be physically contiguous
statements in a program. They begin on a branching [e.g., GOTO <label>,
IF(<condition>)] or labeled statement, and they end on the statement
immediately preceding the ncxt branching or labeled statement. Using
basic-block terminology, a path through a graph is described as a

sequence of nodes.

e RTINS S S e S0 P

[

P

LA R AR AN CEA LA a0 UM WA Ak 3 i o - o

-x em e

ot wrnile

e

Liedu g gt

ewl A Sy L

I

Q&?.ﬁ-ﬁ R o Dheg s L

M
!

o

v
i

A

Ut

o
L

it il

¥l
"‘ig?tﬁl/

]
i

n
[
£

ar

5

o

i
'
L s
Al
" .
. Lm0 b e 4 4%
N KNI LTINS D POTAEPEY AL St il

FROM PREVIOUS
BRANCH

|
s

r-
' SELECT
l

PREDICATE
OUTCOME

ALTERNATIVE \ ALTERNATIVE

OUTCOME OUTCOME
EXECUTE
SEQUENCE

OF NON- BRANCH
DECISION
STATEMENTS

1

DECISION
STATEMENT :
EVALUATE
PREDICATE

Y

SELECT
PREDICATE
OUTCOME

71\

Figure 3.2. Diagram of a Branch

oo
f

f

= P — R D e
SR A R At e et

Alternatively, a graph nay be described in terws of branches, with

the branches as the edges, and the decision statements [e.g., IF

A S A A S 8

<condition>}] as the nodes. A branch may include one or =more basic
biocks that are contiguous in teras of execution. For 2xample, a branch
nay include an unconditional GOTO statement and the sequential state-
ments that foliow its target (labzled statement). Usiag branch tera-

inology, a path thruugh a graph is described as a sequence of edges.

The following sections describe various techniques which identify

processing flows from the zraph model of the prograa.

Depth-First Search

14 W»‘\MM“HH*NMN T S T L AN LT

Depth~first searcih techniques have been applied to a wide variety

of practical problems which can be nDodeled as graphs. ‘l'arj:ml describes
algorithas for implementing the depth-first search, and points out that

the algorithms are linearly related to the aumber of nodes and edges in

syt ni iy b b b

! b R Tl
fihhe Ol fhi "
R ARy A P R 40

teras of computation time and storage space. Depth~first search

RPN BRI ATt e - = 2

3 55 g0d p 0k

tecimiques can be used .o identify a "spanning tree” for a graph; that

is, a subgraph wiick is a tree and which contains ail the nodes of the

Wi A § AR 44 e

1
graphe. Algorithas for traversing trees and visiting nodes of a tree

can then be applied to the spanning tree. Osterweil and Iv‘osdick2 have

b Yoty b e o

t
K

»

inplemented a systea which performs data flow analysis using depth~first

s B

search techniques. By analyzing a system of FORIRAN modules froa the

fiw
My

botton of the calling tree up, the system classifies input/output
variabies at module interface boundaries. Depth-~{irst search techmiques
are applied to each nmodule's program graph to deteraine the input/output
classification (i.e., set or used) for all coomoa variables and argu-
ments along all possible paths threugh the module. Several types of

data usage errors can be found while perforaing this analysis.

1 R. Tarjan, “Depth-First Searck and Llinear Graph Algorithms,” SIAM

Jour. Computation, Vol. 1, XNo. 2, June 197Z.

2 L. Osterweil and L. D. Fosdick, Automated Input/Output Variable
Classification as an Aid to Validation of FORTRAN Programs, Dept. of
Conputer Science, University of Colorado, Boulder, Colerado, CU-CS-
037-74, January 1Y7i.

T e

N

M 7 NP = e e . L
Vi AT R TN R
d : R S

Strongly Connected Components -

e . ; ; . :
Tar jan presents an algorithm using depth-tirst search techniques

which identifies "strongly connected” components of a directed graph, in

conputational time and storage space linearly reiated to the number of

nodes and edges in the graph. A strongly connected component of 2

2 .
program graph identifies an iteration structure. Ramamoorthy™ describes

a procedure similar to this which is to be impiemented ir an Automated

Evaluation Validation System (AEVS). By conceptually replacing strongiy

connected subgraphs with a subroutine call and a subroutine which con-

tains the iteration structure, and then applying the same procedure to

the program graphs of the resulting subroutines, it is possibie to

abstract an internal calling tree from a single program graph. Rama-

moorthy suggests that this technique will be especially useful for large

modules with complex iteration structures. The result of abstracting

the internal calling tree is that validation analysis can be applied to

small non-iterative subgraphs (conceptual subroutines) of the original

program graph. The problem of relating this submodule analysis back to

the original module still remains unsolved.

Schemes

. . 3 .
Sullivan™ presents a different approach for abstracting a con-

ceptual internal calling tree from the program graph of a module. He

refers to a program graph as a scheme. A subscheme is a subgraph of the

program graph which has the property that it is a one-entry/one-exit

structure. An elementary subscheme is essentially a basic block or

Db-path. The decomposition of a scheme by successive partitioning of

! Tarjan, op. cit.

2 C. V. Ramamoorthy, R. C. Cheng, and K. H. Kim, Reliability and Integ-
rity of Large Computer Programs, University of California, Berkeley,
ERC-81430, 12 March 1Y74.

3

Jeo E. Sullivan, Measuring the Complexity of Computer Software, MITRE
MTR-2048%, 25 June 1973,

B - as = = ™ i S~ e b R p 1%'—: £ S T -
. - - . = ¥ e v e T ey 5, ‘;}{{5 ;ft:;:;%*i‘.vﬂ‘rft"*ﬂx.
- - S N %,

P ——

§
%
g
£
13
£
z
t
i
£
£
i

SN SR e s

its proper subschemes into fucrther subschemes can be carried out until
all subschemes are elementary. The partitioning process creates a
conceptual internal calling tree (in which all possible submodules are
{dentified). Sullivan has applied this representation of program
structure to the problem of measuring the complexity of computer

software.

intervals

Compiler optimization LLCHHLQULQL nave fruitfully employed another
approach to ygraphical analysis called interval analysis. Interval
analysis is similar to the techniques of identifying strongly connected
subgraphs and one-entry/one-exit subgraphs. An interval is a one-entry
subgraph which may have cne or more exits. Hecht and Ullman2 describe
an algorithm for identifying intervals. A conceptual internal calling

tree can be abstracted from program graphs using this algorithm.

Level-1 Paths

A technique for identifying program flows explicitly is described
by'!‘lillen3 The manner in which the branches (or DbD-paths) described
previously can be combined in potentially legal ways in norimal pregram
execution is described by objects called "level~i paths.” A level-i
path is a sequence of DD-paths which lie on the ith iteration level
vitnin the program, i = 0, 1, 2,.s.. Because there can be an extremely
large number of distinct level-i paths in a program, it is important to

consider, instead, classes of level-i paths which lead from the same

- - —

L. E. Allen, "Control Flow Analysis,” SIGPLAK Notes, July 1970.

e Se lecht and J. Y. Ullman, “Flow Graph Reducibility,” SIAM Jour.
Computation, Vol. 1, No. 2, June 1472,

3 E« F. Miller, Jr., A Hierarchy of Program Testing Measures, General

Resarch Corporation, PYrogram Validation Project, February 1974,

1

- g g g ?1;; ;fdﬁfjrfwwﬁﬁ P Syl s
st X L ot .o 5@@3‘, \.. 1{, ::3: és;_*f}g\"‘i&
EA3-5 25 2 e

L = 3
< H x -
B el R Ty N fi"”’"‘ L A

ind

i
W

.

Lufie

'

S

s fr it L

Sy

R

3

G,

"
)

ek

iy

%

i

!

¥

o A Ao SRR AT N1

nodes and involve the same kind and manrca2r of iteration. Thus, certain

forms of parallelism of DD-paths along level-i paths are removed as a
means to reduce the combinatoric size of ievel-i path classes. The
result of this reduction is to capture the essentially different program
flows in terms of a "principal level-i path" within each level-i path

class.

For example, Fig. 5.5 shows a set of DD-paths which corresponds to
a program; each DD-path is labeled with a letter. For thi. particular

program graph, the following level-i paths and path classes result:
Level-C path: ab
. m
Level~0 path class: {cdie}i=1
Level-1 patn: f£gh

Level-z path class: {ki}?=1

The level-U paths represeant flow from tne input to the output (from the

entry to the exit) without iteration; the level-i paths represent ith

level iteration "over" constituent level-i paths. DD-paths d. ana k,
P P i i

represent instances of path parallelism.

AN-456 84

Figure 3.3. Sample Set of Level-i Paths

1248 A N B

W AWk Rt

oy o —

B L S et T TR

e v A] S AR ! 1% ST I R

i R Ty AR o
R R S B e e Y

5.1.4 Static Program Analysis

Enhancing the diagnostics reported, and providing information not
usually furnished, by a typical compiler leads to a series of software
quality enhancement methods which can be categorized as static analysis.
These methods scan the source text of a program for errors in syntax and
semantics which can be detected without running the program on a
computer, and provide consistency checking and documentation about the
definition, reference, and communication of data within the program,

Some examples of the supplementary information and error checking are:

Documentation

Cross Reference. A symbol cross reference for each program

including symbol type, definition, and use.

Local Storage ldentification. All variables used as lccal storage

by a program are identified by their type and use.

:

Communication Space Analysis. All variables which participate in

the communication to other programs (parameters, global variables)

are identified according to their use and type.

Parameter Analysis. Variables used as formal parameters to the

program are identified and listed along with their use and type.

ldentification of Control Variables. Variables which affect the

flow of control in a program and where they are referenced are

identified.

Consistency Checking

Array Subscript Check. Each subscripted variable reference is

checked against the array declaration.

Expression Mode Check. A check is made for expressiomns whose

arithmetic mode changes when they are assigned to a variable.

Local Memory Check. All variables which have the possibility of

remaining defined over successive invocations of the program are

2

ol ittt e s STy e B

- - R e R S . 2=t o S TR :

L R AR o e e amae

RO

a T TR e AL T St R Rt

et < k.

¥

identified and their use specified (i.e., JOVial static

variables).

IRPCINT [SN

Argument Check. Formal and actual parameters are checked for

At ARSI T AL

inconsisteacies in type, mode, number, dimensionality, and use.

T ek

_In general, static analyzers are most useful in providing the programmer

e

with information which will help debug programs more quickly. They do :
this by identifying programming constructs which may be legal but risky
and providing global, organized information about the identifiers used

in this program.

3.1.5 Dynamic Program Analysis

Two bdsic types of dynamic program analysis are described in this
section: analysis of statement—level behavior and analysis of execution
coverage. These two techniques are well-known, general-purpose testing

aids.

Statement-level Analysis :

In statement~-level dynamic analysis all program statements are
instrumented in order to obtain detailed information concerning the
program's internal behavior. This technique produces more detailed and
more source-program—oriented information than such earlier techniques
as hardware monitoring, sottware monitoring ("snapshots™), and sim-
ulation %echniques. Typically, a statement-level preprocessor auto-
matically augments each source program statement with other constructed
statements ot invocations of run—time subroutines whicli take measure-
ments while the program is running. These measurements usually include
the values of selected program variables and the number and types of
branches taken. Ekxamples of the type of data which might be gathered

for a JOVIAL J73 program include:

T P AT T L KGR

P T Y s

3

S el ‘?‘%%gv("";?ﬁ

S, ‘yﬂﬁfr“ A

- L ————————y pa = -

1. An execution count for all statements; i.e., the number of

times each statement was encountered during execution

2. For assignment statements, the initial, final, minimum, and

maximua values of the computed variable

3. For 'F statements, a count of the number of times the

IF-enpression was true and the final value of the IF-

expression

4. Branch counts on each CASE statement, along with the initial

and final values of the case selector

Je The initial and frfinal values of the loop-control of FOR
statements
6. The number of times a FOR loop was exited "normally,” i.e.,

after doing the specified maximum number of iterations

When the program terminates, summary reports are printed which
show the ranges of the program's intermediate variable values, which
branches were taken anag with what frequency, and which statements in the

program were not executed.

Execution Coverage Analysis

This technique attempts to gather information on the run-time
sequencing of a program and the flow of control among the various
programs comprising i programming system. This ¢+ uencing information
can be represented at various levels of detail. At the lowest level it
may be a trace of the statements executed by a program when run with a
particular testcase, or the sequence of branches executed by the
program. At a higher level, the actual program flows traversed by the
program may be collected or, at a still higher level, the dynamic
calling sequence of procedures and subroutines in a programming system

may be monitored.

T T n—

rn— o A

ot MY AR Dt MR SRS i MY

W e e R e G ot Mt e

D L Y

£
;
{
!
i
!

The technique for implementing program flow analysis is the same
as that for statement-level analysis, that is, soitware probes are
placed in the programs to be monitorea at tie level a: which rhe
monitoring information is to be gathered. The instrumentation state-
ments are simply invocations of run-time auditing procedures which
record which procedure and which contro!l sequence or statement is boiag
executed at the time of the aonitoriag. A post-processor can then
reproduce the dynamic flow of control through a single program or a
group of programs at wihatever level is desired. This information is
useful in determining which control flows and procedures were exercised

by which test cases as a guide ro what testine renains to be done.
y 8 8

3.1.6 Automatic Test Case Generation

Howdcnl describes a methodology for identifying some of the test
cases for a program automaticaliy. His method first partitions the 1low
of control in a program inte standard ciasses o paths much ia che same
way as Miller.2 Then, descriptions oi the path classes by predicates
and relations are constructed in the form of 1 system of ineaualities.
Howden notes, hovever, that it way not be possibic to derive these
descriptions for arbitrary grograms containing loops. If these qes-
criptions can be generated, the last phase of the methodology is to
solve the system of inequalities ana thereby cerive input values which
will cause the program to execute a particular class of control flow.
The report by llowdenl 2laborates on the techniques eaployed in each
phase of the methodology, and discusses problems which arise in in-
plementing these techniques. Phases one and two have been partiaiiy

implemented for analyzing. FORTRAN programs.

1 . . - -
W. llowden, ifethodology for the Automatic Generation of Program iest

Jata, Dept. of information and Computer Science TR 4l, University o7
California, lrvine, 13 February 1974.

< >

Be Fo Miller, Jr. and R. A. Melton, (General Research Corporation),
“"Automated Generation or Test Case Data Sets,” Proceedings 1975 Inter-
national Conference on Reliable Software, Los Angeles, 21-23 Aprit 1975,

LT

g

"o

i P

RRATRED

Fa !

dadiiy,

e

ntii

4

£
%’%‘
?;f
13
g
14
E
B
=
§

TR

1)

The SELECT sysaeml has been laplemented by the Computer Science

Group at SRI to process an experimental language which resembles a
subset of LISP. This system atfteants te generate program test cases
antomatically from the program's semantic and controi structure. in
conl.rast to Howden's approach, SELECT does not initially identify
classes of program flow, but rather “executes” the program text sym—
bolically, accunulating information as it goes. When a decision is
ncountered, SELECT keeps track of all the branches resulting from the

decision ana tries to reaove those branches which cannot be executed due
to the outcores of previous decisions. In this way, impossible paths
are etiminatea .is they arisce. Two Key features of the SELLCT system are
the »dding o1 “pscudo” predicates and paths for array references and the
ability to append 4 3oolean function to the program under test which
returns true if the program satisfies its specification and false if it
does not. SELECT tion attempts to derive a test case which nakes this
function return false value, thereby giving an input for which the

progran w

—automatic testease genervation for the purpose of extending
testing coverdge is d ussed by Hiller-z In this method it is assumed
that some testing has been done on the program and the goal is to derive
a test case Sor executing a4 previousiy untested segment of code. The

first step is to identify a sequence of branches which “reach™ the

untested code segment. This sequence is identified by a flow analysis
Algoritha <hich operdtes on the program graph model. The sequence of

branches corresponds to the sequence of statements which mnust be

R. S. Boyer, B. Eispas, and K. #. Levitt, "SELECT--A System for
Testing and Debugging Programs by Symbolic Execution,”™ Proceedings 1975
International Confereace on Reliable Software, Los Angeles, California,
April 1975.

7

e Fo Miller, Jr., and R. A. ‘lelton, op. cit.

RS z ?‘W
R R IR T LT
* 2. ﬁ;,&i‘f. el "‘5‘"&"

) . 7 .__:

s

- - “— R S R R T e Ao e, A = Y T - AE,, e
LT RRET LR Tt b e nli i e R e R I SR e

o e b

L o RS N B

executed in order to reach the untested code segment. This statement
sequence is then “backtracked" (symbolically executed in reverse order)
in order tc identify particular input conditions which will lead to the

execution of the untested code segment.

3.2 EXISTING METHODS AND PROCEDURES

There is a wealth of published information on software verif-
ication. No one, we are sure, has personally tried all the various
manual and automated techniques to evaluate them first hand. For the
most part, software verification is still a strictly-manual process.
Tools and techniques exist, but this area of software engineering is in
its infancy. Most of the tools and methodologies have severe restric-

tions or require highly~skilled persons to make their application
successful.

Some of the current processes that make up software verification
are listed below:

Requirements

Requirements state what a computer system should do from the
user's viewpoint. Manual systems exist which decompose systems graph—
ically (SADT from SofTech and AXES from Higher Order Software) and which

tag requirements for later keying to design and code (THREADS from
Computer Sciences Corporation).

Specification

At least two languages and tools exist for stating detailed spec-
ifications (Requirements Specification Language - RSL -~ from TRW and
SPECIAL from SRI). Both provide a rigorous means of stating spec-
ifications which can be used to detect inconsistencies. Both require
considerable expertise to use and provide maximum benefit when applied

to large system developments.

SETENa e fems dmeSafienme poomae oo oTTRT g, e
A e S = e =t PR s 2, s o TYE -
A S R RS a i TR R T 2IAZE N e

h A AT AT

O e e - - e e e i o

HIPO (Hierarchy plus Input-Process-Output) charts are a manual

means of stating software specifications in the context of program

structure.

e KR s g IS

Design

There are many design methodologies based wupon decomposition,

structure, data relationships, top-down and bottom-up development. :

There are also systems and languages such as Process Design System

(PDS - from the System Development Corporation) and Process Design

Language (PDL). PDL is a control~structure keyword recognizer.

Functional and Performance Testing

Manual functional and performance testing is assisted by deriving

data from HIPO charts, wusing simulations, obtaining execution-time

intermediate-value printout, and running stress or boundary tests by

choosing data sets from the specification. Tool-assisted functional and

performance testing can be performed by using executable, logical

assertions which report inconsistencies between specified and actual :

behavior; timing analysis where computer clock times are reported at

module entries, exits, or branch points; or adaptive testing (the

Adaptive Tester from General Research Corporation) where performance

boundaries are determined by automatically perturbing the input space.

Structure-based Testing

This testing concept has been very popular for providing a measure

for testing completeness, test data generation, error location, and
finding structural anomalies. There are a number of automzated tools
which perform branch testing (RXVP, JAVS, FAVS, SQLAB, and TAP from GRC,
NODAL from TRW, PET from McDonnell Douglas, Test Coverage Analyzer from
Boeing) or user-specified sequences of statements (SADAT from Kernfor-—

schungszentrum Karlsruhe GmbH). Algorithms are being developed which

attempt to partition the impossible goal of testing all control paths in

a program. Some of these techniques are (1) identifying strongly-

b D ORI

LR

£

i

¢
RS

i

iy

R TR S e R T R SR Y

by e einpr =
SRR R

connected components of 1 directed grapn (Tarjan, Ramamoorthy), (2)
partitioning the program graph into subschemes which are single-entry/-
single-exit structures (Sullivan), (3) identifying strongly-connected

subgraphs which are single-entry/multiple-exit, called intervals (Hecht

and Ullman) and (4) partitioning the program graph in terms oI its

iteration level, called level-i paths (lliller).

Manual structure-based testing can be assisted by deriving E
decision tables (Goodenough and Gerhart) and choosing input aata

accordingly.

e R o0 & as R

N

Structural anomalies such as deaa code, potential infinite loops, i
and infeasible paths can be determined by some current AVS tools (ATDG

from TRW, SADAT, JAVS). .

Consistency Checking

The most common techniques used to determine tiie consistency of

variables and interfaces are adding assertions to state expected use

(SQLAB from GRC, ACES from UC Berkeley); employing static analysis

(AMPIC from Logicon, DAVE from University of Colorado, FACES from UC

Berkeley, RXVP, FAVS and SQLAB from GRC); using data flow analysis to
find uninitialized variables and interface inconsistencies (DAVE, RAvVP,

SQLAB).

Likock i)

1
i

Test Data Generation =
=y

. =

A great deal of research energy has been expendea on developing =

P

=5

4

test data generatorse. So far, the tools being developed to perform

,»%J&E?-\ﬁéf

el
g

automatic test data generation, such as ATTEST at the University of
lassachusetts, are still rescarch orientea and have had to back off from :
original goals. Other tools sucih as test harnesses or the Adaptive
Tester require input boundaries and invariances between variables to be

specified.

- - b Fd - - = ;;5 L =
L)

=

= . R I v 5
o v - o gmEgfes S SRS

S SEE ,,;. Sty

for manual test data generation, Howden suggests that input data
be choseun to reflect special values for the program. Ostrand and
Weyuker suggest deriving data in two phases based upon likely errors for
the particular program's function and likely errors for the control
structures used in the programe. The possible worthwhile approaches to

generating test data are too numerous to elaborate here.

Formal Verification

Automated formal verification systems (EFFIGY from IBM, PROGRAM
VERLIFIER from USC/1S1, SID from the University of Texas at Austin, SQLAB
from GRC, SELECT ifrom SRL) take user-supplied asserticns (called
verification conditions) usualiy at each branch, and symbolically
execute them. The systems attempt to prove cach VC as it is symboli-
caliy executed. The process involves simplification of inequalities
and, in the case of interactive provers, the input of occasional rules
to aid simplification. Formal verification is still reserved for small

programs. iost of the implemented systems are LISP based.

Program Modification

Tools which utilize a database system and save interface descrip-~
tions or other sucih system-wide information can be helpful to support
program nodification and maintenance activities. Valuable information
for these acrivities ate module interaction reports, detection of global
changes, and 1iocal updates. Some of the tools that provide this

assistance are the Boeing Support Software, S1D, JAVS, FAVS, and SQLAB.

Documentation

Autonatically-generated reports which provide information about
program structure, calling hierarchy, local and global symbol usage, and
input and output statement location are very useful during program
development, testing, and malntenance. Most AVS tools provide some or

all of these reporting capabilities.

w
[
(3
o

W gk g)

e S A W e EOS (B S

A o b o

st

{88, i

'

3

iy

Lot

i

4

.

5
:
i

‘uwﬁw}zﬁm:

ek

R

p oAkt i b

P PROR TR NI

3.3 CURRENTLY IMPLEMENTED TEST TOOLS

i This section presents a chart of current, operational tools for

testing, test case generation, proof of correctness, and coding stand-
ards checking. There are numerous other systems in various stages of
development, but this chart is restricted to tools that are of sub-~

stantial value and operate at one or more computer installations.

SR W b gt

(v) SROVIVIOIN NHLARVIVA L1 VALY
(1) SHOVIVIOTA 4NN/ DU it 1) FYWEELEL]
AN SROND Y KD HAMEINOA RVNLUOA CAVIVD 40 ava

R p e T PP PR EPTEETT R PR S SR T bt el etk bbbt bt
AOLIVINIRANISH] INHIAIVEN RITAIVRY
DUINIIVES WAL INHWHIVES a0l VALK (g2 OX HYRINOA ol KAL)

- IS B AE IS R ARG BNAI MRS AP ENEAPNOIHUYE R HMEGN ML HOU AR RBKD e Sk EC U SRR T e el AL L LTS LT E L R

DHIAONA WANONA
ROLIARA DUTONHAS ot M e 17' (B ADVALR

P L T T [R T TR L T T T T R TR T Y e T L R R L LA

AL
ORTASHD DPIORBASR Wledild 'HLRO ANty MRKIHHTN 3

ey e e Y R T TS IR AL A R A DAL R AR LA R A LR SR S i S N AR AR AR R

CRUE) SNOLIVIULA VIR WSS
(a0 ALIHVIVA
(i) SEOLIVIOLA W)/ 1Y g n)
SROLAVIE N iyt (A uokl K LRI rentpot (LY [D | ava

e T e AT LR R A R A R AL AR R R S T L L]

WAVIINT VIV N W WOLUVEXE D TRLAR Vi LA O L] INELLY

P T T TR IR R P TV LT ES AR AR LR R LA S LI LA A A dh I L R R T

BRI SR TR RS IO HT A AL L B
SHAVE PIHESSRIEE APV)
AN o L SPHRAS LO R BRGAY L) (AR 2T [y SYAT] Myl itk

s Eseresesricsuaasnw senessemen P N R R LY PR TN EE TR R R P TR TR T R N T TN T

GLANIOLA NPTV
S HOURAS
ol 0 '7) SNGLIVHHIA SONVORVIN DNT00)
NN AN NNOID IV TTAIINNG
() SEOPINIOLN AT (X [r{mET] IRVRINI nng e (X Y

e E R aP S ME S RS I REASE <P (FBIAIMEIEeRIBANANEMESEIIIIEIrIREPISRIALARINEIR S R e R R R R L L L R

(%) SEOLIVIONA QoL o
GOl th D) SROLIVINLA SOUVANVES D100 WAt DVAINGA
AN N HOTERISSY ont, i)
AMARAAN SEOUD NoYY N [RUVINE] NVPLNOA LY

A T L L L L TN T P YR R R LR LT T L R Rt
punl o e pyndey wad ymlony adeiny wifen ity Aoy unag HOINAY

I g e A falwy jnug,
i)

NOLLVIWMOJANI WHLSAS 1004, 1S3l
1°€ d189VlL

T A T

TyT P kA ol g E A '»;?év TR x.i,

g v,
e

et -

v,

e

1 {F) SNOLLVI0IA g NOKKOD
] dONASAAY SS0¥D

ROILVINTROULSNT INIRALVLS
w SOLISTLIVIS AdAL INYRYIVIS

NOTAVINALQUIONT INYRILVIC
SOTLSUINIS 40T INYRAINGS

ONEIVHL NOTXODAIXE INIHOAS HIvd
TNYLA0D ZOTINDIXT INIHOIS HIvd
SOTISHIVIS 3dA) 4EIVIS

() SNOLIVIOTA ..:. YISLY
ROLIVIEANTD L3S OMEL vy

009 20
0009 STH
0L£/097 K1

009£/0099 20> NVHLY04

/O DVATHA
09¢ 14}

0n%9 2D NVNIY04

KOIT IVAIND
vovg D

wag RY1 SYHLIY¥04

NYurdod

NRIHOH

R ER-U N

NOTIVIAING STSXIVAY RYEO0¥d AAIVROLN Nvastyod

DNTOVRL HONVEY LIRE M3] 1g sy ¢f

SOVHIAOY NOLLANT LNINAIVIS ANV HOWYLR ac /a0 WEAH waoer
+

SVAIVIO OLND MVHLNO ONTHALDANLS
NOTIVEANAD LAS ONTHOVIY

OVHAAOD NOTIADANY HONVHY

SOIIVINIERDO0 SISKIVNY RVHOONd Qviosny
HOLLY INARDMLSN G HONYVYE

ATHRIASSY
NOLIVINIRGHISNT VIvQ viaor SLSATVNY
HOLIVINARIHLSND INYHALVLS 0800 YYaLI0S
SOLISTAVIS 3dXL INAKAIVLS NYALAOL AILALKOD ¥I131TVad
LEHEIREY
HIAGUL NVHDOUL a{-03¢ IVOsvd qonaqy 1S1/58 HYE00Ud
itk
(€=1) SNOILVIOIA WHLIWVYVA TTAMRANOK
SHEA0YYg
kel AVELHOS EROEN] SHVT “riae 1y30dd

SVI000
TIHRNOG . 13d

hnt 1Wv4

3~24

Mul Tvaoy

*d¥0d
[Bet- Dbk]
HANTD SMAT

(v 'Z) SNOLLYIOIA HALakvavd
(€ ‘1) SHOILYVIOIA 3€01/138 . .
(£ ‘Z) SNOLLYTUIA NoiJwadsy *dwn)
“(7) SHOILY 1013 40T 00 0RL/11-XVA NVHINOL HO NVHIYOd ¥ HOYVISHY
(T) SNOTLVIOIA SQYVaAuVS ONIQOD 00%9 262 NVHLVEG NVHLVIG TVIENTD savd
(P3NUTIUOD) NOILIVWYOANI WALSAS T00L LSHL
I°¢ 19vly

Tl B S A ot Yo S S Rl gt e 1 b s

Ty, e
P

o

L
T .

’%ﬁ:ﬁ&a;:mz

T
B

AR T PR TR R

BIAZRTVYNV
1/¢L0 3I¥4S0¥Iv dOVd3A00
IOVNIADD ROYNDEXT HONVYE peX [0} aviaor ATERISSY ON1308 1831

P
SANTVA J01INDEXY F19VIYVA ANV ININILVLS *d¥0D w
NOLLVINIRAW ST INYRILVLS 09¢ K9t NV¥Ld1 ¥0 RVY14) ¥0 HO¥VISIY wv“m
AOVHIANOD NOELINDEXT INIKILVIS QNV HONVEE 00%9 a9 NYHI¥0d NY¥IS04 IVH3INGD dvi o
A
s
NOTIVINIRAD0Q FOVSN FISVINYS Ty
(€~1) SNOYLVI0IA 3Sp/°ns NYHLYOZ NVHI¥04 ML BOIYANAS w. \%w
— NS
e
(1) SHOIIVIOIA 4007 OQ SSVaKD SISKIVHY 23y
(€£) SNOTLYIOIA NOUTY NOI30D 10902 HEVALIOS Joriaay [
(8=1) SAOILVIOIA SQEYANVLIS ONTUOD M) NVHINO4L ¥ALAdN0D SQEVANYLS
w& NOPIVOTAINYA 04 NOILADAXA DITORKAS
mw OXTADIHD HOvINdLNT 300038 N1LSav
3 SOTSHN H¥VMIIOS TVINIKANONT ASdAD *as11 SYXAU 40 °A ’
i e ST s
3 HIA02D WVEDOXd
ol DLIAXA OTIUSKAS 01=740 asri 4s11 138 1737138
e I re 1
N NOLIVHANTD I3S DNIHOVE "
e (F °Z7 1) SNOILVIDIA MOILWYHSY o~ |
2 SOLIVDRATYENA HO4 NOTLADYNI DI1061AS ! ,
o SOTLVINIRYO0 SISATVAY WVHSO¥d a42vhoIny el
i WYHINOD HOIIADEXT HONYHY TV evdA ;
o] (7 7)Y SNOTIVIOIA X, L9WVYvd T $vd .
wmw (61 '6 °7) SMOFLVIGLA SOQEYANVIS ONIGUD 9-£f “Iviaor L] |
] (€ 2 °1) sNOIIVIoLY 480/14% AR HAYESTY '
W (§ “%) SHGIIVIONA JO0 (q 609/ 700%9 20D NVHIYOd 9131 TP VRS
W T e o e e e e e e e e e e e e it ® & & e = = e i e e e B B e e e S A ¥~ % = = - - -——
: NOTIVOTLISOYID "GHRAS NI
i SYIVIICTY BV 04 NOLLADENY DIT08HAS FIHIES YA
AOVHIAOD NOTIADHXT HONVYA WUt kY NYHIYOS /14 1at VavS
! L3S OMIHOVAY
(7 *TY SNOJLVIOIA MILIRVEVY
(€ *1) SNOLLYIOIA 3SA/118
(€ °7) SNOLIVIOIA MOTLWASSY
“ (%) S$NOILVIOIA d001
() SHOILVIOIA SQ¥VANVIS INTG0D 08771 1=X¥A *3¥oD
FOVYIAOYD HOTINDHX | HONYYE 6L€ hut NVH104 NVHLNOS YO HOBYASTY
, NOIIVINIRGO0G SISKTVRY KY¥O0Ud QAIVEOLAY 9£/0099 209 (AR NVYLAT IVYENAD ORAANY

)

,‘ (PoNUTIUOD) NOTILVWIOINI WALSAS T00i ISTL

e 0 A e

ﬂ 1°¢ 319Vl

Rl

DTN

AL AT AT A
- o v

Y 4
e

LRI

A

2

Yo

g
§

St
+

£

5

3 g 4 -
BT Y

xeg.
g

- 0

e

:
w
m

SYD0[q UOUWOD IPOW-PIXT
sy38uoy Boulq uowwod Tenbaup
SUO1IPARTIIP YD0T1q uouwwod YuiSSIR

posn Jou 10 198 Jou sJ[qelara uoumiol

TIH R T

A

1

o A e b

SKOTLVIOTA 320718 NOKROD

padueyy ST YoIYM Jo auo IST] & ut axIml Ruiaeadde saajoceand Tengoy

adA1 uAIa P 10 Sadjouraryg

108 BulHq SUOTIIUNG 20 SUOTSSadXD adk Yolym SIajouwnded

WIHUOY 1UAIJJIP O SadIdWPrIPq

PASH 10U JuS 1aYI1al 22 DIYM SIIIDdWrIv

‘S

°f

€«

1

SNOTLVIOTA ¥ILANVEVL

183E] pasn Jou INQ 198 SD[QRIIFA [BO07
yird HwWOS U0 33S JOU SATQETIRA [©DO7

39S 1AADU SOTQUIIRA [EBDOT

1

SNOTLVYIOTA 3SNn/13S

+

as{ey uoyjlaasse [eoydoq

A2Ua1s1suodUT

ndang/andug

Aouaisysuoduy sijun yed}sdyqd

e e S P
" .—- i ~

°t
T

M

7

doo(wol] IrXa oy
arqerara dooy pazijeiitujug
juapuadap-eivp uoyivujwaal doov
dooy 18332 pasn xaputr door (N

ST2Aa] XIS Ppaddxa s1sau dooy (g

SNOILVTIOTA NOTLYISSY

°G

°Y

‘L

°C

1

SNOTLVIOTA 40071 0d

108s003paad ou YIlm woauAIPIS

Pa1SaIUN DIQEIIBA (10D d4aym OL09 paInduo)

‘01

$19QE] pPaduaIAIAIUN 6

s124e] paulzapup ‘Q

JUIIN0I UT SIUAWIIVIS N[Leyl AJ0f, ¥
suunjod @ivtadoaddrur ut Juownielg g
pAPPUFIS JOU JEWIO] PIPD JUABLO) 1Y
0L0D poudyssy °y

'€

D133WYITIE ADPOW PIXTR *2

J3pi0 JO N0 STaqR] UIWIIPIG 1
SNOTLYIOTA SAYVANVIS ONIGOD

SAILITIAVAVD Y04 ANIODAT

¢ d19VlL

3-26

£
B M Ll i L Bep SN ek

D L o e o

T

o v

RIS —

—

Rvinngph
Pack

P B AR S e dt o S R 1 W At
TR S N NS

4 FUNCTIONAL DESCRI1PTION OF J73AVS

This section presents a brief description of the capabilities of
J73AVS and describes in what phases of the software life cycle the

capabilities should be used. A thorough description is provided in the

Functional Description.l

Our approach to the design of an AVS for JOVIAL J73 is to provide
artomated assistance for

- program development

- debugging

- testing

- retesting

The approach excludes
- verification of requiremeunts
- verification of specifications
- automated design aids

formal program verification (proof of correctness)

The techniques for automating'these processes are not developed well

enough to be reliable for general-purpose, large software systems.,

The specifications for the J73 dialect and compilers include
rigorous data-type checking and scope rules. The language allows,
however, constructs and control structures which demand caution in their
usage (such as recursive and reentrant procedures, jumps into certain
control structures, abnormal exits, etc.). Further, the language does
not contain a mechanism for specifying expected behavior or reporting

user-specified abnormalities (since there is no input/output facility).

I C. Gannon and N. B. Brooks, JOVIAL J73 Automated Verification System
Functional Descripticn, General Research Corporation CR-1-947, March

1480.

'
i
H
H

. .

AL

»
W R ke e
? Tk

it N b @R

A2 s

VRPN

.

Lt e St 81

| W o SRR

T g T

iy i o - i — T ol s by '
9&§§§&mmﬁﬁgﬁwm€t,ga%%m%%MMﬁ@ 4%&&@#‘*3@%@% RS NI P o Toceh A S S ST SRR

Py e e e -

R T

J73AVS will not duplicate the static consistency checking of the
compiler, but, rather, provide the following set of facilities to

support program dévelopment, debugging, testing, maintenance, and

R

documentation of JOVIAL J73 programs:

I. Logical assertions and timing probes (see ACES, FAVS, JAVS,

RXVP8U, SQLAB in Table 3.1)

2. Static and data flow analysis (see ACES, AMPLIC, DAVE, FACES,
FAVS, PFORT, RXVP80, SQLAB, STANDARDS AUDITOR, SURVAYOR)

3. Program structure ana characteristic reporting (see "ACES,
FORTRAN ANALYZER, FACES, FAVS, JAVS, NODAL, PACE, PET,
PFORT, QUALLFIER, RXVPS0, SADAT, SQLAB, SURVAYOR)

4. Statement performance dynamic analysis (see FOKTRAR

ANALYZER, PACE, PET, QUALIFIER, TAP)

5. Branch, path, and program unit execution coverage analysis i
(see FAVS, JAVS, NODAL, RXVP80, SADAT, SQLAB, TAP, TEST
COVERAGE ANALYZER)

Branch and program unit execution trace analysis (see JAVS,
NODAL)

Execution timing analysis (see JAVS)

¥
"

. 1 e :-;1 N
¥ a3 G, e RN T s 1

8. Structural retesting assistance (see AMP'C, ATDG, ATTEST,

DISSECT, EFFLIGY, FAVS, JAVS, RXVP30, SQLAB, SELECT)

Y. Test history reporting

el

#,
3

St

£

0y
o3

SRR
!

i)

Bisseins

J73AVS will support interactive and batch facilities since the

various stages of program development through testing and maintenance

lend themselves to both modes of operation. The command language will

be similar for interactive and bat:h usage, except that the interactive

user will be prompted for information where necessary.

b4ei SUMM'\RY OF CAPABLLITILS

A summary of capabilities is provided as a flow diagram in Fig.

4.1. This diagram describes the primary functions supported by J73AVS

as well as the sequence in which they are performed. Figure 4.2 shows

the interaction between J73AVS and the user. The user can direct the

sequence of analysis activities, using information provided at each

stage of processing.

Although J73AVS will exist as a single program, it 1is best

considered as a collection of tools or facilities with which the user

o - o

interacts. Some of the facilities, such as automated documentation,

static error reporting, and instrumentation, are completely automated

[P

and require only that the user initiate the tasks by command. Other

processes, such as execution~time data collection or retesting assis-

tance, require more information from the user like test data input and

test target selection.

J73AVS provides detailed information both statically and dynami-

cally about the program being analyzed. 1t is the role of the user to

>;§ direct the processing performed by J73AVS, to analyze the output

produced by J73AVS, and to determine subsequent action. .

The role of J73AVS in the software development cycle is to provide

automated assistance wherever possible during the program development

and maintenance, debugging, testing, ane retesting phases of the cycle.
The user of J73AVS plays an active part in the cycle as shown in Fig.

4.3, This figure partitions the phases of the development cycle and

AREBEAINL

¥,
44

I
Fithdd

%

3
'

S,

&
i
(OS]
£

0!

. - - s,
Sy _ . ETaa L S =
.« fﬁ;vﬁm_ﬂ;m%

=3

R

Rk

. A OB
RARLY T R

¥

TR

in

T T A T P

*

S %‘?#,ﬁ%fp"@,-:‘i}‘if:;f - o=

N
=S
o

- e

Py t-uib PIVS
L AR YT P e

T S AR S

e = -“

P

L s g p . W o

Branch and
Path sequences
and test history

.

| JOVIAL J73
SOURCE

]

SOURCE TEXT
ANALYSIS,
STRUCTURAL
ANALYSIS

STATIC
ANALYSIS
DATA FLOW
ANALYSIS

One or more modules of JOVIAL J73 source code
is input for processing and analysis. The
source code may contain J73AVS logical
assertions and timing probes.

J73 AVS generates a directed graph of the
control structure. All syntax, Semantics,

and structural information is stored on

a daiabase. Additional or changed source code
causes an existing database to be updated.

Possible errors, warnings, and dangerous
programming practices are reported.

are reported.

RETESTING
ASSISTANCE

CORRECT
SQURCE

ERRORS
FOUND
?

ki

PROGRAM ANALYSIS
REPORTING

Reports for program
documentation, debugging,
maintenance, testing and
retesting are produced.

|

1

STRUCTURAL &
FSSERTION
INSTRUMENTATION

i

TEST EXECUTION,
DYNAMIC DATA
COLLECTION

]

EXECUTION
ANALYSIS

1

| NO "’/iag;icoan

Figure 4.1.

ACHIEVED
?

YES

4~4

Software probes are automatically inserted
for dynamic analysis of execution coverage,
tracing, and performance. Timing probes
and logical assertions are translated into
executable code.

Program execution produces a data
cullection trace file for analysis by J73 AVS.

Execution coverage and tracing, statement
performance, and execution timing are
reported by testcase and by a set of
testcases.

Overview of J73AVS

e e e St =

g
A
an
o
)
&
=
<

e By e A e =
Ry R A R e e e = s, e o gl i = ———
G wmwppfg%%% éﬁ:;ﬁ&g;gj

4K M v o R g B

3 PROGRAM J73AVS | DATA 2 B
SOURCE |——=- TOOLS BASE v]
: [TEXT 2 &
3 , < -]
Y
X
. ‘H
= JOViAL §
5 J73 4
B COMPILE: .
AN
b PROGRAM PROGRAM ;
= : REPORTS | EXECUTION 4
= i ¢
= ! G
=y g K ;
- } Figure 4.2. J73AVS Interaction with User
{
= %
i
i ;
t SOFTWARE LIFE-CYCLE PHASES 3]
£ o
3 PROGRAM DEVELOPMENT/ TESTING! <
{ MAINTENANCE DEBUGGING RETESTING Z g
; i
t 2 !
: BUILD MODIFY GENERATE
> DEBUG
9 Z MODULES MODULES E TEST CASES TesT
E =
-
o ! 1
=3 : P
- T O i
= g &] L) \ L 1 1 '
= : = I ipENTIFY OBTAIN ANALYZE PR
0 NERAT OVIDE
; £ 5 ggpgmss PROGRAM PERFORMANCE | | INSTRUMENT| |TEST RETESTING
£ z INTERACTION | :AND ASSERTION | [EXECUTION| | ASSISTANCE
- RESULTS ,
Z = Figure 4.3. Role of J73AVS in the Software Development Cycle
7

shows the

processing

1.

2.

3.

10-

2 5.

6.

‘w-”éqihﬂfa:‘u.;wﬂwi "

7.

R

8.

tisw between the automated processing of J73AYS and

user-supplied input or direction.

Using Fig. 4.3 as a basis, a typical sequence of J73AVS-supported

can pe described as follows:

JOVIAL J73 source text is generated and provided to J73AVS

as one or nmore compilable modules.

J73AVS produces program analysis reports showing control
structure, symbol usage, calling hierarchy, etc., as well as

a static analysis report showing errors and dangerous

programming practices.

Using the rvreports as a guide, the source modules can be

modified or new modules added to the program.

J73AVS identifies the interaction of the new or modified
modules with the rest of the program; this informatior, in

turn, is used as the basis for modifying other modules.

For dvnamic debugging, the program is instrumented by J73AVS

and executed with an initial test case supplied by the user.

J73AVS reports assertion violations, if any, and generates

an evaluation of statement and variable performance.

Using this evaluation, the user may choose to generate

additionai test data to pinpoint errors or instrument other

modules for additional dynamic debugging.

The same procedures of test data generation, instrumen-
tation, and execution are performed for testing but for a
different goal: rather than detecting and localing errors,
testing aims to demonstrate the absence of errors. There-
fore, J73AVS produces execution analysis reports in terms of

the thoroughness of execution coverage.

R

s § it

g Erem IR Y

NP e ST

bl d i

i

D T v TR AL T A A VT API T S My Fi
Bt a1t U G A T i g UL

s

T T Y N— = = s

9. The user evaluates execution coverage and other program
performance output, along with the program's own execution
results and the program specification, to determine if

testing is complete.

10. J73AVS provides branch sequence infcrmation to retest
targets chosen by the user. A te.t history of execution
coverage and assertion violations assists the user in

choosing targets for retesting.

Program Development and Maintenance

Executable assertions permit a programmer to specify expected
behavior., J73AVS supports the technique of embedding programmer-
specified assertions into the code through the use of the ASSERT keyword
followed by any legal logicai (Boolecan) expression. Logical assertions
can be used for execution-time exception reporting, stress testing, test
data generation filtering, and (left as comments in the source code)

stating in-line specifications.

To assist with reliable system development, maintenance, and
documentation, J73AVS will provide substantial program analysis re-
porting on structural hierarchy, symbol usage, invocations, certain J73
constructs, and system characteristics. The user has control over
obtaining high- or low-level informarion through the command language.

The rypes of program analysis reporting include the following:

- indented source listing with control structure identi-

fication
- symbol cross reference with set-use information
- compool symbol description
- properties of all or specified symbols
- declaratioa and reference of labels (statement names)

declaration and reference of user-defined data types

[T

Vs e

a1 e i SRR USRI DRI M R e

Cnie gkt gt 48

PN RO S P

QOrUNS

o ot L At 1 TR

2

it et Kl

iif

o)

A

e

T

T .

i
T

)
‘W'Mb T

it T A

Wl

AP S W it 1 e

R A T s R R T S e A

A

declaration and reference of constants

usage of external reference (REF) and definition (DEF)
declaration and reference of DEFINE text strings

description of program units on the database

Debugging
Normal compilation using JOViIAL J73 compilers will detect many

syntax and semantic errors. Additional errors such as uninitiaiized

variables, possible infinite loops, unreachable code, certain improper
constructs, and dangerous coding practices (like transferring into CASE
or IF statements) will be reported by J73AVS. The user can command
different levels of static reporting.

Dynamic debugging will be supported by statement execution
performance and assertion exception reporting. Statement execution
performance provides execution counts of statements, values and ranges
of variables in assignments and loops, and the execution behavior of IF
statements. 7This debugging information appears adjacent to the source

statements themselves, which assists the task of code correction.

The execution of timing probes (inserted by command) can be reported in

the debugging performance report at the user's request.

When the program's execution behavior deviates from the acceptable
prog

logical behavior specified by the embedded assertions, it will be

reported during execution. The user-supplied assertions remain rela-

tively transparent to the program until they are violated; at that time

the violation is reported along with the source statement number where

the violation occurred.

Testing
When used in conjunction with static checking and statement-level

performance analysis, structure-based testing can uucover errors due to

21y " b o BRI ki - S o T £ S W A 5 OB A Mg ¢
D AR R : .)

o)
(el

i

Ao al, .
T

nm‘

A

.
it

e

it

i

#
3

%&

§
s,t

‘:‘{.

thuy
)

ool

untested branches (where a branch is a control rflow outcome due to a
decision statement) or improper sequences of branches. J73AVS will
provide execulion trac@ng of program units and branches and execution
coverage analysis of program units, branches, and sequences of branches
{paths). Further, J73AVS will assemble the timing information from
program unit tracing and user-supplied timing probes into an execution

timing report.

Although an AVS can provide an objective measure of testing
thoroughness in terms of statement or branch execution coverage,
frequently errors in software are overlooked during testing because only
certain sequences of branches are ever executed. Obviousiy, it is
generally impossible to define all paths in programs because of loops.
Furthermore, the most likely subset of paths to test can best be
identified by a person familiar with the function of the program. The
most efficient role of an AVS in this regard is to identify the set of
control paths between two statements in a program unit (an invokable
unit of code) to which the human tester attaches importance. Of the set
of paths identified by the tool, the user can choose thuse that are to
be analyzed for coverage during execution. 1f the set of paths is too
large to enumerate, a descriptive message wili be issued and the user

allowe. .o choose another pair of statements for path identification.

Retesting Assistance

Retesting software is performed when analysis shows that prior
testing is inadequate (insufficient branch coverage, not all functions
demonstrated, etc.) or whean program changes have taken place. The
proper approach to take in retesting is highly dependent wupon the
characteristics of the program being tested as well as the measures
being used to evaluate testing completeness. A detailed methodology for
testing and retesting software for the purpose of improving structural-

testing completeness will be given in the User's Manual.

RE i WO A A

PR,

WA,

Abir s

i
1y

g

i,
”.I’

o,

it o

B = g B

In order to determine the sequences of branches whicn must be
executed in order to reach an untested branch or statement, the user can
request that the “reaching set™ be computed between two specified

statements (or from the program unit's entry). The use - can also
prog

request a list, in terms of branches, of all contrul paths between two

specified statemeants. If certain loop structures make this list impos—

sible, subsets of the paths will be identified.

With the control flows identified, the user can backtrack through
the program to the input space, using statement execution performance
reports, module interaction and invocatiom reports, and execution
coverage information for each testcase to assist in developing new test
data. Unfortunately, automatic test data generators which use symbolic
execution are not yet developed to the point of being general-purpose,

easy to use, or reliable.

The cumulative test coverage history maintained by J73AJS will be
useful in attaining testing goals and determining targets for rotesting.
Program unit and branch coverage information will be saved in a concisc
way on the database for each test case. The results of subsequent
execution runs can be added, providing a cumulative report of all tests.
Also saved in the history database table will be any assertion vio-
lations that occur. This will provide a mechanism for identifying which

input test case caused a violation.

Unfortunately there is no technique that can, in gyeneral, echo
back to the user what the input for each testcase is. Paragraph 4.l.1.3
= of the Statement of Work (PR No. B-9-3278) requested the identification
of input test data used for each testcase, but this can be done only in

trivial cases such as input on a single file. In couplex programs, data

are input from a variety of external sources such as databases, sub-

routine parameters, and files. J73AVS distinguishes separate testcases

(as defined by the user) in its post-execution analysis reports but does

not print test data input used to drive each testcase.

AR ki

bt Al Ay ARS8 ey

wihrbiby @0 lyw“ TSN

- T L aT® - == & T — r———— = TerCT—— "
E It~ e Al e X T T it .
- R el e SRR s T e e, ghe

- e s ——

4.2 J73AVS OPERATION

J73AVSs will be implementea to operate in both batch and inter-

: active modes. This versatility provides the user with the abilitv to :

custoaize a debugging and testing strategy to his own software.

Depending upon the test object (prograo being tested) and testing goals,

the sequence of J73AVS operations may be varied. Figure 4.1 showed a

typical flow of operations, beginning with analysis of previously

unanalyvzed code and proceeding until some testing goai is realized.

The functions of J73AVS wili be driven by user comsand. The

coanand syntax wili be similar for both batch and interactive modes of

: operation. The command language is nade up cof specification and

P

operation conlands. Specification commands consist of:

.

BATCH
to notify J73AVS of the mode of oparation (the default - no comaand - is
iateractive node) and the text specification commands:
MODULES = name,eeee FOR HODULES = name,s..

(Two or omore coomands)
ExD FUR

e A LR STRCCERE R AR B Sl SR T Y

LXITS=nane ,ecee FOR USRITS = nate,ee.

|

(Two or more comnands)

EXD FOR

SYS>TEH FOR SYSTEM
{Iwo or more comaands)

LRD FOR

J73AVS operation comnands control six wmajor f{unctional capabilities:
read source text and build database, perform static and data flow

analysis, prepare program anaivsis reports, instrument the source text

"t

or dvnamic analysis, periora post-execution analysis, and provide

»
P

‘W@Wm’mm‘mﬁrwﬂ i

R —— e e — —

) JAP U g g TR R Gt zmﬂ“, 's"‘g-gj: s
- R B - - = PN Y) e SRR e %;x k2
A2 SN .oan UL A SR R R SRS Vet

FTE EETT

—— - U e T e

PO

retesting assistance. These comme ds will have the following syntax

(defaults are underlined):

1. Read JOVIAL J73 Source code -
Command: aeAD{, CHANGES)

N v T A e A LUy DA a0 0 Gt St 2 e

2. Static and data flow analysis -
Command: STATIC {. ".OCAL/GLOBAL,OFF =(ERRORS,
WARNINGS ,MESSAGES, SYMBOLS) , SUMMARY /FULL }

3. Program analysis reporting -
Commands: LIST

CROSS REF {,MATRIX, SETUSE,NAMES =name,...}
INVOCATIONS {,MATRIX, TREE,BANDS,SOURCE}
COMPOCL {.¥REF,SOURCE}
SYMBOLS {,LIST,PROPERTIES,SOURCE,NAMES=name,+..}
LABEL. {,LIST,XKEF,SOURCE}
TYPE {,LIST,SOURCE}
CONSTANTS{,LI37,SOURCE}

REFDEF {,LIST,SOURCE} 3
DEFINE {,LIST,SOQURCE} :
DATABASE {,UNITS,DESCRIPTIUN} ;E
4. Instrumentation for dyaamic analysis -

Commands = TNSTRUMENT { ASSERTIONS,STATEMENTS,
COVERAGE = BRANCH/ENTRY,TRACE=BRANCH/ENTRY }
TRACESET {UNIT=name,LOCAL/SUBORDINATES,)start smt, stop smt)}
NEWTEST,UNIT = name,smt.
ENDTZST, UNIT = name, smt.
STARTCLOCK, UNIT = name, smt.
STOPCLOCK, UN1T = name, smt.

il ;.»MWA«»»W~

g B ATt

~——— . - -

S. Post-execution analysis -
Commands = CUVERAGE{, LNTRY ,BRANCH, STATEMENT , NOTHIT,
alTS=BRANCH/PATHS (path no.,path no«,s..)}
TRACL{, ENT'RY /BKANCH }

PERFORMANCE {,ASSERTIONS?}
TiMING

6. Retesting assistance -

Commands = SETPATH,UNIT=name,bRANCHES=Lranchl,branchy,

{,branch,...* {,RESE1}
PaThS, U1t =name,STAKl=smt.,STUP=snt., LIMLT=number#**
BRANCELES.UN1T=name, START=smt ., $TOP=smc. {, LTERATLVE}
HISTURY {,RESET)

There are two additional commanas: HELPY and SAVE. The HELP
command is for the interactive user to provide command syntax assis-
tance. The SAVE command is use¢ to save the current contents ot the
database. The function ol each command is briefly described in 1lable
4.1. A thorough description ot each command, along with sample usage

and output, is provided in the Functional Description.

Figures 4.4 through 4.1z snow input-process-output for the major
functional capabilities. Figures 4.4 aid 4.5 illustrate the flow of
information for commands READ and STATILC. Figures 4.6 through 4.9
illustrate instrumentation and execution of instrumented modules.

Figures 4.10 and 4.11 illustrate pos. -execution analysis, and Fig. 4.12

B
)
:
s
+

shows program analysis reporting.

* Repetition of branch sequences is denoted by enclosing the branch
numbers in parenthesos.

*x The default number ot paths is 5Su.

Note: All commands can be abbreviated to the first four letters of
each keywora.

3 #AWAW"? m VRISt o,

Rl

.
Ko

Fa
i

o~
c
$eiid

AR

-

- T R I .

T IeeT T B ‘_..‘.L‘ [o s *i‘“‘j

e £ R Mt S e i e L

TABLE 4.1 '
J73AVS COMMAND LANGUAGE

Comrrand Parameters runction

READ CHARNGES Read 19ViAL 173 source. Buila
database. laeatiiy changec
woduivs on drtabase.

STATIC LOCAL/GLOBAL, Periora static and dats tlow
OFF=(ERRORS ,WARR L NGS analysis.

MESSAGES, SYMBOLS) ,
FULL /7 SUMIARY
L1ST Proauce indented source
listing.
CROSS REF MATRLX, SETUSE, NANES= Produce svmbol cross reference
NAME y oo o s
LRVOCATLONS MATRLX, TREE,BANDS , SUURCL Proauce reports describing
prograin unit invocation
st racture,
COrtPOOL ZREF, SUURCE Produce reports descr.oing

conpool syubol asage.

SY:IBOLS LLIST, PROPERTIES, SOURCL, Produce reports describing
NANES=name e symbol attributes,
LABELS L1ST,XREF,SOURCE Produce reports dgescribing

statement nimes {labeis).

TYPE L15T, SOURCE Produce reporves describing
user-det ined datatypes,
CONSTANTS LL5T,S0URCE Produce reports describing

constant Jatatypes.

REFDEF L1ST,SOURCE Produce reports descrining
instances of REF and DEF
specification.

DEF INL L1sT,SOURCE Produce reports describing
iastances or DENisi declaration
and reference.

DATABASE UNITS,DESCRIPTLON Produes reports describing the
program units stored in the
current database.

AT i, Yoo

ik 2

= U P
. —— - *

et b L

L T S O 01

R T T o o h e e
R S R RN R Wi

'«‘F.i;‘f"’“ﬂ"f‘;" PR) 8 i Ean T s
R R e S i 6

e T T p— o —— TRt e

b S MR e PNPTRITR

:
! TABLE 4.1 Continued
Command Parameters Function
LNSTRUMENT ASSERTIONS, STATEMENTS, laserts software probes into
) COVERAGE=BRANCH/ENTRY, the source code to collect data
TRACE=BRAKCH/ENTRY during execution. Translate

assertions into executable
code.

TRACESEY UNIT=name, Instrument each branch between

LOCAL/SUBORDLZATES the specified statemants,in-
{start smt, sLop smt) cluding branches in subordinate
program units.
NEWTTEST UN1T=nanme ,smt. Insert a testcase boundary at
the specified statement.
ENDTEST UX1T=name, smt. Insert an end-of-all-testcases
probe at the specified
statement.
STARTCLOCK URIT=name,smt. Insert a "start” system clock
probe at the specified
statement.
STOPCLOCK UNIT=name , smt. Insert a "stop” system clock :
probe at the specified :
statement. $
3 COVERAGE ENTRY, BRANCH, STATEMENT, Produce post-execution analysis g
B NOTHLT, reports describing statement, :
7 A1TS=BRANCH/PATHS (path no,...) branch, or path coverage. ;g
B TRACE ENTRY / BRANCH Produce a post—execution f
= tracing report for branches or 3

program unit entries and :

returns. 5

PERFORMANGCE ASSERTLONS Produce a post-execution
statement performance report, %
including assertion violations. TE

=

TiMING Produce an execution timing E

analysis report. £
2]

SETPATH UN1T=name , BRANCHES=..., Store the specified branch 5
RESET sequences in the database as
paths.
PATHS UNiT=name, START=smt., [dentify the paths between the

5STOP=smt., LIMIT=no. two specified statements.

4-15

ST TR S A SR B DR B e oo i 1o

I N e o i 5 i)
TLosa e maEEL o A IR EE

TABLE 4.1 Continued

R Ty Y T ey

Command Parameters Function :
BRANCHES UNIT=name, START=smt., Generate a reaching set of
STOP=smt., ITERATLVE branches between the two

specified statements.

HISTORY RESET Produce a execution coverage
report for all testcases.
Reset the database coverage
history table.

DN 5 o Sl 0 et

b

HELP Assist with command syantax. ¢
SAVE Save the current database. ’§
BATCH Indicate batch mode of 8"
operation. :
MODULES NAME , e 00 Specify one or wore modules for
i the following command A
: processing. 5
FOR MODULES name,... Specify one or more modules for : ;E

the following set of commands.

: UNLTS name, ... Specify one or wore program
) units for the following
: command.

FOR UNITS NAMe , 0 0 s Specify one or more program
units for the following set of
commands.

SYSTEM Specify all program units in
the database for the following
command.

FOR SYSTEM Specify all program units in
the database for the following
set of commands.

END FOR Conclude the set of commandse.
END Conclude J73AVS processing.

B A U Y i Bt S 5

L

SRy
SRS RS

TSRS

3
=
2>
3
31
=3

(i

Y couiun bt
iidiyesentis

NN e

READ
(o] \\\\\\\“ SOURCE TEXT ANALYSIS
JOVIAL*J73 L« (DATABASE GENERATION DATABASE
‘ SOURCE PROGRAM GRAPH DEVELOPMENT
AW
! TRACESET
INSTRUMENT
PROGRAM UNIT
| DEFINITION STATIC
AND SCOPE REPORT
| COMMANDS
*WITH OR WITHOUT
ASSERT IONS
Figure 4.4. 1Initial Processing
STATIC
oy
oA
an
— =
b4
STATIC ANALYSIS
DATABASE DATA FLOW ANALYSIS
_____~__X TRACESET
i INSTRUMENT
ERRORS REPORT
WARNINGS COMMANDS
MESSAGES

Figure 4.5.

SYMBOL INFO. |

Static and Data Flow Analysis

AN-56542

S O s ko A B i S

LA ot
aew U

o wuho
ISR N

T R e R i AR KPS g

o ;?‘M"

TR e e B e e P A R R BRI o S T P

T T e = o T S = = e Lo g T S e s ~ e o ey~ e p— e e S A It e—

e TP A o HOT IR

ST T 4 T M S O R T TANKTY I g ¥ e, o Syt

NEWTEST STARTCLOCK

ENDTEST STOPCLOCK o
TRACESET 2
4
INSTRUMENT <
COVERAGE OR
TRACE
* STRUCTURAL INST.
: DATABASE |-—————e=(TESTCASE DEFINITION
. . TIMING PROBES
\
COMPTLATION

L

JOVIAL J73 INSTRUMENTED
COMPLIER | SOURCE TEXT

Structural Instrumentation

Figure 4.6.

INSTRUMENT,
ASSERTIONS

AN-56540

ASSERTION-TO-EXECUTABLE

R e
‘ DATABASE F CODE TRANSLATION

\

JOVIAL J73 TRANSLATED
COMPILER SOL™ :E y

Figure 4.7. Assertion Instrumentation

COMPILATION

INSTRUMENT, :

STATEMENTS 2 :

‘-3 :

an 3

=

< -

STATEMENT

1 DATABASE ‘_"—’(INSTRUMENTATION :
COMPILATION

' E

INSTRUMENTED
SOURCE TEXT

JOVIAL J73
COMPILER

Figurce 4.8. Statement Performance Instrumentation

BB RS I Aisind et e AR

s

h,\’e

ST TR e e,

. S
Sl At betac iyt 0 Eutlind

PYCIEINTT PETTTSAY Y

F) W B s e At et

INSTRUMENTED NON- INSTRUMENTED DATA
COLLECTION
(USER SOURCE (usm SOURCE (COLLEC
1

|

]
JOVIAL
COMPILER

OBJECT
TEXT
FROM

INSTRUMENT
TRACESET

AN-43845

USER TEST TEST PROGRAM
DATA EXECUTION | REPORTS,
FILES
L
] to COVERAGE, TRACE

PERFORMANCE
ASSERTION TIRING
VIOLATIONS

Figure 4.9. Test Execution Processing

AR

S L - U P S P 3 Va4 i oty oy e AT g = T
R T M i m o e e W el S R A %gﬁfﬁa%ﬁvgimﬁﬁiﬁg%;gQ&ﬁ@éE}g %5 AN L RS TR A SofoRnt
. B R S SRk e s AR I A R ETAl T e

TR

Bt o S L

TRACE
COVERAGE i

TRACS STRUCTURAL TESTING

DATA ANALYSIS

A ™
" WES: SEh R
i T IR mmmﬁ "3%‘ Lg‘ o

AN-56539

D T T

7

DATABASE (}

REPORT COMMANDS

(L
HISTORY 3

Z [coverAGE AND ¥
; TRACING SETPATH ;.
: REPORTS BRANCHZS By
: PATHS 4
; Figure 4.10. Structwral Testing Analvsis) -
: H
; 23 i
i PERFOR& =
. o
: STATEMEN 2
; PERFORMANCE | DATABASE %
i ANALYSIS

STRUSTURAL ;
\ INSTRUMENT E.
| =

5 REPORT COMMANDS 3

~WITH OR WITHOLT ASSERTION i FeroRies - | ?

EXCEPTIONS AND l\/d
CLOCK TIMES :

: /ﬁ’mﬂyﬁ /ﬂﬂwﬁmﬂmﬁm"i’nﬁw BTSN PEOXHE 01 7 gugra s mmones o e

= Figure 4.11. Statement Performance Analysis z
%? i
i 4-21

R R B R A T T

e At M i 1 Wbl Wk @ s

REPORT
COMMAL.DS*

PROGRAM

DATABASE | ANALYSIS
REPORTING

Wl 2 F AL T e A 45 AR L e 2l v

AN-56554
n" .i‘»vn‘ Y

INSTRUMENT
SETPATH

1 TRACESET

P

*L IST, CROZSREF, INVOCATIONS, REPORT
COMPOOL, SYMBOLS, LABELS, REPORTS COMMANDS
TYPE, CONSTANTS, REFDEF,

DEFINE, DATABASE

o g BRI ‘ﬁmW&%%WW%MMWm SoDAE SR 3 W it 10+ R Bl e e o b BB v

B,

1 380 i

Figure 4..2. Program aaalysis Reporting

gl

(s i adiive

bt

Pai's
Ay

EER SR oYY

Ptk e R T Y T O
ET SO O R YRS, P S T R N R

e

5 DESIGHR OF J73AVS

J73AVS will be made up of a Nucleus and set of independent

function processor segments. Each of the segments can correspond to an

IOIE AN O R T M A IR WSO Yo L IR

overlay segment. The Nucleus can make up the core-resident root (or the

first level) of the overlaid program, although to minimize storage

requirements, some Nucleus routines will be loaded in secondary over-

lays. Each of the other functions makes up a second-level segment. The

following is a brief description of each functional segment:

Command Decoding and Control: Process user iaput commands, output

| sy

interactive response, and successively return each command to the

overlay controller.

Initialization nd Wrapup: Upon run initialization, open files,

initiate execution of the storage manager, and set various global ¥

data; upon run termination, close files and (for batch mode)

produce report index.

JOVIAL J73 Source Text Analysis: Read JOVIAL J73 source and

perform lexical scan, token recognition, symbol classification,

and structural pointer construction.

Structural Analysis: Build program graph, store branches, and

compute single-entry/single—exit reduction history used in data

flow analysis.

Supplementary Table Building: Build tables needed for module

dependence reporting and cross referencese.

Program Analysis Reporting: Produce selected reports at user

command.

Instrumentation: Insert probes at program unit entries, exits,

branches, and statements (depending upon type of instrumentation

selected); define new testcase or end of all testcases; expand

assertions into executable code.

PP T ety TN S A
B e anay

Ao

i

e

B ~ £ - - - - i e e o
WEE R AETE oo SRt S S R SR cas g na e

Y TEREESS

e e S S S E

e = = - i g, = = e MR 2= M ek S e S——

Structural Testing Analysis: Analyze run-time execution trace

file, produce coverage and trace reports, and update test history

table.

Statement Performance Analysis: Analyze run-time trace and

ins:rumentation statement descriptions and produce statecament

performai. > reports.

Execution Timiu; Analysis: Analyze run-time execution trace and

produce timing rep. -t.

Path Generation: Determine the set of paths between specified

statements and store paths into database.

Branch Reaching Sets: Generate sets of branches that reach a

sperified statement.

Test History: Generate a test coverage history report or reset

the history table.

Print Services: Print the contents of specified database tables.

Table 5.1 lists the functional processor segments along with the

associated user commands which invoke each segment. The Xucleus
consists primarily of database management facilities. The sezments
loaded at a particular time during a run will depend upon the type of

processing requested by the user through commands.

i
0
PR R L i

e M’mmhmmmm R

i "
AR T PN P e b L

TABLE 5.1.

Command Keyword

T INSTRUMENT**

All commands
All commands
READ

READ

STATIC
INVOCAT LONS ,CROSSREF
Reports*

REWTEST ~N
ERDTEST
STARTCLOCK

STOPCLOCK

TRACESET

COVER:AF

TRACE
PERFORMANCE
TIMING
SETPATHS , PATHS
BRAXCHES
HISTORY

LIST,PRINT#%%x

J73AVS FUNCTIONAL PROCESSOR SEGMENTS

Segment No.

Functional Processor Segment

1

-

10

11

12

14

W

H

Command Decoding and Control
Initialization and Wrapup
JOVIAL J73 Source Text Analysis
Structural Analysis

Static and Data Flow Analysis
Supplementary Table Building

Pregranm Analysis Reporting

Instrumentation

Structural Testing Analysis

Statement Performance Analysis
Execution Timing Analysis

Path Generation

Branch Reaching Sets

Test History

Print Services

*Comaands CRUSSREF, IXVOCATI0%S, COMPOOL, SYMBOLS, LABLES, TYPE , CONSTANTS,

REFDEF, DEFINE , DATABASE

**3tructural instrumentation (parameters COVERAGE and TRACE) and
instrunentation (parameter STATEMEXTS) can be

statement performance

sub-overlays.

**%*Database table print package, primarily for J73AVE development and
maintenance and for source listing reports.

U o s e o

"

N R T

!
t

'(1

(X3

BB g 8wk vl 1IN ’m““ﬁf‘u’w‘l‘#‘%wﬂ)'ﬂ

et e T T T T T T T T T = T Y.
P J T e e R v W e o Ly s

B

s

The design of J73AVs lends itself to incorporation of changing g
requirements (such as J73* language revision) and upgrading capabilities. g
For example, anticipated changes in the JOVIAL 173 language specifi- ?
X

cation (scheduled to be vesolved by July L, 1980) .re expected to atfect

only the syntax analyzer. Upgrades, such as adding a configuration
management capability or adding 4 target machine statement simulator,
would be performed by adding new functioral segments. The database is
designed so that new tables of information can be easily added, and the
database manager does not depend upon the type cf information stored in

the tables.

3523
=8

i

Iwz

i

bl

%

e v e

hkeho

w
|
=

e
= =
by -
har ot

=

R
Ej}ﬁé‘s‘i

[T T op—— — - oty .-

— . U]

C e . N o
e o : 72
et AR it o it s
e et ARG Y %5 %o m. - R ez A DS e AN g R e it o, &l e

eV Vo ARNIRET el TR

capmwy

T gy, e

RREXIOVICn A e 2

FUTURE EFFORT

There are five techniques for software verification that should be

considered for future implementation in J73AVS. The two more important
areas are test data generation and instruction-level simulation. Test
data generation would be a valuable assistant for all applications to
JOVIAL J73. Instruction-level simulation for the purpose of analyzing
size, accuracy, and timing for target machines would be beneficial fop

real-time applications, such as avionics.

Additional, completzly-automatable facilities are code auditing,
physical units consistency checking, and assertion translation using a
precompiler. Detection of certain “"dangerous” coding practices is
included in the J73AVS static analyzer. It cannot be too strongly
stressed that such practices should be retained only for compatibility
with existing coae; :se in new applications should be prohibited except
where extreme requirements exist for time and space efficiency. When
J73 becomes a familiar language, coding standards should be specified by
the JOVIAL User's Group (an Air-Force-sponsored group of interested
individuals from industry, Government, and the military) and included in
J73AVS. Units consistency checking is already performed in AVS tools
such as SQLAB. The addition of this facility to J73AVS would be a

small effort.

It has been the practice at GRC to design and develop automated
software tools using a top~down, modular approach. Our basic approach
is to isolate major functional blocks into software components that have
well~defined interfaces. When new or more efficient techniques are

aeveloped, they are incorporated into the system as additional or

replacement components. Both test data generation and instruction-level

simulation can be incorporated into J73AVS as additional functional

components.

T i

PR R L B LR T e G

DTN b

Wty

e T

R e il :‘}%“"L% = B

R T AL S St AT A) e

e n e e — ¢ Sc—— e o e e L

g e

0.1 TEST DATA GENERATION

In order to implement . test data generation system, the following

functional compounents are required:

le syntax analvzer--breaks inconing source text into tokens .nd
stores module, statement, and symbol information into tables

for subsequent usc.

2. Structural analyzer--genervates a directed program graph for

ceach module based on its control structure; saves the

control path information in the branch table for iater use

3. Psceudo-path eliminator--this c¢omponent <contains two
techniques:

de Acting on interactive comaand trom the user, it .

eliminates sequences of paths from the test cuse

Tt

election process wnich are logically iapossibio or

“"uninteresting” during a particular testing activity.

Loy Mo

b. Using backward symbolic executisn, automatically

determines and eliminates logically impossible path

sequences.

4, Reaching sequence generatov--generdtes reaching sequences

according to (1) interactive identification by the user of

starting and stopping branches or (2) algoritimic iden-

tification of the starting and stopping branches based on

execution coverage performance. Also generates individual

branch sequences.

AN v w mEN o maeaner R

Je Reaching sequence constraint genevator--builds an expression

resulting {rom the backtracked reacning sequence. Also

analyzes individual prancih sequences

Constraint simplifier--uses arithmetic, logical, and re-
lational simplification to reduce the path sequence con-
straint to a set of inequalities. This process should
utilize interactive assistance {rom the user in terms of

additional simplirication rules.

inequality soiver--generates input data for subsequent
dynamic execution .ccording to some automated or inter-
activeiy-supplied heuristics. If the set of inequalities is
noniinear, interactive assistance will be required to

determine solutionse.

Instrumentor--(1) automatically stores software “probes”
into the source code so that coverage information can be
recorded during dynamic execution, and (2) automatically
translates user—-supplied assertion statements in the source

code into executable statements.

KA e BN K B b BL PO B e

Execution analyzer--processes the trace file recorded during

execution of the instrumented source code to provide branch

and module execution coverage information.

Table builder--builds certain tables such as symbol cross
reference, module dependence, common symbols, etc. which
wili be needea for documentation reports and backtracking

through the module hierarchy.

Report generator--produces a variety of user-specified
(through the command language) reports about the char-
acteristics of the test program as a whole or with respect

to specified target branches.

1

—

-~

.
s P O ol ol By 0 P

R T e o t‘ggﬁﬁ '?&"}.‘5‘}"3 P et %ﬁ'
TERTERES

A W AR e e A g Tk L e RS 1 s © v o mandoh ok A e . ok v S e T oo

The functional components briefly described above are included in
Fig. 6.1 which puts the manual, interactive, and automated capabilities
into perspective. Note that the insertion of assertions (described

briefly in Sec. 4 and in detail in the Functional Description) is shown

as the first activity. The powar of assertions lies in their ability to
provide “unctional information about the program which both the test
tool and user can analyze to determine correctness of program behavior

and completeness in functional testing.

6.2 INSTRUCT1OR-LEVEL SIMULATLOR

With the advent of MIL-STD-1750, the military standard {nstruction
set for airborne computers, it is not unreasonable to consider the
incorporation of target machine requirements inlto a general-purpose, ;
host~operational tool like J73AVS. Robert Class at the Boeing Company
has stressed the value of testing software on the host conputer (see

App. B)¢ 1t is his contention that wmost errors in embedded systems can

be traced to faulty code in the host computer. Further, it is only on

the host system that computer and peripheral resources for extensive

I R 1 T]

H testing are available.

"

Simuiation of the 1750 1instruction set can be a functional

component of J73AVS which contains default instruction size, precision,

3 and cycle times for a typical target machine. The user can Jhange the

defaults through commands to represent actual processing requirements of

his target. User-requested reports will provide simulated operational

measurewents for the target to determine if the software meets size,

accuracy, and timing requirements.

6.3 CODE AUDITING

Code auditors for assessing the compliance of programs with

certain standards are common software support tools. Although dis-

ciplined programming policies are eacouraged, it is clear ftrom high

maintenance costs that such policies are not always followed. Computer

[RNOTe PRV

i A b od g \mﬁ.ugéﬁi..ﬂua RTINS WL g M Y L ") ; . . y » 1 ..:.‘_Zre..wiill-rigt;f:-wii . L
AR o T LA NY R L g g e M e A TR ;;,-(S;;(;* Y _i‘ i

,:..

103e13U3) BIRQ ISIL SAVE/[B JO uorjeaadg °7°9 2andig

SISATYNY
39%43A00

.»x NOTIVYINGD
RTINS B—— 140434

) e i e

NO1END3X 3 ’
NOILYYINI9 - e

AN L onialing
* ——— S— 38yl
H HIWNYLSN
NOIL1VHINI9 OlLViNIRNYLSN] ~

30N3ND3S

SISATUNY
INIHIVIY WANLINYLS

!

NUIIVNIWITS ROTLYILILLNICY SISATVNY
*1Va=00N73Sd 130YVL -lvd XYINAS

TIVADLY

HIAT08 NOTavTNIT NOTLIVITIIINGGE
ALTTYND3N] Hivd 8.:& 1398YL HIvd

l'.l»‘l EEN IS L2 R TV

NOTLY3T31dNIS
INIYHLSNOD

«h<o ,
E,azv WILINI ; u&:a
9H11S31L

WOANYY
SNOTLY3SSY

TT—

e B PR P e £ e

Sciences Corporation and TRV have used code auditors on bota FORTRAN ana
assembly languages and have reported a formal cost reduction of $37,00u
by using a FORTRAN code auditor on one pro‘act alone.] As soon as
JOVIAL J73 has matured to a level where pro,,ramme.: can specify coding
standards, they should be incorporated int:» the static analyzer com-
ponent of J73AVS. The user would have the opticn Lo select the code

auditing feature.

Typical, general coding standards include the folilowing:

Length of program units
- Nesting level of looups
- Calling arguments are not expressions

= ln~line comments precede labeled statements, conditional

statements, and invocations

6.4 UNITS COKS{STERCY

Requiring that each local variable and cach global variable be
specified in terms of the physical units it represents (if any) allows
comprehensive checking of the consistency of units. This type of
checking 1is particularly relevant tu technical software where aany
physical properties are represented and there are masy possibilit.es of
confusion over units. Urits can be checked on a multi-module basis if
each module contains a description of the units for cach physical

variable ‘¢ refers to. The form of the description for JUVIAL might be:

URLTS (<variable-list-1> = <units-expression-1>,

Cvariable-list-2> = <units—expression=2>,...)

["o
K. F. Fischer, "Soflware Quality Assuran~e Tools: Recent Experience

and Future Requirements,” Software Quaiity and Assurance VWorkshop, San
Dicgo, November 197b.

.

RALTS ORI Frtee o

A &b e

-y

A Y25 O

e Bt R
- rpelrte L i nRE

L 4. K AL AP P :

An inconsistency in units is indicated if unlike units are added,

subtracted, or compared. The physical-units analysis compares the right

and left side of assignment statements, the right and left side of

A T

relational operations, and actual and formal parameters. For con-

venience in stating URITS assertions, all constants are assumed to be
unitless, except for 7c¢ro, which will match any units expression. A

variable is declarea uaitless by stating that its units expression is

the constant 1, as in URLTS (P1 = 1).

bR T PR £ b

L

This capability is already available in GRC's SQLAB AVS for

FORTRAN and Pascal. 1t is also recommended for inclusion into the MUST :

{Multipurpose User-Oriented Software Technology) program for HAL/S

0

- l
software. This added static analysis could be incorporated economi- :

cally by converting the existing method used in SQLAB. Violations of

consistency would appear within the current J73AVS static analysis

(R

report {see the Functional Description).

6.5 SXECUTABLE ASSERTIONS PRECOMPILER

A minor effort to develop a JOVIAL J73 precompiler strictly for
the purpose of translating logical assertions into executable JOVIAL J73
code would have major benefits in producing more reliable programs early

in their development stage. The precompiler would exist as a JOVIAL J73

[ORUR O RPRT PSR IYY 1t LA e i e s bk R v

program that merely scans source code for ASSERT statements and trans-
lates them into several executable statements, including the TRACE

directive, to report assertion violations.

An assertion precompiler would be more efficient than translating

;53 assertions to executable code by instrumentation, since the precompiler
does not require the syntax and structural amalysis and the database

storage and manipulation needed by the multi-purpose J73AVS.

. R. N. Taylor, Integrated Testing and Verification System for Research
“light Software - Design vocument, Boeing Computer Services Company,
Feb. 1%7Y.

APPENDIX A
LITERATURE SURVEYED FOR STUDY

Andrews,D. M., J. P. Benson, Advanced Software Quality Assurance,

Softwrae Quality Laboratory User's Manual, General Research Corporation,
CR-4~770, May 1978.

Barth, J. M., A Practical Interprocedural Data Flow Analysis Algorithm

and 1ts Applications, University of California, Berkeley, May 1977.

Belford, P. C., Berg, R. A., Hannan, T. L., "Central Flow Control
Software Develpoment: A Case Study of the Effectiveness of Software
Engineering Techniques,” 4th International Conference on Software

Engineering.

Belford, P. C., Broglio, C., "A Quantitative Evaluation of the cffect-
iveness of Quality Assurance as Experienced on a Large-Scale Software
Development Effort, " Software Quality and Assurance Workshop, San
Diego, No.~mber 1978.

Benson, J. P., et. al., Software Verification : A State-of-the-Art

Report, GRC, CR-1-638, Marcy 1978.

Boyer, R. S., Elspas, B., Levitt, K. N., Select--A System for Testing
and Debugging Programs by Symbolic Execution,” Submitted to the 1975

International Conferenc. on Reliable Software, April 1975.

Brooks, N. B., Gannon, C., JAVS Jovial Automated Verification System,

Vol. 3, General Research Corporation, CR-1-722, December 1976.

Brooks, N.B., Gannon, C., JAVS Jovial Automated Verification System,

Vol. 2, General Research Corporation, CR-1-72271, June 1978.

Clarke, L. A., "A System to Generate Test Data and Symbolically Execute
Programs,” lEEE Traunsactions on Software Engineering, Vol. SE-2, No. 3,
September 1976.

Elspas, B., Green, M. W., Moriconi, M.S., Shostak, R. E., A JOVIAL

Verifier, SRl International, January 1979.

Engels, G. J., Godoy, S. G., "Sneak Circuit and Software Sneax
Analysis,” Journal of Ajrcraft, Vol. 15, August 1978.

Fischer, K. F., “Software Quality Assurance Tools: Recent Experience
and Future Requirements,” Software Quality and Assurance Workshop, San
Diego, November 1978.

Fosdick, L. D., Miesse, C., The Dave System User's Manual, Department of
Computer Science, University of Colorado, March 1977.

\
i
3
|
?
i
{
;

e

- LTS eemie— e e

TR e gt el g o - e e
S = TE T T ARENER A, Pl ol sk meel T L T T ey s

Gannon, C., TAP Testing Coverage and Parameter Evaiuation Program,
General Research Corporation, November 19/8.

Gill, C. F., Holden, M. T., “On the Evolution of an Adaptive Support
Software System” AlAA Comptuers in Aerospace Conference 1977, Los

Angeles.

Glass, R. L., Real Time Software Debugging and Testing: Introduction and
Summary, The Boeing Company, September 1979,

Glass, R. L., Real Time Software Debugging and Testing: Definition of
the Problem, The Bceing Company, September 1979.

Glass, R. L., Real Time Software Debugging and Testing: Proposed
Solutions, The Boeing Company, September 1979.

Glass, R. L., JOVIAL J73 Software Quality Assurance Tools, Volume I -
Introduction and User Manual, The Boeing Company, February 19/9.

Glass, R. L., Software Reliability at Boeing Aerospace: Some New
Findings, The Boeing Company, September 1979.

Goodenough, J.B., Geriiart, S. L., “"Towari a Theory of Test Data Sel-
ection,” IEEE Transactions oun Software Engineering, Vol. SE-1, No. 2,

June 1975.

Gutmann, M. J., Rang, E. R., Silverman, J. M., Verification Techniques
for Flight Control Software, Honeywell Systems and Research Center,
December 1978.

Holden, M. T. "The B-1 Support Software System for Development and
Maintenance of Operational Flight Software,” NAECON 1976 Record.

Holden, M. T., "Semi-Automatic Documentation of B-1 Avionics Flight
Software Global Data,” Naecon 1978 Record.

Howden, W. E., “"Effectiveness of Software Validation Methods,” Infotech:
Software Testing, Vol. 2, 1979.

Howden, W. E., "An Evaluation of the Effectiveness of Symbolic Testing,”
Software - Practice and Experience, Vol. 8, 1978.

Hollowich, M. E., McClimens, M. G., The Software Design and Verification
System (SDVS), TRW Defense and Space Systems Group, June 1976.

Howden, W. E., "Theoretical and Empirical Studies of Program Testing,"” :
LEEE Transactions on Software Engineering, Vol. SE-4, No. 4, July 1978.

Leach, D. M., Automated Test Case G¢ -ator - Final Technical Report,
Logicon, September 1979.

A oo R 5 8%

O R R Sl T e e oA

) " — st e e, — . e e

PRI

i

RN —— e T3 3y

T

Leach, D. M., Automated Test Case Generator — Functional Description,
Vol. 1 ~ Self-Contained Version for General Algebraic Languages,
Logicon, September 1978.

b o Heh A

3 Leach, D. M., Automated Test Case Generator — System/Subsystem Spec-
ification, Vol. I ~ Self-Contained Version for General Algebraic
Languages, Logicon, September 1979.

AL AL A i w0

e
i it i

Maurer, W. D., “The Modification Index Method of Generating Verification
Conditions,"” Proceedings of 15th Annual ACM S.E. Regional Conference,
April 1977.

"o, .
oo s AR, AT H Kb T

e

s

N

Miller, E. F., Jr., Methodology for Comprehensive Software Testing,
General Research Corporation, CR-1-465, February 19/).

i it Sl

Moriconi, M. S., A System for Incrementally Designing and Verifying
Programs, Vol. 1, USC/Information Sciences Institute, November 1977.

By,
TIPAOTRGC® Wl %P AW o

S RTTEE R Vo IO LR
.

Ostrand, T. J., Weyuker, E. J., "Error-Based Program Testing,” Presented
at 1979 Converence on Information Sciences and Systems.

i

R

i
.
WAL

3 Ramamoorthy, C. V., et al. Fortran Automated Code Evaluation System
i3 (FACES) Part I, University of California, Berkeley, July '974.

Smith, K. A. "DAVE and PET at NASA Langley Research Center,” Proceedings 3
of VIM 31 Conference, Detroit, October 15-17, 1979. i

Stickney, M. E., “"An Application of Graph Theory to Software Test Data
Selection,” Software Quality and Assurance Workshop, San Diego, November
1978. :

Stucki, L. G., et al, Software Automated Verification System Study,
McDonnel Douglas Astronautics Company, January 1974.

Taylor, R. N., Integrated Testing and Verification System for Research
Flight Software - Design Document, Boeing Computer Services Company,
February 1979.

Preliminary Design Specifications SDVS Improved Conversational Language,
TRW Defense and Space Systems Group, March 1978.

“NODAL, The Node Determination and Analysis Program,” TRW Brochure,
1975.

"SURVAYOR, The Set-Use of Routine Variables Analysis Program,” TRW
Brochure, 1975.

(A P AL L

S DN A oy

R

i

T TIPS TR TS e
PRI RN, R AT

= il P T sy < o
T A S DR T e R B R B

APPENDIX B
REVIEW OF RELEVANT TECHNIQUES

JAVS Technical Report: Vol. 1 “"User's Guide"” 1975, 1976, 1978

JAVS Technical Report: Vol. 2 "Reference Manual™” 1975, 1976, 1978

JAVS Technical Report: Vol. 3 "Methodology Report” 1976

Methodology for Comprehensive Software Testing 1975

JAVS Computer Program Documentation System Design and Implementation

Manual 1975, 1976, 1978

JAVS Final Report 1975, 1976, 1978

General Research Corporation
Santa Barbara, California

The JAVS (JOVIAL Automated Verification System) and testing
methodology were developed for the Air Force as a near—term solution to
the problem of testing JOVIAL J3 software. The requirements for the
tool were to provide an automated mechanism for measuring the thorough-
ness of testing and assisting with generating new test cases to increase
the level of testedness. The resulting tool has the following func-

tional capabilities:

1. Recognize JOVTAL J3 source text with very few language
restrictions and build a database for up to 250 invokable

modules with no limit on number of statements.

2. Using the database, identify potential structural infinite
loops and unreachable code, insert software probes at each
decision point, formulate software documentation reports
showing symbol, statement, control path, module, and

inter-module information.

3. When the instrumented modules are executed {with the
remainder of the program, if the entire program is not
instrumented), provide statement and branch coverage

information and module execution timing data.

e T T
T

e R ST

" IR,

R
ikl eh Sel

Provide lists of branches not executed by each test case and
the sequences of branches required to be executed in order

to reach the unexercised branches.

Provide an assertion language to assist code development and
testing whereby user-supplied assertion statements can be
converted to standard JOVIAL J3 by JAVS and supply execution

time information.

JAVS does not provide data flow analysis capabilities for con-
sistency checking, interface analysis, formal verification, or test data
generation. The 1976 published methodology report provides guidelines
for code development and testing which are keyed to the capabilities
provided by the JAVS tool. The resources required by JAVS on the HIS

6180 are sumarized below:

JAVS load size = 53K words
Data collection routines load size = 4K words

Random and sequential files

*Compile size of instrumented source = 15% larger than

uninstrumented compile size

*Compilation time of instrumented scurce = 15Z longer than for

uninstrumented source

*Execution time of instrumented source = 50% longer than execution

of uninstrumented source

*Coverage analysis time = 3-6 times execution time of instrumented

source

* These resoucrce requirements are rough estimates which vary according
to the control structure of the program and coverage analysis options
requested.

WWMWWW :

ki

Integrated Testing and Verification System for Research Flight Software

— Design Document
Richard N. Taylor

Boeing Computer Services Company
Seattle, WA
NASA Report 159008, February 1979

o 3y 1D < S MR A

SRNEMCARE D A

This design document describes a variety of software support tools
: to be included in the MUST (Multi-purpose User-Oriented Software
Technology) system for HAL/S software. The tools included in this

design operate from HALMAT, an intermediate representation of HAL/S.

ANl
Jii
TN s

Thus, the tools do not have to perform any parsing. The types of tools

we

are static analyzers, symbolic executors, and dynamic analyzers. There

is heavy emphasis on static and dynamic assertion usage and statistics

L IR R T

gathering.

The design recommendation is that small, modular facilities be

Caq AR N R s ity

combined in a variety of ways to accomplish program creation and

W

maintenance. Such modular facilities are:

- local assertions

Gt e A

- regional assertions

- internal documentation

- answers about previously written code
i - auditor
- units and scale checker
- cross-reference map generator
- data flow analysis

- execution—-time monitoring

- instrumentor for run—time monitoring

combinations of using these techniques are:

e o R P T PR e i s

I :WAWW
PPNt 3 O e v SN LA T S

e ————

PR T eEREE G s TR A e e e o

A e

Isolating an error - dynamic analysis with extensive

assertion usage on the suspect module.

Initiar verification of new code - both data-flow and
non~dsta-flow static analysis.

Broad~based verification with unlimited resources - static

analysis, symbolic execution, test coverage.

|

Isolation of functional error ~ symbolic execution of

appropriate paths, dynamic analysis.

Verification of previously verified modules - multi~purpose

o

O T iy AL 1% SN

data-flow analysis end static checking of integration
requirements, dynamic analysis of concurrent process

characteristics. '

wa

b

2 Q:t%mama:m

R ——

A b

5

-
1
E)
PR 2 -

- - e e = s e e —— T ¥ x Fi e g S s L
S 2B ST e ot R e ST R I D L SRR R e e

g

J ‘m, g o Amoo B L

5
b
A
I
"

Ll
I

.N”W
L Rk,

S A n oy AT DR

Verification Techniques for Flight Control Software

E. R. Rang, J. M. Silverman, J. J., Gutmann
Systems and Regearch Center, Honeywell
December 1978

I

A

ERL e e

WA

i

This report describes several manual and computer-assisted

i St

s T L

techniques for the verification of flight control software.

"Verification" as used in this report means that the resulting system
functions as intended. Therefore, the techniques described cover the

description of requirements, specifications, design, testing, and

assertion verification.

Flight control software has characteristics that distinguish it
from other types of software. Among these characteristics are syn- H
chronization, distributed processing, assembly code, structurally simple (
functions, and simple data types, The verification techniques recommen- ;

ded in this report reflect these characteristics.
The techniques described and recommended are:

1. HIPO (Hierarchy plus input-process-output) charts

2. Formal specification using SRI's SPECIAL

3. Petri nets

4. Decision tables (as defined by Goodenough and Gerhart)

5. Symbolic execution

The HIPO charts provide a manual, disciplined method for stating
software requirements, defining a system design, and, when used with
decision tables, generating test data. HIPO charts allow for describing
the system and its individual functions and can be used as a basis for
design verification. Since the fabrication of HIPO charts is manual and

there are no enforced standards for theili thoroughness, their value is

completely dependent upon the generator of the charts.

s w,-«-~m»"--»V-«nnx»-;m—~p‘—gr::-vm:%s e P - ngﬁ?gﬂ:-?'—:‘m'k
T IS TR s R et A T A R D R GRS IR RS N

— e o -

e o & e N

The use of HIPO charts facilitates drawing Petri nets, construct-
ing decision tables, choosing test data, and performing manual symbolic
evaluation of logical functions. Petri nets can be used to represent
interacting concurrent processes, but they can become complicated very
quickly. The primary asset of Petri nets is their usefulness in

developing a preliminary design.

Decision tables consist of enumerating each decision (condition)
in a program (Cl, C2,...), followed by each action (Al, A2,...) to be
undertaken, and then a set of test data (D1, D2,...) which will exercise
each combination of conditions and alternatives (collectively called
rules). Since HIPO charts include conditions and actions with the
“process” section, decision tables can be generated easily. Theo~
retically, this technique of manual test data generation will exercise
all sequences of conditions in a programe There are still two major
problems: (1) if loops are involved, there may be an infinite number of
condition sequences, and (2) if "moderate” data values are selected,
errors can still exist which might otherwise be found by stress testing.
As stated earlier, two of the characteristics of flight software are few
loops and elecmentary data structures (frequently just boolean struc-
tures). For this software, then, a tool which automated the development
of HIPO charts, translated them into decision tables, and generated the

test data would be very beneficial.

SRI's approach to verification, as described in this report, is to
formalize the software constructica methodology, thus allowing machine-
assisted verificarion. 1In their formal language, SPECIAL, a system is
described before any considerations are included about implementation.
Modules are formulated as finite-state automata: primitive data struc-
tures are the states, opetations are the state rransitions, and outputs
are compufed from the inputs and final states. The SPECIAL system is
difficult to use, and the authors of this report were not convinced that

the results were worth the trouble.

S b e O e BERR

TN

AT R i WG L

e U il wioe

u
o

)l

{my

Wﬁwwmwywmmwmmwm [T A SR per ey e, & THLTE BE AR TV
el
N

Symbolic execution is used along with user-supplied assertions to

formally verify assembly code in the PLOVER-80 tool. The verification

technique described in PLOVER-80 is similar to, but not quite as

extensive as, that in SQLAB, a verification tool for FORTRAN and IFTRAN.
PLOVER-80 accepts a set of assertion statements and the Intel 8080

assmbly code as iaput, internally generates inductive assertions with

o IS Y PR A T TN ST RN)

new variable names, and produces verification conditions using symbolic

Vi

execution which must be manually proved to be correct.

The good feature of any assertion-based tester or verifier is that

R Ay | sy e W

T

it offers an additicnal means of stating specifications in a module-

readable form. We have found assertions to be extremely useful as

e e v <

execution-time checks during software testing. The bad feature of

R

assertions is that they too can be erroneous, and if a proof of correct-

ness relies rolely on them, they had better be correct.

L en o i

EFITRETHTIAL 1 ¥ [33 NGB 7 T o

7 Bt PV R

o

e

T

e

Purpose: 1.
2.
3.

Capabilities
1.
2.
3.
4,
S5
6.
7.
8.
9.

Boeing Support Software for Embedded
Computer Systems - SCP

Generate loadable code
Support V & V

Support maintenance and configuration control

Automated configuration management

JOVIAL/J3B compiler with multiple code generators
Generalized macro assembler with multiple targets
Generalized link editor supporting multiple targets
Specialized loaders supporting multiple target interfaces
Host computer statement level simulation

Multiple target computer instruction level simulations

Software version comparison at source, object, load levels

Automatic cross reference and flow chart generation

Design Concept:

1.

2.

3.

Open—ended processor structure
a. Table-driven common control program

b. Single interface to host computer

Processors utilize common system routines
Processors interface through common database format
a. Extensible data formats

b. Datzbase management utilities
Machine-independent processor design

a. Preprocessors format machine-dependent tables

b. Special processing routines may be added

[

ER PRI PORRTI e .

[

S A DR A

5k S e s

QR

P W M a s

L

-

el

",

T e R LA AR L

{3
13

P ww"mwvwﬂmm’WWWMMWWWWWMW ¥

R e T L R T e R Y

et MR A

S5

Documentation
1.

2.

Implementation in HOL
a. AED used

b. Machine dependen:'ies isolated and parameterized

Processors:

Global cross reference

a. Global data dictionary

b. Storage allocation map

c. Data block descriptions

d. Procedure called-by/calls list

Flowchart
a. Macro-level JOVIAL/J3B
b. AP assembly language

Functional requirements for SCP are:

1.

2.

3.

4.

Modification of J3B cross-compiler to save descriptive and

set/used information for data variables

Modification of the assembler to process operational
software data and procedure coding conventions and to save

descriptive and set/used information for data variables

Integrate the saved descriptive and set/used information
with output of the linkage editor and source code comments

to provide appropriate formatted listings

Allow text editing of resultant formatted listings

G W A

s WEBI

e

YTV S St

e e e e G TR R SRR SR o ‘%é
s L e - ST RE
: }

e - e T L v —— e e ‘-
b

i e

%

“"Real Time Software Debugging and Testing: Proposed Solutions,”™ Robert %

L. Glass, The Boeing Company, D180-25249-1, -2, -3, September 1979.

This report shows that most real-time software is tested in the

target, not the host, computer enviromment even though there are no

software checkout tools in the target environment. However, since more

than half of the 20 projects surveyed in this report used HOL and since

most errors are in the source code (not in generating the target's

object code or in the target's environment), the emphasis of the
J

proposed solutions is on the host computer environment. To check out

the source code in the host environment, both the language debug

facilities and a software environment simulator must be available on the ;
host.

B Tne 1 GRETTERIA™ " e VIR £ e WA DAY e

For the purpose of designing the J73AVS, only the debug and test

proposed solutions (mot those for an environment simulator) are cri-

tiqueds This set of recommendations can be summarized as follows:

1.

Timing analysis can identify critical areas which should be
recoded in assembly language.

2. Self~-checking code, using conditional compilation,

input data acceptability,

looks for
data storage overflow, assertions
and range checking and provides for traces and dumps.

3. Data contention analysis can prevent timing errors due to

parallel processing.

Audit trails of data and logic traces should be recorded.

5. Fault

tolerance mechanisims provide fcr defensive programs,

A cross-reference 1listing should include structural rela-
tionships, data types, and set-used information. Both 1local

and system-level cross-reference lists are needed.

Anomaly checking such as inaccessible code, undefined var-

iables, type mismatching should be performed.

Structural testing should include logic branches, functions,

and combinations of logic branches.

9. Data tracing, procedure tracing, and formatted snapshot
dumping should be performed such that data is displayed by

name, is properly formatted, and is tied to program structure.

TR e

oty

10, Unsafe programming practices can be recognized, summarized,

and reported.

Pt PR e AN

T T o Rwesavmny | oo ..

I A

y ‘ufj

Ly
a6], 0 i W P

LN gy

4

e I
e R i

QUSSR AT

£ W

g

L bt

R

Sneak Softwave Analysis
Boeing Aerospuce Co.
Houston, Texas

Sneak analysis is a set of manual and computer-aided techniques
for uncovering and predicting unplanned modes of operation. Given
software code, reference manuals, requirements and specification, module
descriptions, flow diagrams, data structure definitions, etc., as input,
a manual encoding of the input is made. Outputs from the Sneak Software
Analysis routines include: nodal set number report, variable name
report, label name report, and mnemonic report. Certain questionable
design practices are flagged such as unnecessary logic and unreferenced
labels or variables. Then a manual verification process is undergone
using the code, output reports, and specifications using a network tree

representation of data and logic flow.

Of interest to AVS's are the set of clues accumulated through case
histories:
Implemented in J73AVS?
1. Unused paths Yes - dynamic analysis

2. Inaccessible paths Proposed for future effort (see

Sec. 6. 1)
Improper initialization Yes -~ static analysis

Lack of data storage usage Yes - performance analysis

synchronization

Bypass of desired paths Yes - dynamic analysis
Improper branch sequencing Yes - dynamic analysis
Potential undesirable loops Yes - performance analysis
Infinite looping Yes - static analysis

Unnecessary (redundant) Set-set-used detected

instructions

Unreferenced labels Yes - label report

Bypassed <variable Yes - static analysis

initialization

e o M o

LU R

SRRttty - b

4
3

ADIR

i ‘
B I R

Lo

X

R Mg e ——

B R i o e e e e e o

The Software Design and Verification System (SDVS)
TRW
Redondo Beach, California

 TERrET

SDVS is an integrated set of non-realtime software to aid in the

N LA AL T

development, coding, testing, and configuration management of avionics

software (primarily DAIS, the AFAL Digitai Avionics Information System).

1ts capabilities are: simulation of DAIS processors, automated configu-

ration management of mission software, automatic control of simulation

runs, editing and processing of data generated by the simulation, and a

JOVIAL-like command language.

w————n

The command language provides statements for driving the sim-

ulation such as assigning values to variables, transferring control,

collecting data, evaluating logical expressions, interpreting post-

processing requests, formatting output, etc.

SDVS requires a J73/1 compatible JOVIAL compiler and a database

management system. It currently operates on a DEC-10.

The facilities for debugging and validating avionics software are:

1. Snapshot/rollback - during the course of a simulation, results

are saved for a subsequent restart.

2. Data recording - statement, transfer, register, instruction

traces; module execution clock times; values of selected

variables traced; mod(: data requested by user printed.

3. Post-simulation run processing - capabilities to sort, edit,

analyze, and output simulation data.

et

'

?
i

i

T

235w e —
e "y T Ag%&?ﬁ%‘h\) e Bl R -~ a2

B o oE S o o et o s At 5 St T T AT e i i o 29 SR

:
H
H
1
H
§
d

Test Coverage Analyzer

Boeing Aerospace Corp.

Seattle, Washington

The JOVIAL J73/1 Test Coverage Analyzer provides segment execution

coverage analysis as an extension to the J73/1 compiler. The extent of
instrumentation: (a) all branch points, (b) all branch poin%s and FOR ‘

L2l

loops, and (c) procedures only, is user-specified as a compiler control

card option. Post-test analysis is performed by support and system

T

routines, identified by the user at link time.

An example of the Test Coverage Analyzer's output is:

Procedure Name: APROC

Stmt. No. Count Stmt. No. Count Stmt. No. Count ;
1 3 3 10 7 10)
10 0 12 10 21 3

Procedure Name: DRIVER

Stmt. No. Count Stmt. Nc. Count Stmt. No. Count
1 1 4 0 7 500
12 500 17 20 19 480
25 10 31 i

The resource impact from using the Test Coverage Analyzer is:

l. Instrumented programs are 10-30% larger than uninstrumented
programs. For procedures only, the overhead in size is 0-5%. 3

The exccute-time library is 1100 words. y

2. Execution time is 40-60% longer for branch point analysis, x
75-.30% for branch point and FOR-loop analysis, and 10-30Z for §;
procedure analysis. Té

i

3. There is no significant size or time im;-ct on the compiler.

il lll Gl

The only limitation of the Test Coverage Analyzer is:

no more than 1000

segments pe. compilation unit may be analyzed. This limitation may be

easily increased.

B-15

AR SRR Dol o RIS W B e

ki

o=
=

IR NA R L

gl

A System for Incrementally Designing and Verifying Programs, Vol. 1
Mark S. Moriconi

University of Texas at Austin

and USC/Information Sciences Institute

NTIS Report ADA055501

This report, a doctoral thesis, presents a description and

usage-by-example interactive dialogue of a verification system which

differs from most other systems in two ways:

1. It supports software design and verification through

incremental stages with minimal reprocessing of changed

modules.

2. It provides a very friendly user interface with a respon-

sive, hierarchical command language.

The system, called SID, is LISP-based and runs on a PDP-10
computer. Most of SID is writtem in Reduce; the rest is written in

UCI-LISP.

The basic features of SID are to accept designs of modules in
terms of assertions, determine what the unresolved external references
are, and then automatically generate verification conditions (VC's).
The system generates VC's for paths that are completely defined,

igroring those that are not. Thus, programs c¢an be a mixture of

specifications only, complete program text, or some in-between state of
development. Verification is performed by an interactive theoren
prover. Each VC is proved separately. When design changes are made,

the system determines what new VC's need to be generated and proves only

the new ones.

The aspects of SID that are interesting in the context of the
J73AVS development are the system's determination of what has been

changed in the software being analyzed and the conversational command

B-16

laga s

y

b}

language. The SID commands are: Add, Delete, Edit,

Explain, Help,
Print, Prove, Restore, Save, Suggest, Translate, VCS, ?E,?,7?. Most of

the commands have subsequent levels of detail, prompting the user for

more information as it is needed. As the Suggest and Explain commands

imply, SID is capable of providing a certain amount of guidance for

directing system activities and giving explanatory comments.

B~17

B

LT DA

A

yon
i‘i"ﬁi‘:&‘ W |

GV i

A

il

b

b

NI RIN AT

PEPASSL M N e

R Bt el

i

it Ry e

o

s

i

§ A DT IR P I R W

e R

o

T

by o g ity mmmmm‘mmmmmmmmmmmm TN

T R A T T T T — S . - —
e e A N o T e B e T T ST e st mimiin T T e

of .
Rome Air Development Center y

i

Frr——
LA

T Ry

L U

RADC' plans “and executes nesédich, development, test and
delected acquisition programs in suppont of Conmand, Control
‘Communications and Intelligence {C31) activities. Technical

o e

and engineering suppornt within areas o4 technical competence
A8 provided to ESD Progham 0ffices (POs) and other ESD
elements. The principal technical mission areas are : .
communications, electromagnetic guidance and econtrhol, sun- 'i
veillance of ground and aerospace objects, intelligence data g
collection and handling, information system Zechnology,
Lonospheric propagation, solid state sciences, microwave
% bhysics and efectronic reliability, maintainability and
. compatibility.

B

pr—

N

