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ABSTRACT

The results of a study of unsteady pressure distributions in a two-
dimensional cascade of blades caused by spatial inflow velocity varia-
tions are presented. An existing incompressible, inviscid theory which
employs a simplified vortex model in conjunction with the assumptions of
thin airfoil theory has been used by Henderson (16) and Bruce (17) to
derive expressions for the unsteady response, which includes the cascade
unsteady 1lift and pitching moment. An alternative way to obtain these
unsteady response parameters is to establish the expression for the
unsteady pressure distribution. The unsteady lift and pitching moment
are calculated by direct numerical integration over the unsteady pres-
sure difference across the airfoil chord. Comparison of the computed
theoretical results using these two approaches shows satisfactory
agreement except when the wavelength of the velocity variations
approaches the cascade blade spacing. Good agreement is also observed
between the existing measured and predicted data. The effects of design
parameters of a cascade, such as space-chord ratio, maximum blade
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CHAPTER 1

INTROLUCTION

1.1 State of the Art

The turbomachine is a significant component in today's technologi-
cal society. For example, this device is used almost universally in
power generation and in aircraft and marine propulsion.

In the real world, the flow in a turbomachine is time dependent;
however, most designs and previous rescarch in turbomachines have been
conducted on a steady or time-mean basis. Dean (l) has shown that the
flow relative to the casing of a turbomachine must be time dependent or
unsteady if energy is to be transferred between the fluid and the rota-
ting blades. Also, both spatial and temporal variations can occur in
its inflow velocity as caused by the wakes of upstream blade rows, inlet
flow distortions, wall boundary layers, etc. The motion of the rotating
blades through these spatial and temporal velocity variations results in
unsteady pressures with forces and moments being generated on the blades.
The stator blades, which interact with the moving wakes of upstream
rotor blades, also cncounter an unsteady flow.  The existence of these
unsteady pressures leads to three undesired effects: blade vibration
(3}, radiated noisce (3], and performance desradation (&].

These undesirable effects are a serious problem. The emplovment of
larce numbers of turbomachines with increasing power transmissions has
resulted in intolerable noise and vibration levels.  Considerable effort

has been and continues to be devoted to the understanding of such {lows
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and to provide methods with which the turbomachinery designer can pre-
dict the unsteady responsc of the blades as a function of the design
parameters. One aspect of this effort is the study of unsteady response
of a turbomachine to spatial velocity variations. Various mathematical
models are employed to obtain the theoretical solutions. These models
usually replace the airfoils by a distribution of vorticity on the
blades and in their wakes. The strength of the vorticity and the
resulting induced velocities are then determined to satisfy the boundary
conditions on the surface of the airfoils. This specifies the unsteady
pressure distribution and, hence, the unsteady lift and moment. Similar
solutions are also obtained by representation of blades by distribution
of potential flow sources and sinks and doublets (5, 6). The earliest
unsteady analyses are performed for an isolated airfoil. Von Kdrman and
Sears (7) and Sears (8) determine the unsteady lift of an isolated flat
plate airfoil subjected to a small sinusoidal velocity disturbance nor-
mal to the chord. The solution of this problem results in the familiar
Scars response function. Kemp and Sears (9, 10) extend the original
Secars analysis for an isolated airfoil to calculate the unsteady lift of
the rotors and stators in turbomachines. This method considers only the
unsteady interaction of the other aivfoils in the cascade. The unsteady
interaction and, hence, the effect of cascade spacing are neglected by
Kemp and Scars.

Althouch the response of an airfoil to a chordwise disturbance is
usually of sccond order comparcd to that of a normal disturbance, there
are situations in which the configuration of a turbomachine blade row is
such that the response of the airfoil to the chordwise distarbance is

nearly equivalent to that of the normal disturbance. Horlock (11)
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reported a solution for the unsteady lift and moment of an isolated flat
plate airfoil subjected to a disturbance having components both parallel
and normal to the chord. The solution results in the Horlock response

function and has a form similar to that of the Sears function for a nor-

.- - e g Tre—— ﬂq—wwi
i
'
-
.
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mal disturbance. ;
Holmes (12) and Naumann and Yeh (13) extend the previously developed
isolated airfoil analyses to consider the effects of blade camber.
Nauman and Yeh present a series of design charts which show the varia-
tion of unsteady lift as a function of blade camber, stagger angle, and
reduced frequency and assume the turbomachine blade can be represented
by a single airfoil. Holmes further summarizes these results and
extends them by solving the generalized disturbance case for the pres-
surv distribution and the pitching moment.
These analvses are of questionable validity for representation of a
turbomaciine since they do not account for the effect on a given blade
of [luctuations occurring on other blades of the same blade row. This
cascade ¢ffect has an influence on the unsteady force acting on a blade
o row, particularly at low values of space-chord ratio, that is, high
solidity, and low values of reduced {requency.  The analvsis of a

cascade of airfoils has been performed in o manner similar to that of an

L] '.“ ., . N )
? isolated airfeil, but it includes the effects of adjacent blades and
!(
3 their wakes.  Sceveral theoretical analyvses, Whitehead {M). Schorr and
W .
v Reddy [15), Henderson and baneshvar Ll()) , and Smith [l/), have been
g formulated to predict the unsteady vesponse of a thin, two-dimensional
' o cascade of airfoils operated in an inviscid, incompressible, spatially

varyving tlow.
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The analyses of References (14] and (16] use different representa-

tions of the blade in the cascade. In Reference [14), a finite number
of vortices, five to eight, are placed on ecach airfoil, wherecas in
Reference (16) a continuous distribution of vorticity is used on the
reference airfoil, that is, the one on which the unsteady lift is calcu-
lated, and a single vortex is used on the adjacent airfoils. In both
analyses, a continuous distribution of wake vorticity is used for each

airfoil. The results of References (14) and (17) produce identical

results but assume the cascade to be composed of flat plate airfoils;
that is, the effects of camber and angle of incidence are neglected.

The analysis presented in Reference (lb) can account for the effects of

camber and angle of incidence.
Henderson's analysis [18) predicts a resonance effect, that is, a

' sharp change in the unsteady lift when the disturbance wavelength equals |

. 3 . . .
the blade spacing. Bruce (19) further extends this theory to give an
expression for unsteady pitching moment.
In recent years, with the development of instrumentation to conduct :
|
: . . !
dynamic measurements, some experimental results have become available [

for isolated airfoils to check the validity of the predicted results.

However, very few dircet experimental results, such as unsteady pressure i

. distribution or lift, have been available to check the existing theo- %
H

retical analyses of a cascade of airfoils.  The lack of experimental i

data is attributed to the complexity in producing a suitable flow and E

the measurement of unsteady parameters.,
. An experimental result has recently been published by Gallus
{

et al. klO] for the measurements off fluctuating pressures on the midspan

profile surtaces of a cempressor blade row.  The shapes of the wakes or
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inflow distortions produced by upstream stage are also measured.

Another typical experiment has been conducted by Satyanaravana (BOJ. An
instrumented two-dimensional cascade was mounted in a gust tunnel which
produced a sinusoidal flow onto the blades. This enables the fluctua-

ting lift to be measured. The results of these two experimental studies

; can be an indirect check of the validity of the present analysis.

! 1.2 Relevance of This Study

Using the theory developed by Henderson (18), the present study

undertakes to solve the problem of unsteady respense of a turbomachine
to spatial velocity variations. In Henderson's analvsis, the unsteady
response of a cascade of airfoils is described in terms of unsteady
1ift. Mathematically, this is accomplished by evaluating the integrals
that result from the integration of the unsteady pressures over the
entire airfoil chord. Similar procedures have beea used by Bruce {19}
to determine the unsteadv moment. The expression for unsteady pressure
distributioen, however, is left in implicit form in both of these
studies.

; The unsteady ittt and pitching moment occurring on a turbomachine
blade row can be determined {6 the unsteady pressure differences across

' ~i the airfoil chord are known, Development of an expression for unsteady

! pressure distributions is needed and is reflected in the recent comment
by Sisto (2):
' "what is still needed, at the present time, is a general

| ; treatment that handles both chordwise and transverse gust

componcnts and output;s the unsteady pressure distribution
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from which the 1ift and moment mav subsequently be obtained
n

by quadratures.

Such pressure distributions are also required for the prediction of

turbomachine radiated noise.

1.3 Objective of This Study

The objective of the present study is to develop an explicit
solution for pressure fluctuations on the surface of a turbomachinery
blade row operating in a spatially varving disturbance flow field, for
example, one which is causced by an upstream stationarv blade row or
inlet distortions. This is to be accomplished by ceasidering an invis-
cid, incompressible flow through a two-dimensional cascade with moticn
relative to the disturbance flow. A thin airfoil model which neglects
the intluence of airfoil thickness is used, but the erffects of airfeil
camber and angle of incidence are included.

The results calculated from the corresponding expressions in
References (LS) and (LQ} for unsteady Jlift and moment are compared with
those obtained from the present study. Comparisons with other available

experimental results are made and discussed.
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CHAPTER 1I

THEORETICAL ANALYSIS OF UNSTEADY PRESSURE DISTRIBUTIONS
FOR A CASCADE OF AIRFOILS

In order to develop an expression for the unsteady pressure dis-
tribution and, hence, the unsteady response of a cascade to an inflow
disturbance, including unsteadv 1ift and moment, a thin airfoil thcory
is employed. Since a cascade of airfoils is considered, the contribu-
tion of the cascade effect or blade-to-blade interaction must be
included along with the effect of camber and ansle of incidence.

As stated in Section 1.2, the method of analysis and the mathe-
matical model employed in this study have been used to proedict the
unsteadv lift and moment (lS, 19). The contributions ol the present
study will be the development of the expression for unsteady pressure
distributions and the subscequent calculations. However, the complete
analysis in obtaining this solution is presented for the sake of

completeness.

2.1 Flow Model and Mcthod of Analvsis

As stated in Chapter T, the problem to be studicd is the unsteady
prossure distribution on the blades of a cascade when the blade row
cxpericnces a spatial velocity variation in the inflow, for example, the
nonuni form flow caused by the wakes of upstream blade row.  The [low

mode! and method that will be emploved in this analysis is a Singularity

Vortex Method which has been broadly used in the thin airfoil theory.
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It is necessary that the disturbance flow ficld be considered
before the problem can be analvzed. The flow field is assumed to be
two-dimensional, inviscid, and iacompressible and represents a develop-
ment of a cylindrical surface, as shown in Figure 1. This genceral dis-
turbance flow field represents the passage of a rotor through the wakes
of an upstream stator blade with a swirling mean flow. These wakes have
a maximum velocity deficit of 2wd and are transported over the rotor by
the velocity wm, the average time-mean velocity between the inlet and
exit of the rotor, relative to the rotor blades with the wake prescent.

The velocity deficit w, represents the perturbation about the mean

d
velocity Nm. The description of the wake deficits shown in Figure 1 can
be accomplished using Fouricr serics representation. From this analysis,
the contribution of cach harmonic of the velocity variation and subse=
quently its contribution to the unsteady responsc of the blade can be
determined.

The disturbance flow shown in Figure 2 represents a particular case
in which the rotor inlet absolute velocity is axial and varies
sinusoidally with wavelength ¢ in the dircction which the blade row
moves.  This rlow model represcents the fundamental harmonic of the
Fouricr representation of wakes {rom upstream stationary blades and can
theretore be extended to the soneral disturbance flow field.  The
disturbance flow is trausported throush the machine by the
circumfcerential-mean axial velocity (',x and is fixed with respect to
solid boundarics.  The blade row moves with o constant rotational
velocity U, The circumferential-mean velocities relative to the blades

at the intet and exit are shown in Figure 2 as W, oand W, with \'Jm baeiny

[

their mean value.  The geometry of the cascade is desceribed by the
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Fijure 1.

General Disturbance Flow Field.
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Figure 2. Cascade of Alrfoils Moviog Throuch a Disturbance Flow Field.
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parameters commonly used in turbomachine design, the stagger angle &,
spacing or pitch s, chord length ¢, and maximum camber ym. The charac-~
teristics of the disturbance flow are described by the reduced frequency
w and A which will be discussed in Section 2.2,

By considering the velocity relative to the blades, either a stator
or a rotor can be analvzed. However, the presented case will be for a
rotor. The relative motion of the disturbance or velocity variation and
the cascade consequently causes the unsteady response on the blade. In
this analysis, the disturbance is considered as a perturbation around
the time-mean or steady velocity. By virtue of this assumption, the
analysis becomes linear and therefore makes the solution linearized and
suitable for sunmation.

According to the Singularity Vortex Method in the thin airfoil
theory, ecach blade in a cascade is represented by a vortex sheet, that
is, by a scrices of vortex lines with a continuous distribution of vor-
ticity. Because of the nonuniformity of the inflow and the effects of
neivhboring blades, cach blade leaves a wake composed of continuously
distributed vortex sheets extending from its trailing edge to far down-

stream.  However, the present analvsis emplovs a simplificd model which

in o shown dn Vicenve 30 The vorticity on the reterence blade on which the

TSI REITE A TSRS srairibori oo din to o be caleulated is considered to be

Conti Do s N oo it chord, whereas that of the adjacent
. oot i gt o pointea. The shed or

. ' o oL i s o dered e a continuous shoeet
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Vortex Representation of a Cascade,
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This flow representation greatly simplifies the subsequent mathematics

and is justified on the basis of results obtained by Tanabe and
Horlock (21), who use a similar model for the steady flow case.

To obtain a solution to the problem studied, the following
tions concerning the flow field are made. These are similar to
often emploved in isolated airfoil theory for the unsteady flow

They are:

assump-
those

problem.

(1) The flow is two-dimensional, inviscid, and incompressible.

(2) The blades are represented as thin airfoils by placing

bound vortex sheets along their camber lines. The lif

t

is small so that the bonndary condition can be satisfied

on the chord line rather than on the camber line of the

airfoils.

3 The perturbation disturbance velocities u, and v
‘ d

d

parallel and nommal to the chord, respectively, are small

as compared with mean velocity W past the airfoils.
m

(%) The circulation of the whole flow system remains zero at

any instant of time. This is a statement of Helmholtz

's

Vortex Theorem which says that a fluid which is initially

irrotational will remain irrotarional unless acted upon

by an czternal rotational force,

(5) The free or wake vorticity which is shed from the trailing

cdee of airfoils travels with the mean relative velocity

Wooof (he Tow and forms a vortex shoeet alony the chorg
m

direetion,

(6)  All quantitics representing the unsteadiness vary as

harmonic tunctions of time.

{
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While these are very strict assumptions when compared to the actual
case, it is possible to use the results of the analysis to establish
trends which demonstrate the variation of the unsteady response with
various geometrical parameters. Thus, the present analysis can be
employed as a design tool.

The mathematical analysis then follows the procedure utilized by
Blisplinghoff et al. (22) for the case of isolated airfoil, but it is

more complicated because of the presence of the additional blades in

the cascade.

2.2 Representative Description of the Disturbance Flow Field

To obtain a solution for unsteady pressure distribution on a cas-
cade, it is necessary that relations between the disturbance velocities
and inlet flow, the mathematical expressions for flow disturbances and
definitions of the frequency parameters, be established.

From the geometrical considerations in the general disturbance
flow field, Figure 1, the resulting components of the disturbance

velocity vy normal and parallel to the chord can then be expressed as

\2 = W cos ¢

and

u, = w_ sin ¢ .

d d

The negative sizsn arises due to the selected coordinates. In addition,

Dy w'»
o ;: L
a\q‘} e

e
-

—
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t where ¢ = 1807 - ¢ - 5, 2 being the exit flow angle from the stator row

and ; being the stapger angle of the rotor blade row. Thus,

RT3

Vd = _wd sin
| and
| ud = -wd cos . . (1)
If 3 =0,
V\l = -wd sin
amd
ud = w\1 cos . L)
!
: The consideration of the Jdistur velociby ocomtonent S

parallel and normal to the chord facilitates the =solution a1 this ypron-

lem, and it is possible to add the respective solutions since the modeld

! . .
, emploved is linear,
'
Following assumption (6) in the proevious scction, which states that
N fluctuating quantitices are agsumed harmonic with time, 1t Qs proctical
.

to employ a complex representation of theee quantitices.  The disturbance

' velocity redative to the moving rotor blade is then harmonic witn
. . it . |
A respect to time U oand can be written as wl : wll- . e nevsal co-
8 S
. : + .
ponent of the disturbance velocity alons the blade \',(‘; SO ovcurs with
N ° ¢
L
: g the same [voquency v oas vy and can be written as
. [8
A
H
[}

e, PASETTRE X Vhe . P
A




. e 1
¥

. ' AN e e :~ v ¢

16

s . . + .
The variation of disturbance velocity along the chord, the x direction

(-1 = x < 1), can be expressed as

vd(x ) = v e s (4)

where u is a complex number, ¥ = o + i§. For example,

(1) if &8 = 0, the disturbance has a constant amplitude over
the airfoil;

(2) 1if 45 < 0, the disturbance amplitude decays over the air-
foil;

(3) it 1+ = v, the disturbance is termed convected and is
trunsported over the airtoils with a velocity '.v'm: and

(%) it « # 4w, the disturbance is termed nonconvected and is
transported over the airfoil with a velocity different

rrom W .
m

A freoquency paramcter v is then detfined as

and represents o ratio o the chord to the disturbance wave length alons

thie chord.  Equation (3) can then bhe written a

o) Vo < . ()

v, - e, that da, o 0 and =0, the distarbance is convected and has

A constant ampiitudes Thas,




—
~ U MV U N . e —— .
17
. cX
lv(t T
Ra

+
(vt - Lx)
d4° ’

where o = we/2W  is the reduced frequency. Most studivs of unsteady
Wl -
flows consider the disturbance to be of this form. In this analvsis,
however, the general expression for a nonconvected disturbance of con-
2 L

stant amplitude will he considered, that is,

Similarliv, the chordwise component of the Jdisturnance velocioy u, can

3

u

also he written as

Lguations (3) and (7). respectivels, can theretore be used to depict the
,

distuarbane e tlow velocitios normal Lo and »arat el to the rotor blades

an il lustrated in Vioare i

The coner Tioed roaoo ol srcnce sy - can he related to the wave-—
1 L o e tar .o alon Lo cnord Colbe wavelon ot ot the dis-
-
Pars cce 0 o Lorver oL e an the i s Bl ade prow, From the ceome-

(8
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where ¢ is the stator spacing or wavelength in the dircction in which

the rotor blades move. Thus, the generalized reduced frequencey )

becomes

2l
ac t ¢
A== = -
2W L2y
m < n
sin + ¢
os B 2 ?

whore Wt is the velocity at which disturbance is transported over

blade.  The reduced frequency o, that is, when Nt =W , is then
m

REAN
m < TC
W= = T s = - =
W2 L
m <

from Egquation (9, where o is related to ¢ by Equation (8).
< :
An additional frequency parameler occurs in a cascade and is

so~called intra-blade frequency o

This trequeney pararcter account s for the variation orf the flow f
Blade to blade din the cascades An extreme situation occurs when
spacing oot the cascade is some intoger multisle of the wavelens
the dicturbance veloeity, the iotra-blade freoaeney tor this ease
ot o pmttiple oy O vy Blade willil o then experience the same
tarbocn o ve e 1ty il sdven time s A will be discussed in Chapt

thiv corr soand s to o resoaance point where the unstoeady olftect ¢

tribatad rres cach blade din o cascrnde gecamulates and becomes

9

the

(10)

the

(11)

rom
the
th ot
is an
din-
1o

an-
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!
' significant. 1In a vibrating blade, 1 expresses the relative motion of
i
i . . . .
' adjacent blades in the cascade. The negative sign appears as a result
!
of the coordinate system chosen in Figure 3.
The relationship between the intra-blade and the reduced frequency
for a nonvibrating cascade can be found by substituting Equations (8)
and (10) into Equation (11). Thus,
2
Jw cos B s
T = - = (12)
sin ? ¢
. : [ n° - . : . .
or, when 2 = 0, that is, » = 130" ~ 7, the relation in Equation (12)
becones
T = - . (13)
Thus, tiwe intra-blade freauency 1 is proportional to the reduced fre-
queney o provided that the cascade is rigid and nonvibrating.
2.3 Mechanics of the Flow Ficld
Since the present analysis employs an approach similar to that in
-4
the thin arifeil thoeory, where the flow situation is generally simulated
by an appropriate distribution of vorticity, the unsteady pressure dis-
. tribation on airfoils can be determined only when the vorticity distri-
' ]
1 bution or cireulation is cvstablished.  This is accomplished by, Tirst,
.I
. a formulation of the induced velocitices on the reference blade using
i,
the Loaw of Diot and Savart (\_"}) for the cascade ccometry and then the
application of Sohnoen inverse formula (.Io} to obtain the expression tor

vorticity distribution or circulation in terms of induced velocity,

MR

With the use of the inviscid Fuler's cquation of motion or the monentuns

——————
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equation together with the vorticity distribution, the unsteady pressure
ditference along a blade chord can be written as a function of the
induced velocity.

When the induced velocity obtained from satisfying the boundary
condition for the reference blade, which in this analysis is a nonvibra-
ting or rigid airfoil with camber and angle of incidence, is inserted
into the expression, a closed-form solution for unsteadv pressure dis-
tribution can finally be derived as a function of the disturbance char-

acteristics and the geometrical parameters considered in a cascade.

2.3.1 Foroulation of Induced Velocities

From the Law of Biot and Savart and the cascade configuration as

specificd in Fipure 4, the induced velocity dw  at a point x_ en the
- 0

t

. . . - ) . th
refercace blade, due to an element of circulation (yldx ) on the n
non
blade ol the cascade at time t, can be expressed as
e () = .
R S
+ ns sin )7
R oo e decormypesed into the normal and chordwise induced velocities
e it respoct to the chosen coordinate:
V) [l
| v (x ,tins cos dAn
1
I e B B ———
(] i w1 . .. . . =
! (s cos )7 4 (2 - 2+ ns sin )
n D
dind
NN N - s sin )d
| non 1 n R
Jx”( ) . - . o - . .
! To(as o con )T+ (- x4+ s osin )
i D

o =3
i ~/~« “."""»M
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From Figure 4, it can be assumed that the vorticity at a fixed dis-

tance from the leading edeoe of each blade in the cascade is of the same

amplitude but with a constant phase difference v from blade to blade.

Also, utilizing the assumption that unsteady quantities vary harmoni-

cally with time,

int — i(ve + nt)
Y X t = X,t)e = 3 N)e
(5ot = v () KOk :

— ivt
du\J ('\p) = duo(}._))L

b

and
- ivt
14 X = X Ay
d\'o( I’) dvo( P)L \
wvhere © = ~(29s/.).  Thus,
- - ing
! y ()e as cos ] dx
O
du () = = 5 e e
T (s cos )T 4 (k0 - x4+ s osin )7
(ns cos )7 4 Gy - x )
and
im(x1 - xp + ns osin '.)nl:\’n
- 1
7 ] '\[”()'.)t‘
dv (T\')) e .
Al “ . - . . -
@ (ns cos )7k (:\'.] - :\’l + ns sin )
1 )

These expressions give the velocity induced at o point :\'p on the

ence blade by an clement o circalation located at a point x,oon

(14)

(1aa)

(15

)

robeg -

th
the n

blade and can be intevrated from the leading edee and along the wake of

the n b Blade to obtain the total velocity induced at :<p. Betore

T PP s St - — O G TSP PRI W 1A L gy b uer

this
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can be done, however, it is nccessary to relate the wake vorticity to
the circulation on the blade,

Consider an element of wake vorticity of the reference blade of

—_— ivt . . =
strength i (x,t) = T, (e which, from assumptions (5) and (6), is
W w
harmonic with time and is transported away from the blade with velocity

W in a direction parallel to the chord. Then, for any location x > ¢
a

downstream of the trailing edge,

buringe an interval of time St, the total circulation on the blade

chanees its strength by

dv . .
0 v d (i, L\iL) L ; ),', vt \
—— =~ (e Sto= Ivi e :
du dt o ’
whore
c
r () vy (x,0)dx .
0 0
O

This chuanee in tolal circulation results in an clement ol wake circula-
tion which is shed at = = ¢ and moves downstream a distance Wm\ft in
iz L. The wake circulation is of opposite sign to the chanee in cir-
calation on the blade by the Helmholta's Vortex Theorem as stated in

ascumption (4) . Theretore,
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t - ¢
il e TS TvC
0 i - e r
W 3t T :

Thus, the amplitude constant ?0
w
an expression for the strength of the wake vorticity:

iv(c - x)/‘.\!vn
v, (x,t) = - -— e ' .
W W
m
From the statement of the model employed, the vorticity on the
th . . . . .
n blade is concentrated at a chordwise point x . while the vortic
el
in its wake is continuously distributed as shown in Figure 2. The ¢
. th . .
culation on the n blade is related to that on the reference blade
- .oint . . , . . .
N from Equation (l4). At this point, the coordinate axes
I C
- H hd : + ) I
transformed to midchord of the reference blade by x = (2x/¢) - 1,

. + L. . . - .
wiiere x , the dimensionless coordinate for the reference blade, vari
from -1 to 1.

Substituting these relations into Equation (15) and integrating
from the leading edge to infinity far downstream gives the total

. . th . +
velocity ioduced by the n blade at the point x , as
I

N
T TCR .

: ,
X = N - |
0 p hus © by s ‘ A

and

in Equation (16) is found and leads to

(17)

ity
ir-
by

are

es
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¢ .
‘ - + O ‘ -1 +
T {x = = - + — ’ o f 4
| o P s (\ \) P . ( \)d . (18b)
J
1
where
P
. . ce (o] 1.
A = circulation cocfficient (= — ¢7) ;
= reduced f oncy (= & .
w = reduce requency (= EE*) ;
M
o+ + - . . . .
AN C), v (x c) = functions relating the location of the blade
. . +
vorticity and the point x
and
+ . .
A = dummy variable along wake .
. . . . +
The total velocity induced at the point x . by all of the blades
i can be found by taking summation of Equation (18) from n = -» and
n = oo. It oig assumed that the vorticity on the reference blade is con-

tinuously distributed rather than a concentrated vortex of strenpth FO.

' Thus, by writine :-;+P s .\'+, Paquat ion (18) becomes
' i
]
;_1 o i_l n.} o ]
A I — i ‘ | i
+ O T + dan e < | i + L+ ;
“U( ) - - ;.', 1 + é—‘t a(s L‘) + e 5 ';/_’J + Zl JI L 8 (\ \)d~ !
Y i [ N
Sy ~ |

!
i
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;_(K+) 1 v, (x 1)d*{ 1 wh Siwh gyt
> S -
[§] 2 (x - x+) im (A+ _ <+)
-1 1
— _l ®
r
) v+
T 4iws Z+Z P c)
) l
_1 © (oo
wh ¢ iwA + +
+ s Z+Zl J p(x",)dN .
— 1) 1

2.3.2 Unsteady Vorticitv Distribution and Circulation

. s . . . - + .
To determine the vorticity distribution yo(x )y and the total circu-

™

lation T the Sohngen inverse formula is employved, which states that,

if
1
1 AR
oy =L b s
TR
-1
then
1
.2 [t-o [l 45 a@) -
£ = \/l-i-n JIT7 ooy s o
-1

where £(0) ia the desived unkoown function. This leads to the followine

expression for '\(0(:\' ):
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+
St o2 -t Lrxy vt pdxy
+
© N 1+ x T 1 - x+ (x+ - ¥+ )
N 1 1

L2
b
o E_L ua\ 1 ST o
; 4.
2 /l—x"-‘\"" '—"{ /'Il'\ >\L( -i.a +
RN AN 3 A B Y St BRI
'\’l+.\"/——"—JQJ \/l—\l'
|- 1) -1 1
+.
R R Q
v ¥ d.\l . (1')
(x - X l)

galvy the normal induced velocity v () is considered in this expression
° ° Q

. - + L . . . .
tor v {(x ) bucause the intflucnce of the chordwise induced velocity
0

+ . - . . _ ,
u (= 1) is of a higher order and is therefore neglected {]t\}.

(8]
By interchanginge the order ol integration in BEquation (19) and

.‘, . +
Y. v (x) becomes

- . - - . ’— +
introducing the functions (0 ) and 1y
¢ X 0
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where the quantitics ¢ and b represeat the position of the concen-
¢ O

trated vortices of the adjacent blades and g and h, describe the posi-

tions of their shed vorticity,

. i R + + + -1 L .
i The products of the form ( (r - x l) (x - x 1)) , which occur in
Equation (20}, can be written as
o rf )
—— b S S RSO NS SN ¢
i + + + + V¥ n N )
r - x X - - 1 - x s~
1 ( l)(\ 1) (r \) l(\ 1) (l \I.)J
|
Substiturion of this relation into Fquation (20) allows the integrals
4‘ wilh respect to ! to be evaluated using inteeral relations listed in .
’ .
Appendiz By However, the complex quantitics ¢, h o, By v and h\ . which
¢ (™ A .

have the torm
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n ~ns i’ ns . N
' go=p+o—=p - i - = (p + -~ sin 1)
; P ia ¢ ¢
and
Y . i Al ) N
n . 2ns -0 2 N . 2ns -
h =p->=p+i"7 ¢ = (p + == sin 7)) + i(-- cos ) ,
p ib C ¢ ¢
‘ + .+ .
whiere porepres.nts X a oro , must be examined to assure that thew
¢ i -
I : o L2 2 .
fulfill the mathematical restriction that ‘¢ 07 and {h 1= > 1, that is
P’ P
Al Al ¥ = ) 3
e = 4 S pT o+ Apn vowin T+ 4nT 1 . (2
Y ) ¢ 8

This condition requires that the mavanitudes of o and h o on the complex
i’ ¢

NN

plane be Larser than unity as illustrated

For p = x o = - ., that is, coasideriag o and o, Lguation (21)
- - S L

becomes

s s 2
. L. 2.2
- 2n osin L 4+ 4o () -1 .
C N

P

The solution for this inequality is

'. s b (sin 7 + ~/sin2 L+ 3) forn

An ’

i
—
-
w
-

.

-

1 (sin . - ~/:;in" o4 3) forno= -1, -2, -3, ...

—~

[]

" -4n

A

"\ . ot . . . .

For p : ,othat is, consideringe o and b,

J n RN \

1}
Z‘ + s + LS

A FoAn iin \ + 4n 1 .
n I n «
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Fipure 5. Complex Representation of Cascade Functiouns ¢ and h‘.
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Prom this cupression, the total circulaticn on the reference bilade
can be o obtained by ointesration from the leading to the trailing edee

af the airroil. Thuas,
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wilere the torms (Il, C,, DL' and D, are cascade funcrions detined as
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Rearranging this cquation yives the total circulation U on the i
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refrerence blade: j}
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where M is the cascade function:
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The steady part or time average of the vorticity distribution and
circulation which will be needed to solve the problem can be found by
making usce of the linear properties of the analvsis. Thus., by letting

W o= 0, the steadv vorticity distribution

+ . -
;o () is found from
o

Equation (21):
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wh v the dndiced velocity v o)) and the total circulation {) hoave bhoen
o ‘
roeoboocd by thoedir oteady corponent s v o)) and U , respectivelv,
9 i .

Podbowiar the same procs dare in obtainine BEquation (29, that io

.

b dtntecraticn from loadin: cdee to tradlin g odee of the airteil, the

stevigs total cdreanlation con e be obtatned. Henee

.
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2.3.3 Unsteadv Pressure Distribution

From the assumption (2) made in Section 2.1 and the Euler's momen-
tun cgunation which links the kinematic flow with dvnamic conditions, tne

basic relation between the Ylow velocity and pressure t1or the flow ficld

1s louitd Lo be

[SEEE

Since the thin airreoil theory is emploved in the analvsis dand since
Lhe unateady response of the airtoils to the Tlow condition as stated is

of ultimate concern, the expression tor unsteady pressure along the air-

¥

foll s oiven 1o a torm of pressure diffevence.  The pressure difference

Soois delined as the diffeorence between the static pressure on the suc-

tivn and pressure surtaces of the airlfoll, p(_) and p(+). respectivelv,
he distribution ol the pregsure difforence can then he determined
}
if be subtraction of the cquations written for suction and pressure
]

airtaces . Thus,

<
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where the velocity q is the sum of all the velocities in the x direce-

tion, that is, the instantancous chordwise velocity. Therefore,

Geoy = Wy Tugt t_;—
and
y o (x,0)
Ty =W Ty T —L—_’— ’
whare Uy is the disturbance velocity of order - parallel to the chord

as described in Section 2.2, v (x,t) is the tetal vorticity distribu-
Q

tion, and W is the steady mean velocity,  Equation (26) then becomes

Taking the orisin of the coordinate svstem at the airtoil midehord with

itn chord lTencth ¢ cqual to two and inteprating this expression from the

R L R + + .
leading edee of the airvtoil to anv location o, -1 < x < o, permits the

procaure ditterence to be siven in o tor o the vorticity distribution

cn othe virtoil,

+
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1
; t S . ]( -+ +
- L) SN+ u ), ( L) oo 3 (x L t)dx
M d o o O
! i t
\
' -1
- 7
' Adsnnine the total vorticity to be composed ol o steady vor-
Yo,
t
tivite plos an nusteady vorticity Cothat dis, 3 of order L the
0 : [ O
4 u

Pincariced torm of ansteady pressare Jdidverence becomes
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o+ + + |
~-Ap(o ) = me\xU(J LB) + ST () +

L
3

where only the unsteady contribution to pressure difference is con-

sidered. Again, using the assumption that all the unsteadv quantities

are harmonic with time,

- + — iy
Ap(o o ,t) = .Xp(u+)e1)t

L3

and

the unsteady distribution of pressure difterence can be written in terms

of its amplitude.  Thus,

+
J
U U S o+ + 13“[ —
~Ap( ) = »‘\‘vm(”( ) ‘“d(' >10~(~ ) + Y )0(‘\ Ydx .
S J
-1

The intesral in Fquation (26) can be deternined by integration of

Eguat ton (21) between the Timits -1 and o

. With the relations from

Appendix B, Bguations (B=4) and (B-9), this integral can be written as
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Subtracting the product of Equation (22) and the quantity 1/2 + 1/¢
TS . . :
sin "o from this expression leads to
+
o} 1 o
( — + 2 -+ + + + 2iws iw * + + +
T L= . O . _ 2l ST T ,
Yo(\ Ydx p vo(.\ l).u(o y X l)dx 1 = J e Moo,y ) dy
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(- o
N T
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{ st +
+ 0T G oy (28)

Substitntion of Faguations (21) and (28) into Equation (17) results in a

goeneral espression for nnsteady pressure difterence Ap at a position o

alons the bias cherds froe the intepral relations, Equation (B-6)

-

civen in Appecoiaon, el the detinttions of terms in Reteroence (_,] .
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whore ¢ CGoy is derived I Section 203, Equation (24) . This expression
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f5 cquivalont to that derived in Reterence [13)0 cxcept tor the fourth

Coren wWhiteit tu in error in Retoerence i\lh].
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he first two terms and the third term in BEquation (29) represent
the unsteady prossure contributed trom the bound vorticity of the refer-

ence blade avd ity shed vorticity, respectively.  The last term

+
U VAN
Jd oo . i3

>

is the contribution from the interactions boetween the
chordwise disturbance and the bound vorticitv on the retference blade.
Other terms haviae intinite summations include the effect {rom the con-
centrated vortices of the adjacent blades and that trom their wake vor-
tl'Cl't_\'.

Fquation (29 can tinally be solved when the induced velocity

Vo), Known frem the siven boundary concition, is inserted.

ination of Unsteady Pressare distribution

fooobtain a solution of Equation (U9) Tor the unsteadvy pressure

. .. . . . . = +
distribut ion, the total normal induced velocity v (X0 ,) must be
\ o

1

cocdried alons the entire chord Tength of the reterence blade.  This

i posaible when the boundary ceadition on the reterence blade is

Joalt Specidication of Unsteady Boundary Condition

S boondiry condition on the blade reguires that the resultant

Py e Ulow plus distarbance plus any iaduced 1 low) be tanpent to

o bide o contoar. Followine the ausuepticons monle in Sectien 201 where
tin St bs rared tos b dntinicels thia o and the camber amally this
o Gy cesiaition wan e tad i b red o rhe Blade chord Hioe and i

i tar Galoin e ol i o eetatod aivted b owith canbor and
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-~ -~ M L4 .
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angle of incidence as illustrated in Fipure 7. The kinematic flow con-
Jition is then

+ W sin o + v
dv m m ¢

+ v
1 o)

i

+ W cos « +u
dx m m ¢

+ u
0

[
¢

I the incidence ane

us

x is assumed small, the equation can be
m

written as

(30)

where u o is neglected as discussed in Section 2.3, Tor the speciric
0
case where flat plate and zero angle of incidence is considered,

Lquatien (30) reduces to vo(x ) = vy

The linevar nature of the present analvsis enables the boundary con-
dition to be scparated into two parts: a steady boundary condition and
an unsteady boundary condition.  The normal induced velocity vy is then

3 , that 1is,

composced of a steady part Vo and an unsteady part v
o
5 u
. Thus, the steady boundary condition becomes, from

i
i
+
<

i v
Q 8] 8]
S u

Fquation (30),

+ dv
v b = (- a W RE)
| G N G 1 &
5 dx
! S .
and the ansteady boundary condition is
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Figure 7. Velocities in Boundary Condition.
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[n this analysis, a parabolic arce camber line representing the air-

foil is considered and can be described as

+ . . .
where v is the ratio of maximum camber to the chord. For the general
m ’
disturbance velocity, Equations (31) and (32) can combine with
Equations (33) and (3) and (7) in Section 2.2 to obtain the following

relacions:

+ + o+

v ) = -2y v - o W 34a)

o m m o

and
+

+ +,oivt IR S S » fevt = ) (R
vo(x o) o=y < e = (2v xu, *+ v Jo ¢ SR )

0 o Tom d d

u u

20000 General Expression for Unsteady Pressure Distribution

Lquation (29) cives an expression for unsteady pressure distriba-
tion on airtoils of o cascade which interacts with o disturbance in the
inlet tiow Ticlds. This expression is written in terms of the induced

J— X . 3
velocity v (oY on the blade surtace and is divectly related to the dis-
- o .
turbanee flow by the boundary condition vhich ic discussed in thae
provious soevtion.  The steadv vorticity distribution and tocal

cireulation must aloo be deterained berore the conplete solut fon can be

ohlained.  Vith the substitotion ot indnesd veloeity derived trom the

boumdary condition into Dnuaiions (000 0 (O3 and Ay the ansteady
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proessure distribution oot by be o dotermined s taaction oroinlo

'

vlow distar!

ance amnd cancade ccomet ey,

[ order to solve the tipst two terms o Fquat ion (00 0 i fs pos-

oo te consider the dxolataed airtoll case o which the cupr csaon Do

uinsiendy pressure distribution has been determined. The cotaiis are

in Appendix AL Thus, by substitution ot the reasult trom
Lt

Pamat ion (A=),
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It S (37)

Ve tetal unsteady clrculaiion on the blads 1s also obtained by
sulsctitatine unsteady boundary condition, Fquation (35409, and cnploving

the dnzocrar relations presented in Appendia 8. Heneo,
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' where S and o () are as deseribed in Dguations (37) and (38) .
8}
Fhe Katta flow condition, which requires that the pressare diffor-
] citce b the traitine edee ol Che aivtoll is cevo, ApclE) = 0, is Jdemon-
’ i
stratedd oo nbatituling o Iointe the equations tor unsteady proessare ’
RETEES U e unsteady prossure ditterence is fouad to vanish since




terms such as \/IA—‘#«}—/T;AV}, ~/l».j—7-+'5, Z(fz,:+), and (X .';+) all equal
sero when U+ = 1.

The correctness of this cxpression can also be checked by examining
the isoifated airtoil case, Appendix A, in which the blade-to-blade spac-
ingy in cascade becomes intfinity. For this condition, the expression of
unsteady pressure distribution, Equation (39), reduces to one which is
identical to that obtained by Naumann (2()] since the terms containing
infinite summations in Equations (29), (23), and (24) must vanish as

shown in Appendix C.
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CHAPTER TIIL

CALCULATTON OF UNSTEADY PRESSURE DISTRIBUTTION
AND OTHER UNSTEADY PARAMETERS

The theoretical analysis in the previous chapter provides a solu-
tion of unsteady pressure distribution for a cascade of airfoils in an
inviscid, incompressible, distorted inflow. Specificallyv, this solution
is cxpressed In terms of the seneral parameteors ~ the cascade geometry:

1 1

space—chord ratio s/c, stazeor angle T, blade camber v, mean anglie of

il

incidence coand the reduced rrequency v oor oo,

Fquations (39), (37), and (38) contain sceveral quantitics expres-
sine the unsteady contribution of the blades in a cascade which are
adjacent to the reference bladeo  Each of these quantitics is an infi-

nite sunmmation as Listed o Table 1. The ovaluation of these summations

is discussed in the rollowing soctions.,

3.1 Coseade Functions and Infinite Summat ions

The infinite susmations Tisted ia Table 1 consist of so~calted

coseade Tunctions, some of which have been detined in Appendix TV of
Reterenee ‘\lc’.\,. These terms will be examined prior to obtaining their

solutions:

(1Y The cascade summations resuived to determine the steady

vorticity, taunation (38), are

A A ST AT
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' 4'),‘
: The quantity L',l + C, - 0, as a result, is a real number.
! 2
This is also true tor lil and E,. 0 The steadv vorticity
k" (v ), BEquation (33), thercefore, has no imasinary
¥
5

component and no phase lag with the steady litt.  This
agrees with the result freom steady flow theory tor thin

atrfoil (21).

(2) The intinite summations having the forms
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are conmplex, since a phase ditterence tactor o

multiplics vcach of the real gquantitios discussed above.

(3)  Fguation (39) contains a special intioite summation:
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where Jotined as

+ - + o o+
Mooar) = 2 tan ! Lo I*--"!" -0

The quantitices e and hl are identical to ¢ and h
L [ <

except that the position of the concentrated vortex for

. + . .
the adjacent blades x is replaced by one, that is
o )

, S <
= 1+ In sin - 1 oes
1 < % 1
aand
3 ' N = . . . B
h, = I + In - st + 120 - cos
i C -
4 . + ‘
1t 1Voalse b s Lhat { \ Yoaod Sy v ), tosether

P thorerore real and can be tound by ousing the trigo-

et ric fdestioy which relates the sum ol two are tan-

a
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' pormtls 1t ta be casily separated into the real and
i oa cinery components and g numerical intesration per-
Dornedd. Sore are also functions ot the position
t conc the retorence blade choard or o a tunction ot the

rocue b trequeney oy For example, terms such as

. . . . +

P U, munt first be evaluated at the location o where
oo casteady pressure Jdiference s to be tound and then
stummed over difrerent values of o which represent the

; . .

el blades or the cascado.

Cready pressure difierence onoa canscade blade, Bguatica (39

conciderod in o two parts: o the part with cnordwise disturbance ug

i

aniotit o with the transverse disturbance v, . When the relation tor dis-

1
J
Cococncs verecity and dialet Ulow obtaiacd in Seccion 200, Fouation (1)
(s copiicd, the distuarbances u, and v oocoan be o replaced by —w o osio 0 oaad
) s d d
I wite e the gnobe s dosoribes the retative position belween the
J

three rotor,

Pac coerticient of unstendy pressure ditterence s ointroduced at
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mod v
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and the phase ansle is detfined as J

which represents the anount by which the unsteady pressure diflerence

vector atoa location - on the adrseil chord Tazs the vector of oscitl-

! oovelosin, . I crder Lo obsorve Che nastoady cffest due to
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A Gauss~-Lependre quadrature method, which is
the numerical evaluation of interais with the presence of singnlaricy,
is introduced.  As a demonstraticn of the validity of this inteeration
techaique, the simple case of an isolated flat-plate airfoil is consid-

cred.  For example, the improper integral

seoanalveical exact selution is 1, is uscd 1n evaluating unsteady

Lift vor this case. The present inte scheme wives a numerical

value witihin o sicnileant accuracy ol four decimat poiats,

wodeveloped ia Reverence 070 can be

Concccaent v, the computer progr
b aeeal to o eadloulate the unsteady Liro o ang picehing moment (in additien

oo the nnstealdy pressare distribution,




CHAPTER TV

THEORETICAL PREDICTTONS AND COMPARISONS WITH
EXPERIMENTAL RESULTS AND OTHER SOLUTTONS

A.b Introduction

To demonstrate the validity of the present solution, comparisons
will be made with other solutions and with available measured data
desceribing the unsteady pressure diriercence distribution or unsteady
response of g cascade whose peometry is specitied. The theoretical
recults obtained in Chapter I are presented herein as the maanitudes
and phase ancies of the utsteady preossure difference, unsteady Hife and
pitehing moment cocrticients, .\k'p\: 1, UI.' and C.\l‘ as detined by
Dquations (A0, ey, and (43), respectively. The dimensionicss Loca-

tien of unsteady conter-oi-prossure X fo, Laquation (44), is also pre-

sented. After establishing the validity ot the present theoretical
model by comparing predicted and measured cascade roesponse, this theo-
retical mode!l will be used to predict cascade response over a raange of

Vil ot redinced freguencica, mean incidence anele, aond blade camber

that can be belptal Tor turbomachine dee

A oatated in Scection Coly the present analbvais cmplovs o
flecorcUioal et ident feal to that doveloped by Benderson (8. The
resnlts of the unsteady Tirt and moment coctfiicient.: Cooand \"\1. which
were caleunlated asioy the prosent anabeis

,oaAre comparea witin STRNETS

b ained in Reterences clab and I, respectively,




Of ol l the theorcetical developments of unsteady coscade ressonse,
the unsteady analesis of Whitoehead ‘.H\, is the one which can provide the
most exact comparison.  While developed primarily for the vibration

1

anatvsis of a cascade, a special solution can be obtoined tor the inter-

houpstrean disturbances. It is based on the

action of rivid blades wit
vortex representation of thin, soro-camber airtoils, whereas cach air-
foil in the cascade is representoed by an odd nuaber of equally spaced

bound vortices with continuously varvine strenyth.  Smith's theory [17) y

which 1s a4 modification of Whitehad s, to inclede comproonibilites

ciTects rives Whitchead's solution for M o= 0 ane i3 actinelly used in the
followin, computations.  Toose resulis are roterred tooas the woitchend-

LN

Saith theory.

heopresent analvsis emplovs a retforence peiat gt the midehord ol

Lhe airteil by virtue ol the coordinate svstem eanpioved with its orivin

at the alrfeil midehord. T, the cquations desceribed above arce
vetorred to that point, that s, the phase anple o is measared with
respeet to the disturbance velocity occurring at the blade midchord.  As

diceasaed by Whittehead {1'5\ and demonstrated by Getsiog Ll‘)) , this

reterence point can be moved to o other different positions on the airvteil.

The Lransiormaticn ol the reserence point frem the midehord tooany other
peadition on the airroil o can He aevomelished asing the foltiowing

olatjonship:

(o)




- O
AN
[, = uansteady Vit roeteronesd to o midohord y
O
PR anateady Tito rorerenced at o another location = \
X
+ . . .
Xo- lovation on o airtoil (=1 ~ x - 1) s
and
roducad freguencey .
. . . -1 . , ; . L
Foroex tos the retation L, = 1. ¢ will bhe used when comparinge this
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Peadia g odoe of an airieil.

o order to conduct o seaniastial o of the resuits, {t dis
cowiary Lo acioct o flow and cascade conticuration which is compatible
with o sethods For this purpese, o disturbanee tlow field which '
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froquency, to obtain resalts for various operating conditions.  Bruce's

measured data are suitable for comparison with the wnsteady 1ift proe-
dicted by the present analveis.  However, experimental data describing
the unsteady pressure diftference distribution are not available from
Bruce's experinent.  As a result, the values of unsteady pressure dif-
ference coctfficient SC predicted by the present analvsis are presented
) :
to compare only with the Whitehead=Smith theoretical solutions.
Utilizing the computer program Jeveloped in Refereonce ('_’7) , the
P \ﬂ N -~ - ! \‘ N . I —
S LG sy O s e Uy s and om0 e are compated for
I D 1 . N R Lo
. . , O LY PR ; - vy - i 4
values or o= 3y, Ao and 3o at s/ = Oundo, 10353, and 20029 coverad
i e . A o SN vt = ~Jr_ = Sty = N Yo H
tn drace’s experinent with o0 = oy = 0 arad = 0.2, 0.5, oo, 2.0, and
2 Tom
20200 A tvpteal rosait of the theoretical prediction of JC s the
n
. . . . - . , -0 . ’ 4= s .
series of caleulwions Yor 7 o= 45 with s/¢ = 1,353 over a ranue of
rodoced fregquency of L0, 1.0, 105, and 2.0, which are presentod in
Fioures 8 throw b Ty o terss of tts maynitude and vhase anele retoer-
cneed Lo the Toeadin g odpe o the airtoil. The results ol computations
for L',[ v Gy and ST Jeoare presented ia Fioures 12 through 2o vhere
thev are compared with Bruce's measured data, with computations bascd on
the Waitchead-sSuith theory, and with theoretical analvsis by Henderson
and Bruce.  As shown o Pigee oy the preseat theoretical model Is not
n P - . 7 "\‘ N I N - N
i valid Yor SOAN and o it S e dLi76. However, these cases are
3
i calvulated Yor the purpose of coaparviseon and can demonsteate the
4
!
apndicabi ity o the »rosoat theory.
\
’
From the cariations of 20 demonstrated o Picures 3 throash T and
. P '
. the corprespemnding inte ratod resualt t'I in Fivures 13 oaad tog it is roead
that the oo corprisons ot oen the presnent analvais and the
; hriteieand- smith theors Show cood aercenent eancept in the ranse where the
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|
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reduced frequency w becomes close to a value of w = 1.642. Near this
value of w, the present analysis and Henderson's theory indicate sig-
niricant changes in both the magnitude and phase angle of the unsteady
lift cocefficients, and a great discrepancy is observed between the pres-—
analysis and the Whitehead-Smith theory in the trend of the predicted
variations of § .
p

These critical values of w occur when the cascade inflow conditions
become such that the spacing between blades s is equal to the wavelength
of the distorted inflow ¢ or an integer multiple of this wavelength,
that is, the value of intra-blade frequency 1 defined by Equation (11)

aprroachies a multiple of 2n. Henderson (18) has classified these criti-
R . N - Ha - . i H :
cal values of w as ''resonance' points and suggested a physical
interpretation based on the phase-angle difference from blade to blade
as rollows. A basic assumption is that the vorticity and, as a result,

. . th . _ R
the circulation on the n blade differs from that on the reference
blade by a phase angle ni. When the "resonance' condition occurs, the
vorticity and circulation on all blades and Lheir wakes are in-phase and
their contributions to the unsteady respouse of the reference blade tend

to accumulate and, hence, result in significant changes in unsteady

cascade performance.  The specific values of o whoere the resonances

occur can be determined from BEquation (13) by assuming 1 = 2ka, k = 1,
. . o ) . !

2, 3, ... For this cascade scometry of 0= 45 and s/¢ = 1.353, the

corresponding reduced Vrequencies ave o = 1042k,

Ao oshewn in Fisures 12 through 2o, the Whitehead=Smith theory does
Aot predict the existence ol these resonance conditions.  Henderson

attribnted this to the use of a limit value of 1, =2w ~ v <« 0 in

Vhitehead=smith's comnutat fon, for the swamation of induced velocities
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due to all the blades in the cascade. While the Whitchead-Smith analy-
sis computes unsteady reswonse at the resonance points corresponding to
T = -2k7, it does not provide a correct mathematical solution.

The values !éLl’ [6“i, ¢ and Qﬂ predicted by the present analysis

L’
as shown in Figures 12 through 26 are, in general, in good agreement

with those calculated by Bruce. Near the "

resonance' points, these
quantities representing results of both methods undergo significant
changes in their levels, but the present analysis predicts a wider range
of influence of ''resonance'" and a greater level of variations. Another
difference between these two methods is that in the region of lower val-
ues of w, that is, w < 0.5, the cascade performance predicted by the
preosent analysis tends to behave as that given by the Whitehead-Smich
theory.

Theoretically, for an error-free solution, the results predicted
usiny cither the present analysis or henderson and Bruce's theory should
be identical. There is a good reason to belicve that these ditfferences
can be contributed to computational crrors introduced during newmerical
intesrations of the finite summations and are the result of taking only
a finite number of terms. However, the similarity between the solutions
aiven by the present analysis and Whitchead-Smith may not be coinciden-
tal and should be examined,
|
i

. . - |~
The present analysis predicts the resonance, for example, by ;CL

and [C. 0 with semewhat of a "lagping" offect as compared to Bruce's

N |
caleulation,  This fact is also demonstrated by the parameter e p /e oas

shown in Fisures 24, 25, and 26 where the present analysis gives a

solution similar to that of Whitchead-Smith, although it decreases in
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value near resonance points. The abrupt changes in the location of

unsteady center-of-pressurec obtained by Bruce are not observed.

On the whole, these predictions of unsteady response parameters by
the present analvsis are in good agreement with predictions based on the
expressions of unsteady lift and pitching moment derived by Henderson
and Bruce and are similar to the solutions by the Whitehead-Smith theory
except in the neighborhood of critical reduced frequencies.

for the comparison of measured and predicted data, conclusions
similar to those obtained by Bruce can be drawn. One of these is that
the theories, in general, tend to overpredict the magnitude of unsteadv

. This characteristic is attributed to

response, that is, lé and féw
I\

o
the flow viscosity and blade thickness effects. Another conclusion is

that the Whitehead-Smith model predicts a better overall unsteady cas-

cade performance, especiallyv the trends of variation of {CL; with w very
. - . - A

; small, even though it does not follow the changes in the level of ;CLi

shown by the data in the neighborhood of critical reduced frequencies.

The most significant agreement in measured and predicted data for ¢, and

L
, | ¢W is observed in Figures 15 through 17 and 21 through 23 where these
i - i
i phase angles obtained using the present analvsis show quite accurate
. predictions. The measured data for R p /c alse follows well the pre-
) { .P.
! o dictions by the present analysis as shown in Fiaures 24, 25, and 26.
‘ As opposcd to the Whitcehead-Smith model which provides performance
‘ +
} prediction based on « = v = 0, the theoretical model employed in this
m m
. anatlysis can include the effccts of mean incidence angle and camber.
.
4
M )
t 9 Bruce obtained measured data for various vilues of ‘o but no experi-
. . . — . )
mental information as to the effect of y o By comparing the measured
m
i\
« and predicted data, he showed that the trends of variation of unsteadv
i
hid
H [ 4
T re e sl e - R TMIRER g, T n' - e aae ——
IR = N A“{_.ﬁ




e o ——— ——— ™

92

response varying with different values of um are in agreement. The
effects of blade camber were not evaluated because of the lack of
experimental data. The effects of mean incidence angle and blade camber
predicted by the present analysis will be presented in the next section.

In a recent publication by Gallus et al. (20], the results of meas-
urements of the fluctuating force in an axial flow compressor are pre-
sented. A series of dynamic transducers are mounted along the midspan
of a stator blade located downstream of a rotor as shown in Figure 27.
This is a case in which the stator blade row interacts with moving rotor
wakes. Therefore, the theoretical analysis developed in this study can
be applied to this flow situation by virtue of relation motion.

The shape of wakes originating from the trailing edge of the rotor
blades is measured by the use of a rotating three-hole probe continu-
ously shifted along one spacing behind the rotor as is also shown in
Figure 27. It is assumed the velocitv distribution in the wake can be

described by two parameters h and b/s using the empirical equation

W v/s.2
T = 1 - hoexp ('1°(b/s) | (46)
max

This relationship is shown in Figure 28.

The proedicted unsteady pressure cocfficient obtained from the
present analvsis is expressed in terms of pressure difference. A direct
comparison of these predictions with the measured data of Reference (10\
is not practical, however, because of the stagecered chordwise location

of the transducers on oppusite sides of the stator blade. lowever,

Gallus et al. are able to obtain the unsteady lift by integrating the




v - ~ - ~ -
93
i
|
{
’,
ROTATING
PXOBE
Oz
Firure )70 Measuring Positions in the Midspan Section of the Compressor

in the Daperiment by Gallas ot al. (22).
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measured pressure distribution, Figure 40 in Reference (20). The pres-
ent analvsis can also determine the unsteady lift for comparison.

At a4 speed of 6,500 rpm for the rotor and a flow coefficient
» = 0.8 or 0.7, the prube measurement yields the wake shape for which
b/s, = u.3 and 0.4 and W . /W = 0.9 and 0.85, respectively. The flow

R min max

conditions and cascade geometry tested are listed in Table 2. The flow
is incompressible since the Mach number is less than 0.3. The wake pro-
file can then be uvbtained using Equation (46) and decomposed into har-
monic components by the aid of Fourier analvsis. Since a cosine series
is cimploved to describe the symmetrical veleocityv prorile for the

coordinate svstem shown in Figure 238, the phase angle of each harmonic

component is zero. Thus, for » = 0.3,
LT os {2k
W Z M cos iRl
miax max
k=1
) V1oob ioooby ST b 2 n.2 2 v
= (1= n) - 5 a0 p, o (7@K cos (kD))
k =1

= 0.9870 - 0.02129 cos (23 Z) - 0.0109%% cos (4u %)

0.00360 cos (61 ) = 0.00076 cos (8n 2)
S

0.00010 cos (l0a :)

As an approximation, onlv the first Five harmonics are employed o
describe the wake protile. The unsteady response caused by cach

harmonic component is then caleulated and summed to fiand the liftc




Table 2

EXPERIMENTAL CONDITIONS OF GALLUS ET AL. (.0)

Cascade Geometry

STATOR

2— = 0.9062 (s = 58.9 mm, ¢ = 65 mm)
¢ = 18.06°

y"\

75 = 0.13

Operating Conditions

CASE T CASE II
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Ficure 28, Mathematical Representation of the Wake Profile.
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: fluctuation on the stator during one wavelength of the disturbance. The

results of these calculations are listed in Table 3 and shown in

' Figures 29 and 30. Good agreement is observed between the predicted and
measured results. This result represents a typical application of the
present analysis and, therefore, an indirect verification of this theo-
retical model.

Satyanarayana [30) has studied the fluctuating lift on cascades at
low reduced frequency to verify the validity of thin airfoil theory for
cascades. His experiment is conducted in a specially designed gust tun-
nel which can generate flow disturbance by flexible metal sheets located
on the upper and lower surfaces of the test section.

For this special flow situation in the cascade wind tunnel employed
by Satyanaravana, the intra-blade frequency t is related to the reduced

; frequency w as 0= 2(s/c). sin . At the reduced frequency » = 0.10

! and 3 = 0.22, that is, a case where the flow disturbance is nonconvec-

ted, the comparison between his measured amplitude of unsteady lift and

the values predicted by the present analysis is shown in Figure 31. In

! contrast to the experiment by Gallus et al. in which high reduced
frequencivs are considered, this represents data of unsteady 1ift in the

i region of low reduced frequency, and good agrecement is observed.

4.3 Theorctical fredictions of the Effects of Mean Incidence Angle and

Blade Coamber on the Unsteadv Response
dade Lamber on the ensteady hesponse

Y An important feature ot the present analysis is that the effects of
S + . _p
. mean incidonce ancle «oand blade camber v can he predicted. While
m \
4
t + . ;
A the factors « and vy are sceond-order contributions to unsteady
' A m Tom
w response as opposcd Lo space-chord ratio s/e oand stavper angle 5, the
4
L] I‘
v
[ ]

B e L Wﬁmcm.wnmm» e an N
- ke e, . LW, 2, . o~
-~ .




Table 3

PREDICTED UNSTEADY LIFT COEFFICIENTS FOR EACH HARMONIC
COMPONENT FOR THE EXPERIMENTAL CONDITIONS OF TABLE 2

th . - -
| k Harmonic w \CLI ¢L
CASE I 1 3.219  0.2624 308.79°
o = 0.8
2 6.438 0.1965 127.72°
3 9.657 0.1556 307.21°
4 12.876  0.1255 128.24°
_ 5 16.095 0.0950  330.50°
?
_ CASE II 1 3.392  0.2244  312.49° .
t » = 0.7
! 2 6.784 0.1386  142.93°
' 3 10.176  0.1055 346.77°
4 13.568  0.0963  187.59°
| 5 16.960 0.0842  278.60°

-
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capability to predict their effects can be of great use to turbomachine

- —

designers when estimating the cascade unsteady performance.
The results obtained using the present theorv have been presented

. ) 1= . I T
by Bruce (19] in the form of J{CL o 0 L‘/)y o’ 1;C}|/14m, and

{

Y

i + . - A
I/3y . These are useful parameters with which the final coeffi-
cients of unsteady lift or pitching moment can be computed using the

following relations:

!
- o~ i
yvig | are ! ;
3 ' ‘ LY LY+ i
oo T 0 Pt oo+ b ;
L L ¢ m L+ o i
0,0 m av
©onm 1
1
and ;
}
i
yic §
VS - MY+ i
~ ic.l = |C o+ v ,
I i m + m
G, 0 oy
m
i
where | C i and EC\I | represent the basic values of the 1ift and ;
0,0 0,0 4
pitching moment cocfficient computed for the case of zero mean incidence J
angle and zero blade camber. 3
values of these derivatives can be obtained by utilizing
. LEquations (39), (37), and (38) which permit the expressions of
oo T s . -
SNC and AC /1 to be given as rollows: ¥
poT o p m i :

e
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_a._l; = 1_ ( he d +
+ 27 .+ o ’
3y n oY
-1
A 1 .
:(,:I 1 JA;LAP "
m ' m
-1
and
- l ~
; o do
0y+ S 3v+
-1 m

- . e ol . +
\s anocxample, results of calceulations tor AIL[I/Aam, JILII/Sy ,

- + . . .
o, and \{LMI/Sy using the above equations are plotted in

e m I\
e - . -0 .
32 through 35 for & = 45 wversus w with s/c¢

(
2.029, and

= 1,353,

Fijqures
99 and are similar to the results obtained by Bruce. It can be obscrved

thit the effeets of camber and wmean incidence angle are usually of

in some recions of reduced fre-

scecond order but can become significant

queney, normally for lTower valuaes of W
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CHAPTER V

CONCLUSTONS AND RECOMAENDATIONS FOR FURTHER RESEARCH

Based on the results obtained in this study regarding the theoreti-

cal prediction of the unsteady pressure distribution on a cascade of

airfoils,

A NE M JE V5,

hbn o -

€N

it is concluded that:

The numerical integration of unsteady pressure difference,
Equation (39), permits other unsteady response parameters
to be calculated. When compared with Bruce's (19} calcu-
lation of unsteady lift and moment, the unsteady pressure
analysis shows satisfactory agreement except in the
regions near the resonance points, Figures 12 through 23.
This difference is believed tm be a result of the accumu-
lation of computational errors in evaluating the infinite
cascade summations and the numerical integrations.

The unsteady pressure difference coefficients AC
calculated using Equation (39) are compared with the
predictions by the Whitchead-Smith theory (14) since
suitable experimental data are not available.

Comparisons of IAépl and %p predicted by the two methods
show good agreement except in the neighborhood of
critical reduced frequencies or resonance points as

presented in Figures 8 through 11.  This difference in

the predictions by these two theoretical models is also

reflected in the comparison of their predicted unsteady
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lift and pitching moment, Figures 12 through 23. The
Whitechead-Smith theory is formulated in a manner which
excludes the critical reduced frequencies. Therefore,
agreement between the two methods is not expected at these
conditions.

The present analysis provides an unsteady cascade perform-
ance prediction similar to the prediction given by the
Whitehead-Smith theory, Figures 12 through 26, particu-
larly at low values of reduced frequency, that is,

« < 0.3. This result, however, does not agree well with
Bruce's calculations of unsteady lift and moment. Again,
these differences appear to be caused by numerical errors
which result in the two different computational approaches.
The measured data obtained and presented by Bruce (19),

in general, have trends that are in good agreement with
the predictions by the present analysis as shown in
Figures 12 through 26.

Gallus et al. (20] have conducted measurements of the
pressure fluctuations in an axial flow compressor by
utilizing a scries of dynamic pressure transducers mounted
on the midspan surface of a stator blade which expericences
rotor wakes. Satyanarayauna (30] has also measured the
fluctuating 1ift on a cascade mounted in a specially
desizgned pust tunnel.  These two experimental studices con-
sider relatively high and low reduced frequencies,
respectively.  Good agreement is observed in both cases

when the measurced unsteady Lift is compared with
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theoretical predictions by the present analysis as shown
in Figures 29, 30, and 11.

Recommendations for the direction of additional experimental and

: theoretical efforts are as follows:

(1) At the present state of knowledge, it is essential to con-
duct direct measurements of unsteadv pressure differences
in an experimental setup similar to thar employed in
Reference (19) with a rotating blade row and simple sinu-
soidal spatial distortions. This experimental study should
be conducted at intermediate values ol reduced frequencies
as the high and low values have been considered in
Ruetfoerences (20} and (3U}, respectively.  Such data are
required to complete the verification of the validity of

the present analysis,

i<

(2) oOnce this analysis is veriticed bv measured data, it should
be usced to gencrate unsteady design Jdata, which demon-
strate the effects of cascade geometry and flow
characteristics, in a form similar to the results present
in Reference (29}.

(3)  The present analyvsis should be used to predict the

unsteadv forces in a cascade of nonrigid airfoils
subjected to a foreed vibration by introducing the

appropriate boundary conditions into Eguation (29).
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APPENDIX A

DETERMINATION OF UNSTLEADY PRESSURE DISTRIBUTION
FOR AN ISOLATED AIRFOIL

The determination of unsteady pressure distribution for a cascade
of airfoils as written in Equation (29) of Section 2.3 requires that the
integral terms be evaluated. For example, the first two terms contrib-
uted by the bound vorticity on the reference blade alone can be evalu-
ated by direct substitution of the solutions obtained from the special
case of an isolated airfoil, that is, a situation where the space-chord
ratio s/c¢ approaches infinity. The solution for the isolated airfoil
case, hence, is necessary and can be a good check for the validity of
the present analysis.

In the limiting case of an isolated airtfoil, it is reasounable that
all the effects contributed from blade-to-blade interactions are negli-
gible. As a result, all the terms having infinite summations, that is,

terms such as
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in the analysis can be shown to vanish mathematically as shown in
Appendix C. Thus, Equations (29), (23), and (24) can be reduced to
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The cquaticon of nasteady prosaare distribution therefore contains only
the contributions b othe bound vorlivity representing the reference
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waake vorticity and is identical to that derived in

For a cambered airfoil with angle of incidence, the induced veloci-

. -+ + . . s .
ties v (x l) and v (x l) remain the same as written in Equations (34a)
0 0

and (34b).  For the purpose of solving the problem, several integrals

must be evaluated, and their results are listed in Appendix B.  Substi-

tution of the boundary conditions and the integral relationships from

Equations (8) through (14) of Appendix B gives
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By utilizing the lincar property of the analysis, the unsteady pressure

differcnce can be divided into two parts, namely, the parts due to dis-

turbance veleocities u1 and v, respectively,
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By defining the function
I SERY
F(w,\) = T(w) JO(/\) - 3 - i_]l()\) - Jo()‘) _ S + iJl()‘) ,
where
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is the Horlock function, the following identity is then derived:
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The unsteady pressure difference due only to the chordwise disturbance

is, therefore,
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and by cxamiaation ol the terms within the brackets in Equation (A-3),

totlowing relationship can be obtained:
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The unsteady pressure difference due only to the traverse disturbance is

then simplified and becomes
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The general expression for the unsteady pressure difference on an iso-
lated airtfoil of symmetric parabolic arc operating at a nonzero mean
incidence angle in a velocity field that contains both a chordwise and a
transverse disturbance is obtained by combining Equations (A-2) and

(A-4). Thus,
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As a check for the validity of Equation (A-5), the isolated airfoil
case with "convected" disturbances is considered, that is, the distur-
bance is transported over the airfoil with a velocity Wm. With the sub-
stitution of the result A = w, as discussed in Section 2.2,

Equation (A-5) is simplified to
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where F(w) and S(w) are complex functions of reduced frequency.
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Comparison of Equation (A-6) with that derived by Naumann (26)

|
f
|
}
§
|
|
|

shows a complete agrecment and demonstrates the validity of

: Equation (A-5) aund, hence, the present analysis.
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Inteoral Relations

APPENDIX B

TABULATION OF INTEGRALS

in Cascade Analvsis
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Intearal Relations for Analvsis of Isolated Airtoil
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APPENDTX C

UNSTEADY PRESSURE DIFFERENCE EQUATTON
FOR THE CASE OF INFINITE SPACING

tion ot unsteady pressure difference for a blade

turbance velocity field is presented in Equation (29).

this appendix is to show that when the spacing between

inrinite this cquation reduces to that for an isolated

. V1 s f o e (e
was derived by Blisplingho 7 ot al. [22).
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Danesivvar (1o have shown that
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From the results presented above, it is evident that the infinitive
summations as listed in Table 1 and contained in Equations (29), (23),
and (24) are all equal to zere when s = o,

With these results, Equation (29) of Chapter 11 reduces to
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